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Abstract

Email marketing has been an increasingly important tool for today’s businesses. In this
paper, we propose a counting-process-based Bayesian method for quantifying the effective-
ness of email marketing campaigns in conjunction with customer characteristics. Our model
explicitly addresses the seasonality of data, accounts for the impact of customer characteristics
on their purchasing behavior, and evaluates effects of email offers as well as their interactions
with customer characteristics. Using the proposed method, together with a propensity-score-
based unit-matching technique for alleviating potential confounding, we analyze a large email
marketing data set of an online ticket marketplace to evaluate the short- and long-term effec-
tiveness of their email campaigns. It is shown that email offers can increase customer purchase
rate both immediately and during a longer term. Customers’ characteristics such as length
of shopping history, purchase recency, average ticket price, average ticket count, and number
of genres purchased also affect customers’ purchase rate. A strong positive interaction is un-
covered between email offer and purchase recency, suggesting that customers who have been
inactive recently are more likely to take advantage of promotional offers.

Keywords:Hazard function, Markov chain Monte Carlo, Normal approximation, Propensity score
matching, Purchase rate, Survival process
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1 Introduction

Email marketing is to directly market a commercial message to people using email. It is signifi-

cantly cheaper and faster than traditional marketing vehicles and is widely used today. U.S. firms

spent $400 million on email marketing in 2006, and $1.5 billion in 2012, compared to $64 billion

on TV, $34 billion on print ads, and $39 billion on Internet advertising. The estimated return on

investment (ROI) is 4325% (VanBoskirk 2007). Due to the increasing popularity of email mar-

keting, various surveys have been conducted to understand consumers’ response to it. In a survey

conducted by Direct Marketing Association, 66% of consumers have made online purchases as a

result of an email marketing message. According to a ChoozOn Corporation survey, 70% of con-

sumers made use of a discount coupon from a marketing email in the week prior to the survey. It

is well-established that email marketing is useful at the overall level. However, evaluating the ef-

fectiveness of an individual company’s email marketing campaigns is crucial and still challenging.

The effectiveness of promotions has been evaluated at both aggregate and individual levels.

At the aggregate level, sales response models are widely used (e.g., Kamakura and Kang (2007)

and Osinga et al. (2010)). Our data set contains the information of individual customers of an

online ticket marketplace; therefore, we focus on individual-level analysis and use purchase rate as

the response variable. In the literature, three basic types of models have been proposed to model

purchase rate or purchase time. The first type uses a probability distribution to directly model

purchase time. Allenby et al. (1999) developed a dynamic model, assuming that purchase time

follows a generalized gamma distribution whose parameters are specified to allow for both cross-

sectional heterogeneity and temporal dynamics. Boatwright et al. (2003) proposed a hierarchical

Bayes approach that assumes the Conway-Maxwell-Poisson distribution for purchase time and

models the distribution of purchase quantity conditional on purchase time. Such models are not

suitable for our data because there are no known dynamic distributional models that can account

for seasonality and time-dependent individual-specific covariates simultaneously.

The second type of models employs logit or probit models and their extensions to treat the

buy/not buy decision during a time interval (e.g., a week). Bucklin and Lattin (1991) developed

and tested a two-state, probabilistic model of purchase incidence and brand choice for frequently-

purchased consumer products. Chintagunta (1993) developed a joint model of purchase proba-

2
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Ju
n 

L
iu

] 
at

 0
5:

43
 2

0 
Ja

nu
ar

y 
20

16
 



ACCEPTED MANUSCRIPT

bility, brand choice and purchase quantity to assess the impact of marketing variables, including

feature advertisement, special display and temporary price cut. Similar models were applied to

study various marketing issues of frequently-purchased products (e.g., Ailawadi and Neslin (1998),

Zhang and Krishnamurthi (2004), Chan et al. (2008)). This type of models is appropriate for sit-

uations where customers make regular and frequent purchases. However, in our context event

ticket purchases are much less frequent and therefore the number of periods with no purchases is

considerably higher.

The third type of models utilizes survival processes and hazard functions to take advantage

of their capability of handling right-censored data, which is prevalent in duration times data, and

time-dependent covariates. Gupta (1988) studied the impact of marketing variables on consumer

decisions about when, what, and how much to buy, using an Erlang-2 purchase time model, a

multinomial logit model of brand choice, and a cumulative logit model of purchase quantity, re-

spectively. Following Gupta (1988), many studies used the proportional hazard model (PHM) to

characterize household purchase time. In these studies the construct of interest is a household’s

instantaneous probability of making a purchase in a product category, conditional on the elapsed

time since the household’s previous purchase in that category. This conditional probability is the

hazard function. Jain and Vilcassim (1991) was the first to formally decompose the hazard function

into the baseline hazard, which captures a household’s intrinsic temporal purchase pattern, a co-

variate function, which represents the influence of marketing variables, and effects of unobserved

heterogeneity. Empirical studies showed that purchase time could not be adequately described

by probability distributions such as exponential, Erlang-2, or Weibull; and the capture of unob-

served heterogeneity was essential. Studies built upon Jain and Vilcassim (1991) include Gonul

and Srinivasan (1993), Chintagunta and Haldar (1998), Seetharaman and Chintagunta (2003), and

Manchanda et al. (2006), among many others.

The goal of our study is to evaluate the effectiveness of email marketing and to understand

factors that impact a customer’s purchase rate using transaction and email marketing data from

an online ticket marketplace. The survival process framework serves our purpose well for mod-

eling customer purchase rate. However, existing models such as those based on PHMs and those

summarized by Bijwaard et al. (2006) cannot be applied directly to adequately reflect important
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characteristics of our data. In order to accommodate our data, we employ the following strategies.

First, because event ticket purchase exhibits strong seasonality, we model the baseline hazard as

a periodic function. Thus, the partial likelihood approach employed by Bijwaard et al. (2006) is

not applicable. We express this periodic function by a Fourier series with up toM terms, where

M can be determined by the Bayes factor computation or Bayesian information criterion (BIC).

Second, instead of employing the EM algorithm described in Bijwaard et al. (2006), we conduct

a full Bayesian analysis of the data. By integrating over all individual-specific random effects, we

greatly reduce the dimension of the posterior distribution (from tens of thousands to fewer than

20), which results in an efficient Markov chain Monte Carlo (MCMC) algorithm. We have also

developed a robust Normal approximation method, which is used to estimate the Bayes factor ef-

fectively. Third, we employ a propensity-score-based unit-matching method to eliminate potential

biases and confounding factors in the analysis.

Using the aforementioned approach, we evaluate short- and long-term effectiveness of the com-

pany’s email marketing campaigns. We also examine how customer characteristics affect their

purchase rate and investigate whether certain customer segments are more responsive to email pro-

motions than others. We find that among the five major event genres (e.g., concerts, Major League

Baseball (MLB), National Basketball Association (NBA), National Football Association (NFL),

and National Hockey League (NHL)), NHL purchases are the most responsive to email offers both

immediately and during a longer term. Email offers also show a certain degree of effectiveness

on MLB and NFL purchases. As regards customer characteristics, we discover that customer pur-

chase rate decreases as the length of shopping history or purchase recency increases, indicating

that customer retention is a serious challenge to the company. Average ticket price reflects whether

a customer is a value or a budget customer; while the average ticket count per order suggests the

size of group with whom a customer attends events. These two attributes affect purchase rate of

different genres differently. Another customer characteristic that we consider is the number of gen-

res that a customer has purchased from the company. Consistent with the cross-selling literature,

we find that the more genres bought, the higher the purchase rate. Last but not least, we find that

offer and purchase recency has positive interaction for NBA and NHL purchases, which suggests

that offers are more effective for encouraging NBA and NHL customers who have been inactive
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for a longer time to purchase again.

