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ABSTRACT 

 

 

Managing a Profitable Interactive Email Marketing Program:  

Modeling and Analysis 

 

 

BY 
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Major Academic Unit: Regents’ Professor,  

                                           Richard and Susan Lenny Distinguished Chair & Professor in Marketing,  

                                           Executive Director, Center for Excellence in Brand and Customer Management, 

                                           Director, Ph.D. Program in Marketing, J. Mack Robinson College of Business   

 

 

Despite the popularity of mobile and social media, email continues to be the marketing tool that brings the 

highest ROI, according to the Direct Marketing Association’s “Power of Direct” (2011) study. An important reason 

for email marketing’s success is the application of an idea— “Permission Marketing,” which asks marketers to seek 

consent from customers before sending them messages. Permission-based email marketing seeks to build a two-way 

interactive communication channel through which customers can engage with firms by expressing their interests, 

responding to firms’ email messages and making purchases. This thesis consists of two essays that address several 

key questions that are related to the management of a profitable interactive permission-based email marketing 

program.  

Existing research has examined the drivers of customers’ opt-in and opt-out decisions, but it has 

investigated neither the timings of two decisions nor the influence of transactional activity on the length of time a 

customer stays with an email program. In the first essay, we adopt a multivariate copula model using a pair-copula 

construction method to jointly model opt-in time (from a customer’s first purchase to opt-in), opt-out time (from 

customer opt-in to opt-out) and average transaction amount. Through such multivariate dependences, this model 

significantly improves the predictive performance of the opt-out time in comparison with several benchmark 

models. The study offers several important findings (1) marketing intensity affects opt-in and opt-out times (2) 
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customers with certain characteristics are more or less likely to opt-in or opt-out (3) firms can extend customer opt-

out time and increase customer spending level by strategically allocating resources. 

Firms are using email marketing to engage with customers and encourage active transactional behavior. 

Extant research either focuses only on how customers respond to email messages or looks at the “average” effect of 

email on transactional behavior. In the second essay, we consider not only customers’ response to emails and their 

correlated transactional behavior, but also the dynamics that govern the evolving of the two types of customer 

relationship: email-response and purchase relationships. We model the email open count with a Binomial 

distribution and the purchase count with a zero-inflated negative binomial model. We capture the dependence 

between the two discrete distributions using a copula approach. In addition, we develop a hidden Markov model to 

model the effects of email contacts on purchase behavior. We also allow the relationship that represents customers’ 

responsiveness to email marketing to evolve flexibly along with the relationship of purchase. 

In the second essay, we apply the proposed model in a non-contractual context where a retailer operates a 

large-scale email marketing program. Through the empirical study, we capture a positive dependence between the 

opening of emails and purchase behavior. We identify three purchase-behavior states along with three email-

response states. The empirical finding suggests that the customers who are in the medium relationship state have the 

highest intrinsic propensity to open an email, followed by the customers in the lowest and highest relationship state. 

Furthermore, we derive a dynamic email marketing resource allocation policy using the hidden Markov model, the 

purchase and email open model estimates. We demonstrate that a forward-looking agent could maximize the long-

term profits of its existing email subscribers.  
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Introduction 

Since the advent of Internet, email marketing has been a valuable marketing tool for 

firms. Now with the rise of smartphones, tablets and social media, email marketing is expected to 

make more impact on firms and consumers, as said by 83% of CMOs who participated in a 

benchmark survey (MarketingSherpa 2011). ExactTarget (2012), an email service provider, 

conducted a series of studies, showed that among consumers surveyed, 77% preferred to receive 

permission-based promotional messages through email as opposed to 9% through direct mail, 

5% through text messages, and 6% through social media (Facebook, Twitter and Mobile App). 

In addition, 66% of consumers surveyed have made a purchase as a result of a marketing 

message received through email. According to the Direct Marketing Association’s “Power of 

Direct” (2011) study, email brought in an average of $40.56 for every dollar spent in 2011, 

compared to a dollar-return rate of $7.30 for catalogs, $10.51 for mobile, $12.71 for social 

networking, $19.72 for Internet display advertising, and $22.24 for search engine marketing. 

These staggering statistics prove that email is still one of the most effective channels for 

companies to communicate with consumers and generate profits. 

Despite the superior ROI of email marketing, not every email reaches the consumers’ 

inbox due to junk mail blocking technology. Permission marketing, or invitational marketing, 

proposed by Godin (1999), says that marketer should seek consent from customers in advance 

before sending them promotional messages. Typically, customers express their potential needs or 

interests at sign-up (opt-in) and marketers will fulfill customers’ requests by sending relevant 

information regularly. Customers are given full rights to unsubscribe (opt-out) if the information 

marketers provide fails to meet their expectations. Research has shown that, compared to 

unsolicited emails, permission-based emails have better click-through rates, more precise 
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segmentation and targeting, and can significantly improve customer brand loyalty 

(Krishnamurthy 2001). Gartner (2002) reported that unsolicited direct mail or email has a 

response rate of 1% while the average click-through rate of permission-based email is between 

6% and 8%, respectively. 

The importance of permission marketing can be addressed from the following aspects. 

First, permission marketing has been considered “the way to make advertising work again” 

(Godin 1999). Permission marketing offers marketers a way to communicate and interact with 

customers without intruding their privacy or causing advertising irritation. It is closely related to 

“relationship marketing” and “one-to-one marketing” (Krishnamurthy 2000) and intends to help 

companies build and sustain a long-term relationship with customers. It has created a channel for 

active customer engagement with firms, which has been deemed crucial for firm value creation. 

 The two essays of this thesis address several key questions under the principles of rigor 

and relevance. The first essay examines the timings of opt-in and opt-out and the influence of 

transactional activity on the length of time a customer stays with an email program. It proposes 

the use of a multivariate copula model using a pair-copula construction method to jointly model 

opt-in time, opt-out time, and the average transaction amount. The second essay investigates the 

evolving of the two types of customer relationships—email-response and purchase relationships 

using a hidden Markov model. It also adopts the dynamic programming approach to derive the 

optimal email marketing resource allocation policy. 

Although the two essays are interconnected under the umbrella of permission-based 

email marketing, each essay is written in a way that each can be read as an independent paper. 

Therefore, in the following sections, I begin with the first essay including the main text, 

references, tables and the appendix. Subsequently, I present the second essay with full details.    
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ESSAY 1 

Modeling Customer Opt-In and Opt-Out in a Permission-Based Marketing 

Context 
 

1.1  Introduction 

Conventional wisdom suggests that customers do not welcome communications from 

marketers, and consider their messages unwanted interruptions that are to be avoided by 

registering for do-not-mail or do-not-call lists. However, in today’s digital age, it is increasingly 

apparent that customers in fact, enthusiastically interact with firms by joining their email 

programs voluntarily, proactively downloading their mobile applications, and following their 

social media accounts. We therefore argue that customers are not reluctant to receive marketing 

materials if they are first asked for consent. In 1999, Seth Godin proposed an idea, called 

“permission marketing,” and advised marketers to seek permission from customers before 

sending them promotional messages. Permission marketing creates a channel for two-way 

interaction and engagement, which is seen as crucial for firm value creation. Thus, permission 

marketing emerges as a solution to the challenge faced by conventional marketing. 

          Permission marketing typically relies on the use of “new media” channels, such as web, 

email, mobile and social media, which are well suited for interactive marketing (e.g., Winer 

2009). Forrester (2011) forecasted that marketers in the US will spend $77 billion on interactive 

marketing by 2016, the same amount as that is being spent on TV advertising today. Among the 

channels of new media, email and mobile have gained much attention due to their interactive, 

digital and cost-effective features (e.g., Shankar and Balasubramanian 2009; Shankar et al. 

2010). Forrester forecasts that mobile marketing spending will increase by nearly three times 

from $2.8 billion in 2012 to $8.2 billion in 2016. The Direct Marketing Association (DMA 2011) 
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forecasts that commercial email will drive up sales by $82.2 billion in 2016. 

          Previous literature has shown that various factors such as trust and previous experience 

can affect customers’ willingness to accept permission-based marketing (e.g., Tezinde, Smith, 

and Murphy 2002; Jayawardhena et al. 2009), that trust is an important determinant of online and 

offline buyer-seller relationships (e.g., Ganesan 1994; Bart et al. 2005), that online habits and 

socio-demographics affect customers’ interest in permission-based web or mobile-marketing 

programs (e.g., Brey et al. 2007; Barnes and Scornavacca 2008), and that a wrongly- designed 

message can decrease the response rate and increase the unsubscribe rate (e.g., Marinova, 

Murphy, and Massey 2002). However, these research studies were typically conducted in 

experimental settings and only examined the process of opt-in and opt-out separately, neglecting 

the possibility that the same customer’s opt-in and opt-out behavior could be interdependent. In 

addition, although some prior studies have discovered that permission marketing can increase 

customer brand loyalty and purchase intention (e.g., DuFrene et al. 2005; Jolley et al. 2013), they 

have not investigated the possibility that the changes of customer loyalty could adversely affect 

the length of time a customer is willing to stay in a permission-based marketing program. Thus, 

it is imperative for us to ask whether customers’ opt-in and opt-out behavior can be modeled 

jointly, how to incorporate the influence of transactional behavior into the modeling of opt-in 

and opt-out decisions, and how to quantify the influence of a firm’s marketing activities on 

customers’ opt-in, opt-out and purchases.   

          We attempt to bridge the gap in the permission marketing literature by addressing five 

research questions. (1) What types of customers are more likely to opt-in in a permission-based 

marketing program? (2) How do firms’ marketing activities influence the timing of customers’ 

opt-in and opt-out decisions? (3) Is there a dependence between the opt-in and opt-out times? 
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and (4) How do transactional behavior and customers’ willingness to stay in the marketing 

program influence each other? (5) How can firms optimize their marketing contacting strategy to 

both, extend the length of time customers stay in the marketing program and increase their 

spending level?  

          To answer these research questions, we analyze a unique data set from a U.S. retailer 

spanning 47 months. This database records the time when a customer opts in and out of the 

firm’s email program, the transactions made by the customer, the email open and click histories, 

and the retailer’s marketing activities. To obtain each individual customer’s online habits and 

socio-demographics, we merge the sampled data from the retailer’s database using key identifier 

information to an external database provided by a marketing research firm, Acxiom. The 

methodological challenge of the research is to jointly model three variables: the opt-in timing, 

the opt-out timing and the purchase behavior. We use a multivariate copula model, called vine 

copulas (e.g., Aas et al. 2009; Smith et al. 2010), to capture the dependence structure of the three 

variables. For the marginal distributions, we model the opt-in and opt-out times using Weibull 

hazard models and account for the unobserved heterogeneity by incorporating a gamma random 

effect term. We model the average transaction amount using a random effect log-normal model.       

          To the best of our knowledge, this is the first empirical study that examines the timing of 

customers’ opt-in and opt-out decisions while accounting for their purchase behavior. In 

addition, we extend the bivariate copula model into a multivariate copula model by introducing 

‘vine copula’ to the marketing literature for the first time. Therefore, our study contributes to the 

existing literature substantially and methodologically.  

          In the following sections, we first review the literature on (1) permission-based marketing, 

(2) linkage between the opt-in and opt-out decisions, (3) capturing the dependence between the 
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durations, and (4) incorporation of the purchase behavior. Second, we describe our data and 

present descriptive statistics. Third, we discuss the proposed modeling framework. Fourth, we 

present the model results and model validation. Finally, we discuss the managerial implications 

and conclusions.  

 

1.2 Literature Review 

1.2.1 Permission-Based Marketing  

          Permission marketing, coined by Godin (1999), proposes that marketers should seek their 

customers’ permission to send them marketing messages. There are two types of permission 

marketing, namely opt-in and opt-out marketing. Opt-in marketing refers to firms explicitly 

asking customers for permission, usually when an online account is created. Customers can opt-

out any time after they opt-in. Opt-out marketing refers to firms sending promotional messages 

to customers without seeking their permission, including for the first message, but providing 

customers an option to opt-out on each occasion. As most marketers adopt the former, we focus 

on this type of permission marketing and directly examine the behaviors of opt-in and opt-out in 

this study. 

          The three main characteristics of permission marketing are “anticipated, personal, and 

relevant” (Godin 1999). Contrary to spam, a permission-based message is anticipated and its 

sender is trusted by customers (we believe that customers will not join the firm’s email program 

in the first place if they do not trust the firm). Firms can personalize the marketing messages 

according to customers’ specific interests, which customers can indicate at the time of opt-in. To 

improve targeting precision, marketers also can tailor the promotional information included in 

the message, based on the customer’s past purchase behavior. Gartner (2002) reported that 
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unsolicited direct mail or email has a response rate of 1% while the average click-through rate of 

permission-based emails is between 6% and 8%. Jolley et al. (2013) showed that a permission-

based email marketing program can extend a customer’s lifetime value. 

          There are two critical aspects that firms need to manage in order to ensure the success of a 

permission-based marketing program: the customer’s opt-in and his/her opt-out. Research on 

permission marketing has explored that several factors including brand equity, previous 

relationship (Tezinde, Smith and Murphy 2002), income, gender, advertising message volume, 

previous experience with mobile ads (Barnes and Scornavacca 2008), and brand image and trust 

(Jayawardhena et al. 2009) will influence a customers’ willingness to give permission to 

marketers. While customers’ opt-in decisions are influenced by the aforementioned factors, it is 

also important to identify the drivers of customer opt-out so that firms can make efforts to retain 

the existing subscribers. Previous research related to customer opt-out has discovered that 

message relevance and monetary benefit positively influence customers’ interest in a permission 

marketing program (Krishnamurthy 2001), that highly personalized messages (e.g., using the 

customer’s name in the email subject line) would make customers opt-out (Marinova, Murphy, 

and Massey 2002), and that the more lengthy an email is and the fewer links it contains, the 

higher the ‘unsubscribe’ rate (Chittenden and Rettie 2003). 

 

1.2.2 Linkage between Opt-in and Opt-out 

          Although previous research has identified many factors that could influence customer opt-

in and opt-out behavior, it has mainly focused only on the incidence of opt-in and opt-out, and 

has not studied the timing of the two decisions nor the possible linkage between the two. The 

timing of customers’ opt-in and opt-out decisions depends on who they are (socio-
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demographics), how they live (lifestyle, online habits), how they are influenced (marketing 

contacts), and how satisfied they are (relevant messages). Some customers may opt-in the first 

time they have an interaction with the firm, i.e., made a purchase, and opt-out at end of their 

customer lifecycle. Some customers may need more time trying and testing with the firm before 

they opt-in, and they may only stay with the email program for a limited period of time and 

withdraw as soon as they feel that the program fails to meet their expectations. While there is so 

much heterogeneity in customer opt-in and opt-out behavior, we argue that there might be a 

dependence between the two variables and ignoring this dependence may lead to biased 

inferences which could adversely affect the marketer’s decision making.  

          Broadly speaking, customers’ opt-in and opt-out times may be positively or negatively 

correlated. The nature and extent of their dependence could be determined by the following 

factors. First, opt-in and opt-out have some drivers such as marketing activities in common. For 

example, if direct mails substitute emails before a customer opts-in but complements emails after 

the customer opts-in, direct mails would extend both his/her opt-in and opt-out time, leading to a 

positive dependence between the two. In contrast, if direct mails are always substitutes or 

complements of emails, customers’ opt-in and opt-out times would be negatively correlated. 

Second, the observed heterogeneity, such as customer characteristics, affects a person’s decision 

to opt-in and opt-out. For example, customer “inertia” makes customers delay their decision to 

opt-in and once they have opted in, they tend to stay for a long time and do not bother to opt-out. 

In this case, opt-in and opt-out times are positively correlated. In contrast, “variety-seeking” 

customers are reluctant to stick to one company so they need more time to sign up but once they 

have opted in, they will quickly switch to another program for a better offer. In such cases, 

customers will demonstrate a negative dependence between the opt-in and the opt-out time.  
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          Third, the effectiveness of the email program, such as the number of email programs a 

customer has already subscribed to and the relevance of the email messages of the focal firm 

may influence his/her opt-in and opt-out likelihood. Customers who have already subscribed to a 

large number of email programs are less likely to opt-in to another one and once they have opted 

in and are able to receive personalized relevant messages, they tend to stay for a long time. In 

this case, their opt-in and opt-out time are positively correlated. In contrast, if the same 

customers receive many non-relevant messages after opt-in, they will opt-out very quickly to 

release the pressure of information overload. In such cases, their opt-in and opt-out times will be 

negatively correlated. While the dependence between opt-in and opt-out times may vary across 

firms and industries, researchers should empirically test the true dependence between them, 

based on their data. The scope of this study is not to generalize whether the dependence should 

be positive or negative and offer explanations for such phenomena, but simply to capture the 

dependence through an empirical model.  

 

1.2.3 Capturing the Dependence between Durations 

          Accounting for dependence between two durations such as the dependence between 

acquisition and retention, and between email open and click is not uncommon in the marketing 

literature. Chintagunta and Haldar (1998) adopted the Farlie-Gumbel-Morgenstern (FGM) family 

of bivariate distributions to capture the dependence between customer purchase of products in 

two related categories, such as pasta and pasta sauce. Park and Fader (2004) adopted the 

Sarmanov bivariate distributions to investigate customer co-visit timing behavior between the 

websites of two competing retailers. Schweidel, Fader and Bradlow (2008) used the Sarmanov 

family to model the dependence between the time to customer acquisition and the subsequent 
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duration of being “alive”. Bonfrer and Drèze (2009) developed hazard models of email open and 

click time with the Sarmanov family to capture the dependence between open and click rate. 

          Noticeably, Schweidel et al. (2008)’s model is developed and applied to a context similar 

to that of this study— by jointly modeling the timings of when a customer starts to engage and 

disengage with a firm. However, the model proposed in this study distinguishes from that of 

Schweidel et al. (2008) in several aspects. First, the Sarmanov families are limited in the 

dependence ranges they can account for (Danaher and Smith 2011). Schubina and Lee (2004) 

discuss that the dependence range for Sarmanov family depends on the specification of marginal 

distributions. They calculated the exact maximum dependence ranges that can be attained for 

several marginal distribution specifications, for example, the range of uniform is [-3/4, 3/4] and 

of normal is [-2/π, 2/π]. While the Sarmanov family may well be applied in some context such as 

Park and Fader (2004) and Schweidel et al. (2008), we prefer to use copulas that can 

accommodate a wider range of dependence. In the empirical application of this study, we test 

both the Gaussian and Frank copulas, two copulas that can account for nearly the full (-1, 1) 

range of dependence (Trivedi and Zimmer 2005). 

          Second, although a bivariate model has its advantages in solving marketing problems, real-

world applications may require a model that can capture complex and high-dimensional 

dependence structures. The Sarmanov families do not easily capture the dependence structure of 

three or more dimensions (Danaher and Smith 2011). In this study, we propose to use a vine 

copula (e.g., Aas et al. 2009), recently popularized in the statistics literature, to jointly model the 

opt-in time, the opt-out time and the purchase behavior. We will discuss the method of vine 

copula in the proposed model framework section. 

