Learning to Recognize Automated Robot Behavior

in the Soccer Domain

- CS15-889 project report -
Dan Bohus

dbohus+@cs.cmu.edu

Computer Science Department,

School of Computer Science,

Pittsburgh, PA, 15213

Abstract

In [1], Han and Veloso have cast for the first time the problem of automatic recognition of strategic behaviors of robotic agents as a signal recognition task. In this paper we take that work one step further, and show that the behavior HMMs proposed in [1] can be automatically learnt from a training set of simulated robot data. Moreover, by analogy with speech recognition, we show that an alternative, more robust algorithm can be used to perform real-time continuous decoding of robot behavior. The experiments performed and the results obtained are promising and indicate the feasibility of this approach.

1. Introduction

Solving the generic problem of automatic plan recognition, or even practical instantiations of it, would be very beneficial in a large number of settings. For instance, in the robotic soccer domain, it would be very useful for a team to be able to “decode” in real time the high-level behavior of its opponents. Solving this problem is a must if one wants to go beyond simple, reactive behavior and implement more intelligent adaptive behaviors in this domain. A solution would also allow for the development of narrative agents [2], which would be able create an interesting commentary of the game on-the-fly.

In [1], Han and Veloso have cast for the first time the problem of automatically recognizing strategic behaviors of robotic agents as a signal recognition task. Noticing the similarity with speech recognition, Han and Veloso modeled the robots’ behaviors using a series of corresponding Hidden Markov Models. Based on an analysis of the set of behaviors proposed, relevant state features were identified, and used as observation symbols for a set of handcrafted HMMs.

The work in [1] gives the starting point for this project. We argue that the analogy with speech recognition holds to an even larger extent than explored there. First, in the above-mentioned work, the behavior-HMMs were handcrafted (both in terms of state transition probabilities and probability distributions over the observed symbols) to capture the studied behavior. Although feasible in a setting with a limited number of behaviors, this approach lacks scalability and offers no optimality guarantees. Secondly, the approach for handling continuous recognition of behaviors proposed in [1], although has been shown to solve the problem to a certain extent, is rather ad-hoc and requires manual fine-tuning of various parameters (i.e. timeouts, granularity of BHMM instantiation, etc).

In this project we address in turn both of these issues. First, we show that the behavior Hidden Markov Model parameters can be automatically learnt from labeled training data obtained from a simulator. Learning is performed using the Baum-Welch re-estimation algorithm, much like in the training of acoustic models for speech recognition. Secondly, we show that (at least in a limited sense), the problem of segmenting the behaviors from a continuous streams of observations can also be solved in a manner similar to that of continuous speech recognition: the behavior-HMMs are connected in parallel in a lattice, and a continuous token-passing Viterbi decoding algorithm is run over the trellis structure resulting from expanding the lattice. Furthermore, we argue that, even remaining within the boundaries of this analogy with the speech recognition framework, this work can be extended further, in several other interesting directions.

In Section 2, we present in more detail the approach taken and the framework for learning to recognize robot behavior, and we also outline the fundamental ideas behind performing a continuous decoding of robot behavior. Then, in Sections 3 and 4 we set the ground for the experiments by presenting in detail the behaviors chosen for recognition and the way labeled data was generated from the small-robot soccer simulator. In Section 5 we describe in detail the experiments performed and the results obtained. Finally, in Section 6 we discuss ideas for further work, and in Section 7 we summarize.

2. The Approach

As [1] has indicated, the problem of recognizing strategic robot behavior
 can be cast as a signal recognition problem: given a stream of observations, we need to identify the underlying state of the robot which maximizes the likelihood of generating that particular stream of observations. The consecrated tools for this time-sequence modeling problem are Hidden Markov Models.

The first issue we address in this work is that of automatically learning the parameters of the models from training data. This problem has a well-known solution – the Baum-Welch re-estimation algorithm -- which has been applied successfully in various tasks (i.e. large-vocabulary continuous-speech recognition). Baum-Welch is a typical Expectation-Maximization algorithm, which iteratively changes the model parameters (both the state-transition and observation-symbol probability distributions) so as to maximize the likelihood of generating the training data. Formally, given a model topology, and a set of observation streams O, the Baum-Welch algorithm determines the optimal model:

[image: image1.wmf])}

|

(

{

max

arg

l

l

O

P

M

=

(where
[image: image2.wmf]l

 represents the set of model parameters). More details about the Baum-Welch re-estimation algorithm can be found in [3]. An important observation is that, although the Baum-Welch algorithm allows one to learn the transition and observation symbol probabilities, it does not learn the “structure” of the model
. Any transition probabilities that are initialized to zero, will remain zero throughout the training. In some sense this is a minus, but on the other hand it allows us to enforce certain model structures, which are intuitively justified by the “causality/time-arrow” properties of the behaviors. Left-to-right topologies thus seem appropriate for the robot behavior recognition task, much like for speech recognition. In Section 5 we present in detail the various model topologies that were attempted, and the results obtained for each of them.