The rest of the paper is organized as follows. Section 2 provides a detailed description of the

data set and the propensity-score-based unit-matching mechanism. Section 3 formally introduces

the model and its Bayesian inference procedure. Section 4 reports estimation and prediction results,

and discusses the managerial implications. Section 5 concludes with some comments. Technical

details are presented in the Appendix.

2 The Email Marketing Campaign Data

The data set was provided by a large online ticket marketplace (“the company”) that offers tickets

of all major sports and live entertainment events. During each month from February 2007 to

February 2011, a random sample of 2,000 customers were selected from those who made their first

purchase in that month. Starting from July 2009, the company successively conducted promotional

offer campaigns, in which coupon codes were sent to customers via email. Each coupon entitled

customers to a certain discount towards their purchases made before the expiration date of the

coupon, which normally was two to four weeks after the coupon was issued. The discounts were

in the form of percentage-off (ranging from 10-15%) or free-shipping. Due to the homogeneous

nature of the coupons, we do not distinguish among them; instead, we focus on analyzing the

average effect of email offers.

The data set contains the entire transaction and email offer history of the randomly-selected

customers. Each transaction record includes customer ID, purchase time, event, number of tickets,

and ticket price. Additional information about the customers includes their zip codes, genre pref-

erences, and email preference. A customer has the option to opt out of email communication. We

include only opted-in customers accounting for 45.7% of the customers in our data set. Table 1

provides key summary statistics for the five major genres with a total of 79,757 transactions. The

data also exhibits cross-genre purchasing behavior of the customers. Numbers of customers who

have purchased two, three, four, and five different genres are 5,319, 996, 209, and 28, respectively,

representing 14.7% of all customers.

When launching an offer campaign, the company intended to target at a specific group of cus-
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tomers and randomly assigned customers from the group to treatment or control group. However,

the data reveals that the randomized design was not properly implemented: customers in the treat-

ment and control groups differ significantly and the sizes of treatment and control groups of each

campaign are severely imbalanced (with control groups having fewer than 200 customers while

treatment groups having 2∼3,000 customers). As a remedy, we define a treatment group to include

all customers who received offers from the company during the time period under consideration,

whereas all other opted-in customers belong to the corresponding control group. In order to ensure

the robustness of statistical inference to model misspecification, we match customers in the two

groups to improve covariate balance so that the resulting data set resembles one generated from a

properly randomized experiment (Imbens and Rubin, 2015).

Customer behavior, including customers’ transaction records, responses to marketing activi-

ties, and Internet browsing records are commonly used in quantitative models for direct marketing

(Venkatesan et al., 2007). It has also been shown that customers’ cross-genre purchasing behavior

is an important aspect of customer relationship management (Ngobo, 2001; Kumar et al., 2008).

Hence, given literature support and data availability, we use four main aspects of customer behav-

ior as covariates in our analysis: (1) length of shopping history, which measures the length of time

since a customer’s first purchase; (2) average price of tickets purchased, which suggests whether

a customer is a value- or budget-customer; (3) average number of tickets per order, which indi-

cates the size of group with whom a customer usually attends events; and (4) number of genres

purchased, which captures a customer’s cross-genre purchasing behavior. We employ a propensity

score matching approach by modeling treatment status as a logistic function of the four covariates

(Rosenbaum and Rubin, 1985). The unit-matching approach consists of the following steps.

• Step 1: Estimate the propensity score of each customer, find the overlapping rangeR of

scores of treatment and control groups, and remove customers whose propensity scores lie

out of the range. LetNt andNc denote the numbers of remaining customers in treatment and

control groups, respectively.

• Step 2: Stratify the rangeR into 5 strata and determine the maximum number of customers

from each group within each stratum under the constraint that the size ratio isNt : NC. Ran-

domly select the determined number of customers from each group when needed. Combine
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all the selected data.

As shown in Table 2, covariate imbalance has been significantly reduced for most of the co-

variates after the matching. For the rest of the analysis, we use data of the matched groups and

consider that the two groups differ only in whether they have received an email offer from the

company. We also conducted the same analysis using all data without matching and the results

were consistent with that from the matched data. Note that the full-data analysis is only valid if

our specified analysis model is completely correct.

3 The Model For Purchase Events

3.1 Model formulation

Let ti j , i = 1,2, . . . , I and j = 1,2, . . . ,Ni represent the time of theith customer’sjth purchase.

We use a survival process to model each customer’s purchase history, in which a “death” event

corresponds to a purchase. Conditioning on the previous transaction time, the occurrence of the

next purchase is governed by a hazard rate functionλi(t), so thatλi(t)Δt is the probability of having

the next purchase during the infinitesimal time period (t, t + Δt] conditional on having had no

purchases till timet. We emphasize thatλi(t) is allowed to depend on all available information

up to timet, including the transaction time before. For simplicity, we omit all the conditioning

information in the notation ofλi(t). Table 3 lists the main notations. Throughout the paper, we

use “hazard rate” and “purchase rate” interchangeably. Since each customer enters the company’s

database after his/her first purchase, we model subsequent transactions conditioning on the first one

by concatenating a series of survival processes. The occurrence of one purchase symbolizes the

termination of the current process and initiation of a new one. All customers’ purchase processes

are censored at timeT. Note that, if
∫
λi(t)dt is bounded, the probability that one will never make

another purchase is nonzero, and can be estimated from the data.

Conditioning on the time of the first purchaseti1 and the censoring timeT, the probability

distribution function for intermediate purchases{ti j }
Ni
j=2 can be written as (Fleming and Harrington
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(2011)):

fi({ti j }
Ni
j=2|ti1,T) = exp

(

−
∫ T

ti1

λi(t)dt

) Ni∏

j=2

λi(ti j ). (1)

WhenNi = 1, Equation (1) is reduced to only the exponential part. For simplicity, we suppress the

explicit dependence ofλi(t) on the purchase history beforet.

As discussed in Section 1, survival process has been used in the marketing literature to model

transaction data. These models usually allow the rate function to depend on covariates, but do not

model seasonality explicitly. Our hazard function consists of three multiplicative components:

λi(t) = λ10(t)λ2i(t)λ3i(t), (2)

whereλ10(t) is a periodic function that depicts seasonality and serves as a baseline purchase rate,

λ2i(t) is an individual-specific factor that uses covariates to explain purchase rate, andλ3i(t) is the

random effects term that captures unobserved heterogeneity.

3.2 Three components of the purchase rate function

Seasonal effect λ10(t). Figure 1 plots the empirical purchase rates for the five genres that demon-

strate the need of a periodic function to model seasonality. These empirical purchase rates were

estimated as follows. Each year was partitioned into 52 equal-length time window. For each win-

dow w of yearn, we let Inw denote the number of customers whose first purchase occurred before

the time window, and recordynw, the number of transactions made by thoseInw customers during

this time window. Then the customers’ annual purchase rate for that time interval is estimated as

52(ynw/Inw). Its confidence interval can be obtained by assuming thatynw follows a Poisson distri-

bution with the estimated purchase rate. Although less apparent for concerts, the sales of sports

tickets display strong periodic patterns that match well with their corresponding sports seasons.