          Third, Schweidel et al. (2008) develop their model in a contractual telecommunication 
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services context but does not consider the possibility that service subscription time is dependent 

on the types (low/medium/high margin) of service that customers choose to subscribe to. In this 

study, we investigate in a non-contractual, retailing context where the duration of a customer 

staying in a marketing program and his/her purchases are two separate but interdependent 

behaviors (e.g., Ascarza and Hardie 2013; Netzer, Lattin and Srinivasan 2008). While one may 

argue that the effect of a customer’s purchase behavior on the length of time he/she stays in a 

marketing program could be estimated by including it as a covariate in the marginal model, we 

determine that it would suffer from endogeneity because unobserved factors such as customer 

loyalty are highly likely to affect both variables. The vine copulas model proposed in this study 

avoids the potential endogeneity issue by modeling the purchase behavior, the opt-out and the 

opt-in simultaneously. In the next section, we discuss the substantive importance of jointly 

examining the opt-in, the opt-out and the purchase behavior. 

 

1.2.4 Incorporation of Purchase Behavior 

          Krishnamurthy (2001) discusses that customer interest in a permission marketing program 

is positively related to the customer’s level of participation in the program. Krishnamurthy states 

that customers opt-in in a marketing program to obtain information related to the products and 

promotions that add value to their lives by reducing the cost of information search and by 

providing monetary benefits. Most permission-based marketing programs allow customers to 

opt-out or unsubscribe at any time if they are no longer willing to receive messages from the 

firm. The length of time a customer is willing to stay in a marketing program may depend on the 

relevance of the message, the intensity of marketing activities and customer loyalty. We argue 

that customers who receive a higher proportion of relevant messages and/or who have a higher 
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level of spending with the firm are more likely to stay longer in the marketing program. Firms 

can identify those short-life customers at their earlier stage by analyzing their buying patterns 

(Reinartz and Kumar 2000).  

          From another angle, participation in a permission marketing campaign can change the 

attitudes and behaviors of customers by increasing their purchase intention (DuFrene et al. 

2005), making them spend more money (Jolley et al. 2013), and being more responsive to firms’ 

marketing messages (Marinova, Murphy, and Massey 2002). The longer the customers stay in a 

marketing program, the more familiar they would be with the firm and the more likely to shop 

with the firm. In summary, we argue that staying in a marketing program and actually making 

purchases are two interdependent processes (e.g., Danaher 2002) which should be jointly studied 

to avoid potential endogeneity issues. Firms should not only invest resources to make customers 

stay longer in the marketing program but also make them spend more money while they are still 

subscribed to the program. Since the timings of joining and withdrawing the marketing program 

are also interdependent, we model the three processes jointly in an integrated model framework. 

 

1.3 Data Description  

          Our database comprises information from a U.S. retailer that sells multiple categories of 

home improvement products. The data set consists of information on the time when a customer 

opts-in and opts-out of the firm’s email program, the transactions made by the customer, the 

email open and click histories, and the marketing activities of the firm. We construct a 

calibration data set by sampling at random, a cohort of 9,180 customers who made their first 

purchases from the firm between February 2007 and July 2007. We construct a holdout data set 

by sampling another cohort of 9,180 customers to validate our proposed model. 
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          To obtain information on customers’ online habits and socio-demographics, a 

multinational marketing technology and services firm, named Acxiom, appends the data we 

sampled with one of their databases using several key identifiers with a 100%, one-to-one match 

rate. The database provided by Acxiom, trademarked as “PersonicX Digital”, assigns people to 

one of the 13 segments based on how they use the internet, how they shop online, when and 

where they access the internet and their demographic attributes (see Table 1 for a description of 

each cluster). We include this external segmentation to account for the customer characteristics 

that are useful in explaining the customer opt-in and opt-out propensities (Brey et al. 2007).  

Insert Table 1 about here 

        The retailer that provides us with the data currently operates a large-scale email program 

with a large number of subscribers. The email program is permission-based in the sense that 

people need to subscribe first to receive any emails from the retailer. Although purchase is not 

required to subscribe to the email program, the majority of the existing email subscribers have 

purchase histories with the firm before opt-in, according to the management team of the retailer. 

The number of email subscribers who opt-in on the same day as their first purchase is 

insignificant (about 0.03% of the sample). We argue that customers need a period of time to 

develop trust with the firm to let it send messages to their email inbox. 

          We consider purchasing and subscribing to be two separate decisions for the customers of 

the focal retailer. The retailer does not have any policy to encourage customers to opt-in its email 

program when they purchase from its physical stores. In addition, although customers can create 

an online account to manage their orders with convenience when they purchase online, they are 

considered opt-in only when they click the checkbox “willing to receive further email marketing 

messages”. After the opt-in, the subscribers receive emails which contain instructions for opt-out 
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at the bottom of the message. Customers can opt-out at any time by clicking the “unsubscribe” 

link, calling the customer service center, or writing to the retailer’s office.  

          There are two characteristics of this study we need to clarify. First, this study focuses on 

the opt-in and opt-out behaviors of existing customers. We agree that other firms may have some 

proportion of email subscribers who have no purchase history before opt-in. While it may be 

worthwhile to examine the opt-in behavior of prospects, the managerial implications we draw 

from this study apply to existing customers. Second, we focus this study on customers’ first opt-

in and opt-out decisions. We observe a very small number of customers who have multiple opt-in 

and opt-out records (about 0.1% of the sample).  

 

1.4 Descriptive Statistics 

          The key variables of interest in this study are the timings of opt-in and opt-out. Opt-in time 

is computed as the number of days elapsed between a customer’s first purchase and opt-in. Opt-

out time is computed as the number of days elapsed between opt-in and opt-out. We observe that 

both opt-in and opt-out times may be right-censored. In the calibration sample, 22.8% of the 

customers didn’t opt-in, 18.5% of the customers opted in but opted out before the end of the 

observation window, and 58.7% of the customers opted in and stayed till the end of the 

observation window. Of the customers who did opt-in, the mean opt-in time is 597 days and the 

median opt-in time is 611 days. Of the customers who have opted in but opted out, the mean opt-

out time is 410 days and median opt-out time is 343 days.  

          To illustrate the differences in purchase behavior of email subscribers and non-subscribers, 

we randomly select two samples of equal size (subscribers and non-subscribers) and report the 

descriptive statistics of several variables which are computed for the same period of time (see 



 
 

15 
 

Table 2). As compared to nonsubscribers, email subscribers spend more money, make purchases 

more frequently, redeem more coupons, receive more direct mails, and make more returns. The 

results are consistent with the previous findings that permission-based marketing programs 

reinforce customer loyalty and induce more active customer engagement.  

Insert Table 2 about here 

          To further illustrate the importance of the study on opt-out time, we conduct a preliminary 

analysis to explore the relationship between the length of time a customer stays in an email 

program and his/her purchase behavior. We randomly select 103 customers who started their 

relationship with the retailer (first purchase) at the same time (February 2007), opted in the email 

program at the same time (June 2008) but opted out at the different times. We split these 

customers into the following three cohorts based on the length of time the customer had been 

with the retailer: 1 to 6 months (cohort 1), 7 to 12 months (cohort 2) and 13 to 18 months (cohort 

3). We summarize their purchase behavior for the same time-window from June 2008 to 

December 2010 (see Table 3). To ensure that the three cohorts of customers are comparable, we 

ensure that the customers selected have a similar purchase pattern before opt-in, such as making 

a purchase every 1.4 to 1.8 months. 

Insert Table 3 about here 

          Table 3 shows that, on average, the customers who stayed in the email program for a 

longer period of time tend to purchase more frequently and spend more money. The statistics can 

be interpreted from two perspectives. From one point of view, the customers who choose to stay 

longer in the program demonstrate stronger interests in the product category and the brand, have 

a higher chance to be exposed to the firm’s email marketing, and are more active in purchases. 

From another point of view, the customers who have longer lasting interests in home 
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improvement products, who are more accustomed to read emails to obtain information and who 

have a higher intention of purchase are more likely to stay in the email program for a longer 

period of time.  

 

1.5 Proposed Modeling Framework 

1.5.1 Modeling Challenges 

          In this study, we jointly model three variables, the customer’s opt-in time, opt-out time and 

average transaction amount. We need a multivariate copula model that can capture the three-

dimensional dependence structure. Research on multivariate copula models have received 

attention from the fields of statistics, finance, insurance (e.g., Smith et al. 2010; Zimmer and 

Trivedi 2006) and marketing (e.g., Danaher and Smith 2011; Stephen and Galak 2012; 

Kushwaha and Shankar 2013). However, the number of multivariate distributions that are readily 

applicable to three or higher dimensional problems is limited. Multivariate Gaussian copula, an 

example of the elliptical copula, has been used to model inter-magazine exposures and page 

views of multiple websites (Danaher and Smith 2011) and model multivariate count data 

(Stephen and Galak 2012). In addition to the elliptical copula, there are several studies that 

attempt to extend the bivariate Archimedean copula to higher dimensions (e.g., Zimmer and 

Trivedi 2006; Savu and Trede 2010). Most commonly used Archimedean copulas include 

Clayton, Gumbel and Frank (Trivedi and Zimmer 2005). However, these extensions are 

developed at the expense of dependence measures. A flexible n-variate copula should be able to 

accommodate 𝑛(𝑛 − 1)/2 dependence parameters for each pair of the marginal distributions. 

However, for example, a trivariate extension of a bivariate Frank copula which is proposed by 

Zimmer and Trivedi (2006) only allows for two (instead of three) dependence parameters which 
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also need to be positive. This restriction limits its application to many practical problems. Thus, a 

flexible multivariate copula model is needed.   

          Based on the work of Joe (1997) and Bedford and Cooke (2002), Aas et al. (2009) shows 

that multivariate data can be decomposed into a cascade of bivariate copulas, called “pair-copula 

constructions”. A pair-copula decomposition offers a highly flexible way to construct 

multivariate distributions and has been the focus of many studies recently (e.g., Smith et al. 

2010; Min and Czado 2010; Kurowicka and Joe 2011; Panagiotelis et al. 2012; Hobæk Haff 

2013). It has no restrictions on the dependence parameters. It allows the selection of any copulas 

to build bivariate copulas, such as Gaussian, 𝑡, Gumbel and Frank. Compared with that of 

multivariate Gaussian copula, the estimation of pair-copula construction is relatively easy as the 

parameters of each pair-copula can be estimated sequentially. But a multivariate Gaussian copula 

requires the evaluation of multiple integral without a closed-form solution, which can only be 

approximated in a numerical way. In a simulation study, Smith et al. (2010) compares and shows 

that the vine copula outperforms a multivariate Gaussian copula in forecasting. In this study, we 

construct a trivariate pair-copula model and test it in an empirical application with Gaussian and 

Frank copulas as pair-copulas. We choose the “best-fitting” copula among the two models using 

model selection criteria such as the Bayesian Information Criterion (BIC). In the next section, we 

discuss the marginal models for opt-in time, opt-out time and average transaction amount and the 

modeling of the dependence with pair-copula construction. 

 

1.5.2 Modeling the Opt-In Time and Opt-Out Time 

          Since the opt-in and opt-out times are both continuous survival data, we model these 

variables using the conditional hazard model (e.g., Jain and Vilcassim 1991), which is well 
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suited for censored observations. Let (𝑇𝑖1, 𝑇𝑖2) and (𝐶𝑖1, 𝐶𝑖2) denote the paired opt-in and opt-out 

times and censoring times for customer 𝑖 = 1,… , 𝑛. Let 𝑡𝑖𝑗 = min(𝑇𝑖𝑗, 𝐶𝑖𝑗) denote the actual 

observed durations, 𝛿𝑖𝑗 = 𝐼(𝑡𝑖𝑗 = 𝑇𝑖𝑗) and 𝐙𝑖𝑗 be a vector of covariates for customer 𝑖, where the 

subscript 𝑗 denotes the opt-in time (𝑗 = 1) or the opt-out time (𝑗 = 2). Note that 𝛿𝑖1 = 0 denotes 

the case where customer i didn’t opt-in during the observation period
1
. The opt-in or opt-out time 

𝑡𝑗 is assumed to follow the Weibull distribution, characterized by the distribution function 𝐹𝑗(𝑡𝑗). 

We use the Weibull distribution because it is highly flexible that it can accommodate flat, 

monotonically increasing or decreasing hazard functions and has been proved useful in 

marketing applications (e.g., Chintagunta and Halder 1998; Seetharaman and Chintagunta 2003). 

          The density function of the Weibull distribution is 𝑓𝑗(𝑡𝑗) = 𝛼𝑗𝜆𝑖𝑗𝑡𝑗
𝛼𝑗−1 exp(−𝜆𝑖𝑗𝑡𝑗

𝛼𝑗) 

where 𝛼𝑗 represents the shape parameter and 𝜆𝑖𝑗 controls the scale parameters. We allow the 

scale parameter to be customer-specific, 𝜆𝑖𝑗, which is specified as a function of the 

corresponding vector of covariates 𝐙𝑖𝑗 and parameter sets 𝛃𝑗. To ensure that the scales are 

positive, we use exponential specifications as 

 

𝜆𝑖𝑗 = exp(𝛽0𝑗 +∑𝛽𝑑𝑗PERSONICX𝑖𝑑 + 𝛽13𝑗

12

𝑑=1

COUPON𝑖𝑗

+ 𝛽14𝑗DMAIL𝑖𝑗 + 𝛽15𝑗RETURN𝑖𝑗

+ 𝛽16,𝑗=2EMAIL𝑖,𝑗=2 + 𝛽17,𝑗=2OPEN𝑖,𝑗=2

+ 𝛽18,𝑗=2CLICK𝑖,𝑗=2) 

(1)  

for every 𝑖 = 1,… , 𝑛, 𝑗 = 1, 2, and 𝑑 = 1, … ,12. Here, 𝛽0𝑗 captures a customer i’s intrinsic 

probability to opt-in or opt-out. The variables EMAIL, OPEN, and CLICK are related to activities 

                                                           
1
 In this study, we assume that every customer will eventually opt-in the retailer’s email program given a long 

enough period of time. A split-hazard model can be used to account for the opt-in probability if the assumption that 

a proportion of customers will never opt-in is made (e.g., Sinha and Chandrashekaran 1992; Schweidel, Fader and 

Bradlow 2008). 
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that can only occur after a customer has opted in a permission-based email program, so 𝛽16,𝑗=2, 

𝛽17,𝑗=2 and 𝛽18,𝑗=2 are specified only in the opt-out model. All the variables in Equation (1) are 

explained in the following sections. 

          PERSONICX represents a vector of binary variables that indicate the segment to which a 

customer is assigned according to PersonicX Digital, the database from Acxiom. The database 

assigns customers to one of the 13 segments based on their demographics and online behaviors 

(see Table 1). We use Group 1, labeled as “Superhighway Superusers”, as the reference group to 

create 12 dummy variables. We expect these variables to provide some explanatory power on the 

opt-in and opt-out model because online habits and socio-demographics affect customers’ 

interest in permission-based web or mobile-marketing programs (e.g., Brey et al. 2007). 

          COUPON𝑖𝑗 is operationalized as the total number of coupons that customer i redeemed 

before opt-in (𝑗 = 1) or between the opt-in and opt-out or the censoring time (𝑗 = 2). In addition 

to direct mail, company website or referral, email program is another option customers can 

utilize to obtain saving opportunities such as coupon code or price discount information. We 

expect that customers who are already active in coupon redemption have smaller probabilities to 

opt-in due to high information processing cost but low incremental saving benefit. Meanwhile, 

for email subscribers, we expect that the coupon redemption activities could indicate the 

relevance of emails to their purchase needs which could subsequently affect their interests in the 

email program (Krishnamurthy 2001). 

          DMAIL𝑖𝑗 is operationalized as the average number of direct mail customer i received per 

month before the opt-in (𝑗 = 1) or between the opt-in and the opt-out or the censoring time 

(𝑗 = 2). Direct mail usually uses product information and coupons to attract customers to visit 

the stores. While direct mail and email serve similar marketing purposes, it is uncertain how they 
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may affect each other. It is likely that customers who receive substantial direct mails are less 

motivated to participate in an email marketing program due to the increase of information burden 

(Krishnamurthy 2001). We test the non-linear forms (logarithmic and quadratic) of DMAIL𝑖𝑗 in 

both models because there could be an optimal level of marketing communications (Nash 1993). 

          RETURN𝑖𝑗 is operationalized as the total number of product return occasions customer i 

made before the opt-in (𝑗 = 1) or between the opt-in and the opt-out or the censoring time (𝑗 =

2). The customers who have a medium level of returns are found to have the highest customer 

lifetime value (e.g., Petersen and Kumar 2009). The product return frequency signifies the 

relationship between customers and firms which is important for the customer opt-in and opt-out 

decisions (e.g., Jayawardhena et al. 2009). We test the non-linear effect (logarithmic and 

quadratic) of RETURN𝑖𝑗 and expect to find an optimal level of product return frequency.  

          EMAIL𝑖,𝑗=2 is operationalized as the average number of emails customer i received per 

month while OPEN𝑖,𝑗=2 is computed by dividing the number of emails opened by the total 

number of emails received and CLICK𝑖,𝑗=2 is computed by dividing the number of emails clicked 

by the total number of emails opened, between the opt-in and the opt-out or the censoring time. 

Krishnamurthy (2001) discusses that message processing costs and message relevance are the 

two important factors that could affect customers’ interest in permission marketing programs. 

Due to the intrusive nature of email promotions, Ha (1996) argues that customers’ attitudes 

towards email marketing decrease as firms’ emailing frequency increases. We expect to find a U-

shape effect of the email quantity on the customer opt-out probability. In addition, we use the 

email open and click rates as a measure of message relevance which could indicate the category-

message fit and the perceived attractiveness of advertisers (Krishnamurthy 2001). Firms that can 

consistently send messages relevant to customers’ needs will be more appreciated and customers 
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will be less likely to opt-out. But we expect that the utilities derived from relevant messages 

increase up to a threshold as customers usually have a spending limit or a share-of-wallet for a 

certain firm. Thus, we use the linear and quadratic form of EMAIL𝑖,𝑗=2 and the logarithmic forms 

of OPEN𝑖,𝑗=2 and CLICK𝑖,𝑗=2.   

Heterogeneity            

In addition, there is unobserved heterogeneity in terms of customers’ hazard of the opt-in and the 

opt-out. For example, some customers may be more likely to opt-in or opt-out, but this 

heterogeneity is not directly measured. To account for this unobserved heterogeneity in both the 

opt-in and the opt-out models, we incorporate an unobservable multiplicative effect 𝑣𝑖𝑗, called “a 

frailty term”, on the Weibull hazard functions (e.g., Han and Hausman 1990; Schmittlein and 

Morrison 1983). The conditional hazard function is specified as ℎ(𝑡𝑖𝑗|𝑣𝑖𝑗) = 𝛼𝑗𝜆𝑖𝑗𝑡𝑖𝑗
𝛼𝑗−1𝑣𝑖𝑗 . 