A separate model is constructed for each behavior that we intend to identify. The structure is fixed and the same for all the models (although this is not a necessary requirement). Once the models’ parameters are automatically learnt from training data, we can regard behavior identification as a multi-class classification task. We run Viterbi [3] decoding over each of the models, and choose the model which outputs the highest probability for the given observation sequence.

Furthermore, inspired by the current solution to the continuous speech recognition problem, we can solve the problem of optimally segmenting a large stream of observation symbols into the corresponding sequence of behaviors using the same type of Viterbi algorithm. The behavior HMMs are linked in parallel through an initial and final state with epsilon transitions, as illustrated in Figure 1. Then, a time-synchronous continuous Viterbi decoding is ran over the trellis structure resulting from the expansion of the obtained combined model.

3. Soccer robot behavior modeling

For the purposes of this study, we limited ourselves to the study of behaviors involving a single robot and the ball
. In this sense, a preliminary list of four interesting robotic behaviors in the soccer domain was defined, with the rationale given by the 2 main motivations outlined in the introduction: (1) being able to adapt a robot’s behavior based on the recognized behaviors of its opponents, and (2) being able to automatically comment the game. The four behaviors were:

· AdvanceTowardsBall (ADV): a robot is starting to advance in the field towards the ball, but still being far from it;

· GoToBall: the robot is going to the ball; this behavior ends when the robot has reached the ball;

· ShootBall: the robot is shooting the ball;

· InterceptBall (I): the robot is intercepting the ball.

Next, with goal (1) in mind, we further refined the GoToBall and ShootBall into two separate types of behaviors, so as to be able to distinguish between goal-threatening or non-threatening shots. We thus replaced ShootBall and GoToBall by:

· ShootBallTarget (ST): when the robot is shooting the ball towards or on the goal

· ShootBallRandom (SR): when the shoot is not on the goal, i.e. the robot is passing to a teammate, or is shooting randomly;

· GoToBallTarget (GT): the robot is going to the ball with the intent (orienting itself, etc) to shoot on the goal;

· GoToBallRandom (GR): the robot is going to the ball, with the intent to pass, or in a manner which does not directly threaten the goal.

The final list thus contained six behaviors: AdvanceToBall, GoToBallTarget, GoToBallRandom, ShootBallTarget, ShootBallRandom, and InterceptBall. Note that all these six behaviors can be described in terms of 3 objects: the robot, the ball, and another target position on the field (i.e. the goal), but are independent of the positions and activities of the other robots in the field. Therefore, relevant features can be identified concentrating on a small number of parameters which characterize these 3 objects involved (see Figure 2).

Furthermore, there are no restrictions on the position of the “target object” in the field: once the models are learnt, we can issue multiple copies of them, and feed them features computed using different target positions (objects) in the field. For example, we could compute features using the goal as the target object and feed them into a ShootBallOnTarget HMM which will thus detect threatening shots on the goal. In parallel, we could also instantiate copies of the ShootBallOnTarget HMM, using each teammate of the robot as the target object. Therefore, with multiple instantiations of the ShootBallOnTarget HMM, we would be able to detect both shots on the goal and passes from one robot to its teammates, which is very useful for (2).

Note that there are probably other (both single- and multiple-agent) behaviors that would be interesting to model in the robotic soccer domain. For instance, it might be useful to model the robot positioning strategy in the field: i.e. behaviors like GoToAttack, GoToDefense, MarkOpponent, etc. Multi-agent behaviors might complicate the problem, due to the increase in the space of available features. In principle, it should be possible though to do decompositions and parallel instantiations (like the use of a “variable” target object to detect passes) and thus reduce the feature space.