To reflect the strong seasonal effect, we letλ10(t) be a nonnegative periodic function that serves

as the baseline purchase rate for all customers. Since any periodic function can be approximated

well by its Fourier expansion up toM’th term, we expressλ10(t) as:

λ10(t) = max




0, α0 +

M∑

m=1

[α2m−1 sin(mωt) + α2m cos(mωt)]




, (3)
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whereω is 2π since we use one year as the time unit for the function, andM typically ranges from

1 to 15, whose exact value will be determined by our full Bayesian model detailed in Section 4.2.

Although modeling logλ10(t) directly can ensure nonnegative rate, we choose the current form to

allow λ10(t) to be zero and for easier theoretical derivations.

Covariate effect λ2i(t). Taking into account the four covariates used for propensity score

matching and information about email offers, we postulate the following model to capture the

impact of customer characteristics and email offer on purchase rate:

logλ2i(t) = β1oi(t) + β2eoi(t) + β3(t − ti1) + β4(t − lti(t) − τ) + β5pi

+ β6tcti + β7gi + β8oi(t)(t − ti1) + β9oi(t)(t − lti(t) − τ)

+ β10oi(t)pi + β11oi(t)tcti + β12oi(t)gi , (4)

whereoi(t) indicates whether customeri has a valid offer at timet, which reflects the immediate

offer effect, andeoi(t) indicates whether customeri has an offer that expired less than two months

ago at timet , which reflects the longer term effect of an offer. To avoid double-counting of offer

exposure, we seteoi(t) = 0 whenoi(t) = 1.

β3 captures the effect of shopping history.lti(t) is the time of customeri’s most recent purchase

andτ is the average interpurchase time of all customers up to timet, which will be estimated by

the sample meana priori. There are two reasons for subtractingτ from t to centralize the term rep-

resenting recency. First, it reduces the collinearity between main effect terms and their interaction

terms to almost zero. Second, after subtractingτ, β1 reflects the “average” offer effect, whereasβ9

represents additional offer effect when a customer’s purchase recency is distinct from the popula-

tion average. Nonlinear relationship between recency and purchase rate has been examined in the

literature. For example, Gonul and Shi (1998) and Gonul and Hofstede (2006) include a quadratic

and a logarithmic term of recency, respectively. Our preliminary analysis showed that such nonlin-

ear terms were insignificant and added computational burden substantially. Therefore, only linear

effect of recency is considered in the model.β5, β6, andβ7 represent the effects of average ticket

prices, average ticket count per order, and cross-genre purchase on purchase rate, respectively.β8

to β12 are the coefficients of the interaction terms that indicate the types of customers who are more

responsive to promotional offers.
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Random effectsλ3i(t). Figure 2 shows distributions of inter-purchase time for the five genres,

all exhibiting a wide range of values. A random effects term,λ3i(t), is necessary for capturing

unobserved heterogeneity among customers, which may include age, gender, income level, occu-

pation, marriage status, etc. We assume thatλ3i(t) is person-specific and time-invariant and will be

estimated from the data:λ3i(t) = δi .

4 Posterior Inference With the Model

4.1 The posterior distribution and marginalization

Functionsoi(t) andeoi(t) in λ2i(t) are step functions oft. Their switching points, together with

purchase time{ti j }
Ni
j=1, partition the entire shopping history of customeri into a set of disjoint

intervals, denoted byLi1, Li2, . . . , LiSi , whereSi is the total number of such intervals of customeri

and∪Si
s=1Lis = [ti1,T). Within each intervalLis, time of the last purchase, offer status, and post-offer

status are all constants. Letbtis, etis, ltis, ois, andeois denote the beginning time (left boundary),

ending time (right boundary), last purchase time, offer status, and post-offer status associated with

intervalLis, respectively.

Within time intervalLis = [btis,etis), we replace time of the last purchase, offer status, and

post-offer status in Equation (4) by their corresponding interval-specific constants. Equation (4)

can be rewritten as

logλ2i(t) = β1ois + β2eois + β3(ltis − ti1 + τ) + β5pi + β6tcti + β7gi + β8ois(ltis − ti1 + τ)

+ β10oispi + β11oistcti + β12oisgi + (β3 + β4)(t − ltis − τ)

+ (β8 + β9)ois(t − ltis − τ). (5)

More succinctly, we have

logλ2i(t) = Y ′
isβ1 + Z ′isβ2(t − ltis − τ)

for customeri at t ∈ Lis, and the customer’s overall purchase rate fort ∈ Lis is:

λis(t) ≡ λi(t)|{t∈Lis} = max(0,X(t)′α) exp(Y ′
isβ1 + Z ′isβ2(t − ltis − τ))δi , (6)
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whereα = (α0, α1, . . . , α2M)′, β1 = (β1, β2, β3, β5, β6, β7, β8, β10, β11, β12)′, β2 = (β3 + β4, β8 + β9)′,

and

X(t) = (1, sin(ωt), cos(ωt), . . . , sin(Mωt), cos(Mωt))′ ,

Y is = (ois,eois, ltis − ti1 + τ, pi , tcti ,gi ,ois(ltis − ti1 + τ),oispi ,oistcti ,oisgi)
′ ,

Z is = (1,ois)
′.

Using si j to index the unique interval among{Lis}
Si
s=1 that covers transaction timeti j , i.e., ti j ∈ Lisi j ,

we can write the likelihood function for customeri as:

fi({ti j }
Ni
j=2|ti1,T) = exp


−

Si∑

s=1

∫

Lis

λis(t)dt




Ni∏

j=2

λisi j (ti j ). (7)

In light of the left-skewedness of the log-inter-purchase time distributions shown in Figure 2,

we assume that random effectsδi ’s follow a Gamma distribution and are independent of each other

a priori:

δi
iid∼ Gamma(γ, γ), i = 1, . . . , I . (8)

This distribution has mean 1 and variance 1/γ, implying that the random effect does not impact

the expected purchase rate but contributes to the population variance. Another advantage of the

Gamma prior is that it enables us to integrate outδi analytically.We assume thatπ(γ) ∝ (γ +

v)−21γ>0.

We further assume a Gaussian prior for other parameters: (α,β1,β2)T ∼ N(0,u2I ). Hyper-

parametersu=100 andv=1 are so chosen that the prior distributions are sufficiently diffuse, making

the inference sufficiently dependent on data. Combining the likelihood function and the priors, the
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posterior distribution of all parameters of interest is:

log f (α,β1,β2, γ, {δi}
I
i=1 | {ti j }i, j ,T) =

−α′



I∑

i=1

δi




Si∑

s=1

exp(Y ′
isβ1)


Ais(Z

′
isβ2) −

Ris∑

r=1

Ãisr(α,Z
′
isβ2)










+

I∑

i=1

Ni∑

j=2

log(X(ti j )
′α) +




I∑

i=1

Ni∑

j=2

Y ′
isi j


β1 +




I∑

i=1

Ni∑

j=2

Z ′isi j
(ti j − ltisi j )


β2

+

I∑

i=1

(Ni − 1) log(δi) −
1

2u2
(α′α + β′1β1 + β′2β2) + (γ − 1)

I∑

i=1

log(δi)

− γ
∑I

i=1
δi + Iγ log(γ) − I logΓ(γ) − 2 log(γ + v) + Const (9)

Integrating out all{δi}Ii=1 yields the posterior distribution of main parameters of interest that has

much lower dimensions:

log f (α,β1,β2, γ | {ti j }i, j ,T) =

−
I∑

i=1

(Ni + γ − 1) log


γ + α′




Si∑

s=1

exp(Y ′
isβ1)