Following Sahu et al. (1997), we assume that the random variable 𝑣𝑖𝑗 follows a gamma 

distribution with a mean of 1 (for identification purpose) and a variance of 1 𝛾𝑗⁄ , where 𝛾𝑗 is a 

parameter to be estimated. By integrating 𝑣𝑖𝑗, we obtain the closed-form solutions for the 

unconditional Weibull survival function (e.g., Gutierrez 2002; Meade and Islam 2010) 

 𝑆(𝑡𝑖𝑗) = [1 + 𝛾𝑗𝜆𝑖𝑗𝑡𝑖𝑗
𝛼𝑗]

−1 𝛾𝑗⁄

 (2)  

and the unconditional Weibull density function 

 𝑓(𝑡𝑖𝑗) = 𝑆(𝑡𝑖𝑗)
1+𝛾𝑗

𝛼𝑗𝜆𝑖𝑗𝑡𝑖𝑗
𝛼𝑗−1

. (3)  

 

1.5.3 Modeling the Average Transaction Amount 

          We assume that the average transaction amount (in U.S. dollars) 𝐴𝑀𝑇𝑖 that customer i 

spent during the time he/she stayed with the email program, follows a log-normal distribution 
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(e.g., Borle, Singh and Jain 2008) 

 log 𝐴𝑀𝑇𝑖~𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑖, 𝜎
2) (4)  

where 𝜇𝑖 is the mean and 𝜎2 is the variance of the normal distribution. We assume that the mean 

parameter 𝜇𝑖 is a function of the individual-level covariates as shown below: 

 

𝜇𝑖 = 𝜇0𝑖 + 𝜇1Avg_Coupon𝑖 + 𝜇2Avg_Dmail𝑖 + 𝜇3Avg_Email𝑖

+ 𝜇4Avg_Return𝑖 + 𝜇5Avg_CrossBuy𝑖

+ 𝜇6Avg_Open𝑖 + 𝜇7Avg_Click𝑖 + 𝜇8Avg_IPT𝑖 

(5)  

To account for the unobserved heterogeneity, we allow the intrinsic average transaction amount 

𝜇0𝑖 to be customer-specific. We assume that this heterogeneous parameter is normally distributed 

across customers as 𝜇0𝑖 = 𝜇0 + ∆𝜇0𝑖, where ∆𝜇0𝑖~N(0, 𝜎𝜇0
2 ) and 𝜎𝜇0

2  is the variance parameter. 

Thus, 𝜇0-𝜇8, 𝜎2 and 𝜎𝜇0
2  are the parameters to be estimated from the data.  

          Note that log 𝐴𝑀𝑇 is actually a mixture of two normals, one for the idiosyncratic variation 

and one for the random effect. Here, we use average transaction amount instead of total amount 

spent because total amount spent is a cumulative measurement which is likely to be a function of 

time elapsed. The joint modeling of opt-out time and total amount spent would create a positive 

dependence because of the shared effect of time elapsed. Since average transaction amount is 

calculated by dividing the total amount spent by the total number of purchase trips, the joint 

modeling of average transaction amount and opt-out time can capture the dependence that has 

teased out the shared effect of time elapsed. We explain all the variables specified in Equation 

(5) next. 

          Avg_Coupon𝑖 is operationalized as the average number of coupons customer i redeemed in 

every transaction. The use of coupons can lead to unplanned purchases and increase the amount 

of money a customer typically spends (e.g, Heilman, Nakamoto and Rao 2002). However, highly 

price conscious or deal-prone customers typically have budget constraints and tend to pay 
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reduced prices (e.g., Völckner 2008). We expect that customers who redeem a medium level of 

coupons have the biggest shopping basket. 

          Avg_Dmail𝑖 and Avg_Email𝑖 are operationalized as the average number of direct mails or 

emails customer i received between two transactions. Marketing communications can retain 

existing customers and increase brand loyalty. But excessive marketing contacts could be 

detrimental to the firm-customer relationship (e.g.,Venkatesan and Kumar 2004). We expect to 

identify an optimal level of marketing contacts such as direct mail and email. 

          Avg_Return𝑖 is computed as the average number of product return occasions customer i  

made for each transaction. Avg_CrossBuy𝑖 is computed as the average number of product 

categories customer i purchased in each transaction. The product return frequency has an 

inverted-U shape effect on the firm-customer relationship (Petersen and Kumar 2009). 

Customers who buy from multiple categories tend to shop from a wider range of products in a 

purchase occasion (Venkatesan and Kumar 2004). Similarly, we expect to find an inverted-U 

shape effect of product return and a positive effect of cross-buy on the average transaction 

amount. 

          Avg_Open𝑖 and Avg_Click𝑖 are operationalized as the number of emails customer i opened 

or clicked between two transactions. Permission-based email messages can increase customers’ 

trust with the firm, their purchase intentions and their lifetime values (e.g., DuFrene et al. 2005; 

Jolley et al. 2013). We expect that customers with higher email open and click rates are more 

interested in the firm and spend more money on the firm. 

          Avg_IPT𝑖 is operationalized as customer i’s average inter-purchase time which is computed 

across the customer’s purchase history between the opt-in and the opt-out or the censoring time. 

We use the average inter-purchase time as a control variable and expect that customers who have 
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shorter inter-purchase time spend less money on each transaction.  

 

1.5.4 Modeling the Dependence using Pair-Copula Construction 

          Let 𝑿 = (𝑋1, 𝑋2, 𝑋3) be a vector of random variables with a joint density function as 

𝑓(𝑥1, 𝑥2, 𝑥3). We demonstrate how to decompose the joint density into a cascade of pair-copulas. 

First, based on Sklar’s theorem (Sklar 1959), the bivariate joint density can be expressed as 

 𝑓(𝑥1, 𝑥2) = 𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) ∙ 𝑓1(𝑥1) ∙ 𝑓2(𝑥2) (6)  

where 𝐹1(𝑥1) and 𝐹2(𝑥2) are continuous marginal distributions and 𝑐12(∙) is the bivariate pair-

copula density. Based on basic probability theory, we can obtain the conditional density as 

 𝑓(𝑥2|𝑥1) = 𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) ∙ 𝑓2(𝑥2) (7)  

          The conditional density in a three-dimensional case is given by 

 

𝑓(𝑥2|𝑥1, 𝑥3) =
𝑓(𝑥2, 𝑥3|𝑥1)

𝑓(𝑥3|𝑥1)

=
𝑐23|1(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1)) ∙ 𝑓(𝑥2|𝑥1) ∙ 𝑓(𝑥3|𝑥1)

𝑓(𝑥3|𝑥1)

= 𝑐23|1(𝐹(𝑥2|𝑥1), 𝐹(𝑥3|𝑥1)) ∙ 𝑓(𝑥2|𝑥1) 

(8)  

where 𝑐23|1(∙) is the suitable bivariate pair-copula density for 𝐹(𝑥2|𝑥1) and 𝐹(𝑥3|𝑥1). Note that 

𝑐23|1(∙) captures the dependence between two reduced conditional distributions. 

          Based on Equations (6-8), we can write down the joint density 𝑓(𝑥1, 𝑥2, 𝑥3) using pair-

copulas and the marginal densities. Applying the same logic to our empirical problem, we can 

construct the joint density function of opt-in time, opt-out time and average transaction amount. 

Since the opt-in and the opt-out times are data of lifetimes, we use survival copulas in our 

specification (e.g., Shih and Louis 1995; Nelsen 2006) 
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𝑓(𝑡𝑖1, 𝑡𝑖2, 𝐴𝑀𝑇𝑖) = 𝑐23|1(𝑆(𝑡𝑖2|𝑡𝑖1), 𝑆(𝐴𝑀𝑇𝑖|𝑡𝑖1); 𝛺23|1)

∙ 𝑐12(𝑆1(𝑡𝑖1), 𝑆2(𝑡𝑖2); 𝛺12) ∙ 𝑐13(𝑆1(𝑡𝑖1), 𝑆3(𝐴𝑀𝑇𝑖); 𝛺13)

∙ 𝑓1(𝑡1𝑖) ∙ 𝑓2(𝑡2𝑖) ∙ 𝑓3(𝐴𝑀𝑇𝑖) 

(9)  

where 𝑐23|1(∙), 𝑐12(∙) and 𝑐13(∙)2 are the density functions of the associated survival copulas; 

𝑆1(𝑡𝑖1), 𝑆2(𝑡𝑖2) and 𝑆3(𝐴𝑀𝑇𝑖) are the marginal survival functions defined in Equations (2) and 

(4); 𝑆(𝑡𝑖2|𝑡𝑖1) and 𝑆(𝐴𝑀𝑇𝑖|𝑡𝑖1) are the conditional survival functions with a common 

conditioning variable 𝑡𝑖1; 𝑓1(𝑡1𝑖), 𝑓2(𝑡2𝑖) and 𝑓3(𝐴𝑀𝑇𝑖) are the marginal densities defined in 

Equations (3-4); 𝛺23|1, 𝛺12 and 𝛺13 are the pair-copula parameters (see also Panagiotelis, Smith 

and Danaher 2013). 

          Equation (9) only applies to the situation where the opt-in and opt-out times are both 

observed. We need to consider the cases when the opt-in or opt-out times are censored. First, 

when the opt-in time is observed but the opt-out time is censored, we need to evaluate the 

conditional survival function 𝑆(𝑡𝑖2|𝑡𝑖1) which gives the probability the customer i stays in the 

email program for at least time 𝑡𝑖2 given that the customer’s the opt-in time is 𝑡𝑖1. The 

conditional survival function is given by the first partial derivative of the bivariate copula 

function (He and Lawless 2003), 

 𝑆(𝑡𝑖2|𝑡𝑖1) =
𝜕𝐶𝑡𝑖1,𝑡𝑖2(𝑆1(𝑡𝑖1), 𝑆2(𝑡𝑖2); 𝛺12)

𝜕𝑆1(𝑡𝑖1)
 (10)  

where 𝐶𝑡𝑖1,𝑡𝑖2(∙) is the bivariate copula function and 𝛺12 is the bivariate copula parameter defined 

in Equation (9). Second, when both the opt-in and opt-out times are censored, the customer-level 

likelihood is given by the marginal survival function 𝑆1(𝑡𝑖1) (He and Lawless 2003). 

          The bivariate pair-copulas can be specified as Gaussian, t, Gumbel, Clayton, Frank, etc. 

                                                           
2
 For distributions of high dimensions, the number of unique pair-copula decompositions increases 

significantly. Vine copulas, initially introduced by Joe (1997) and Bedford and Cooke (2002), provide a 

graphical way to organize the pair-copula construction conveniently. For a general way to construct a 

high-dimensional distribution through vine representation, readers can refer to the Appendix. 
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We empirically test Gaussian and Frank copulas in this study. We provide the copula distribution 

function, density, first partial derivative and its inverse function for the Gaussian and Frank 

bivariate copulas in the Appendix. 

 

1.5.5 Model Estimation 

          We have two sets of parameters to estimate, one of the marginal models and the other of 

the pair-copulas. Following Shih and Louis (1995) and Danaher and Smith (2011), we use a two-

step procedure
3
 which yields consistent estimates for all parameters. In the first step, we estimate 

the parameters of each marginal model using maximum likelihood estimation (MLE). The 

marginal likelihoods are specified previously in Equations (1-5). 

          In the second step, we estimate the set of pair-copula parameters assuming the parameters 

estimated from the first step as fixed. We maximize the log-likelihood function given by 

 

𝐿𝐿(𝛀) =∑{𝛿𝑖1𝛿𝑖2 log(𝑐12(𝑆1(𝑡𝑖1), 𝑆2(𝑡𝑖2); 𝛺12)) +𝛿𝑖1(1

𝑁

𝑖=1

− 𝛿𝑖2) log(𝑆(𝑡𝑖2|𝑡𝑖1); 𝛺12)

+ 𝛿𝑖1 log(𝑐13(𝑆1(𝑡𝑖1), 𝑆3(𝐴𝑀𝑇𝑖)); 𝛺13)

+ 𝛿𝑖1𝛿𝑖2 log(𝑐23|1(𝑆(𝑡𝑖2|𝑡𝑖1), 𝑆(𝐴𝑀𝑇𝑖|𝑡𝑖1)); 𝛺23|1)} 

(11)  

where 𝛿𝑖1 and 𝛿𝑖2 are the indicator variables that equal 1 when 𝑡1𝑖 and 𝑡2𝑖 are observed and 0 

otherwise; 𝛀 = {𝛺12, 𝛺13, 𝛺23|1} are the pair-copula parameters to be estimated. Note that for the 

customers who did not opt-in (𝛿𝑖1 = 0), we use these observations in estimating the marginal 

opt-in model. However, we do not use them in the estimation of the copula dependence 

parameters because the dependence relies on the observed opt-in time. 

          Following Aas el al. (2009), we estimate these parameters sequentially. We first estimate 

                                                           
3
 Pair-copula constructions can also be estimated using a Bayesian method (Min and Czado 2010). 
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𝛺12 and 𝛺13 by maximizing the first three terms of Equation (11). Second, we calculate 

𝑆(𝑡𝑖2|𝑡𝑖1) and 𝑆(𝐴𝑀𝑇𝑖|𝑡𝑖1) in a way analogous to that in Equation (10), based on the estimates 

from the first step. Third, we estimate 𝛺23|1 by maximizing the fourth term of Equation (11). 

Lastly, we use the estimates from the previous three steps as our starting point and maximize the 

full log-likelihood specified in Equation (11). We recover all the parameters in the simulation. 

We provide the data generating algorithm for simulation study in the Appendix. We also provide 

estimation details of the proposed model with Frank pair-copula in the Appendix.  

 

1.6 Results 

1.6.1 Main Findings           

          We estimate the model specified in Equations (1-11) with Gaussian and Frank as pair-

copulas using a maximum likelihood estimation in GAUSS. We compare the log-likelihood and 

the BIC of the two models to choose the “best-fitting” model. Table 4 gives the in-sample log-

likelihood and the BIC. Based on the log-likelihood and the BIC, we determine that the proposed 

model with pair-copulas specified as Frank copula provides a better fit to the calibration data. 

Thus, we choose the Frank copula specification in this study. Table 5 reports the estimates of the 

marginal models of the opt-in time, the opt-out time and the average transaction amount. We 

discuss the results of each model in the following sections. 

Insert Tables 4 & 5 about here 

          Opt-in Time Model Estimates. We examine how a customer’s opt-in decision is affected. 

As the logarithm of γ1 is -0.600, we calculate that the variance of the gamma frailty term equals 

1 exp(−0.600)⁄ = 1.82, indicating a strong degree of heterogeneity in customers’ opt-in 

decisions. Some customers are more prone to opt-in than others with the same covariates value. 
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After controlling for the unobserved heterogeneity, we explore some interesting findings. 

Coupon redemption frequency has a negative effect on customer’s opt-in probability. One of the 

main benefits of email program is the saving opportunities delivered through emails. If a 

customer has already been active in redeeming coupons which may be distributed through other 

channels such as direct mail, company website or referral, it is unlikely that the customer will 

turn to another marketing program as the marginal benefit would not be high enough.  

          We find that the number of direct mails a customer receives has a negative effect on opt-in 

probability but this effect diminishes with an increase in the quantity of direct mails. Consistent 

with Barnes and Scornavacca (2008), this finding suggests that the marketing exposure a 

customer receives affects his/her decision to opt-in. Since direct mail and email share similar 

marketing functions, the customers who are already contacted via many direct mails are less 

likely to join another marketing program, which could increase their information processing 

burden (Krishnamurthy 2001). In addition, the product return frequency has a negative but 

diminishing effect on the opt-in probability. This finding is consistent with the previous literature 

(e.g., Petersen and Kumar 2009) that customers with a moderate amount of product returns are 

the ones that firms should invest resources in to build a relationship with. 

          Furthermore, customers with different characteristics and online habits have different opt-

in propensities, according to the estimates of the PersonicX variables. Customers who belong to 

the groups labeled “Second Nature Surfers” and “Voluminous Variety” are statistically 

significantly different in opt-in likelihood from those who belong to the reference group labeled 

“Superhighway Superusers”; while the rest of the customers do not show significant differences 

from the reference group. “Second Nature Surfers” customers are heavy online users, age from 

24 to 39, either have no children or have just started a family, and prefer youth-oriented activities 
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such as music, social networking and online auctions (see Table 1). Customers of this group are 

less likely to opt-in in the retailer’s email program probably because they have less interest in or 

limited use for home improvement products. “Voluminous Variety” customers are familiar with 

and tend to use the internet to obtain information on a daily basis (see Table 1). Customers of 

this group wouldn’t join the retailer’s email program easily probably because they have better 

ways or alternatives to obtain product and promotion information. These findings are also 

consistent with the previous studies (e.g., Brey et al. 2007) that socio-demographics and 

information search behavior affect customers’ interest in permission marketing.  

          Opt-out Time Model Estimates. We discuss how a customer’s opt-out decision is affected. 

Based on the estimate of 𝛾2, we calculate the variance of the gamma frailty term as 

1 exp(1.994) = 0.14⁄ , indicating a moderate level of heterogeneity in customers’ opt-out 

decisions. After controlling for the unobserved heterogeneity, we discover that coupon 

redemption frequency has a strong negative effect on customer’s opt-out probability. If the 

saving opportunities delivered through emails are relevant to customer’s needs, customers would 

be more responsive by making more purchases with coupons. In such a case, customers have no 

reason to opt-out to turn away from an effective email program. In addition, the number of direct 

mails or emails a customer receives has a U-shape effect on the opt-out probability. In line with 

previous research (e.g., Krishnamurthy 2001; Nash 1993), we find that too much communication 

is harmful to the firm-customer relationship and makes customers less interested in the 

participation of the permission marketing program. Firms should plan an appropriate level of 

marketing intensity and avoid over-marketing to customers. 

          Furthermore, we find that email open or click rate has a negative but diminishing effect on 

opt-out probability. It indicates that customers who open email or click the links included in the 
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emails more often are less likely to end their email subscription. Consistent with Krishnamurthy 

(2001), the finding suggests that message relevance in terms of the category fit or incentive size 

is an important factor for customers to stay in a permission email program. Firms may customize 

their email messages based on customers’ past purchases to increase the open and click rate. In 

line with Venkatesan and Kumar (2004), we also find that a moderate amount of product returns 

is healthy for the firm-customer relationship as it implies that customers are less likely to opt-out. 

          From the estimates of the PersonicX variables, we discover some interesting results. 

Compared with customers of the reference and the other groups, customers who belong to the 

groups labeled “Second Nature Surfers”, “Affluent Aficionados”, “My Internet, My Way” and 

“Functional Frequency” are statistically significantly less likely to opt-out. Noticeably, 

customers of these four groups stay in the email program probably for different reasons. For 

example, “Functional Frequency” customers subscribe to the email program to obtain 

promotional information because they are at an average age of 39, with low to middle income 

and need to raise a family. But, “Affluent Aficionados” customers opt-in probably for new 

product information or gardening workshops because they typically are well-educated and 

wealthy, at the age of retiring, and have disposable time to pursue their personal hobbies. 

          Average Transaction Amount Model Estimates. We discuss the factors that determine the 

dollar amount a customer spends per transaction. The findings related to the average transaction 

amount are all consistent with previous research (e.g., Venkatesan and Kumar 2004; Völckner 

2008; Petersen and Kumar 2009). Customers with a moderate level of coupon redemption or 

product return history are expected to spend the most. A moderate level of marketing such as 

direct mail and email is healthy for the firm-customer relationship and over-marketing would 

decrease a customer’s purchase spending. Customers who buy across multiple product categories 
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tend to spend more in each transaction. In addition, we find that the number of emails opened 

between two transactions has a positive but diminishing effect while the number of email links 

clicked between two transactions has no statistically significant effect on the spending size. 

