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Abstract

Contract manufacturing enables intellectual property holders to
enjoy scale economies, reduce labor costs and free up capital. However,
in many scenarios contract manufacturing is a double-edged sword, rife
with entrenchments, threats of predation or hold up. I explore these
contract manufacturing problems in a non-recursive relational con-
tract setting. These non-recursivities appear in at least two scenarios:
First, a setting where there is learning by doing, but the accumulated
expertise can also be used by the agent to compete against the prin-
cipal. Second, a setting where there are multiple potential producers,
but these contract manufacturers have prior entrenchments effecting
their costs and can hold up the client. The analysis of these relations
requires a novel methodological approach. A key contribution is that
despite the non-recursive nature of these relationships, in both set-
tings the principal optimal contract is characterized by a simple index
rule, which does not depend on history or other agents.

JEL-Classification: C73, D86, L14, L21

∗Department of Managerial Economics and Decision Sciences, Kellogg School of Man-
agement, Northwestern University, Evanston, IL 60208, USA

1

http://www.kellogg.northwestern.edu/faculty/urgun/urgunJMP.pdf


1 Introduction

Firms often maintain relationships with trading partners to outsource pro-
duction. The main form of outsourcing in many industries is a contract
manufacturing agreement. However, these agreements are seldom complete
and are often backed with informal promises. Outsourcing allows a firm
to concentrate on enhancing products by focusing on R&D, marketing and
design, while enjoying the cost advantages brought in by the expertise of
contract manufacturers (CM).

Global contract manufacturing had an expected volume of $515 billion in
electronics industry and $40.7 billion in pharmaceutial industry in 2015. It is
expected to grow even more with projected annual growth rates of 8.6% and
6.4% for the respective industries (Rajaram 2015, Pandya and Shah 2013).
Moreover, contract manufacturing agreements are not limited to electron-
ics and pharmaceuticals; they are used in a broad range of other industries
including automotive, food and beverages (Tully 1994). In a contract manu-
facturing agreement, a client engages a contractor to manufacture a product
in exchange for a negotiated fee.1 If a product is novel and complex, a client
will gravitate towards a single source contract manufacturing agreement as
switching between CMs becomes costly. On the other hand, as products
commodify, clients gain a wide choice of interchangeable CMs (Arrunada
and Vázquez 2006).

Despite the cost advantages, contract manufacturing entails some in-
escapable hazards. In many contract manufacturing agreements parties soon
find themselves immersed in a “melodrama replete with promiscuity, infi-
delity, and betrayal” (Arrunada and Vázquez 2006). On one hand, if the
product is novel and sole sourced, then the CM is in a prime position to
compete or even overtake the client. “Adding insult to injury, if the client
had not given its business to the traitorous contract manufacturer, the CM’s
knowledge might have remained sufficiently meager to prevent it from enter-
ing its patron’s market”.(Arrunada and Vázquez 2006). Indeed, Intel, Cisco
Systems and Alcatel retain some plants despite outsourcing most of their
production. These firms juggle their production between the CM and their
own inefficient, in-house production capabilities in order to curb the learning
and efficiency of the CM. On the other hand, if the product is commodified

1For ease of referral, I address the principal/client as female and the agents/contractors
as male.
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and in a mature market then another problem arises. In case of commodi-
fied products as McCoy (2003) notes, when a client approaches a contractor
she may discover that he is entrenched with other clients. The relationships
become necessarily intertwined despite their bilateral nature. Contractors
manage these diverse relationships by trying to keep their facilities running
at 70 − 80% capacity and they meet extra demands by working overtime
(Tully 1994). Thus a contractor who is already employed may have to over-
utilize his assets if he works for another client, which increases his contracting
costs.