Ais(Z

′
isβ2) −

Ris∑

r=1

Ãisr(α,Z
′
isβ2)










+

I∑

i=1

Ni∑

j=2

log(X(ti j )
′α) +




I∑

i=1

Ni∑

j=2

Y ′
isi j


β1 +




I∑

i=1

Ni∑

j=2

Z ′isi j
(ti j − ltisi j )


β2

−
1

2u2
(α′α + β′1β1 + β′2β2)

+
∑I

i=1
logΓ(Ni + γ − 1)+ Iγ log(γ) − I logΓ(γ) − 2 log(γ + v) + Const (10)

4.2 Bayesian computation via Markov chain Monte Carlo

To draw inferences, we implement a Markov chain Monte Carlo (MCMC) algorithm to sample

from the posterior distributionf (Θ). In order to improve computational efficiency, we first use a

modified Newton-Raphson algorithm to find the posterior modeΘ̂ and the corresponding inverse

Hessian matrixH(Θ̂)−1 (see Appendix 7.3 for details). We then initialize the sampler withΘ(0) =

Θ̂ and implement a random-walk Metropolis (RWM) algorithm (Liu, 2008): At stept+1, generate

Θ(t+1)
prop = Θ(t) + ε, where ε ∼ N

(
0,−σ2H(Θ̂)−1

)
, (11)
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then letΘ(t+1) = Θ(t+1)
prop with probability pa ≡ min

{
1, f (Θ(t+1)

prop)/ f (Θ(t))
}

andΘ(t+1) = Θ(t) with

probability 1− pa.

Importance sampling and independent Metropolis-Hastings (IMH) algorithm can take advan-

tage of Normal approximation to the posterior distribution as well (Liu, 1996, 2008). However,

even when normal approximation is reasonably close to the true posterior, the RWM proposal de-

scribed by (11) can still lead to very sticky algorithm in high-dimensions, and the corresponding

importance sampling and IMH algorithms can only be worse – leading to unstable approximations

(Liu, 1996). A good alternative is to combine Gibbs sampling with Metropolis type moves, es-

pecially given that we have observed from the inverse-Hessian matrix that no pair of parameters

are too highly correlated. More precisely, sinceΘ can be represented as{α,β1,β2, γ}, we cy-

cle through each of the four elements with conditional updates, i.e., updatingΘd by draws from

f (Θd | Θ
(t)
[−d] ) for d = 1,2,3,4. Although at a lower dimension, each conditional distribution still

evades exact sampling. We thus makel = 10 steps of RWM moves within each conditional move,

with the proposal covariance matrix beingΣd = 2.382(−Hdd)−1/dim(Θd), whereHdd stands for the

sub-matrix ofH corresponding toΘd. The step size was recommended by Gelman et al. (1996)

for Gaussian-like target distributions to achieve maximum efficiency. As shown in Section 5, for

our data set the posterior samples obtained by the MCMC strategy coincide very well with the

asymptotic normal distribution derived in the Supplementary Materials.

4.3 Bayesian model selection

As discussed in Section 3.2, we model the baseline hazard as a periodic function withM Fourier

expansion terms. To find a properM for each genre, we employ a Bayesian model selection

strategy in which we give each model a prior, compute model likelihood (i.e.,P(data| M), where

M represents a model), and choose the model with the highest posterior probability. The posterior

probability of a modelM can be written as

p(M|{ti j }i, j) ∝ p0(M)
∫

f ({ti j }i, j |ΘM,M)π(ΘM)dΘM, (12)

wherep0(M) is a prior belief ofM that is assumed to be uniform.

The model likelihood, also known as the normalizing constant for the posterior distribution, is
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usually not in analytically tractable form and difficult to estimate. For our data, because the normal

approximation to the posterior distribution is reasonably accurate, we use the following importance

sampling procedure to approximate the integral in (12):

• Step 1: ObtainK independent samples fromN(Θ̂,−H(Θ̂)−1), denoted by{Θ(k)}Kk=1.

• Step 2: Computew(k) = f ({ti j }i, j |Θ(k),M)π(Θ(k))/φ(Θ(k); Θ̂,−H(Θ̂)−1) for k = 1, . . . ,K,

whereφ(∙; μ,Σ) is the density ofN(μ,Σ); and use the average of{w(k)}Kk=1 as an estimate for

the integral in (12).

A computationally cheaper strategy for model selection is to choose the model that minimizes

the Bayesian Information Criterion (BIC), which can be viewed as a monotone function of the

approximated Bayes factor (Schwarz, 1978). In our model, BIC takes the form of:

BIC = − 2

[

log f (α̂, β̂1, β̂2, γ̂ | {ti j }i, j ,T) +
1

2u2
(α̂′α̂ + β̂′1β̂1 + β̂′2β̂2) + 2 log(γ̂ + v)

]

+ [2M + 2+ dim(β̂1) + dim(β̂2)] log




I∑

i=1

Ni − I


 . (13)

Figure 3 tracks the posterior probability of each model and its corresponding BIC as the model size

grows. The two model selection criteria clearly agree on the same optimal model for all genres

except NFL, whose optimal and sub-optimal models are however quite close in terms of either

criterion. For concerts, the optimalM is found at 1, which is consistent with the fact that the

periodic pattern of concert ticket sales is the weakest among the five genres. MLB requires a much

largerM (M = 10), while the other three genres all favor a moderateM of around 5.

4.4 Prediction of future events

Predicting customers’ future purchase behavior is of practical interest of the company. Specifically,

given customerl’s purchase history up to timeT, we want to forecast the number of orders that she

will place in the nextΔT years. It can be answered via Monte Carlo simulation of her purchases

during (T,T+ΔT] given that her offer status during (T,T+ΔT] is known. First we sample{Θ(k)}Kk=1

as described in Section 4.3 using the MCMC algorithm. For eachk, we drawδ(k)
l from Gamma(Nl+

γ(k) − 1, (α(k))′
∑Sl

s=1 B(k)
is + γ(k)) and sample new purchases iteratively. Given the customer’s latest
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transaction timetl j (either recorded or sampled) for the period (tl j ,min{T + ΔT, tl, j+1}], we can

construct intervals{L( j)
ls }

S( j)
l

s=1 and {L̃( j)(α(k))}ls}
S( j)

l
s=1, and vectorsY ( j)

ls and Z ( j)
ls in the same way as

described before. The next purchase timetl, j+1 is governed by the hazard rate:

λ
(k j)
ls (t) = max(0,X(t)′α(k)) exp((Y ( j)

ls )′β(k)
1 + (Z ( j)

ls )′β(k)
2 (t − tlNl − τ))δ

(k)
l .

The process oftl, j+1 can be simulated accordingly. An algorithm to sample from a survival process

with an inhomogeneous hazard rate is provided by Cinlar (2013). Every time after a new purchase

time is sampled, the rate function is updated by treating the current purchase as the last purchase

input for the new process. We repeat the procedure until the newest sampled purchase time sur-

passesT +ΔT. Then we estimate the expected sales by taking the average of the resulting number

of purchases for each simulated process. The prediction result is discussed in Section 5.3.

5 Results and Interpretations

5.1 Offer effects

Employing the model discussed in Section 3, we assess the effects of email offer, customer char-

acteristics, and their interactions on customers’ purchase rate of event tickets. Table 4 summarizes

posterior means and standard deviations for coefficients of interest for the five genres. Figure 4

shows histograms of posterior samples obtained via the MCMC algorithm described in Section 4.2

overlaid with their normal approximations.