Although the current available information does not allow us to link the email open or click rate 

directly to purchases, we suspect that the retailer’s current email strategy does not result in a 

good conversion rate. The email messages sent probably have more advertising effect than 

instantaneous promotional effect (e.g., Li, Sun and Montgomery 2011). If so, we suggest the 

retailer customize their email messages which could help improve the conversion rate.  

          Pair-Copula Dependences. Table 5 reports both the Frank copula parameter estimates and 

the transformed Spearman’s rho coefficients (in parentheses). Spearman’s rho measures the rank-

order correlation coefficient which is not affected by the specification of the marginal 

distributions of the raw data (see Danaher and Smith 2011). The bivariate copula parameter Ω12, 

which has an estimate of 0.204 of Spearman’s rho, shows a moderate dependence between opt-in 

and opt-out times. Customers who take a longer time to opt-in tend to stay in the email program 

for a longer time. The bivariate copula parameter, Ω23|1, which has an estimate of 0.094 of 

Spearman’s rho, measures the dependence between opt-out time and average transaction amount, 

conditional on opt-in time. Caution should be exercised for the interpretation of Ω23|1, as it 

measures the dependence between two conditional distributions. However, if the interest is in the 

unconditional dependence such as Ω23, it can be obtained by permuting the variables specified in 

the vine structure in Equation (9) and re-estimate the model.     

 

1.6.2 Opt-Out Time Prediction  

          The key questions the manager of a permission-based email program faces are: when do 
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email subscribers opt-out, and how to prevent them from leaving. In this section, we attempt to 

use the pair-copula model proposed in this study to predict the customer opt-out time at an 

individual level. Because the opt-out time is dependent on the opt-in time and the average 

transaction amount, in order to predict the mean opt-out time, we need to evaluate the 

conditional expectation which can be expressed as (e.g., Yeo and Valdez 2006) 

 𝐸(𝑡𝑖2|𝑡𝑖1, 𝐴𝑀𝑇𝑖) = ∫ 𝑡𝑖2

∞

0

∙ 𝑓2|13(𝑡𝑖2|𝑡𝑖1, 𝐴𝑀𝑇𝑖)𝑑𝑡𝑖2 (12)  

where 𝑓2|13(∙) is given by  𝑐23|1(𝑆(𝑡𝑖2|𝑡𝑖1), 𝑆(𝐴𝑀𝑇𝑖|𝑡𝑖1))𝑐12(𝑆1(𝑡𝑖1), 𝑆2(𝑡𝑖2))𝑓2(𝑡𝑖2) (see 

Equation 8). Since the integral in Equation (12) does not have a closed-form, we solve the 

integral in a numerical way and obtain the prediction of mean opt-out time at the individual 

customer level. 

          We also compare the proposed model with four benchmark models for validation on the 

holdout sample. For comparison purposes, we only predict the opt-out time for customers who 

have completely observed opt-in and opt-out data. The four benchmark models are (1) univariate 

model of opt-out time (here, univariate means the model does not consider any dependence with 

other variable(s)), (2) univariate model of the opt-out time with the observed opt-in time as a 

covariate, (3) bivariate model of the opt-out time and the average transaction amount with the 

observed opt-in time as a covariate (here, bivariate means a bivariate frank copula model with 

the marginal models specified as in Equations 1-5), and (4) bivariate model of opt-in and opt-out 

time (see Table 6).  

Insert Table 6 about here 

          Armstrong, Morwitz and Kumar (2000) define Relative Absolute Error (RAE) as the mean 

absolute deviation of the error values of a model relative to that of the benchmark model. So a 

higher RAE indicates better predictive performance. As Table 6 shows, the proposed vine copula 
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model gives the best prediction of mean opt-out time as all the RAEs of the benchmark models 

are less than 1. If we compare the RAEs among the benchmark models, we find that by including 

the observed opt-in time as a covariate in the univariate model of opt-out time (RAE=0.58), we 

do not improve the prediction accuracy, as compared to the univariate model without opt-in time 

as a covariate (RAE=0.65). In addition, we discover that modeling the opt-in and opt-out times 

together (RAE=0.70) slightly improves the predictive performance over the univariate model of 

opt-out time (RAE=0.65). More importantly, the model that considers the dependence among the 

opt-in time, the opt-out time and the average transaction amount improves the predictive 

performance significantly. In the next section, we demonstrate the changes of customer opt-in 

and opt-out times by simulating different levels of marketing activities. 

 

1.7 Managerial Implications 

1.7.1 Marketing Policy Simulation   

          Using the parameter estimates (in Table 5), we can assess how a firm’s marketing policy 

affects the opt-in and opt-out behavior of its customers. We conduct several simulations to show 

that firms can adjust their marketing contact frequency to strategically manage customers’ opt-

ins and opt-outs. To do so, we select the customers who have observed data of opt-in and opt-out 

from the holdout sample, constructing a sample of 1,696 customers. The average opt-in time of 

the sample is 15.9 months and the average opt-out time is 13.4 months. By doing the simulations, 

we attempt to answer two questions: (1) What is the impact on customers’ opt-in time if the 

retailer changes the direct mail marketing intensity before customers opt-in? (2) What is the 

impact on customers’ opt-out time if the retailer changes the direct mail and email marketing 

intensity after customers opt-in? 
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          To answer the first question (see Scenario 1 in Table 7), we vary the average number of 

direct mail a customer receives per month before opt-in and predict the changes in customer opt-

in time using the hazard model specified in Equations (1-3). As Table 7 shows, the increase in 

the frequency of direct mail contact could increase the time a customer takes to opt-in the email 

program. For example, one more direct mail per month would prolong the customer opt-in time 

for an average of 13.6 months while 4 more direct mails per month would make customers need 

an average of 47.6 more months to opt-in. This suggests that firms should be cautious of the 

cannibalizing effect that direct mail contact can have on their email program subscription rate. If 

a firm has already marketed its customers with a massive number of direct mails every month, its 

customers probably would not want to join the firm’s email program. While most firms may treat 

direct mail and email as two separate marketing activities in practice, we suggest that firms 

should coordinate well between the two. Firms should closely monitor the ROI of their 

marketing activities and allocate resources accordingly among different programs, such as direct 

mail, email, web and mobile to maximize company profits. 

Insert Table 7 about here 

          To address the second question (see Scenario 2 in Table 7), we vary the marketing contacts 

(direct mail and email) the retailer sends out to its customers after they opt-in. As the marketing 

contacts also influence the purchase behavior, we predict the opt-out time using our proposed 

vine copula model which considers the influence of the opt-in time and purchase (see Equation 

12). As Table 7 shows, the increase of direct mail contact initially could make customers stay 

with the email program for longer time. For example, 1 more direct mail per month would extend 

the customer opt-out time for an average of 7.9 months. However, this positive effect diminishes 

and in fact, reverses after the increase reaches a threshold. Table 7 shows that 3 more direct 
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mails per month can extend the opt-out time for a shorter length of time than 1 or 2 more direct 

mails can. Similarly, the increase in the number of emails sent to customers also has an inverted-

U shape effect on extending the opt-out time. For example, 10 more emails sent per month can 

extend the opt-out time for an average of 3.6 months while 25 more emails sent per month can 

only extend the opt-out time for an average of 2.6 months. These findings suggest that firms 

should not focus on increasing marketing intensity but on the contents of the marketing messages 

they deliver to customers. Customers are willing to receive marketing materials that can match 

their needs, including category fit and monetary incentives (e.g., Krishnamurthy 2001). Firms 

should customize their marketing efforts based on customers’ interests, preferences and past 

purchase histories. Undifferentiated mass marketing not only results in poor targeting but also 

generate negative feelings and leads to email opt-out and customer churn.  

 

1.7.2 Optimal Resource Allocation 

          The parameter estimates in Table 5, show that a firm’s marketing contact policy influences 

both the length of time a customer stays in an email program and the average amount a customer 

spends on a transaction while he/she is subscribing to the email program. In this section, we 

address the question that under the current budget constraint, how the firm can optimally 

reallocate budget to different customers and across different marketing channels (direct mail and 

email) to maximize both customer’s email subscription time and the sales revenue. We randomly 

select four customers who are predicted to opt-out between 1 and 2 years after they opt-in and 

simulate the optimal marketing contact decisions. Our simulation is based on the assumption that 

customers will demonstrate a similar purchase frequency to that during their subscription to the 

email program if the length of subscription time were extended. We argue that the assumption is 
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reasonable because customers who subscribe to the email program are exposed to persuasive 

email messages aimed at retaining them; cross-selling and up-selling to them; and customers in 

such a relationship are therefore more likely be more active purchasers than those who are not 

enrolled in the email program.  

          The retailer provides us with the approximate cost estimates such that one direct mail costs 

$0.67 and one email costs $0.25
4
. So we calculate that the firm spent an average of $12.36 in 

total on the four customers in each month during the period of time they stayed in the email 

program. Under the firm’s current marketing contact policy, Customers 1, 2, 3 and 4 are 

expected to stay in the email program for about 17, 17, 16 and 24 months, respectively, and opt-

out of the email program. During their email subscription time, Customers 1, 2, 3 and 4 

contribute an average of $25.35, $6.05, $34.28 and $12.77 in profit every month, respectively 

(see Table 8). Here, although we acknowledge that the gross margin varies across product 

categories, we apply a constant 30% gross margin to calculate profit and the potential profit 

mentioned afterwards with the consent from the retailer.  

          To find the optimal marketing contact decisions, we keep the current budget constraint 

$12.36/month unchanged and set the marketing contacts as changing cells to be optimized using 

Excel Solver. We calculate the expected length of email subscription time and the average 

transaction amount using our proposed model (Equations 1-11) and the estimated parameters 

(Table 5). In the optimization process, we set the objective as to maximize the total profit 

generated from the four customers. Under the current budget constraint, we find the optimal 

contacting strategies as increasing the marketing contact for Customers 1 and 4 through both 

                                                           
4
 We acknowledge that the average unit cost of an email is higher than average industry standard. The cost 

is estimated by the retailer who generally runs email marketing campaigns. Each campaign may include 

the costs of initial content selection and design, marketing research, pre-test operation, modification and 

redesign, mailing and post-evaluation. 
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direct mail and email while decreasing the spending on Customers 2 and 3 (see Table 8). For 

example, the retailer should target Customers 1 and 2 with both one direct mail every other week 

and about one email every other day or every week, respectively. The expected benefits include 

extending Customers 1 and 2’s email subscription time to the maximum of about 30 and 39 

months and increasing their potential profit to $50.07 and $41.43 per month, respectively.  

Insert Table 8 about here 

          In summary, the two additional analyses discussed in this section indicate that marketing 

intensity has a significant influence on customers’ opt-in and opt-out time. By strategically 

reallocating resources across different communication channels, firms can extend the length of 

time their email subscribers stay with them and maximize customers’ spending. 

 

1.8 Conclusions and Future Research 

          The objective of this paper is to explore the factors that are critical for managing an 

effective permission-based marketing program, for example, email marketing. To maximize 

ROI, firms always desire to increase customer’s opt-in rate and decrease their opt-out rate. To 

achieve these goals, marketers may want to understand what makes customers willing to grant 

permission to firms, what triggers them to withdraw, and how to influence their decisions. 

          Once customers have joined the permission marketing program, firms can send marketing 

messages to customers’ email inbox or mobile device to influence their purchase behavior. A 

customer’s decision to stay in the marketing program is associated with his/her purchase 

behavior and capturing such dependence helps predict when the customer is likely to opt-out. 

This paper proposes a trivariate copula model that can jointly model a customer’s opt-in time, the 

opt-out time and the average transaction amount. The empirical study discovers a positive 
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dependence between the opt-in and the opt-out time and a positive dependence between the opt-

out time and the average transaction amount conditional on the opt-in time. By capturing such 

dependence, the proposed model improves the predictive performance of the opt-out time over 

several benchmark models. 

          In addition, this paper discovers several important findings of managerial relevance. It 

finds that customers with certain characteristics are more likely to opt-in or opt-out. It finds that 

customers under a high marketing intensity are less likely to opt-in. After customers have joined 

the marketing program, over-marketing could make them withdraw more quickly. Through a 

simulation study, this paper demonstrates how to optimally allocate resources to different 

channels such as direct mail and email under the current budget constraint. Furthermore, this 

paper also finds that higher email open rate leads to higher spending levels, suggesting firms 

deliver marketing messages that are relevant to their email subscribers. 

          To the best of our knowledge, this is the first study that models customer opt-in and opt-

out time while incorporating the purchase behavior. Nevertheless, there are some limitations we 

would like to address. First, because permission marketing concerns customer interests and 

needs, our findings may be constrained by the industry of analysis. For example, if we are to 

analyze a permission-based email program for another industry like music, the people who are 

most likely to have active interest in the category are probably those who are younger, in the 

low-to medium-income bracket, and heavy mobile and online users who are fans of social media, 

online shopping, and so on. As the music industry is more digitalized, traditional marketing 

channels like direct mail may not be as influential as digital channels like online search or social 

media or email marketing. Thus, to generalize our findings from this study, future research could 

apply our model to other product categories or industries. 
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          Second, in this study, our main objective is neither to generalize under what conditions 

opt-in and opt-out times are positively or negatively correlated nor offer explanations for such 

phenomena. Our main focus is to capture such dependence through an empirical model and 

provide a better prediction of opt-out time. While we recognize the importance of identifying the 

causes of possible dependence, we leave this question for future study. 

          Third, in the optimization process, while we capture the effects of marketing contact on 

purchase amount through the log-normal model, we keep customer’s purchase frequency and 

email open and click rate as constant. Nevertheless, it is possible that customers may increase or 

decrease their purchase frequency and email response rate if the marketing intensity changes. 

Future research could take these factors into consideration.   

          Fourth, to apply our proposed model to other permission-based contexts, such as mobile or 

social media, there are more factors to consider. Mobile-based permission marketing may depend 

on factors such as the design of mobile website, cell phone screen size and resolution, and the 

ease of mobile payment. Social-networking-based permission marketing could depend on the 

number of “friends”, their profile and activeness and privacy concerns. Nowadays, email 

providers such as Google have redesigned the email inbox to allow users to categorize their 

emails using “tabs”. For example, different tabs can be created to organize emails from different 

sources, such as ‘Work’, ‘Social networks’ and ‘Promotions’. Such a feature could make 

customers less likely to open an email from a less important tab such as ‘Promotions’. It would 

be interesting for future research to study how such environmental factors and changes in 

interfaces impact the participation of customers in permission-based marketing programs.    
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TABLE 1 DATABASE SEGMENTATION DESCRIPTIONS 

Variables Segments Label Average 

Age 

Income 

/Wealth 

Sociographics and Online Behavior 

Group1  Superhighway Superusers 25~55 Medium to 

High 

Extremely comfortable online user, like sports, music, social 

network, shopping or investment 

Group2 Second Nature Surfers 24~39 Low to 

High 

Frequent mobile user, no children or just start a family, online 

shopper, like music, job search, online auction and social network 

Group3 High-Speed Checkout 41~42 High Online shopper, preferring either apparel, toys, games or travel 

Group4 Affluent Aficionados 56~68 High Heavy online user, working, shopping and investment 

Group5 Voluminous Variety 38~39 Medium to 

High 

Heavy online user, either child-centric or pursuing personal 

hobbies like news, sports and travel 

Group6 My Internet, My Way 24~40 Medium to 

High 

Fans of online social networking, job searches, and personal 

entertainment 

Group7 ECommerce Experts 55~70 Low to 

High 

Heavy online shopper and online search like automobile category  

Group8 Selective Surfers 54~58 Medium to 

High 

Moderate online user, focusing on relaxation, social network, 

investment, and shopping 

Group9 Rural Connections 41~58 Medium to 

High 

Below average online user, focusing on insurance quotes, sports 

apparel or phone call 

Group10 Senior Investors 67~78 High Fans of online shopping and investment 

Group11 Functional Frequency 38~40 Low to 

Medium 

Home-centric, online usage mostly for job searches and some 

social network 

Group12 Limited Logons 56~58 Low to 

Medium 

Low online usage, mostly evenings or weekends 

Group13 Sans Surfers 67~78 Low to 

Medium 

Very low online activities, preferring traditional channels like 

direct mail and telephone 

Source: Acxiom PersonicX Digital
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TABLE 2 SUMMARY STATISTICS OF BEHAVIORAL VARIABLES FOR SUBSCRIBERS AND NON-SUBSCRIBERS 

 

 

Variables 

 

 

Operationalization
* 

 Email Non-Subscribers 

Sample 

 Email Subscribers 

Sample
** 

Mean  Standard 

Deviation 

 Mean  Standard 

Deviation 

Total_Money ($) The total amount of money spent  4,440  5,755  5,430  6,503 

Total_Freq The total number of purchase occasions  41.50  52.65  51.05  52.37 

Total_Coupon The total number of coupons redeemed  1.17  2.57  1.77  3.25 

Total_Dmail The total number of direct mail campaigns 

targeted 

 
4.44  5.31  4.81  5.30 

Total_Return_Freq The total number of return occasions  4.36  7.67  5.58  8.35 

Avg_Cross_Buy The average number of product categories 

purchased per transaction 

 
2.66  1.00  2.73  0.93 

*The variables are computed for the time period from February, 2007 to December, 2010.  

**For email non-subscribers, they didn’t opt-in from February, 2007 to December, 2010. For email subscribers, they opted in on 

February, 2007 and have stayed in the email program till December, 2010. 