4. Data acquisition

In this section we describe the acquisition of labeled data for training and testing the robot behavior recognizer. For this task, labeled examples of behaviors are needed, in the form <ObservationSequence, Behavior>. Optimally, this dataset would be obtained by performing a manual labeling
 of behaviors from real robot-soccer data. However, this is a very expensive, tedious, and error-prone approach, and it was not available as an option given the large dataset required and the limited time resources for this project. Alternatively, we took the approach of automatically generating the data for training and testing from a robotic soccer simulator.

The CMU Small-League Robotic Soccer Simulator was used and modified accordingly for generating the six studied behaviors. Apart from the main simulator, two other components played an important role: (1) the graphical user interface, which allowed visualization of the simulated data, and (2) the logging module which was used to save the position, orientation and velocities of the objects in the field into a stream of observations (one observation every 30ms).

One problem with using the simulator lied in the fact that there was no direct equivalence between the “tactics” that the simulated robots could perform and the list of six behaviors that we were interested in. For instance, the robots cannot be simply instructed to go to the ball; rather, a robot in the simulator can be instructed to execute a shoot tactic, which consists of the robot going to the ball, and then shooting the ball at the target. Therefore certain tactics instantiations had to be created, and the desired behaviors were obtained by sometimes performing automatic segmentation on the stream of observations corresponding to the full tactic. Below, we describe in more detail this process.

· AdvanceToBall, GoToBallTarget, ShootTarget were created using a shoot tactic. With this tactic, the robot goes to the ball from its current position in the field, and then shoots towards the goal. To make the simulated data more realistic, in each trial 3 opponents were randomly placed in the field, so that sometimes they would obstruct the robot’s path. Automatic segmentation of this tactic into the 3 behaviors mentioned above was performed based on 2 criteria: as long as the robot-ball distance stayed above a certain threshold, the behavior was considered AdvanceToBall. From that moment until the robot touched the ball, we would segment GoToBallTarget. From the moment when the robot touched the ball until the ball got far enough (that being again defined by a threshold) the behavior would be ShootTarget. If a behavior didn’t end within 10 seconds from its instantiation, it was considered failed and it was not logged (i.e. sometimes the robot would get stuck in-between opponents).

· AdvanceToBall, GoToBallRandom, ShootRandom were created using a pass tactic. With this tactic, a robot goes to the ball, and then passes it to a specified teammate. For each trial the teammate was initialized randomly on the field, and again 3 randomly positioned opponents were created. Automatic segmentation was performed in a manner similar to the one described above. A 10 second timeout was used to determine failed behaviors, together with another criterion: if the teammate position would be of such nature that the pass could threaten the goal, then the behavior would again we considered failed
. The AdvanceToBall behaviors obtained from the pass tactic where cumulated with the ones from the shoot tactic.

· Intercept was created using the goalie tactic. In this case no segmentation was needed and the behavior was terminated when the robot touched the ball. A timeout was again used to determine failed behaviors.

In the manner described above, a balanced corpus of 8000 instances from each behavior was created and was later used in training and testing the behavior recognizer. Also, two other un-segmented corpora of

ShootTarget = AdvanceToBall+GoToBallTarget+ShootTarget

, and

ShootRandom = AdvanceToBall+GoToBallRandom+ShootRandom

behaviors where created, and were used in the continuous behavior decoding evaluations.

5. Experiments and results

In this section we describe the experiments that were performed for learning the behavior-HMM models, and the results obtained in an evaluation process. In section 5.1 we address the question of isolated behavior recognition; next, in section 5.2 we perform an evaluation of the proposed continuous behavior decoding approach.

These experiments were performed using HTK [4], which is a toolkit for building and manipulating Hidden Markov Models developed at Cambridge University. Although mainly geared towards speech recognition research and building models starting from acoustic data, the tools can be customized to work with user-defined observation streams.

5.1. Isolated behavior recognition

All the experiments reported below are based on the 48,000 6-behavior dataset described previously. The dataset went through several processing stages, and the corresponding features for each experiment were generated and stored in the specific HTK binary file format.

The error rates reported are mean error rates obtained in a 10-fold cross-validation process (repeatedly training on 7200 instances for each behavior and testing on the remaining 800); 95% confidence intervals for the error rates were also build in this process.

5.1.1. Preliminary experiments

To evaluate the feasibility of the proposed approach, we first concentrated on distinguishing between only 3 of the 6 proposed behaviors: AdvanceToBall, GoToBallRandom and ShootBallRandom. Intuitively, these behaviors should be easily identified just by the evolution of the distance between the robot and the ball (note that no knowledge of the target is required to separate between these 3 behaviors).