NHL goers appear to be the most responsive to promotional offers. On average, an offer in-

creases the purchase rate of NHL tickets by 34.0% and 15.3% in the short and long terms, re-

spectively. The purchase rate of NFL tickets increases by 24.2% when an offer is valid; while the

purchase rate of MLB tickets increases by 17.2% during the two months after a customer receives

an offer. Although the promotional offers do not show significant immediate effect on genres other

than NFL and NHL, the data reveal that the offer campaigns launched by the company did suc-

cessfully promote sales to some extent. It is worth noting that the offers exhibit long-term effect

as well, i.e., the customer purchase rate is elevated even after an offer expires. This may be due to

the situation where a customer does not have an immediate need to buy tickets, but receiving an
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offer reminds the customer about the company and then the customer recalls and purchases from

it when a need arises. The company can benefit from such behaviors because it increases purchase

rate without compromising the profit margin.

We also investigate interactions between the promotional offer and customer characteristics.

Except the one between offer and recency, we do not discover other significant interactions. A

positive interaction exists between offer and recency for NBA and NHL. NHL has shown positive

immediate and long-term effects of promotional offers. This positive interaction further reveals

that customers who have been inactive for a while are more inclined to take advantage of an offer.

When recency is large, offers serve as an effective catalyst for attracting customers back to make a

purchase.

5.2 Customer characteristics effects

Customer characteristics have some interesting impacts on purchase rate. Length of shopping his-

tory, defined as the length of time from a customer’s first purchase until the time point under con-

sideration, has a negative impact on the purchase rates of all genres except concerts. For instance,

the purchase rate of an MLB ticket buyer decreases by 1−exp(−0.041)= 4.0% each year from the

time she joins the company when the other covariates stay unchanged. The percentage decreases

are 10.9%, 9.2% and 6.3% for NBA, NFL and NHL, respectively. The result suggests that cus-

tomers lose interest in purchasing from the company over time. Recency, defined as time elapsed

since the last purchase, has been studied extensively in the literature and is shown to be a good

predictor of customers’ purchase behavior (Elsner et al. (2004)). For regularly-consumed prod-

ucts, such as clothes, food, and office supplies, empirical data showed that customers with smaller

recency are more likely to respond to marketing activities, i.e., recency has a negative impact on

response rate (e.g., Bitran and Mondschein (1996), Gonul and Shi (1998)). This phenomenon can

be explained by the dynamics that when considering frequently-purchased products, the fact that

a customer does not buy in a period time usually means that she is buying elsewhere. The longer

the time a customer has not purchased from a company, the lower the probability that she will

come back to the company. On the other hand, positive effect of recency is observed as well. For

example, the purchase probability of durable goods may increase with recency because consumers
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need to replace their product when approaching the end of the product’s life cycle (e.g., Roberts

and Berger (1989) and Ansari et al. (2008)). Our result shows that recency negatively affects the

purchase rates of all genres. It suggests that in terms of recency’s impact, event ticket purchase

resembles the behavior of frequently-purchased products, although its purchase frequency is much

lower. In essence, the likelihood of a customer making another purchase decreases as time passes.

This, along with the effect of the length of shopping history, makes customer retention a challeng-

ing task for the company, which in fact validates the company’s concern over it. In order to keep

customers interested and active, the company needs to engage customers as early and frequent as

possible by using a variety of marketing activities.

Average ticket price significantly affects the purchase rate of all genres except NBA. However,

the signs are inconsistent: it is positive for concerts and NFL, while negative for MLB and NHL.

The opposite signs may be explained by the price level and fan base of different genres. Figure 5

provides box plots showing the differences in average ticket prices of the five genres. Also as shown

in Table 1, the average ticket prices of concerts and NFL are $146.80 and $150.62, respectively,

while those of MLB and NHL are $70.07 and $89.17, respectively. The result indicates that at a

higher price level, customers who buy more expensive tickets tend to buy more often; while at a

lower price level, it is the opposite: customers who buy cheaper tickets tend to buy more often.

The effect of average ticket count per order on purchase rate is significant for all genres, except

concerts. The signs are also mixed: NBA, NFL, and NHL have positive coefficients, while MLB

has a negative one. The former three genres have smaller average ticket count per order (2.92,

2.93, and 2.79, respectively) than MLB (3.22), which is statistically significant (see Figure 5). In

essence, when ticket count per order is small, purchase rate increases with ticket count; the effect

reverses when ticket count is large. Notably low ticket count per order may imply that a person

attends an event alone to try it out. An increasing ticket count suggests that a stable group of

people attend events together, which tend to make it a more regular activity. When ticket count is

considerably high, it may indicate a one-time gathering with a large group which does not happen

often. This implies that there is a certain range of average ticket count that leads to the highest

purchase rate.

Summarizing the effects of average ticket price and average ticket count per order by genre
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provides useful insights on customer segmentation. For concerts and NFL, characterized by high

ticket price and low ticket count per order, customers who highly value good seats (reflected by

more expensive tickets) and attend with a relatively large group (reflected by higher ticket count

per order) are the ones who have high purchase rate, which may be the most valuable customers to

the company. These customers are devoted fans to the genre who are likely to enjoy it with their

family and/or close friends. For MLB, characterized by low ticket price and high ticket count per

order, its customers exhibit opposite behavior: the ones who buy cheaper tickets and attend with

a relatively small group tend to purchase more frequently. This seems to suggest that people who

enjoy MLB games as a small-scale social event (evidenced by attending with an extended, but not

too large, group of family and friends) and do not care too much about having good seats, tend to

go more often. Lastly, for NBA and NHL, characterized by low ticket price and low ticket count

per order, customers who buy less expensive tickets and attend with a larger group are likely to

purchase frequently.

Number of genres that a customer has purchased from the company represents the degree of

cross-buying of the customer, which has been associated with higher levels of customer reten-

tion, revenue generation, and loyalty (Reinartz et al. (2008)). Our result clearly shows that as the

purchased number of genres increases, purchase rate increases for all five genres. It is consistent

with the findings in the literature and accentuates the importance of promoting cross-selling to the

company. Although the observed association may not imply causation, it is worthwhile for the

company to send targeted informational or promotional emails introducing multiple genres to a

new customer to raise her awareness and stimulate cross-buying behavior.

5.3 Prediction results

To validate model fitting and illustrate the prediction power of our proposed model, we choose an

intermediate time pointt0 and use transaction records prior tot0 to predict transactions occurred

after it. We sett0 to be January 1, 2010. Figure 6 illustrates the comparison between our model

prediction and the actual sales for the five genres. The apparent shape difference between training

and test periods is because only existing customers’ purchases are predicted during the test period.

We evaluate the prediction accuracy by root mean squared errors (RMSE) of the total predicted
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sales on the logarithm scale during the test period, which is calculated as:

RMS E=

√√
1
H

H∑

h=1

( ̂log pc
(h)
− log pc)2

where ̂log pc
(h)

=

(∑K
k=1

̂log pc
(hk)

)
/n and pc is the actual purchase count during the test period.

That is, we replicateH independent predictions of log-purchase count and each prediction̂log pc
(h)

is estimated by the average ofK simulated purchase counts as explained in Section 4.4 (aggregated

over all customers and on the logarithmic scale). RMSEs withK = 1000 for concerts, MLB, NBA,

NFL, and NHL are 0.134, 0.071, 0.104, 0.048 and 0.057, respectively, which indicates satisfactory

prediction capability.