 

TABLE 3 PURCHASE COMPARISONS OF CUSTOMERS WITH DIFFERENT OPT-OUT TIMES 

 
Sample Size 

(N=103) 

Average Inter-purchase 

Time before Opt-In 

(Months) 

Time Elapsed between 

Opt-In and Opt-Out 

(Months) 

Total Purchase Amount 

between Opt-In and the 

End of Observation 

Total Number of Purchase 

Occasions between Opt-in 

and the End of Observation 

Cohort 1 
 

27% 

1.4~1.8 

1~6 $2,262 20 

Cohort 2 
 

43% 7~12 $2,584 23 

Cohort 3 
 

30% 13~18 $3,022 34 
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TABLE 4 MODEL FIT COMPARISON 

  The Proposed Model  

with Pair-Copulas Specified as 

  Gaussian  Frank 

Log-likelihood  -1281  -1265 

BIC  2590  2558 
 

TABLE 5 PARAMETER ESTIMATES 
Covariates Estimates Standard Error T-Value 

Opt-in Time Hazard Function    

    Intercept 0.914 0.069 13.192 

    COUPON1 × 10
−1 -0.273 0.091 -2.992 

    DMAIL1 (log) -1.294 0.052 -24.691 

    RETURN1 × 10
−1 (log) -0.770 0.062 -12.486 

PERSONICX DUMMY 1 

(Second Nature Surfers) 
-0.194 0.088 -2.206 

PERSONICX DUMMY 2 

(High-Speed Checkout) 
-0.059 0.076 -0.776 

PERSONICX DUMMY 3 

(Affluent Aficionados) 
0.080 0.068 1.172 

PERSONICX DUMMY 4 

    (Voluminous Variety) 
-0.179 0.070 -2.566 

PERSONICX DUMMY 5 

(My Internet, My Way) 
-0.123 0.080 -1.533 

PERSONICX DUMMY 6 

(ECommerce Experts) 
-0.008 0.065 -0.121 

PERSONICX DUMMY 7 

(Selective Surfers) 
-0.047 0.074 -0.641 

PERSONICX DUMMY 8 

(Rural Connections) 
-0.091 0.075 -1.204 

PERSONICX DUMMY 9 

(Senior Investors) 
0.081 0.080 1.013 

PERSONICX DUMMY 10 

(Functional Frequency) 
-0.038 0.082 -0.465 

PERSONICX DUMMY 11 

(Limited Logons) 
-0.111 0.088 -1.260 

PERSONICX DUMMY 12 

(Sans Surfers) 
0.023 0.087 0.261 

    Weibull Shape 𝛼1 (log) 0.517 0.016 33.017 

    𝛾1 (log) -0.600 0.080 -7.467 

Opt-out Time Hazard Function    

    Intercept 3.676 0.425 8.642 

    COUPON2 × 10
−2 -6.825 2.406 -2.837 

    DMAIL2 -2.224 0.185 -12.052 

    (DMAIL2)
2 0.488 0.046 10.656 

    RETURN2 × 10
−1 -1.713 0.227 -7.562 

    (RETURN2 × 10
−1)2 0.265 0.065 4.046 

    EMAIL2 × 10
−1 -1.194 0.331 -3.602 

    (EMAIL2 × 10
−1)2 0.283 0.136 2.081 
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    OPEN2 -1.256 0.197 -6.374 

    CLICK2 -2.413 0.270 -8.933 

PERSONICX DUMMY 1 

(Second Nature Surfers) 
-0.552 0.311 -1.777 

PERSONICX DUMMY 2 

(High-Speed Checkout) 
-0.238 0.271 -0.878 

PERSONICX DUMMY 3 

(Affluent Aficionados) 
-0.450 0.255 -1.769 

PERSONICX DUMMY 4 

    (Voluminous Variety) 
-0.381 0.260 -1.468 

PERSONICX DUMMY 5 

(My Internet, My Way) 
-0.642 0.281 -2.283 

PERSONICX DUMMY 6 

(ECommerce Experts) 
-0.027 0.236 -0.113 

PERSONICX DUMMY 7 

(Selective Surfers) 
0.106 0.269 0.395 

PERSONICX DUMMY 8 

(Rural Connections) 
-0.112 0.272 -0.413 

PERSONICX DUMMY 9 

(Senior Investors) 
0.533 0.263 2.028 

PERSONICX DUMMY 10 

(Functional Frequency) 
-0.735 0.290 -2.532 

PERSONICX DUMMY 11 

(Limited Logons) 
-0.229 0.297 -0.770 

PERSONICX DUMMY 12 

(Sans Surfers) 
0.209 0.301 0.695 

    Weibull Shape 𝛼2 (log) 0.670 0.050 13.483 

    𝛾2 (log) 1.994 0.099 20.160 

Average Transaction Amount*    

    Intercept -4.021 0.052 -77.157 

    Avg_Coupon × 10−1 17.379 1.399 12.423 

    (Avg_Coupon × 10−1)2 -82.609 17.021 -4.853 

    Avg_Dmail (log) 0.177 0.020 8.729 

    Avg_Email × 10−3 11.040 1.128 9.786 

    (Avg_Email × 10−3)2 -74.068 8.070 -9.179 

    Avg_Return × 10−1 9.460 0.906 10.437 

    (Avg_Return × 10−1)2 -46.566 9.284 -5.016 

    Avg_CrossBuy (log) 0.829 0.036 22.880 

    Avg_Open × 10−3 (log) 4.690 1.545 3.035 

    Avg_Click × 10−3 (log) -6.444 6.326 -1.019 

    Avg_IPT (months) 0.071 0.006 11.557 

    𝜎2 (log) -0.219 0.009 -24.377 

    𝜎𝜇0
2  (log) -4.620 0.850 -5.435 

Pair-Copula Dependences    

    𝛺12** 1.081(0.204) 0.135 7.993 

    𝛺13 -0.261(-0.043) 0.153 -1.701 

    𝛺23|1 0.567(0.094) 0.128 4.444 

             *Average transaction amount is scaled by 10
-3

. 
             **The corresponding Spearman’s rho in the parentheses (see Trivedi and Zimmer 2005 for the 

             transformation of the dependence measures).  
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TABLE 6 COMPARISON OF THE PROPOSED MODEL WITH BENCHMARK MODELS 

 RAE* Relative to the 

Benchmark Model (with 

Respect to Opt-out Time) 

Proposed Model  

    Trivariate model of opt-in, opt-out and average  

transaction amount 

__ 

Benchmark Models  

    1. Univariate model of opt-out time 0.65 

    2. Univariate model of opt-out time with observed opt-in 

time as a covariate 

0.58 

    3. Bivariate model of opt-out time and average 

transaction amount with observed opt-in time as a covariate 

0.61 

    4. Bivariate model of opt-in and opt-out time 0.70 
*Relative absolute error is defined as the mean absolute deviation in the opt-out time (in months) 

prediction of the proposed model relative to that of the benchmark model (see Armstrong, Morwitz and 

Kumar 2000). 

 

TABLE 7 MARKETING POLICY SIMULATION RESULTS 
 Scenario 1— 

Email Program 

Opt-in Time (in Months) 

Scenario 2— 

Email Program  

Opt-out Time (in Months) 

 Prediction Changes Prediction Changes 

No change on marketing intensity 23.0 

(9.2)* 

_ 17.5 

(12.8) 

_ 

Average number of direct mail per 

month +1 

36.6 

(10.2) 
13.6 

25.4 

(12.1) 
7.9 

Average number of direct mail per 

month +2 

48.7 

(11.4) 
25.7 

27.0 

(12.7) 
9.5 

Average number of direct mail per 

month +3 

59.9 

(12.8) 
36.9 

21.9 

(13.4) 
4.4 

Average number of direct mail per 

month +4 

70.6 

(14.2) 
47.6 

12.1 

(10.2) 
-5.4 

Average number of email per month  

+5 

  19.7 

(13.0) 
2.2 

Average number of email per month 

+10 

  21.1 

(12.9) 
3.6 

Average number of email per month 

+15 

  21.7 

(12.7) 
4.2 

Average number of email per month 

+20 

  21.4 

(12.6) 
3.9 

Average number of email per month 

+25 

  20.1 

(12.4) 
2.6 

Average number of email per month 

+30 

  17.9 

(21.1) 
0.4 

*Standard deviation in the parentheses. 
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TABLE 8 COMPARISON OF CURRENT AND OPTIMAL CONTACTING STRATEGY 
 

 Current Resource Allocation 

(per month) 

 Optimal Resource Allocation 

(per month) 

Direct Mail 

 

Email 

 

Time expected to 

stay in the email 

program  

(in months) 

Current 

Profit 

 

 

Direct Mail 

 

Email 

 

Time expected to 

stay in the email 

program  

(in months) 

Potential 

Profit 

 

Customer 1 1 8 17 $25.35  2 13 30 $50.07 
Customer 2 4 2 17 $6.05  2 4 39 $41.43 
Customer 3 2 12 16 $34.28  1 6 40 $47.80 
Customer 4 1 6 24 $12.77  2 7 35 $26.83 
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Appendix A: Estimation of the Proposed Pair-Copula Model 

          We show the estimation of the trivariate copula model with Frank pair-copulas. Assume 

we have a three-dimensional data simulated using the algorithm (see the Appendix C) with 𝑁 

observations. Let (𝑇𝑖1, 𝑇𝑖2) denote the simulated paired opt-in and opt-out times. Since opt-in and 

opt-out are sequentially observed events, if the observation window is of a fixed length 𝐶𝑖 and 

the opt-in time is observed as 𝑇𝑖1, the maximum (censoring) lifetime that can be observed for 

opt-out time 𝑇𝑖2 is 𝐶𝑖2
𝑚𝑎𝑥 = 𝐶𝑖 − 𝑇𝑖1. Let (𝑡𝑖1, 𝑡𝑖2) = (min(𝑇𝑖1, 𝐶𝑖) ,min(𝑇𝑖2, 𝐶𝑖 − 𝑇𝑖1)) denote the 

observed opt-in and opt-out times. Let 𝑥𝑖3 denote the simulated log-normally distributed variable 

that is only observed when the opt-in time is observed. 

          Using the two-step procedure, we first estimate the parameters of each marginal model (see 

Equations 1-5 in the main text) using maximum likelihood estimation. Second, we plug in these 

estimates to estimate the pair-copula parameters by maximizing the log-likelihood function 

specified in Equation (11) in the main text. Following Aas el al. (2009), we estimate the 

parameters sequentially. First, we estimate the parameter 𝛺12 from the original data by 

maximizing the first two terms of Equation (11) given by 

 
𝑙1(𝛺12) =∑{𝛿𝑖1𝛿𝑖2 log(𝑐12(𝑆1(𝑡𝑖1), 𝑆2(𝑡𝑖2); 𝛺12)) +𝛿𝑖1(1

𝑁

𝑖=1

− 𝛿𝑖2) log(𝑆(𝑡𝑖2|𝑡𝑖1); 𝛺12)} 

(13)  

where the bivariate copula density 𝑐12(∙) is given by 

 𝑐12(𝑆1(𝑡𝑖1), 𝑆2(𝑡𝑖2); 𝛺12) =
𝑒−𝛺12(𝑢𝑖1+𝑢𝑖2)(1 − 𝑒−𝛺12)𝛺12

[𝑒−𝛺12 − 1 + (𝑒−𝛺12𝑢𝑖1 − 1)(𝑒−𝛺12𝑢𝑖2 − 1)]2
 

(14)  

and the conditional survival function 𝑆(𝑡𝑖2|𝑡𝑖1) is given by 

 𝑆(𝑡𝑖2|𝑡𝑖1; 𝛺12) =
𝑒−𝛺12𝑢𝑖1(𝑒−𝛺12𝑢𝑖2 − 1)

𝑒−𝛺12 − 1 + (𝑒−𝛺12𝑢𝑖1 − 1)(𝑒−𝛺12𝑢𝑖2 − 1)
 

(15)  



 
 

52 
 

          We also estimate the parameter 𝛺13 from the original data by maximizing the third term of 

Equation (11) given by 

 𝑙2(𝛺13) =∑𝛿𝑖1

𝑁

𝑖=1

log(𝑐13(𝑆1(𝑡𝑖1), 𝑆3(𝑥𝑖3);𝛺13)) 
(16)  

where the bivariate copula density 𝑐13(∙) is given by 

 𝑐13(𝑆1(𝑡𝑖1), 𝑆3(𝑥𝑖3);𝛺13) =
𝑒−𝛺13(𝑢𝑖1+𝑢𝑖3)(1 − 𝑒−𝛺13)𝛺13

[𝑒−𝛺13 − 1 + (𝑒−𝛺13𝑢𝑖1 − 1)(𝑒−𝛺13𝑢𝑖3 − 1)]2
 

(17)  

Here, we use 𝑢𝑖1, 𝑢𝑖2 and 𝑢𝑖3 to denote the marginal survival functions 𝑆1(𝑡𝑖1), 𝑆2(𝑡𝑖2) and 

𝑆3(𝑥𝑖3) for variables 𝑡𝑖1, 𝑡𝑖2 and 𝑥𝑖3. 

           Second, we estimate the parameter 𝛺23|1 by maximizing the fourth term of Equation (11)  

 𝑙3(𝛺23|1) =∑𝛿𝑖1𝛿𝑖2

𝑁

𝑖=1

log (𝑐23|1(𝑆(𝑡𝑖2|𝑡𝑖1), 𝑆(𝑥𝑖3|𝑡𝑖1); 𝛺23|1)) 
(18)  

where the bivariate copula density 𝑐23|1(∙) is given by 

 

𝑐23|1(𝑆(𝑡𝑖2|𝑡𝑖1), 𝑆(𝑥𝑖3|𝑡𝑖1); 𝛺23|1)

=
𝑒−𝛺23|1(𝑢𝑖2|1+𝑢𝑖3|1)(1 − 𝑒−𝛺23|1)𝛺23|1

[𝑒−𝛺23|1 − 1 + (𝑒−𝛺23|1𝑢𝑖2|1 − 1)(𝑒−𝛺23|1𝑢𝑖3|1 − 1)]2
 

(19)  

where 𝑢𝑖2|1 and 𝑢𝑖3|1 denotes the conditional survival functions 𝑆(𝑡𝑖2|𝑡𝑖1) and 𝑆(𝑥𝑖3|𝑡𝑖1), which 

are computed as 

 𝑆(𝑡𝑖2|𝑡𝑖1) =
𝑒−𝛺12𝑢𝑖1(𝑒−𝛺12𝑢𝑖2 − 1)

𝑒−𝛺12 − 1 + (𝑒−𝛺12𝑢𝑖1 − 1)(𝑒−𝛺12𝑢𝑖2 − 1)
 

(20)  

and  

 𝑆(𝑥𝑖3|𝑡𝑖1) =
𝑒−𝛺13𝑢𝑖1(𝑒−𝛺13𝑢𝑖3 − 1)

𝑒−𝛺13 − 1 + (𝑒−𝛺13𝑢𝑖1 − 1)(𝑒−𝛺13𝑢𝑖3 − 1)
 

(21)  

where 𝛺12 and 𝛺13 are estimated from the previous steps. 

          Third, using the estimates of 𝛺12, 𝛺13 and 𝛺23|1 from the previous steps as the starting 

value, we maximize the full log-likelihood specified in Equation (11) to obtain the final 
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estimates �̂�12, �̂�13 and �̂�23|1.  

Appendix B: Vine Copulas 

          Joe (1996) is the first one to construct a multivariate copula using pair-copulas. Since the 

possible ways of pair-copula constructions are not unique and can increase significantly for high 

dimensional distributions, Bedford and Cooke (2001, 2002) develop a graphical model, referred 

as regular vine, to organize the decompositions. Research thereafter focuses mainly on two 

specific, but important ways of decomposition, referred as canonical vine and D-vine 

(Kurowicka and Cooke 2004). We briefly introduce these two methods of pair-copula 

constructions.  

          Both the canonical vine and the D-vine can be specified as a nested set of trees. A d-

dimensional vine consists of 𝑑 − 1 trees, 𝑇1, … , 𝑇𝑑−1 for 𝑖 = 1, … , 𝑑 − 1. Each tree 𝑇𝑖 consists of 

nodes, 𝑁𝑖, which are connected by edges 𝐸𝑖. In Figures 1 and 2, we show a possible 

decomposition corresponding to a three-dimensional canonical vine and D-vine, respectively. 

For the canonical vine, in tree 𝑇1 there is one key variable, called root, that connects to other 

variables with 𝑑 − 1 edges. For the D-vine, there is no node that has more than two edges. 

Figure 2 shows that in tree 𝑇1, the marginal densities are lined up in order and the edges that 

connect them represent the unconditional pair-copula densities. For example, edge 12 represents 

the pair-copula density denoted 𝑐12(∙) as in the main text. In trees 𝑇2, the conditional 

distributions are connected by the edge which corresponds to the conditional bivariate copula 

density. For example, edge 13|2 represents the pair-copula density which can be denoted as 

𝑐13|2(∙).  

          Aas et al. (2009) discuss that the use of a tree structure to represent vine copulas is not 

strictly required to construct a multivariate copula. But the tree structure helps researchers 
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visualize the possible ways of pair-copula decompositions.     
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Figure 1 A Canonical Vine Representation for d = 3 
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Figure 2 A D-Vine Representation for d = 3 



 
 

55 
 

 

Appendix C: Simulation Study 

          Following Aas et al. (2009), we demonstrate how to simulate data using pair-copula 

constructions with three random variables. Since the construction relates to the marginal 

conditional distributions, it is useful to first define the h-function and the h
-1

-function. Joe (1996) 

shows that, for every 𝑗 

 𝐹(𝑥|𝐯) =
∂𝐶𝑥,𝑣𝑗|𝐯−𝑗 (𝐹(𝑥|𝐯−𝑗), 𝐹(𝑣𝑗|𝐯−𝑗))

∂𝐹(𝑣𝑗|𝐯−𝑗)
 

(22)  

where 𝑣𝑗  can be any element chosen from the vector 𝐯 and 𝐯−𝑗 denotes the vector 𝐯 excluding 

element 𝑣𝑗 . 𝐶𝑥,𝑣𝑗|𝐯−𝑗  is a bivariate copula distribution function. For the special case where 𝐯 has 

only one component, Equation (WB1) reduces to 

 𝐹(𝑥|𝑣) =
𝜕𝐶𝑥𝑣(𝐹(𝑥), 𝐹(𝑣); 𝜃)

𝜕𝐹(𝑣)
 

(23)  

where 𝐹(𝑥|𝑣) is referred by Aas et al. (2009) as the h-function ℎ(𝑥|𝑣; 𝜃) and is given by the first 

partial derivative of the bivariate copula function 𝐶𝑥𝑣(∙) with the dependence parameter 𝜃. The 

inverse of the conditional distribution 𝐹(𝑥|𝑣) is defined as the h
-1

-function ℎ−1(𝑥|𝑣; 𝜃), the 

inverse of the h-function. 

          In this study, we need to simulate three random variables with three-dimensional 

dependence structure. Two variables are both simulated from a Weibull hazard model and the 

other variable is simulated from a log-normal model. Following Aas et al. (2009), we simulate 

the data with the following algorithm: 

          Step 1: Generate independent uniform (0, 1) random variables 𝑧1, 𝑧2, 𝑧3; 

          Step 2: Make 𝑧1 = 𝑢1; 

          Step 3: Make 𝑢2 = ℎ
−1(𝑧2|𝑢1; 𝜃12) and calculate 𝐹(𝑢2|𝑢1) = ℎ(𝑢2|𝑢1; 𝜃12);  

          Step 4: Make 𝑢3 = ℎ
−1{ℎ−1(𝑧3|ℎ(𝑢2|𝑢1; 𝜃12); 𝜃23|1)|𝑢1; 𝜃13}; 
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          Step 5: Invert the Weibull distribution functions 𝑢1 and 𝑢2 to obtain the survival times 𝑇1 

and 𝑇2. For example, 𝑇𝑖1 = [−
ln(1−𝑢𝑖1)

𝜆𝑖1
]

1

𝛼1, where 𝛼1 and 𝜆𝑖1 are the shape and scale parameters 

of the Weibull distribution of time, 𝑇𝑖1; 𝜆𝑖1 is specified as a function of the covariates as 

Equation (1) in the main text with a multiplicative gamma random effect; 

          Step 6: Since there is no closed-form for the inverse of normal distribution, we follow 

Atkinson and Pearce (1976) to approximate the standard normal distribution by setting 𝑢4 =

{𝑢3
0.135 − (1 − 𝑢3)

0.135} 0.1975⁄  and obtain the log-normal distributed variable 𝑥𝑖3 = 𝑒(𝜇𝑖+𝜎𝑢4) 

where 𝜇𝑖 and 𝜎 are the mean and standard deviation. 𝜇𝑖 is specified as a function of covariates as 

Equation (5) in the main text. 