Three HMM models were thus trained using the corresponding instances from the training set. Prior to training we fixed the model topology. For capturing robotic behavior, a left-to-right model was deemed appropriate, due to the “time-arrow” property which characterizes most behaviors. A 6-state left-to-right continuous
 HMM with 4 emitting states was therefore used.

Note that the logging process generated feature-vectors every 30 ms, and therefore the lengths of the behaviors varied largely from 20 and to over 1000 observations in some instances. To better accommodate the HMM modeling approach, the dataset was resampled with a factor of 6 (one observation every 180ms). Even so, there were several long and very long instances in the dataset, but also very short instances. To accommodate this variability we used a specific HMM topology, which has self-transitions, and also arcs from each state to the second-next state (see Figure 3).

The models were trained to convergence using the Baum-Welch algorithm (implemented by HRest in the HTK toolkit). Testing was performed in a 10-fold cross-validation process, and the mean accuracy both on the training and testing sets was 97.82%. The lack of overfitting indicates that the models learnt are robust and generalize well.

5.1.2. Isolated behavior recognition for all 6 behaviors

Next, encouraged by the previous positive result, we reran the experiments, again using just the robot-ball distance feature for all the 6 behaviors. The accuracy for the identification of each individual behavior on both the training and testing sets is presented in Table 1. As expected, the overall accuracy dropped significantly to about 66%, since the behaviors are clearly not distinguishable using only the robot-ball distance. The most confusable behavior was GoToBallRandom.

	Behavior
	Training(%)
	Testing(%)

	AdvanceToBall
	99.78
	99.78

	GoToBallRandom
	30.13
	30.00

	ShootRandom
	36.20
	36.39

	GoToBallTarget
	91.09
	91.01

	ShootTarget
	69.38
	69.37

	Intercept
	73.53
	73.62

	Overall
	66.68
	66.69

To improve the recognition performance, two new features were added: the amplitude of the robot velocity (V), and the difference between the robot orientation and the Ball-Target angle. The first feature conveys information useful to distinguish between GoToBall** and Intercept behaviors, while the second one helps disambiguation between **Random and **Target behaviors.

The models were retrained, and the results obtained are shown in Table 2. The overall accuracy on the training and testing sets is 88.16% and 88.14% respectively. Again, the lack of overfitting indicates a robust fit for the models. The most confusable behavior remains GoToBallRandom. In order to give a full image of the performance of the isolated behavior recognition classifier, the full confusion matrix was constructed for the first cross-validation run, and is illustrated in Table 3. The highlighted cells indicate the most common mistakes: the confusion between GoToBallTarget and GoToBallRandom, and the confusion between ShootTarget and ShootRandom.

	Behavior
	Training(%)
	Testing(%)

	AdvanceToBall
	98.96
	98.88

	GoToBallRandom
	75.91
	75.91

	ShootRandom
	83.69
	83.67

	GoToBallTarget
	84.19
	84.30

	ShootTarget
	89.36
	89.31

	Intercept
	96.86
	96.85

	Overall
	88.16
	88.14

	Behavior
	ADV
	GR
	SR
	GT
	ST
	I
	Totals

	ADV
	795
	3
	0
	1
	0
	2
	800

	GR
	1
	642
	29
	153
	15
	13
	800

	SR
	0
	9
	682
	3
	63
	5
	800

	GT
	0
	139
	1
	635
	9
	1
	800

	ST
	0
	2
	84
	4
	710
	0
	800

	I
	4
	5
	4
	4
	3
	779
	800

	Totals
	800
	800
	800
	800
	800
	800
	4800

Next, we attempted several other HMM topologies:

· LeftToRight – a simple left to right topology with no skipping arcs

· LeftToRightAll – each state is connected to itself (self-transitions) and to every state to its right

· LeftToRightLast – each state has self-transitions and also an arc to the rightmost state. This topology can be useful for modeling behaviors that can be interrupted.

· LeftToRightPreLast – each state has self-transitions and also an arc to the next to rightmost state. This topology is similar to the previous one. The connection is made to the next to rightmost state, because the rightmost state is unemitting.

No significant improvement was obtained: the accuracies remained around 85-88%. The overall results on the training and testing sets are presented in Table 4.

	HMM topology
	Training(%)
	Testing(%)

	Original
	88.16
	88.14

	LeftToRight
	86.69
	86.69

	LeftToRightAll
	88.58
	88.57

	LeftToRightLast
	85.05
	84.99

	LeftToRightPreLast
	84.21
	84.18

Also, models with a longer number of states (10), and various factors for dataset resampling (between 2 and 12) were experimented, but the changes to the results were insignificant and no improvement was obtained.