6 Concluding Remarks

We have employed the survival analysis framework developed in biostatistics and adopted recently

by marketing researchers to model recurring purchase events and to examine how email marketing

campaigns and personal characteristics affect customers’ purchasing behaviors. Our model is a

generalized proportional hazard model that enables us to accomplish two goals. First is to connect

an individual customer’s purchase likelihood to a variety of factors, including customer character-

istics and marketing variables. Second is to predict future purchases made by existing customers

based on their historical transactions and email offer information.

In our Bayesian model, a customer’s purchase rate is characterized by a hazard rate function

consisting of three components: a baseline function, a function of covariates, and a random ef-

fect term capturing unobserved heterogeneity. Different from existing models in the literature, for

the baseline function, we postulate a periodic function to model the seasonality of event ticket

purchases. Our approach is fully Bayesian, making the inference less dependent on asymptotic

approximations. We are able to analytically integrate over the hazard rate function and the random

effects so as to derive a workable posterior distribution with much lower dimensions, for which

both a Newton-Raphson mode-finding algorithm and an efficient MCMC algorithm are imple-

mented. Another attractive aspect of our Bayesian approach is that it can be conveniently used to

provide purchase predictions via Monte Carlo simulations.
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Our results reveal that email offers have different degrees of effectiveness for different event

genres. Therefore, a one-size-fits-all email marketing strategy is unlikely to be effective. Instead,

the use of genre-specific offers should be encouraged and explored. The effects of email offers,

purchase recency, and their positive interaction suggest that there is an optimal timing for using

offers to revive inactive customers. Examining the impact of average ticket price and average

ticket count per order on purchase rate allows customer segmentation based on the two factors.

Email offers can then be used to shape customer behavior and habit into the types that are the most

valuable to the company.
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7 Appendix

7.1 Deriving the log-likelihood function

DefineD(α) = {t ∈ (−∞,∞) : X(t)′α <= 0}. The regionD(α) ∩ [ti1,T) can be decomposed

into Ri disjoint sets{L̃(α)is}
Si
s=1 whereL̃(α)is = D(α) ∩ Lis. The boundary points of̃L(α)is are

either ones ofLis or roots of the equationX(t)′α = 0 within [ti1,T). Apparently values of the offer

status, post-offer status and last purchase time withinL̃(α)is remain the same of those ofLis.

It is easy to see that̃L(α)is is a set of disconnected intervals (also can be empty set). Let

L̃(α)is = ∪
Ris
r=1[b̃t(α)isr, ẽt(α)isr].

Expand the exponent part of equation (7).

Si∑

s=1

∫

Lis

λis(t)dt =
Si∑

s=1

∫

Lis

max(0,X(t)′α) exp(Y ′
isβ1 + Z ′isβ2(t − ltis − Δt))δidt

=

Si∑

s=1

∫

Lis

X(t)′α exp(Y ′
isβ1 + Z ′isβ2(t − ltis − Δt))δidt

−
Si∑

s=1

∫

L̃(α )is

X(t)′α exp(Y ′
isβ1 + Z ′isβ2(t − ltis − Δt))δidt

= δi
[ Si∑

s=1

∫ etis

btis

X(t)′α exp(Y ′
isβ1 + Z ′isβ2(t − ltis − Δt))dt

−
Si∑

s=1

Ris∑

r=1

∫ ẽt(α )isr

b̃t( α )isr

X(t)′α exp(Y ′
isβ1 + Z ′isβ2(t − ltis − Δt))dt

]

The integration ofλis(t)dt over interval [a,b] is

∫ b

a
λis(t)dt =

∫ b

a
δi exp(Y ′

isβ1)α
′X(t) exp(Z ′isβ2(t − ltis − Δt))dt

= δi exp(Y ′
isβ1)α

′

∫ b

a
X(t) exp(Z ′isβ2(t − ltis − Δt))dt

= δi exp(Y ′
isβ1)α

′

∫ b−ltis−Δt

a−ltis−Δt
X(t + ltis + Δt) exp(Z ′isβ2t)dt
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Define

Ab
a(ω, φ, θ) =

∫ b

a
sin(ωt + φ) exp(θt)dt

=





(b− a) sinφ if ω = θ = 0
1

θ2+ω2

(
θ sin(ωt + φ) − ω cos(ωt + φ)

)
exp(θt)

∣∣∣b
t=a

otherwise

And define

Ais(θ) =
(
Aetis−ltis−Δt

btis−ltis−Δt
(0, π/2, θ),

Aetis−ltis−Δt

btis−ltis−Δt
(ω,ω ∙ (ltis + Δt), θ),Aetis−ltis−Δt

btis−ltis−Δt
(ω,ω ∙ (ltis + Δt) + π/2, θ),

Aetis−ltis−Δt

btis−ltis−Δt
(2ω, 2ω ∙ (ltis + Δt), θ),Aetis−ltis−Δt

btis−ltis−Δt
(2ω, 2ω ∙ (ltis + Δt) + π/2, θ),

∙ ∙ ∙ ,

Aetis−ltis−Δt

btis−ltis−Δt
(Mω,Mω ∙ (ltis + Δt), θ),Aetis−ltis−Δt

btis−ltis−Δt
(Mω,Mω ∙ (ltis + Δt) + π/2, θ)

)′

Ãisr(α, θ) =
(
Aẽt( α )isr−ltis−Δt

b̃t(α )isr−ltis−Δt
(0, π/2, θ),

Aẽt( α )isr−ltis−Δt

b̃t(α )isr−ltis−Δt
(ω,ω(ltis + Δt), θ),Aẽt( α )isr−ltis−Δt

b̃t(α )isr−ltis−Δt
(ω,ω(ltis + Δt) + π/2, θ),

Aẽt( α )isr−ltis−Δt

b̃t(α )isr−ltis−Δt
(2ω, 2ω(ltis + Δt), θ),Aẽt( α )isr−ltis−Δt

b̃t(α )isr−ltis−Δt
(2ω, 2ω(ltis + Δt) + π/2, θ),

∙ ∙ ∙ ,

Aẽt( α )isr−ltis−Δt

b̃t(α )isr−ltis−Δt
(Mω,Mω(ltis + Δt), θ),Aẽt( α )isr−ltis−Δt

b̃t(α )isr−ltis−Δt
(Mω,Mω(ltis + Δt) + π/2, θ)

)′

We obtain a simplified form of logfi:

log fi({ti j }
Ni
j=2|α,β1,β2, γ, {δi}

I
i=1, ti1,T) =

− δiα
′

Si∑

s=1


exp(Y ′

isβ1)


Ais(Z

′
isβ2) −

Ris∑

r=1

Ãisr(α,Z
′
isβ2)







+

Ni∑

j=2

log(X(ti j )
′α) +




Ni∑

j=2

Y ′
isi j


β1 +




Ni∑

j=2

Z ′isi j
(ti j − ltisi j )


β2

+ (Ni − 1) log(δi)
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Aggregating logfi for all i’s yields the total density function for all observations.

log f ({ti j }
Ni
j=2

I
i=1

∣∣∣α,β1,β2, γ, {δi}
I
i=1,T) =

−α′



I∑

i=1

δi




Si∑

s=1

exp(Y ′
isβ1)


Ais(Z

′
isβ2) −

Ris∑

r=1

Ãisr(α,Z
′
isβ2)










+

I∑

i=1

Ni∑

j=2

log(X(ti j )
′α) +




I∑

i=1

Ni∑

j=2

Y ′
isi j


β1 +




I∑

i=1

Ni∑

j=2

Z ′isi j
(ti j − ltisi j )


β2

+

I∑

i=1

(Ni − 1) log(δi)

7.2 Gradient and Hessian matrix of the log-posterior

Gradient: ∇ log f =

(
∂ log f
∂α

,
∂ log f
∂β1

,
∂ log f
∂β2

,
∂ log f
∂γ

)

,

Hessian Matrix:H =




∂2 log f
∂ α ∂ α ′

∂2 log f
∂ α ∂ β ′1

∂2 log f
∂ α ∂ β ′2

∂2 log f
∂ α ∂γ

∂2 log f
∂ β 1∂ α ′

∂2 log f
∂ β 1∂ β

′
1

∂2 log f
∂ β 1∂ β

′
2

∂2 log f
∂ β 1∂γ

∂2 log f
∂ β 2∂ α ′

∂2 log f
∂ β 2∂ β

′
1

∂2 log f
∂ β 2∂ β

′
2

∂2 log f
∂ β 2∂τ

∂2 log f
∂γ∂ α ′

∂2 log f
∂γ∂ β ′1

∂2 log f
∂γ∂ β ′2

∂2 log f
∂γ∂γ




.