          Here, 𝜃12, 𝜃13, 𝜃23|1 are the pair-copula parameters. The h-function and h
-1

-function differ 

with specification of different copulas. We provide the copula distribution functions, densities, h-

functions and h
-1

-functions for the Gaussian and Frank copula in Appendix D.  
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Appendix D: Gaussian and Frank Copula 

Gaussian Copula 

          The copula distribution function for the bivariate Gaussian copula is given by 

 𝐶(𝑢1, 𝑢2; 𝜃) = Φ2(Φ
−1(𝑢1),Φ

−1(𝑢2); 𝜃) 
(WC1)  

where Φ denotes the standard normal distribution function and Φ2 denotes the standard bivariate 

normal distribution with a dependence parameter 𝜃 (−1 ≤ 𝜃 ≤ 1).  

          The density of the copula function is given by 

 𝑐(𝑢1, 𝑢2; 𝜃) =
1

√1 − 𝜃2
exp {−

𝜃2(𝜔1
2 + 𝜔2

2) − 2𝜃𝜔1𝜔2
2(1 − 𝜃2)

} 
(WC2)  

where 𝜔1 = Φ
−1(𝑢1), 𝜔2 = Φ

−1(𝑢2) and Φ−1 is the inverse of the standard normal distribution. 

          The h-function for the Gaussian copula is given by 

 ℎ(𝑢1|𝑢2; 𝜃) = Φ(
Φ−1(𝑢1) − 𝜃Φ

−1(𝑢2)

√1 − 𝜃2
) 

(WC3)  

and the h
-1

-function is given by 

 ℎ−1(𝑢1|𝑢2; 𝜃) = Φ(Φ
−1(𝑢1)√1 − 𝜃2 + 𝜃Φ

−1(𝑢2)) 
(WC4)  

 

Frank Copula 

          The copula distribution function for the bivariate Frank copula is given by 

 𝐶(𝑢1, 𝑢2; 𝜃) = −
1

𝜃
log {1 +

(𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)

𝑒−𝜃 − 1
} 

(WC5)  

where the dependence parameter 𝜃 ∈ (−∞,∞). 

          The density of the copula function is given by 

 𝑐(𝑢1, 𝑢2; 𝜃) =
𝑒−𝜃𝑢1𝑒−𝜃𝑢2(1 − 𝑒−𝜃)𝜃

[𝑒−𝜃 − 1 + (𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)]2
 

(WC6)  

          The h-function for the Gaussian copula is given by 



 
 

58 
 

 ℎ(𝑢1|𝑢2; 𝜃) =
𝑒−𝜃𝑢2(𝑒−𝜃𝑢1 − 1)

𝑒−𝜃 − 1 + (𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)
 

(WC7)  

and the h
-1

-function is given by 

 ℎ−1(𝑢1|𝑢2; 𝜃) = −
1

𝜃
ln [

1 + (𝑒𝜃(𝑢2−1) − 1)𝑢1
1 + (𝑒𝜃𝑢2 − 1)𝑢1

] 
(WC8)  
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ESSAY 2 

Dynamically Managing a Profitable Email Marketing Program 

2.1 Introduction           

Email marketing is a widely-used marketing tool for firms to communicate with 

customers, handle customer complaints, and cross-sell and up-sell products. The ultimate goal of 

maintaining an email marketing program is to generate profit by making customers become more 

active in purchases. However, such a positive linkage between emails and purchases is based on 

the assumption that customers who are responsive to emails are also the ones who are active in 

purchases. Our observation shows that customers’ responsiveness to emails may not indicate an 

active purchase relationship.  

Previous research has shown that the dynamics of the customer relationship can be 

captured with several discrete latent states, such as dormant, occasional, and frequent (Netzer, 

Lattin and Srinivasan 2008). This stream of research primarily focuses on the purchase behavior, 

ignoring the fact that other activities can also reveal customer-firm relationship (except the study 

by Schweidel et al. 2014). In the context of email marketing, we argue that customers’ 

responsiveness to emails should also indicate their relationship with the firm. Email marketers 

should incorporate the evolving state of email response into the study of the evolving state of 

purchase. Note that we define the email response as the opening of an email a customer receives.  

 One of the major concerns for the email marketing industry is that customers receive too 

many emails. Practitioners tend to treat each email campaign as an independent solicitation 

process and fail to consider its long-term impact on both the email response and purchase 

behavior. We argue that such practice does not retain the subscribers in the email program but 
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also does not keep them active. In this study, we seek to address the following questions: (1) 

whether the latent states that characterize customers’ responsiveness to emails evolve along with 

the latent states that characterize customers’ purchases, (2) whether there is a correlation between 

customers’ email open
5
 and purchase behavior, (3) the effect of email contacts on customers’ 

purchase behavior, and (4) what is the optimal email marketing policy that can maximize the 

long-term profit of a firm. 

In this study, we capture the dynamics in customers’ purchase behavior using a hidden 

Markov model (HMM). We capture the dynamics in customers’ email open behavior by 

allowing it to evolve with the purchase relationship states. We model the email open count using 

a Binomial distribution and the purchase count using a zero-inflated negative binomial 

distribution model (ZNIB). We use a bivariate Frank copula to investigate the linkage between 

email open and purchase behavior. We capture the unobserved heterogeneity in the email open 

and purchase model using a random effect specification. 

The empirical study identifies three purchase relationship states—low, medium and high 

states. It shows that customers who are in the medium state have the highest intrinsic propensity 

to open an email, followed by the customers in the lowest state and those in the highest state. We 

also identify a positive correlation between email open and purchase behavior. We derive a 

dynamic email marketing resource allocation policy using the hidden Markov model, the 

purchase and email open model estimates. We demonstrate that a forward-looking company 

could maximize the long-term profits of its existing email subscribers. 

To the best of our knowledge, this is the first empirical study that investigates both the 

email open and purchase behavior using a hidden Markov model. This research provides 

                                                           
5
 For the purpose of this study, we define “email open” as the action of opening an email message. 
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important implications for firms to understand customers’ behavioral attitudes towards email 

marketing. This study provides managerial guidelines for resource reallocation to maximize 

long-term profitability. 

          In the following sections, we first review the literature on email marketing and customer 

relationship dynamics. Second, we describe our data and present descriptive statistics. Third, we 

discuss the modeling framework. Fourth, we present the empirical results and derive the optimal 

email marketing policy. Finally, we discuss the conclusions and future studies.  

 

2.2 Literature Review 

2.2.1 Email Marketing 

There are several reasons for email marketing’s popularity. First, email enables marketers 

to send messages to its customers at a very low cost. Chittenden and Rettie (2003) demonstrated 

the total cost for acquisition and retention campaigns of email to be $26,500 per 5,000 

customers, as compared to that of direct mail at $69,600 per 5,000 customers. Second, email 

messaging requires less time to prepare and execute. Industry practice shows that an email 

marketing campaign targeting 50,000 customers needs only 6 hours to prepare and send, while 

direct mail needs 17 days before it can reach a customer’s mailbox. Third, email can generate 

faster response and create interactive communication. Using a computer or mobile phone, a 

customer can respond to a promotional email the moment he/she receives it by clicking the 

hyperlinks that direct the customer to the company’s website. 

In this study, we focus on permission-based email marketing. Permission-based email 

marketing requires marketers to seek the customers’ permission before sending them email 
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messages (Godin 1999; Kumar, Zhang and Luo 2014). This type of email marketing intends to 

maintain a long-term relationship with the customers, rather than getting customers to buy once 

without return for future purchases. In line with this idea, previous research has found that email 

marketing has a positive effect on customer loyalty. Tezinde et al. (2002) discovered that email 

advertisements were useful to consumers by inducing them to visit the physical store. Merisavo 

and Raulas (2004) found that email marketing can enhance consumer attitudinal loyalty towards 

the brand. Their study found that customers would recommend the email messages to their 

friends if they found them interesting and useful. 

Although the overall influence of email marketing is positive, we argue that researchers 

and practitioners should examine the customers’ response to email-based marketing messages 

from two perspectives. First, customers open and read an email simply to keep track of the firm’s 

products and offerings. This behavior does not necessarily indicate that they are actively looking 

for the information to assist their purchase decisions. Bonfrer and Dreze (2009) studied a series 

of email marketing campaigns and proposed a bivariate hazard model to predict when customers 

open or click an email. Kumar, Zhang and Luo (2014) looked at the total number of emails that 

were opened and clicked and investigated their impact on the time the customers are subscribed 

to the email program. Second, customers make purchases as a result of the email marketing 

messages. Sahni, Zou and Chintagunta (2014) analyzed 70 randomized field-experiments and 

found that email promotions not only increase customers’ average purchase spending during the 

promotion window, but also carry over to a week later after the promotion expires. Kumar, 

Zhang and Luo (2014) found that the average email open-rate has a positive effect on average 

purchase spending while the effect of the average email click-rate is not significant.      

 Although there are studies that look into each of the two perspectives separately—email 
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open and purchase, it is surprising that there is no study that investigates both behaviors together.  

Bonfrer and Dreze (2009) did not consider the possible link between email open/click rate and 

purchase behavior due to the limitation of data. Kumar, Zhang and Luo (2014) capture the 

“average” effect of the customers’ response to emails on purchase, but they did not consider the 

dynamics and heterogeneity in both email open and purchase behavior. Sahni, Zou and 

Chintagunta (2014) conduct a post-hoc analysis of the experiments to show the aggregate-level 

of effects of the emails on customer expenditure. They do not quantify how email open behavior 

affects customer purchase nor do they consider the dynamic effects.   

 

2.2.2 Customer Relationship Dynamics 

          Previous research has shown that the customers’ relationship with the firm evolves over 

their lifetime. Netzer et al. (2008) proposed a hidden Markov model to model the transitions 

among latent relationship states. Montoya et al. (2010) incorporated a partially observed Markov 

decision process into a dynamic marketing resource allocation policy across physicians. Kumar 

et al. (2011) found that customers in the highest relationship state may not yield the highest 

lifetime value to the firm. Li et al. (2011) derived an optimal cross-selling policy by considering 

customers’ hidden financial states. Luo and Kumar (2013) used a forward-backward Gibbs 

sampler method to recover the hidden buyer-seller relationship states precisely to capture the 

effect of marketing contacts in business-to-business markets.  

This stream of research primarily examines customer-firm relationships by looking at 

purchase behavior; we argue that other activities can also reveal customer-firm relationships. For 

example, Schweidel et al. (2014) developed a flexible model to empirically study the dependence 

of two activities and the associated relationship evolvement. In the context of email marketing, 
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customers’ responsiveness to emails should also indicate their relationship with the firm. We 

argue that the relationship states that characterize email open and purchase behavior evolve for 

the following reasons. First, customers may have different interests and needs at different time 

points, but companies may not be able to adapt to these changes by tailoring their email 

messages. Second, customers are in a learning mode for the emails they receive. In one type of 

learning mode, customers frequently open the emails in the first few months and decrease the 

frequency gradually due to the loss of interest. In another type of learning mode, customers open 

the emails in a consistent manner and remain constant over time. Because customers continue to 

learn the effectiveness of the email program in which they are enrolled, their relationship with 

the focal firm is constantly evolving based on their learning. Third, companies may adopt 

different email marketing strategies at different times. It is possible that companies may not 

tailor the email strategies by individual or by segment based on email open and purchase 

behavior. Customers may respond to emails in a different manner, showing different levels of 

engagement at different times. 

 To the best of our knowledge, this is the first empirical study that investigates these two 

relationships in the same modeling framework. We incorporate the evolving states of email open 

into the evolving states of purchase. We allow email open and purchase behavior to be 

correlated. In the following sections, we first describe the data and present the modeling 

framework subsequently.  

 

2.3 Data Description 

Our database comprises information from a U.S. retailer that sells multiple categories of 

products. The dataset consists of information on the transactions made by the customers, the 
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number of emails the firm sent to the customers, and the email open histories. We randomly 

select a cohort of 300 customers who opted-in to the retailer’s email program in February 2007. 

Thus, we have data comprising customers’ email open and purchase activities over a 39-month 

period of time. In Table 1, we report the descriptive statistics of the data. On average, the retailer 

sent 6.90 emails to its customers per month. The customers opened 1.64 emails and made 0.69 

purchases on average per month. Note that we only count unique email opens because the 

majority of the emails were only opened once, if they were opened.  

Insert Table 1 

To demonstrate the complexity of customers’ purchase and email open behavior, we 

randomly select three customers and plot the count of their purchase and email open frequency 

over the 39 month (see Figure 1). We can see that Customer 1 is not active in both purchase and 

opening emails. Customer 1 only made purchases in three months and opened emails in two 

months. The time elapsed between the first and second purchase is 21 months. Customer 1 

ceased to either purchase or open emails after month 26. In comparison, Customer 2 has more 

active purchase behavior in the total of 39 months. However, Customer 2 is not equally active in 

opening emails as he or she only opened emails in two months—month 10 and 11. In addition, 

we find that Customer 2 decreased his/her purchase activity after month 19, demonstrating a 

dynamic purchase behavior. Customer 3 is moderately active in both purchase and opening 

emails. We observe that the average inter-purchase time of Customer 3 is approximately 4 

months. 

Insert Figure 1 here 

Figure 1 shows that customers’ purchase and email open behavior is both heterogeneous 
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and dynamic, and that purchase and email open do not perfectly align with one another. It 

indicates that the two behaviors may correlate with each other but their relationships may evolve 

differently. In the subsequent section of modeling framework, we discuss how we model both the 

heterogeneity and dynamics in customer purchase and email open behavior. We also demonstrate 

how the rate of email responsiveness evolves along with the development of purchase activity.  

In addition, to understand the process of customer purchase and email open frequency, we 

plot the distributions of both behaviors (see Figure 2). The distribution of purchase count shows 

that a discrete distribution such as Poisson process may be able to capture the data generating 

process of purchase. The mean (0.68) and the variance (2.64) of the purchase count variable 

suggest overdispersion, which violates the assumption of Poisson distribution. Furthermore, we 

observe an excess of zero purchases (71%) which can affect the estimation of the Poisson model. 

To account for both the overdispersion and excess of zeros, we use the zero-inflated negative 

binomial model (ZINB) to model the purchase count variable. 

 The distribution of email open count also suggests a discrete distribution. By definition, 

the (unique) email open count is the number of unique emails that were opened conditional on 

the total number of emails the customer receives in a given month. We observe that the 

maximum number of the emails the customers received in our data set is 20 emails. Thus, the 

maximum number of unique emails a customer can open will not exceed 20. To capture this 

process, we use the typical binomial distribution which captures the number of success (email 

open) in a sequence of event (email received).        

Insert Figure 2 here 
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2.4 Modeling Framework 

In line with previous research, we consider the hidden Markov model to identify customer 

relationship states and the transition. An HMM describes a Markov process with the unobserved 

states. HMM is a stochastic model that can be used to capture the transition between these states 

and translate these latent states to the observed behavior. HMMs have been applied in the 

marketing field to study customer-firm relationships (e.g., Netzer el al. 2008; Montoya et al. 

2010; Kumar et al. 2011; Luo and Kumar 2013). 

In the context of email marketing, the two customer actions, purchase and email open, 

could be governed by two separate Markov process. If the focus of the study is to examine the 

relationship and the possible transition between two hidden Markov chains, a coupled hidden 

Markov model can be used (e.g., Brand, Oliver and Pentland 1997). In this context, since the 

focus of the firm is on the customer purchase behavior, we use a hidden Markov chain to capture 

the evolvement of the purchase relationship state. We put the restriction on the conditional 

purchase model so that the intrinsic utility of making purchases for a higher state is higher than 

that for a lower state. We allow the email open behavior to depend on the purchase relationship 

state but we do not put any restrictions as we do on the purchase behavior. Thus, we not only can 

capture the dynamics in email open behavior but also allow it to be flexible that, for example, 

customers in a higher purchase state are less likely to respond to email messages.  

 

2.4.1 Overview of the Model         

Let 𝑂𝑖𝑡 be the number of emails customer 𝑖 opens in month t. Let 𝑌𝑖𝑡 be the number of 

times customer 𝑖 purchases (online or offline) in month t. We allow the decisions of 𝑌𝑖𝑡 and 𝑂𝑖𝑡 

to be correlated. We model the sequence of observations {(𝑌𝑖1 = 𝑦𝑖1, 𝑂𝑖1 = 𝑜𝑖1), … , ((𝑌𝑖𝑡 =
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𝑦𝑖𝑡, 𝑂𝑖𝑡 = 𝑜𝑖𝑡)} using a HMM characterized by (1) the initial state distribution (𝝅𝒊), (2) a 

sequence of transition probabilities (𝑸𝒊𝒕), and (3) a vector of probabilities that relate the latent 

states to the observed purchases and email opens (𝑯𝒊𝒕). 

 

2.4.2 The Initial State Distribution 

At any given time t, let s denote the strength of the purchase relationship between the 

customer 𝑖 and the firm at time t. Let 𝜋𝑖𝑠 be the probability that customer 𝑖 is initially in state s, 

where 𝜋𝑖𝑠 ≥ 0 and ∑ 𝜋𝑖𝑠 = 1𝑆
𝑠=1 . In this study, we assume that all customers start at the lowest 

purchase state in the first month. Therefore, 𝝅𝒊
′ = [𝜋𝑖1, 𝜋𝑖2, … , 𝜋𝑖𝑠] = [1,0, … ,0]. 

 

2.4.3 The Markov Chain Transition Matrix 

 In our proposed HMM framework, we allow that customers can transit to a lower or 

higher purchase state or stay in the same purchase state. We model customers’ transition 

probability using their previous experience, including the time elapsed since previous purchase 

and the time elapsed since previous email open.  