5.2. Continuous behavior recognition

In this section we describe the results of an evaluation of the continuous decoding method proposed. The evaluation was carried on the ShootTarget and ShootRandom corpora, each containing 1000 behavior instances, as described in Section 4. The six behavior HMMs previously trained on segmented behaviors were connected in parallel, with epsilon transitions connecting the final and initial state, thus obtaining a larger Hidden Markov Model which captures the sequential execution of behaviors. A time-synchronous Viterbi decoding was run over the obtained model.

For the ShootTarget corpus, the correct decodings would have been ADV+GT+ST, or just GT+ST, since in some of these behaviors the robot would be randomly initialized in a position close to the ball. Similarly, for the ShootRandom corpus the correct decodings were ADV+GR+SR and GR+SR. In Table 5 we present the most common behavior sequences identified by the continuous decoding on these corpora, together with their percentages, and accumulated percentages for the sequences. The correct sequences and the overall “sequence accuracy” are bolded.

	
	Shoot Target Corpus
	(%)
	Accum. (%)

	1
	ADV+GT+ST
	44.30
	

	2
	GT+ST
	20.00
	64.30

	3
	ADV+GR+ST
	5.10
	69.40

	4
	GR+ST
	4.80
	74.20

	5
	ADV+ST
	2.00
	76.20

	6
	ADV+GT+SR
	1.40
	77.60

	7
	ADV+ADV+GT+ST
	1.20
	78.80

	
	……………
	
	

	
	Shoot Random Corpus

	8
	ADV+GR+SR
	27.00
	

	9
	GR+SR
	15.90
	42.90

	10
	ADV+GT+SR
	4.60
	47.50

	11
	ADV+GT+ADV+GR+SR
	4.40
	51.90

	
	… … … … …
	
	

Although the sequence accuracy numbers are relatively small, compared to the ones obtained on isolated behavior recognition, these numbers do not give the full picture of the accuracy of the classification. For instance, on the ShootTarget Corpus, the 3 and 4 sequences also make sense and can be useful to some extent, although GoToBallTarget and ShootTarget were confused with their Random equivalents.

Furthermore, an in depth look at the decoded sequences has revealed other interesting results, and confirmed the view that the reported accuracies are not a precise measure of the classification performance. Although some of the decoded behaviors do not exactly match the desired behavior sequence, sometimes they reflect more accurately the reality in that particular testing sequence. For instance, behaviors like ADV+ADV+GT+ST, ADV+GT+GT+ST, ADV+GT+ST+GT+ST are decoded from the ShootTarget corpus, and they correctly reflect what it is happening in the field: in the last one the robot went to the ball, then shot it, but since the shot was not very strong it went to the ball again and shot it again. Although in the training data this sequence would be labeled ADV+GT+ST, the Hidden Markov Models successfully captured the essence of the behaviors from the rest of the dataset, and are able thus perform decoding at a finer granularity level.

By analogy with the speech recognition framework, another possible metric that can be defined and used to evaluate the performance of the continuous recognition algorithm is the Behavior Error Rate (corresponding to Word Error Rate). This metric is computed by comparing the true behavior sequence with the decoded behavior sequence, and counting the number of insertions (I), deletions (D) and substitutions (S) based on an optimal alignment
 of the 2 sequences. Then the Behavior Error Rate (BER) is defined as:

[image: image3.wmf]%

100

´

-

-

-

=

N

I

D

S

N

BER

where N is the length of the true sequence. The Behavior Error Rates were computed: 28.30% for the ShootTarget corpus and 51.37% for the ShootRandom corpus. Although these numbers do not say much by themselves, they can be used for inter-classifier performance evaluations, and can thus serve as a baseline for further improvements.

Section 6 – Further work

In this section we will discuss limitations of the current approach, and indicate a couple of possibly interesting directions for future work.

One drawback of this work is that the training data was obtained from a robot simulator. The models learnt from this type of data might not generalize very well to real data, or even to other data coming from a simulator which uses different “tactics”. In order to solve the problem on real data, a manual labeling effort is needed: the sequences of observation symbols need to be labeled with the appropriate stream of behaviors. Note that although the labeling has to be done manually, this is not the case for the segmentation. In other words, the Baum-Welch algorithm can be used to train models, even if the sequences are not segmented. Given data in the form <Observation_Sequence ~ Behavior1, Behavior2, Behavior3, … >, we can link the corresponding HMMs in series and then train on the full sequence, without knowledge of where the optimal segmenting points are. The Baum-Welch algorithm will automatically detect them. This type of approach has successfully been used in the speech recognition community, where acoustical training for large-vocabulary continuous speech recognition is performed from entire sentences, without specific knowledge of where the phoneme segmentation points are.