Define

Bis = exp(Y ′
isβ1)


Ais(Z

′
isβ2) −

Ris∑

r=1

Ãisr(α,Z
′
isβ2)


 ,

B(1)
is = exp(Y ′

isβ1)



∂Ais

∂θ
(Z ′isβ2) −

Ris∑

r=1

∂Ãisr

∂θ
(α,Z ′isβ2)


 ,

B(2)
is = exp(Y ′

isβ1)



∂2Ais

∂θ2
(Z ′isβ2) −

Ris∑

r=1

∂2Ãisr

∂θ2
(α,Z ′isβ2)


 .
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Then

∂ log f
∂α

= −
I∑

i=1

(Ni + γ − 1)
∑Si

s=1 Bis

γ + α′
∑Si

s=1 Bis

+

I∑

i=1

Ni∑

j=2

X(ti j )

X(ti j )′α
−

α

u2

∂ log f
∂β1

= −
I∑

i=1

(Ni + γ − 1)α′
∑Si

s=1 BisYis

γ + α′
∑Si

s=1 Bis

+

I∑

i=1

Ni∑

j=2

Yisi j −
β1

u2

∂ log f
∂β2

= −
I∑

i=1

(Ni + γ − 1)α′
∑Si

s=1 B(1)
is Zis

γ + α′
∑Si

s=1 Bis

+

I∑

i=1

Ni∑

j=2

Z ′isi j
(ti j − ltisi j ) −

β2

u2

∂ log f
∂γ

= −
I∑

i=1

log


γ + α′

Si∑

s=1

Bis


 −

I∑

i=1

Ni + γ − 1

γ + α′
∑Si

s=1 Bis

+
∑I

i=1
ϕ(Ni + γ − 1)− Iϕ(γ) + I log(γ) + I −

2
γ + v

,

whereϕ(x) = d logΓ(x)
dx is the digamma function.

∂2 log f
∂α∂α′

= −
I∑

i=1

(Ni + γ − 1)

[
1

γ + α′
∑Si

s=1 Bis

∙

( Si∑

s=1

∑

r: α ′X (ẽt(α )isr)=0

exp(Y ′
isβ1 + (ẽt(α)isr − ltis − Δt)Z ′isβ2)

α′ ∂X
∂t (ẽt(α)isr)

X(ẽt(α)isr)X(ẽt(α)isr)
′

−
Si∑

s=1

∑

r: α ′X (b̃t( α )isr)=0

exp(Y ′
isβ1 + (b̃t(α)isr − ltis − Δt)Z ′isβ2)

α′ ∂X
∂t (b̃t(α)isr)

X(b̃t(α)isr)X(b̃t(α)isr)
′

)

−

∑Si
s=1 Bis

γ + α′
∑Si

s=1 Bis




∑Si
s=1 Bis

γ + α′
∑Si

s=1 Bis




′ ]

−
I∑

i=1

Ni∑

j=2

X(ti j )X(ti j )′
(
X(ti j )′α

)2
−

1
u2

Idim(α )

∂2 log f
∂β1∂β

′
1

= −
I∑

i=1

(Ni + γ − 1)



α′

∑Si
s=1 BisYisY

′
is

γ + α′
∑Si

s=1 Bis

−
α′

∑Si
s=1 BisYis

γ + α′
∑Si

s=1 Bis




α′
∑Si

s=1 BisYis

γ + α′
∑Si

s=1 Bis




′

−
1
u2

Idim(β 1)

∂2 log f
∂β2∂β

′
2

= −
I∑

i=1

(Ni + γ − 1)



α′

∑Si
s=1 B(2)

is ZisZ
′
is

γ + α′
∑Si

s=1 Bis

−
α′

∑Si
s=1 B(1)

is Zis

γ + α′
∑Si

s=1 Bis



α′

∑Si
s=1 B(1)

is Zis

γ + α′
∑Si

s=1 Bis




′

−
1
u2

Idim(β 2)
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∂2 log f
∂γ∂γ

= −
I∑

i=1




2

γ + α′
∑Si

s=1 Bis

−
Ni + γ − 1

(
γ + α′

∑Si
s=1 Bis

)2




+

I∑

i=1

ϕ1(Ni + γ − 1)− Iϕ1(γ) +
I
γ
+

2
(γ + v)2

whereϕ1(x) = dϕ(x)
dx is the trigamma function.

∂2 log f
∂α∂β′1

= −
I∑

i=1

(Ni + γ − 1)




∑Si
s=1 BisY

′
is

γ + α′
∑Si

s=1 Bis

−

∑Si
s=1 Bis

γ + α′
∑Si

s=1 Bis




α′
∑Si

s=1 BisYis

γ + α′
∑Si

s=1 Bis




′

∂2 log f
∂α∂β′2

= −
I∑

i=1

(Ni + γ − 1)




∑Si
s=1 B(1)

is Z ′is

γ + α′
∑Si

s=1 Bis

−

∑Si
s=1 Bis

γ + α′
∑Si

s=1 Bis



α′

∑Si
s=1 B(1)

is Zis

γ + α′
∑Si

s=1 Bis




′

∂2 log f
∂α∂γ

−
I∑

i=1




∑Si
s=1 Bis

γ + α′
∑Si

s=1 Bis

−
(Ni + γ − 1)

∑Si
s=1 Bis

(
γ + α′

∑Si
s=1 Bis

)2




∂2 log f
∂β1∂β

′
2

= −
I∑

i=1

(Ni + γ − 1)



α′

∑Si
s=1 BisYisZ

′
is

γ + α′
∑Si

s=1 Bis

−
α′

∑Si
s=1 BisYis

γ + α′
∑Si

s=1 Bis



α′

∑Si
s=1 BisZis

γ + α′
∑Si

s=1 Bis




′

∂2 log f
∂β1∂γ

= −
I∑

i=1




α′
∑Si

s=1 BisYis

γ + α′
∑Si

s=1 Bis

−
(Ni + γ − 1)α′

∑Si
s=1 BisYis

(
γ + α′

∑Si
s=1 Bis

)2




∂2 log f
∂β2∂γ

= −
I∑

i=1



α′

∑Si
s=1 B(1)

is Zis

γ + α′
∑Si

s=1 Bis

−
(Ni + γ − 1)α′

∑Si
s=1 B(1)

is Zis
(
γ + α′

∑Si
s=1 Bis

)2




7.3 Posterior mode finding and normal approximation

Let Θ = {α,β1,β2, γ}. For convenience, we abbreviate the posterior distribution in (10) asf (Θ).