 Following Kumar et al. (2011), we use a multinomial logit model to formulate the 

transition matrix, in order to allow transitions to all possible purchase states. We define the 

transition matrix as 

                                 State at t   

(1) 

 State at t-1 1 2 … NS  

 1 𝑞𝑖𝑡11 𝑞𝑖𝑡12 … 𝑞𝑖𝑡1𝑁𝑆  

𝐐𝑖,𝑡−1→𝑡 = 2 𝑞𝑖𝑡21 𝑞𝑖𝑡22 … 𝑞𝑖𝑡2𝑁𝑆  

 ⋮ ⋮ ⋮ ⋱ ⋮  

 NS 𝑞𝑖𝑡𝑁𝑆1 𝑞𝑖𝑡𝑁𝑆2 … 𝑞𝑖𝑡𝑁𝑆𝑁𝑆  
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𝑞𝑖𝑡𝑠𝑠′ is the conditional probability that customer 𝑖 moves from state 𝑠 at time 𝑡 − 1 to state 𝑠′ at 

time 𝑡, where 0 ≤ 𝑞𝑖𝑡𝑠𝑠′ ≤ 1∀𝑠, 𝑠′, and ∑ 𝑞𝑖𝑡𝑠𝑠′ = 1𝑠′ . We specify that the transition utility from 

purchase state 𝑠 at period 𝑡 − 1 to state 𝑠′ at time 𝑡 as follows: 

 𝑢𝑖𝑡𝑠𝑠′ = 𝛼𝑠𝑠′ + 𝛾1𝑠𝑠′𝐿𝑂𝑖𝑡 + 𝛾2𝑠𝑠′𝐿𝑌𝑖𝑡 + 𝛾3𝑠𝑠′𝐺(𝐸𝑀𝑖𝑡−1) + 𝑒𝑖𝑡𝑠𝑠′  
(2)  

where 𝛼𝑠𝑠′ is the intrinsic utility value to transition from purchase state 𝑠 to 𝑠′, 𝐿𝑂𝑖𝑡 is the time 

elapsed since last time customer i opened an email, and 𝐿𝑌𝑖𝑡 is the time elapsed since last time 

customer i made a purchase. We use the logarithm of 𝐿𝑂𝑖𝑡 and 𝐿𝑌𝑖𝑡 to capture the diminishing 

effects. 𝐺(𝐸𝑀𝑖𝑡−1) is a function of the number of emails customer i received at time 𝑡 − 1. We 

use the linear and quadratic specification. 𝛾1𝑠𝑠′ , 𝛾2𝑠𝑠′  and 𝛾3𝑠𝑠′ are the corresponding parameters 

to move a customer from state 𝑠 to 𝑠′. 𝑒𝑖𝑡𝑠𝑠′  denotes the random utility of the transition 

propensity which follows a Type 1 extreme value distribution. We restrict the utility for 

customer 𝑖 at time 𝑡 to transition to the lowest state to be zero for the purpose of identification. 

 

2.4.4 Conditional Purchase Count Model 

          Conditioned on being in purchase state 𝑠 at time 𝑡, we assume that the number of 

purchases of customer 𝑖 follows a zero-inflated negative binomial model with parameters 𝜑𝑖𝑠𝑡, 

𝜆𝑖𝑠𝑡 and 𝑟. For each observation 𝑦𝑖𝑡, ZINB assumes that there are two data generating processes 

which are defined as: 

 𝑃(𝑌𝑖𝑡 = 𝑦𝑖𝑡) =

{
 
 

 
 𝜑𝑖𝑠𝑡 + (1 − 𝜑𝑖𝑠𝑡) (1 +

𝜆𝑖𝑠𝑡
𝑟
)
−𝑟

𝑖𝑓𝑦𝑖𝑡 = 0

(1 − 𝜑𝑖𝑠𝑡)
𝛤(𝑦𝑖𝑡 + 𝑟)

𝑦𝑖𝑡! 𝛤(𝑟)
(1 +

𝜆𝑖𝑠𝑡
𝑟
)
−𝑟

(1 +
𝑟

𝜆𝑖𝑠𝑡
)
−𝑦𝑖𝑡

𝑖𝑓𝑦𝑖𝑡 > 0

 (3)  

where 𝑟 is a shape parameter which quantifies the amount of overdispersion. The mean and 

variance of the ZINB distribution are 𝐸(𝑦𝑖𝑡) = (1 − 𝜑𝑖𝑠𝑡)𝜆𝑖𝑠𝑡 and 𝑣𝑎𝑟(𝑦𝑖𝑡) = (1 −
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𝜑𝑖𝑠𝑡)𝜆𝑖𝑠𝑡(1 + 𝜑𝑖𝑠𝑡𝜆𝑖𝑠𝑡 + 𝜆𝑖𝑠𝑡 𝑟⁄ ), respectively. 𝜑𝑖𝑠𝑡 captures the zero-inflated probabilities and 

𝜆𝑖𝑠𝑡 is the expected purchase count for customer 𝑖 at time 𝑡. We allow both 𝜑𝑖𝑠𝑡 and 𝜆𝑖𝑠𝑡 to be 

state-dependent. 

 To account for the process of excess of zeros, we model 𝜑𝑖𝑠𝑡 using a logit function as 

 logit(1 − 𝜑𝑖𝑠𝑡) = 𝛿0𝑠 + 𝛿1𝑠𝐿𝑌𝑖𝑡 
(4)  

where 𝛿0𝑠 captures the intrinsic utility of making a purchase, and 𝛿1𝑠 captures the effects of 

duration dependence, given state 𝑠. 𝐿𝑌𝑖𝑡 is the time elapsed since last time customer i made a 

purchase. We take the logarithm of 𝐿𝑌𝑖𝑡 to capture the diminishing effect. 

In addition, we model 𝜆𝑖𝑠𝑡 as a function of the number of emails sent by the retailer and 

the time since last purchase, given by 

 𝜆𝑖𝑠𝑡 = exp(𝛼𝑖𝑝𝑠 + 𝛽1𝑝𝑠𝐾𝑖𝑡 + 𝛽2𝑝𝑠𝐾𝑖𝑡
2 + 𝛽3𝑝𝑠𝐿𝑌𝑖𝑡) 

(5)  

Where 𝐾𝑖𝑡 is the total number of emails customer 𝑖 received in month 𝑡, and 𝐾𝑖𝑡
2  is the square 

term of 𝐾𝑖𝑡. We also include the time since last purchase variable (logarithm of 𝐿𝑌𝑖𝑡) to capture 

the effect of duration dependence. Conditional on state 𝑠, 𝛼𝑖𝑝𝑠 is the intrinsic propensity to make 

purchases, 𝛽1𝑝𝑠, 𝛽2𝑝𝑠 and 𝛽3𝑝𝑠 are the corresponding response parameters. For the purpose of 

identification, we impose the restriction that 𝛼𝑖𝑝𝑠+1 = 𝛼𝑖𝑝𝑠 + exp(∆𝛼𝑖𝑝𝑠+1), where ∆𝛼𝑖𝑝𝑠+1 is a 

parameter to estimate from the data. Thus, customers in a higher purchase relationship state have 

a higher propensity to make purchases than those in a lower state. In addition, to account for the 

unobserved heterogeneity, we allow 𝛼𝑖𝑝𝑠 to be customer-specific. We assume that 𝛼𝑖𝑝𝑠 are 

normally distributed across customers as follows: 

 𝛼𝑖𝑝 = 𝛼𝑝 + ∆𝛼𝑖𝑝 
(6)  
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where ∆𝛼𝑖𝑝~N(0, 𝜎𝛼𝑝
2 ), and 𝜎𝛼𝑝

2  is the variance of the corresponding parameter.   

 

2.4.5 Email Open Count Model 

We assume that the number of emails customer 𝑖 opens at time 𝑡 follows a binomial 

distribution with parameters 𝐾𝑖𝑡 and 𝑝𝑖𝑠𝑡, given by 

 𝑃(𝑂𝑖𝑡 = 𝑜𝑖𝑡) = (
𝐾𝑖𝑡
𝑜𝑖𝑡
) 𝑝𝑖𝑠𝑡

𝑜𝑖𝑡(1 − 𝑝𝑖𝑠𝑡)
𝐾𝑖𝑡−𝑜𝑖𝑡 (7)  

Where 𝐾𝑖𝑡 is the total number of emails customer 𝑖 received in month 𝑡, and 𝑝𝑖𝑠𝑡 is the 

probability that customer 𝑖 opens an email in month 𝑡. 

We model 𝑝𝑖𝑠𝑡 as a function of customers’ past email open behavior as 

 𝑝𝑖𝑠𝑡 =
exp(𝛼𝑖𝑜𝑠 + 𝛽𝑜𝑠𝐿𝑂𝑖𝑡)

1 + exp(𝛼𝑖𝑜𝑠 + 𝛽𝑜𝑠𝐿𝑂𝑖𝑡)
 

(8)  

Where 𝛼𝑖𝑜𝑠 is the intrinsic probability to open an email given purchase state 𝑠. We include the 

time since last email open (logarithm of 𝐿𝑂𝑖𝑡) to capture the effect of duration dependence. 𝛽𝑜𝑠 

are the corresponding response parameters that capture the short-term effect of past experience. 

Note that while we allow 𝛼𝑖𝑜𝑠 to vary with the purchase states, we do not impose any restriction 

on 𝛼𝑖𝑜𝑠 such that 𝛼𝑖𝑜1 ≤ 𝛼𝑖𝑜2 ≤ ⋯ ≤ 𝛼𝑖𝑜𝑠. We estimate 𝛼𝑖𝑜𝑠 based on the empirical data. This 

flexible structure allows us to examine the possibility that customers in a higher purchase state 

have lower probability to open emails. Similarly, we allow 𝛼𝑖𝑜𝑠 to be customer-specific to 

control for the unobserved heterogeneity. We assume that 𝛼𝑖𝑜𝑠 follows a normal distribution with 

mean 𝛼𝑜 and variance 𝜎𝛼𝑜
2  which can be estimated from the data. 

 

2.4.6 The Dependence between Purchase and Email Open Behavior 

At any given time 𝑡, customers need to decide on two actions: the number of purchases 
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and the number of emails to open. Since both actions indicate the interests and interaction the 

customers have with the firm, we argue that the purchase and email open behavior may be 

correlated. Note that both the purchase count 𝑌𝑖𝑡 and the email open count 𝑂𝑖𝑡 follow a discrete 

distribution. It is not easy to find a bivariate distribution that can capture the dependence between 

the ZINB and binomial distribution.   

 Danaher and Smith (2011) suggest the copula approach to link two marginal distributions 

which are not from the same family (see also Kumar, Zhang and Luo 2014). Following 

Nikoloulopoulos and Karlis (2010), we use a copula to construct a bivariate distribution of 𝑂𝑖𝑡 

and 𝑌𝑖𝑡. Since we are dealing with bivariate count data, we cannot obtain the bivariate density by 

deriving the bivariate distribution function as in a continuous case. As Nikoloulopoulos and 

Karlis (2010) suggest, we obtain the bivariate probability mass function using finite differences 

of the copula function, 

 

ℎ(𝑜𝑖𝑡, 𝑦𝑖𝑡) = 𝐶(𝐹1(𝑜𝑖𝑡), 𝐹2(𝑦𝑖𝑡)) − 𝐶(𝐹1(𝑜𝑖𝑡 − 1), 𝐹2(𝑦𝑖𝑡))

− 𝐶(𝐹1(𝑜𝑖𝑡), 𝐹2(𝑦𝑖𝑡 − 1)) + 𝐶(𝐹1(𝑜𝑖𝑡 − 1), 𝐹2(𝑦𝑖𝑡 − 1)) 

(9)  

where 𝐶(∙) is the copula function, 𝐹1(𝑜𝑖𝑡) and 𝐹2(𝑦𝑖𝑡) are the distribution function of 𝑂𝑖𝑡 and 𝑌𝑖𝑡, 

respectively. We use Frank copula (e.g., Frank 1979; Genest 1987) in this context because of its 

flexibility to capture the full range of correlation. The Frank copula function is given by 

 𝐶(𝑢1, 𝑢2; 𝜃) = −
1

𝜃
log {1 +

(𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)

𝑒−𝜃 − 1
} 

(10)  

where 𝑢1 and 𝑢2 are the distribution functions and 𝜃 is the Frank copula correlation parameter. 

 

2.4.7 Model Estimation 
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          There are two sets of parameters to be estimated from our model. The first set of 

parameters {𝛼𝑠𝑠′ , 𝛾1𝑠𝑠′ , 𝛾2𝑠𝑠′ , 𝛾3𝑠𝑠′} for 𝑠, are the parameters in the transition matrix. The second 

set of parameters includes all the parameters from Equations (3-10). Following Netzer et al. 

(2008), we write the vector of the bivariate probability mass function as a diagonal matrix 𝐇𝐢𝐭. 

Given the proposed HMM structure, the likelihood function for a sequence of observations given 

by {(𝑌𝑖1 = 𝑦𝑖1, 𝑂𝑖1 = 𝑜𝑖1), … , ((𝑌𝑖𝑡 = 𝑦𝑖𝑡, 𝑂𝑖𝑡 = 𝑜𝑖𝑡)} can be expressed as 

 

𝐿 =∏𝑃((𝑌𝑖1 = 𝑦𝑖1, 𝑂𝑖1 = 𝑜𝑖1), … , (𝑌𝑖𝑡 = 𝑦𝑖𝑡, 𝑂𝑖𝑡 = 𝑜𝑖𝑡))

𝑁

𝑖=1

=∏𝛑𝐢
′𝐇𝐢𝟏

𝑁

𝑖=1

∏𝐐𝐢𝐭

𝑇

𝑡=2

𝐇𝐢𝐭𝟏 

(11)  

Where 𝟏 is an 𝑆 × 1 vector of ones.  

 

2.5 Empirical Results 

2.5.1 Selecting the Number of States 

We estimate the HMM model using the maximum likelihood estimation (MLE) method. 

We use the simulated MLE to estimate the variance of the random intercepts. We first select the 

number of HMM states based on the log-likelihood and Bayesian information criterion (BIC). 

We compare the performance of HMM models of up to 4 states (see Table 2). We find that the 

HMM model with 3 states provide the best-fit to the data as it gives the lowest BIC value. Thus, 

we choose the 3-state HMM model. 

Insert Table 2 here 
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2.5.2 Parameter Estimates 

Table 3 reports the parameter estimates for the 3-state HMM model. Note that we have put 

the restriction that customers in a higher relationship state purchase more frequently, conditional 

on purchase. Thus, we can label the three states as “low”, “medium”, and “high” relationship 

states that govern the frequency of purchase in each month. An interesting specification of our 

model is that customers’ responsiveness to emails does not need to align with their purchase 

activeness. The empirical finding suggests that the customers who are in the medium state have 

the highest intrinsic (𝛼𝑜2=0.428) propensity to open an email, followed by the customers in the 

low state (𝛼𝑜1=-2.255) and those in the high state (𝛼𝑜3=-6.024). Surprisingly, the customers in 

the highest relationship state (State 3) are those who are the most reluctant to open an email. It is 

possible that the heavy buyers are already very familiar with the firm’s products and promotions 

so that they are less motivated to keep track with the firm’s offerings through emails.  

Insert Table 3 here 

 Table 3 shows that customers in different states vary in purchase duration dependence. 

The customers who are in the lowest state have positive duration dependence. The longer they 

have not made a purchase, the more frequently they purchase. However, the customers who are 

in the medium or high state have negative duration dependence. The longer they have not made a 

purchase, the less frequently they will purchase. This is an interesting finding as it reveals the 

diversity in customer purchase dynamics. In addition, Table 3 also shows that the email contact 

has a nonlinear effect on purchase count for the customers in all three states. For the customers 

who are in the low state, the email contact initially has a positive effect (1.129) on purchase 

count but the effect becomes negative (-0.095) when the quantity of emails increases and passes 
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a certain threshold. In contrary, for the customers who are in the medium or high state, the email 

contact starts with a negative effect (-1.173, -0.102) on purchase count and such effect increases 

(0.752, -0.006) with the increase of email intensity. This finding shows that customers respond in 

a diverse way to email contacts depending on their purchase activeness.  

 The estimates for the binomial model show that the customers who are in the different 

purchase states respond to emails in a diverse way. First, there is strong heterogeneity (𝜎𝛼𝑜
2 =5) in 

the intrinsic propensity of opening emails across customers. Second, the customers in all three 

states demonstrate negative duration dependence in responding to emails. The longer they have 

not opened an email, the less likely they will open an email. It is interesting to see that such 

negative effect of duration dependence is the strongest (-1.056) for the customers in the highest 

relationship state, compared to those in the low (-0.275) and medium (-0.274) state.   

2.5.3 Transition Probability Matrix 

The transition matrix from the HMM model shows how customers evolve across different 

relationship states. We calculate the transition probabilities of a “typical” customer with 

explanatory variables (time since last purchase and time since last email open) at their mean 

level using Equations (1-2). We vary the number of emails the customers receive in the previous 

period and check the effect of email contacts on the state transitions (see Table 4). 

Insert Table 4 here 

When there is no email contact, the customers tend to stay (from State 1) or switch (from 

States 2 or 3) to the lowest state (State 1), compared to the cases where there is some email 

contacts. This finding is consistent with Luo and Kumar (2013). Therefore, it shows that it is 
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important to invest in email marketing to maintain the customers at a higher relationship. Table 4 

also shows that the customers do not tend to move and will stick to where they are from. Email 

contacts can move these customers away from their status quo. For example, one email contact 

increases the likelihood that a customer in State 1 will move to State 3 from 6.1% to 14.3%. 

However, five email contacts only marginally increase such likelihood to 14.9%. In addition, we 

find that it is not true that the more email contacts the better. For example, when the customers 

are from State 2, one email contact increases the likelihood that they remain in State 2 from 

70.8% to 83.6% while five email contacts increase such likelihood to 77.6% and ten email 

contacts increase such likelihood to 78.3%. 

 In Figure 3, we plot the average probabilities of customers residing in the three states 

over time. We calculate the state membership distribution of each customer using the filtering 

approach (Montgomery et al. 2004; Netzer et al. 2008). Since we assume that each customer 

started from the lowest state, we drop the first five periods as initialization periods and plot the 

states evolvement over the rest of the time. We find that, on average, the customers started from 

State 1 with a probability of 0.50, from State 2 with a probability of 0.14, and from State 3 with a 

probability of 0.36. It took approximately 12 months for the aggregate distribution of the States 1 

and 3’ membership to stabilize to within the range of 0.3 and 0.4. The aggregate distribution of 

the State 2’s membership evolves slowly and reaches the stabilized range (0.3 ~0.4) after 26 

months.    

Insert Figure 3 here 

2.6 Optimal Email Marketing 
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 At any given time t, the firm has to make the decision of how many emails to send. Given 

our demand specification, this email contact decision has both short-term and long-term 

implications on customer behavior. Short term effect comes due to the direct effect of emails on 

customer purchase and email open behaviors at time t (see Equations 4-7). Long-term effect 

comes from two sources: (1) customers’ purchase and email open behavior at time t will impact 

the evolution of customer relationship state from time t to t+1 (see Equations 1-2); (2) the email 

contacts at time t will directly influence the relationship state transition from time t to t+1 (see 

Equations 1-2). Due to these long term effects, determining the optimal number of emails to send 

by the firm requires one to solve a dynamic programming problem.  

 From the firm perspective, the variable of focus is the number of times a customer 

purchases from the store (online and/or offline) in any given month. Under the assumption of 

constant purchase amount per purchase and fixed gross margin for the retailer, the purchase 

count can be directly translated into the firm’s profit at each time period. We make these 

assumptions for the following reasons. First, our setting is a non-contractual setting where 

customer churn is not easy to predict. Second, the firm is struggling to engage with the customers 

to increase the contact frequency the customers initiate. Previous experience shows that the more 

frequently the customers purchase, either online or offline, the stickier the customers will be and 

less likely they will churn and switch to competitors.  