Staying within the same framework of analogy with speech recognition, several other interesting extensions of this work can be envisioned. Similar to statistical language models [5], which are used as priors in the speech recognition process, one could possibly construct behavior sequence statistical models. This models are in the form P(BehaviorA | BehaviorB) and would describe the transition probabilities from one behavior to the next. Note that this type of model can easily be integrated into the decoding process, by putting probabilities on the epsilon transitions which link the HMMs in parallel.

Compared to speech recognition, the approach we presented in this work does only the “acoustic decoding” and entirely lacks the “language” component. We suspect that adding this component would strongly improve the performance of the continuous decoding
. Going one step even further, one can envision grammars, which would describe complicated behavior sequences, and even a “language understanding” component which would extract high-level tactical information from the combined behaviors of the agents.

7. Conclusion

In this work we have shown that Hidden Markov Models for automatic recognition of robotic behavior in the soccer domain can be automatically learnt from a corpus of simulated data using the Baum-Welch re-estimation algorithm. Six relevant behaviors were identified – AdvanceToBall, GoToBallTarget, ShootTarget, GoToBallRandom, ShootRandom, Intercept – and the mean accurarcy obtained in isolated behavior recognition in a 10-fold cross-validation process was 88.14%. The lack of overfitting indicates that the models constructed are robust and generalize well, at least to the simulated data.

Experiments on continuous behavior recognition were also performed, based on an idea currently used in the continuous speech recognition community. As expected, the results are not as good as for isolated behavior recognition, but they prove the feasibility of this approach. Furthermore, we have argued that staying within the same framework of analogy with speech recognition, future extensions likely to improve the performance (i.e. statistical behavior sequence modeling) are possible.

8. Acknowledgements

I would like to thank Michael Bowling, Brett Browning for their help in providing the simulator, and helping in the data acquisition phase, and the whole Sphinx Speech Group at Carnegie Mellon University for useful discussions on these topics.

9. References

[1] “Automated Robot Behavior Recognition” – Kwun Han and Manuela Veloso

[2] “Character Design for Soccer Commentary” – Kim Binsted. In Minoru Asada and Hiroki Kitano editors, RoboCup98: Robot Soccer World Cup II, Springer Verlag, Berlin 1999.

[3] “A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition” – L.R. Rabiner. In Proceedings of the IEEE, volume 77, pages 257-86, 1989.

[4] The HTK Toolkit - http://htk.eng.cam.ac.uk/
[5] “Foundations of Statistical Language Modeling” – C.D. Manning and H. Schutze

Behavior 1

Behavior 2

Figure 1. Connecting multiple behavior-HMM for continuous decoding

Robot

Ball

Target

R(

d

d

d

Figure 2. Robot + Ball + Target configuration.

Figure 3. A Left-to-right HMM topology with self-transitions and skip arcs

Table 1. Isolated recognition accuracies using Robot-Ball distance

Table 2. Isolated recognition accuracies using Robot-Ball distance, V and (

Table 3. Confusion matrix for isolated behavior recognition

Table 4. Isolated behavior recognition accuracy with various HMM topologies

Table 5. Results for continuous behavior recognition

� And to a certain extent it’s more general counterpart – plan recognition.

� Graphical models have been proposed recently in the speech recognition community for this task, and they might constitute an interesting research path in this problem, too.

� A more difficult problem would be to recognize multi-agent behavior

� As we will later argue in Section 6, there is no need for manual segmentation of behaviors (i.e. a dataset in the form <Observation_Sequence, Behavior1 Behavior2 … BehaviorN> would suffice.

� In this case, we would actually have a GoToBallTarget and ShootTarget

� The observation symbol probability distribution for each state is Gaussian.

� The optimal alignment can be computed by a dynamic programming algorithm (Levenstein distance)

� For instance, since the models would then capture that after a GoToBallTarget, a ShootTarget rather than ShootRandom is very likely to follow, the performance of the continuous recognition process would be much improved on the given datasets.

_1069255378.unknown

_1069255390.unknown

_1048338816.unknown