Note that logf (Θ) is differentiable everywhere and twice-differentiable almost everywhere. We

thus adopt a modified Newton-Raphson (NR) algorithm with adaptive step-size in each iteration so

as to avoid the chaotic behavior of the classic NR update (Amrein and Wihler (2014)). Formulas

for the gradient and Hessian matrix of (10) are provided in Appendix 7.2.

We initializeβ1 andβ2 with vectors of zeros, andγ with a small value, say 0.01, to allow for

a large heterogeneity. The initial value of the seasonal effect α is most crucial, and is set to be

a preliminary estimate from the following procedure, which applies the Fourier transform to an
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empirically estimated purchase rate function:

1. Partition each year intoW = 52 equal-length time windows. With a simple Poisson model,

we estimate the average purchase rate ˆμw of thewth interval asWyw/Iw and its standard error

s(μ̂w) asW
√

yw/Iw, whereyw is the total number of purchases that occurred within thewth

interval of all years andIw the number of potential buyers aggregating over all years for that

interval. The empirical purchase rate functionP̂(t) is estimated as being equal to ˆμw in the

wth time window of the year.

2. Compute the Fourier transform of the empirical purchase rate function to obtain:

α̂0 =

∑W
w=1 μ̂w/s(μ̂w)2

∑W
w=1 1/s(μ̂w)2

= W

∑W
w=1 Iw

∑W
w=1 I2

w/yw

α̂2m−1 =
2W

∑W
w=1 I2

w/yw

W∑

w=1

sin

(

2πm
w− .5

W

)

Iw, m= 1, . . . ,M;

α̂2m =
2W

∑W
w=1 I2

w/yw

W∑

w=1

cos

(

2πm
w− .5

W

)

Iw, m= 1, . . . ,M.

3. Check if the resulting ˆα satisfiesX(ti j )′α̂ > 0 for all i and j’s. Otherwise, increase ˆα0 by

0.001−mini, j X(ti j )′α̂ to satisfy this requirement.

With these initial values, the modified NR algorithm converges typically in fewer than 20 iter-

ations for all the five datasets. Around its modeΘ̂, the posterior distributionf (Θ) can be approxi-

mated well by a normal distributionN(Θ̂,−H(Θ̂)−1) when sample size is large enough (O’Hagan

et al. (2004)), whereH(Θ) is the Hessian matrix.

8 Supplemental Material

It details the MCMC posterior sampling procedures introduced in Section 4.2, together with the

results for our ticket transaction data (a PDF file), available at the journal’s website.
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Figure 1: Empirical purchase rate curve and its 95% confidence band (gray) for each genre.
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Figure 2: Histograms of average inter-purchase time on the log scale for each genre.
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Figure 3: Model selection using log-posterior probability (green curve) and−BIC (blue curve).
Values are adjusted by constant terms so that they all share the same maximum of 0. The peak of
a curve indicates the optimal choice ofM.
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Figure 4: Histograms of posterior samples obtained by the MCMC algorithm overlaid with the
asymptotic normal density curves for the NHL ticket sales data. Results for other genres are
similar (provided in Supplementary Materials).
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Figure 5: Box plots of average ticket price and average ticket count per order
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Figure 6: Prediction validation. The figures overlay the actual weekly sales (blue) and the 95%
prediction bands (gray).
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Table 1: Summary statistics of the email marketing data

Genre
Concerts MLB NBA NFL NHL

# of customers 12213 21066 6719 7617 4974
# of transactions 15985 36362 9604 10064 7742
Average ticketprice 146.80 70.07 89.99 150.62 89.17
Average # of tickets perorder 2.45 3.22 2.92 2.93 2.79
# of customers who received offer(s) 10588 6861 4862 3675 4199
# of customers who never received offers 1625 14205 1857 3942 775

37
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Ju
n 

L
iu

] 
at

 0
5:

43
 2

0 
Ja

nu
ar

y 
20

16
 



ACCEPTED MANUSCRIPT

Table 2: Results of propensity score matching (B – before; A – after)

Genre
Concerts MLB NBA NFL NHL

Treatment groupsize
B 10588 6861 4862 3675 4199
A 7758 3511 4278 2934 2532

Control groupsize
B 1625 14205 1857 3942 775
A 1191 7270 1635 3148 467

Sizeratio
B 6.516 0.483 2.618 0.932 5.418
A 6.514 0.483 2.617 0.932 5.422

Difference in average length ofhistory
B -0.392 -1.037 0.081 0.156 -0.652
A 0.006 0.102 -0.110 -0.153 -0.003

Difference in average log(ticketprice)
B 0.041 0.102 0.003 -0.001 0.129
A -0.005 0.038 0.003 0.025 -0.056

Difference in average log(ticketcount)
B 0.002 0.009 0.024 -0.011 0.014
A -0.001 -0.008 -0.019 -0.004 0.001

Difference in average number ofgenres
B -0.089 0.319 0.191 0.297 -0.086
A -0.039 0.176 0.033 0.023 -0.090
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Table 3: List of main notations

Notation Definition
T Censoring time
I Total number of customers
i Customer index
j Transaction index

Ni Total number of transactions (up toT) made by customeri
ti j Time of the jth transaction of customeri
λi(t) Purchase rate of customeri at timet
oi(t) Indicator of whether customeri has an offer at timet
eoi(t) Indicator of whether customeri has an offer expired within thelast

two months at timet
lti(t) Time of the last purchase of customeri dated back fromt
pi Average ticket price of customeri

tcti Average number of tickets that customeri purchased per order
gi Number of genres that customeri has purchased
τ Average inter-purchase time of allcustomers

39
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

Ju
n 

L
iu

] 
at

 0
5:

43
 2

0 
Ja

nu
ar

y 
20

16
 



ACCEPTED MANUSCRIPT

Table 4: Posterior means standard deviations for parameters of interest

Coefficient Term
Genre

Concerts MLB NBA NFL NHL

β1 Offer
-0.023 -0.035 0.061 0.242 0.340
(.103) (.128) (.096) (.111)* (.084)**

β2 Post offer
-0.009 0.172 0.009 0.164 0.153
(.078) (.084)* (.084) (.100) (.072)*

β3 Length ofhistory
0.026 -0.041 -0.115 -0.096 -0.065
(.033) (.014)** (.037)** (.039)* (.037)∙

β4 Recency
-0.846 -0.734 -0.807 -0.684 -0.877

(.045)** (.022)** (.054)** (.056)** (.058)**

β5 Average ticketprice
0.373 -0.107 -0.038 0.067 -0.154

(.037)** (.016)** (.027) (.032)* (.039)**

β6 Average ticketcount
0.110 -0.135 0.152 0.191 0.188
(.067)∙ (.035) ** (.079)* (.069)** (.093)**

β7 Number ofgenres
0.506 0.545 0.533 0.497 0.419

(.029)** (.018)** (.031)** (.032)** (.032)**

β9
Offer * 0.219 -0.027 0.606 0.137 0.405
Recency (.138) (.131) (.108)** (.157) (.111)**

γ 1/Heterogeneity
0.689 0.661 0.451 0.569 0.490

(.043)** (.018)** (.027)** (.038)** (.030)**
– Posterior standard deviations in parentheses. Significance revealed by 99% credible
interval is denoted by (**), 95% credible interval by (*), and 90% credible interval by (∙).
– β8, β10, β11, andβ12 are never statistically significant, thus omitted from the table.
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