 For our dynamic optimization problem, the payoff relevant state variables become: (1) 

the probabilities that the customer exists in each of the purchase relationship states, (2) the time 

since last purchase, and (3) the time since last email open. Following Kumar et al. (2011), we 

assume the timing of the email contact decisions as follows. At the beginning of each month t, 

the firm predicts the probability that the customer exists in each of the three relationship states, 
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𝑝1𝑡, 𝑝2𝑡 and 𝑝3𝑡. We use a multinomial logit function to capture these three probabilities and 

relate them to two parameters 𝜔1𝑡 and 𝜔2𝑡 as follows: 

 

𝑝1𝑡 =
exp(𝜔1𝑡)

1 + exp(𝜔1𝑡) + exp(𝜔2𝑡)

𝑝2𝑡 =
exp(𝜔2𝑡)

1 + exp(𝜔1𝑡) + exp(𝜔2𝑡)
𝑝3𝑡 = 1 − 𝑝1𝑡 − 𝑝2𝑡

 (12)  

 Let 𝑆𝑡 = (𝜔1𝑡, 𝜔2𝑡, 𝜃1𝑡 , 𝜃2𝑡) denote the state vector at time t. 𝜃1𝑡 and 𝜃2𝑡 are states for the 

time since last purchase and time since last email open, respectively. Time from last purchase 

and open states, 𝜃1𝑡 and 𝜃2𝑡, evolve based on whether the consumer makes a purchase and opens 

an email at time t. If the customer makes a purchase at time t, the corresponding state 𝜃1,𝑡+1 

becomes 1, and if she doesn’t make a purchase 𝜃1,𝑡+1 becomes 𝜃1𝑡 + 1. Similarly, if the 

customer opens an email at time t, the corresponding state 𝜃2,𝑡+1 becomes 1, and if she doesn’t 

open an email 𝜃2,𝑡+1 becomes 𝜃2𝑡 + 1. Since the purchase and email open decisions of 

customers are modeled with zero inflated negative binomial and binomial distributions, the time 

from last purchase and open states, 𝜃1𝑡 and 𝜃2𝑡, evolves in a stochastic manner as follows 

𝜃1,𝑡+1 = {
1,𝑤𝑖𝑡ℎ𝑃𝑟(𝑌𝑖𝑡 > 0)

𝜃1𝑡 + 1, 𝑤𝑖𝑡ℎ𝑃𝑟(𝑌𝑖𝑡 = 0)
 

𝜃2,𝑡+1 = {
1,𝑤𝑖𝑡ℎ𝑃𝑟(𝑂𝑖𝑡 > 0)

𝜃2𝑡 + 1, 𝑤𝑖𝑡ℎ𝑃𝑟(𝑂𝑖𝑡 = 0)
 

(13)  

The evolution of the first two state variables 𝜔1𝑡 and 𝜔2𝑡conditional on the firm’s email 

contact decision 𝐸𝑀𝑡 are given as 
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𝜔𝑠,𝑡+1|𝐸𝑀𝑡 = 𝑃𝑟(𝑌𝑖𝑡 > 0, 𝑂𝑖𝑡 > 0)∑𝜔𝑘𝑡𝑞𝑡,𝑘→𝑠

𝑆

𝑘=1

(1,1, 𝐸𝑀𝑡)

+ 𝑃𝑟(𝑌𝑖𝑡 = 0,𝑂𝑖𝑡 > 0)∑𝜔𝑘𝑡𝑞𝑡,𝑘→𝑠

𝑆

𝑘=1

(𝜃1𝑡 + 1,1, 𝐸𝑀𝑡)

+ 𝑃𝑟(𝑌𝑖𝑡 > 0,𝑂𝑖𝑡 = 0)∑𝜔𝑘𝑡𝑞𝑡,𝑘→𝑠

𝑆

𝑘=1

(1, 𝜃2𝑡 + 1, 𝐸𝑀𝑡)

+ 𝑃𝑟(𝑌𝑖𝑡 = 0,𝑂𝑖𝑡 = 0)∑𝜔𝑘𝑡𝑞𝑡,𝑘→𝑠

𝑆

𝑘=1

(𝜃1𝑡 + 1, 𝜃2𝑡 + 1, 𝐸𝑀𝑡) 

(14)  

 where 𝑞𝑡,𝑘→𝑠(𝜃1,𝑡+1, 𝜃2,𝑡+1, 𝐸𝑀𝑡) is the transition function from Equations 1-2 which is used to 

calculate the probability of transitioning customers from state 𝑘 to s at time t conditional on the 

email contacts at time t, and the variables of duration dependence.  

 At each time t conditional on the state vector 𝑆𝑡, the objective of the firm is to determine 

the optimal number of email contacts to maximize the sum of discounted expected future profits. 

Under some regularity conditions this objective can be written in following form of the following 

Bellman equation 

 𝑉(𝑆𝑡) = {𝜋𝑡(𝐸𝑀𝑡, 𝑆𝑡) + 𝜌𝐸𝑉(𝑆𝑡+1|𝑆𝑡, 𝐸𝑀𝑡)}𝐸𝑀𝑡
𝑚𝑎𝑥  

(15)  

where 𝜌 is the discount factor and the expectation is over all the future states and actions of the 

firm. 

For this dynamic optimization problem, we discretize the state space for our first two dimensions, 

𝜔1𝑡, 𝜔2𝑡,with 13 levels each. For our second two dimensions, 𝜃1𝑡 and 𝜃2𝑡 , we use the range of 1 

to 12 periods. This gives us a state space of 24,336 state combinations. We use the value iteration 

algorithm (Rust 1987) to find the optimal mappings of firm’s email contacts to our state 

combinations. Due to the discretization of the first two state dimensions, the value functions for 
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the other points in the state space are computed via interpolation (Keane and Wolpin 1994). 

After we get the vector of optimal mapping of email contacts, we estimate a multinomial logit 

model to predict optimal email contacts for any state combination out of the chosen state 

combinations. 

Based on the optimal mapping of email contacts to states from the value iteration 

algorithm, we find that the optimal email contact number ranges from 0 to 6. We see a lot of 

heterogeneity in the ranges of optimal number of emails sent based on whether the customers are 

in the low, medium or the high purchase states. For instance, if the firm has a belief that with 

more than 16% probability that the customer is in the lowest purchase state, the optimal number 

of emails to send ranges between 5 and 6.  Sending a large number of emails to the customers at 

the lowest purchase state is beneficial for the firm due to 1) more emails increase the firm’s 

profitability in the short-term; 2) more emails help the firm shift these customers from the low 

purchase state to the higher purchase states. As opposed to the customers in the low purchase 

state, the customers in the high purchase state should receive much less emails. For instance, if 

the firm has a belief that the customer belongs to the high purchase state with more than 77% 

probability, the optimal action becomes sending no emails. This is mainly due to the fact that 

these customers tend to purchase less frequently as they receive more emails. 

In subsequent, we use the estimated policy function to simulate the firm’s email contact 

decisions over a long horizon to reach the steady-state distributions of email contacts and 

purchase state distributions. We find that in the steady-state 50.7% of the customers become the 

members of the low purchase state, 10.6% of the customers become the members of the medium 

purchase state, and finally 38.7% of the customers become the members of the high purchase 



 
 

82 
 

state. We find that the optimal number of emails to send becomes 6 emails per month, and the 

lifetime purchase count and email open count become 71 and 109 per customer, respectively. 

Furthermore, we conduct a what-if simulation study to test how much profit the firm can 

generate if it deviates from the optimal email policy obtained from the dynamic programming 

study (see Figure 4). We use the steady-state distribution as the starting state combinations and 

test four alternative scenarios: 1) two scenarios in which the firm sends lower than the optimal 

level of 6 emails (4, and 5 emails per period) , 2) two scenarios in which the firm sends higher 

than the optimal level of 6 emails (7, and 8 emails per period). Figure 4 shows that sending sub-

optimal number of emails might cause the firm to lose significant amount of profit. For instance, 

sending 4 or 8 emails instead of the optimal level of 6 emails could cause firm to lose 27% or 

39% of its monthly profit per customer. 

Insert Figure 4 here 

 

2.7 Conclusions, Limitations and Future research 

The email marketing program has been used extensively in various industries to engage 

customers. The general practice in the industry in measuring the effectiveness of an email 

marketing program is to examine customer responsiveness to emails such as email open rate. 

However, this study shows that considering only the email open rate could be misleading. Our 

empirical study shows that customers who are in an active purchase state have the lowest 

intrinsic propensity to open an email. If firms solely focus on email open rate to allocate 

resources, they could potentially overlook a pool of customers who are inactive in responding to 
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emails but are active in purchases.  

The purpose of this study is not trying to divert firms’ attention from email open rate. This 

study also shows that there is a positive relationship between email open behavior and purchase 

behavior, on average. Instead, firms should look at customers’ responsiveness to emails and their 

purchase behavior together. If the end goal is to maximize long-term profit, firms should not 

over-market to customers with too many emails but to keep them in a moderate relationship 

state. We present the optimal email marketing policy using the dynamic programming approach. 

We offer a method to study an important substantive problem that can save retailers millions of 

dollars. 

One of the limitations of this study is that we do not observe the information from the 

competitors. Customers’ lack of response to emails could simply be due to the fact that they 

subscribe to too many email programs. Each email that is delivered to the customers’ inbox is a 

load of information. Customers who are not capable of processing the information will be 

overwhelmed and stop responding. If the firm is aware of its customers’ inbox activity, it is 

imperative to incorporate this information into the study. However, due to the sensitivity of such 

information, it is unlikely that the retailer can obtain this knowledge. Future studies could 

consider conduct field experiments to understand how the competing emails affect customers’ 

reaction to the firm’s emails. 

 

  



 
 

84 
 

REFERENCES 

Bonfrer, André and Xavier Drèze (2009), “Real-Time Evaluation of E-mail Campaign 

Performance,” Marketing Science, 28 (2), 251-263. 

 

Brand, Matthew, Nuria Oliver, and Alex Pentland (1997), “Coupled Hidden Markov Models for 

Complex Action Recognition,” Computer Vision and Pattern Recognition Proceedings, 

1997 IEEE Computer Society Conference on (pp. 994-999) IEEE. 

 

Chittenden, Lisa and Ruth Rettie (2003), “An Evaluation of E-mail Marketing and Factors 

Affecting Response,” Journal of Targeting, Measurement and Analysis for Marketing, 11 

(3), 203-217. 

 

Danaher, Peter J. and Michael S. Smith (2011), “Modeling Multivariate Distributions Using 

Copulas: Applications in Marketing,” Marketing Science, 30 (1), 4-21. 

 

Direct Marketing Association (2011), The Power of Direct Marketing, 2011-2012. 

 

ExactTarget (2012), “The 2012 Channel Preference Survey,” [available at 

http://www.exacttarget.com/subscribers-fans-followers/sff14.aspx]. 

 

Frank, M. J. (1979), “On the Simultaneous Associativity of F(x, y) and x + y −
F(x, y),”Aequationes Mathematicae, 19, 194-226.  

 

Genest, Christian (1987), “Frank’s Family of Bivariate Distributions,” Biometrika, 74 (3), 549-

555. 

 

Godin, Seth (1999), Permission Marketing: Turning Strangers into Friends and Friends into 

Customers. New York: Simon & Schuster. 

 

Keane, Michael P. and Kenneth I. Wolpin (1994), “The Solution and Estimation of Discrete 

Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo 

Evidence,” The Review of Economics and Statistics, 648-672. 

 

Kumar, V., Sriram S., Anita Luo, and Pradeep K. Chintaguta (2011), “Assessing the Effect of 

Marketing Investments in a Business Marketing Context,” Marketing Science, 30 (5), 924-

940. 

 

Kumar,V., Xi (Alan) Zhang, and Anita Luo (2014), “Modeling Customer Opt-In and Opt-Out in 

a Permission-Based Marketing Context,” Journal of Marketing Research, 51 (4), 403-419. 

 

Li, Shibo, Sun Baohong, and Alan L. Montgomery (2011), “Cross-Selling the Right Product to 

the Right Customer at the Right Time,” Journal of Marketing Research, 48 (4), 683-770. 

 

Luo, Anita and V. Kumar (2013), “Recovering Hidden Buyer-Seller Relationship States to 

Measure the Return on Marketing Investment in Business-to-Business Markets,” Journal of 

http://www.exacttarget.com/subscribers-fans-followers/sff14.aspx


 
 

85 
 

Marketing Research, 50 (1), 143-160. 

 

Merisavo, Marko and Mika Raulas (2004), “The Impact of E-Mail Marketing on Brand Loyalty,” 

Journal of Product & Brand Management, 13 (7), 498-505. 

 

Montgomery, Alan, Shibo Li, Kannan Srinivasan, and John C. Liechty (2004), “Modeling Online 

Browsing and Path Analysis using Clickstream Data,” Marketing Science, 23 (4), 579-595. 

 

Montoya, Ricardo, Oded Netzer, and Kamel Jedidi (2010), “Dynamic Allocation of 

Pharmaceutical Detailing and Sampling for Long-Term Profitability,” Marketing Science, 

29 (5), 909-924. 

 

Netzer, Oded, James M. Lattin, and V. Srinivasan (2008), “A Hidden Markov Model of 

Customer Relationship Dynamics,” Marketing Science, 27 (2), 185-204. 

 

Nikoloulopoulos, Aristidis K. and Dimitris Karlis (2010), “Regression in a Copula Model for 

Bivariate Count Data,” Journal of Applied Statistics, 37 (9), 1555-1568.  

 

Rust, John (1987), “Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold 

Zurcher,” Econometrica: Journal of the Econometric Society, 999-1033. 

 

Sahni, Navdeep, Dan Zou, and Pradeep K. Chintagunta (2014), “Effects of Targeted Promotions: 

Evidence from Field Experiments,” Available at SSRN 2530290. 

 

Schweidel, David A., Young-Hoon Park, and Zainab Jamal (2014), “A Multiactivity Latent 

Attrition Model for Customer Base Analysis,” Marketing Science, 33 (2), 273-286. 

 

Tezinde, Tito, Brett Smith, and Jamie Murphy (2002), “Getting Permission: Exploring Factors 

Affecting Permission Marketing,” Journal of Interactive Marketing, 16 (4), 28-39. 

 

Trivedi, Pravin K. and David M. Zimmer (2005), “Copula Modeling: An Introduction for 

Practitioners,” Foundations Trends Econometrics, 1 (1), 1-111. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

86 
 

Figure 1 Purchase and Email Open Count of Three Select Customers 
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Figure 2 Distributions of Purchase and Email Open Count 
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Figure 3 Evolvement of Relationship States over Time 
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Figure 4 Distribution of Steady-State Profit against the Number of Email Contacts 
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Table 1 Descriptive Statistics 

 Mean Std. Dev. Lower 5% Upper 95% 

Number of Purchases 0.69 1.63 0 4 

Number of Emails Sent 6.90 4.91 0 15 

Number of Emails Opened 1.64 3.16 0 10 

 

 

 

 

 

 

 

Table 2 Selecting the Number of States 

HMM States Log-Likelihood BIC 

1 -8949.95 18007.54 

2 -8712.93 17659.08 

3 -8582.33 17541.41 

4 -8550.44 17639.10 
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Table 3 Estimation Results for the 3-States Hidden Markov Model  

 Estimates Standard Error T-Value 

Transition Matrix    

     Intercept for transition (State 1 to 2) -4.917 0.326 -15.087 

     Intercept for transition (State 1 to 3) -1.213 0.219 -5.549 

     Intercept for transition (State 2 to 2) -0.191 0.447 -0.427 

     Intercept for transition (State 2 to 3) -1.242 1.587 -0.783 

     Intercept for transition (State 3 to 2) -2.425 0.318 -7.626 

     Intercept for transition (State 3 to 3) 2.041 0.210 9.740 

     Time since last purchase on transition to State 2 (log) 0.384 0.093 4.118 

     Time since last purchase on transition to State 3 (log) -0.312 0.058 -5.381 

     Time since last open on transition to State 2 (log) 0.901 0.124 7.266 

     Time since last open on transition to State 3 (log) 0.042 0.060 0.697 

     Lag Email Sent on transition to State 2 -0.173 0.031 -5.487 

     Lag Email Sent on transition to State 3 -0.040 0.018 -2.292 

     Lag Email Sent Square on transition to State 2 0.013 0.003 4.825 

     Lag Email Sent Square on transition to State 3 0.008 0.002 4.833 

Conditional Purchase Frequency (ZNBD)    

Negative Binomial Equation    

     Intercept State 1 -3.349 0.106 -31.550 

     Intercept (additional State 2, exp) 0.993 0.055 18.196 

     Intercept (additional State 3, exp) -1.427 0.633 -2.252 

     Time Since Last Purchase State 1 (log) 0.249 0.073 3.397 

     Time Since Last Purchase State 2 (log) -1.229 0.245 -5.011 

     Time Since Last Purchase State 3 (log) -0.970 0.149 -6.517 

     Email Sent State 1 1.129 0.022 51.350 

     Email Sent State 2 -1.173 0.102 -11.500 

     Email Sent State 3 -0.102 0.047 -2.159 

     Email Sent Square State 1 -0.095 0.003 -36.556 

     Email Sent Square State 2 -0.752 0.156 -4.823 

     Email Sent Square State 3 -0.006 0.005 -1.114 

     Theta, exp 0.727 0.391 1.860 

     Variance for the intercept, exp -0.633 0.212 -2.989 

Excess of Zeros Equation    

     Intercept State 1 0.955 0.242 3.952 

     Intercept State 2 -1.561 0.516 -3.025 

     Intercept State 3 2.692 0.864 3.117 

     Time since last purchase State1 (log) -0.693 0.110 -6.284 

     Time since last purchase State2 (log) 2.486 0.913 2.723 

     Time since last purchase State3 (log) -0.898 0.456 -1.971 

Email Open Frequency (Binomial)    

     Intercept State 1 -2.255 0.185 -12.193 

     Intercept State 2 0.428 0.192 2.228 

     Intercept State 3 -6.024 0.598 -10.073 

     Time since last open state 1 (log) -0.275 0.121 -2.278 

     Time since last open state 2 (log) -0.274 0.133 -2.060 

     Time since last open state 3 (log) -1.056 0.565 -1.870 

     Variance for the intercept, exp 0.806 0.076 10.550 

Correlation (Email Open and Purchase)    

     Frank copula correlation coefficient  1.593* 0.753 2.115 

      *The corresponding Spearman’s rho in the parenthesis (see Trivedi and Zimmer 2005 for the transformation of 

the dependence measures). 
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Table 4 Transition Probability Matrix of the HMM 

 To State 1 To State 2 To State 3  

Transition Probabilities 

    Without Email Contacts 

   

    From State 1 91.8% 2.1% 6.1% 

    From State 2 27.4% 70.8% 1.8% 

    From State 3 33.2% 9.2% 57.6% 

Transition Probabilities 

    With One Email Contacts 

   

    From State 1 81.4% 4.3% 14.3% 

    From State 2 14.0% 83.6% 2.4% 

    From State 3 16.1% 10.3% 73.6% 

Transition Probabilities 

    With Five Email Contacts 

   

    From State 1 82.1% 3.0% 14.9% 

    From State 2 19.0% 77.6% 3.4% 

    From State 3 16.3% 7.1% 76.6% 

Transition Probabilities 

    With Ten Email Contacts 

   

    From State 1 76.2% 3.1% 20.7% 

    From State 2 17.2% 78.3% 4.5% 

    From State 3 11.7% 5.7% 82.5% 
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