The main difference of contract manufacturing problems from other re-
lational contracting problems is that employment has an impact on future
costs. I explore two main settings that have this feature: sole sourcing and
multiple sourcing. The sole sourcing model is motivated by the electronics
industry, where firms retain some in-house building capacity to limit the ef-
ficiency gains of their contract manufacturer in order to prevent the contract
manufacturer from competing against them. In the sole sourcing model, em-
ployment leads to learning by doing. If the agent works for the principal, he
gets more efficient and hence becomes a potential threat to the principal, if
the principal opts for in-house production the agent slowly becomes less effi-
cient. Multiple sourcing model is motivated by the pharmaceutical industry.
The product is more commodified and an intellectual property holder wishes
to produce a drug via a facility that satisfies some requirements (e.g. FDA
regulations). I model this interaction as a relational contracting setting with
a single principal and multiple agents. The principal wishes to produce a
good but lacks manufacturing capacity. Thus, she outsources production to
at most one agent every period. The agents are sometimes entrenched with
other clients and repeated employment forces the agents to over-utilize their
assets, increasing their costs. If an agent who has other entrenchments is not
employed by the principal, than he has an opportunity to catch-up to his
other obligations, rest, and decrease future costs.

Despite the complexities in these economies, the principal optimal em-
ployment schedule is achieved by a simple index rule and an accompanying
payment rule. The index of an agent depends only on the current cost of
that agent and the payment is tied to the indices.

The simplicity of this policy reveals striking characteristics of the optimal
contract. When making an employment decision, the principal could poten-
tially rely on many factors. These include the entire history of relationships,
all the informal promises she made, or even calendar time. However, the in-
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dex does not depend on these factors, it simply depends on the current cost
of an agent and the mechanics i.e. the underlying law of motion, governing
the cost.

The indices do not depend on calendar time which is particularly signifi-
cant in the sole sourcing model, because the length of the relationship does
not effect the decisions of the principal. The level of efficiency, no matter
how long it took to reach, is the deciding factor.

The indices do not depend on history which has important ramifications
in the multiple sourcing model. In particular, the indices do not depend
on whether an agent has ever worked for the principal or not. This rules
out the insider-outsider phenomena, where preferential treatment is given to
agents with whom the principal has worked before. Loyalty in the form of
keeping promises occurs in the optimal contract, but loyalty in the form of
preferential treatment does not.

The analysis of employment impacting future costs requires novel tech-
niques. In the existing literature, dependence of future costs on employment
is usually abstracted away because it breaks any inherent recursion. The
absence of recursion turns the game into a reducible stochastic game. Un-
like irreducible stochastic games, there are no Folk theorems or equivalent
applicable techniques for characterizing the payoff space and the set of equi-
libria.2 Hence, a new methodology is required for this paper. I show that
the lack of recursion in this game can be tackled by index policies and the
principal’s problem is a relaxed version of a non-standard bandit problem
where I build upon the Whittle (1988) index. Despite the various incentive
frictions and complex relationships, the indices in this paper share some of
the characteristics of the Gittins (1979) index, which was celebrated for its
surprising simplicity.

The index policy approach has several advantages. First, although I fo-
cus on economies where costs are the only phenomena that is dependent on
employment, the methodology is broadly applicable to other scenarios where
recursion might be broken by actions available to the parties such as persis-
tent capital investments, liquidity constraints that are tied to performance,
or reputation build up in different markets. In fact, the methodology can
be further generalized by using multi-mode bandit indices to capture differ-
ent effort levels. Second, the optimal policy will always be time consistent.

2A stochastic game is irreducible if no player has a strategy that can reduce the payoff
relevant stochastic process.
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This is in contrast with the pioneering work of Board (2011) where the op-
timal contract had a discrepancy between insiders and outsiders, which led
to time inconsistencies even with recursion. Finally, the index policy is fully
described and the indices are identified in closed form. For example in the
learning by doing model the closed form enables comparative statics about
the speed of learning and profits.

This paper is organized as follows. After a brief literature review section 2
investigates the sole sourcing model. Section 3 investigates the commodified
product case with entrenchments. Section 4 gives a brief overview of the
methodology. Finally, section 5 concludes. All the proofs are relegated to
the appendix.

1.1 Related Literature

This paper builds on a large number of relational contracting papers. This is
a vast literature that I do not survey here. Malcomson et al. (2010) provides
an excellent survey.

The sole sourced contract manufacturing model explores learning by do-
ing in a dynamic setting. A comprehensive survey for learning by doing
is Thompson (2010), as noted, dynamic models quickly become intractable,
hence much of the existing analysis has been made in restricted settings. The
closest models are Plambeck and Taylor (2005) and Gray, Tomlin, and Roth
(2009) as they explore learning by doing in a contract manufacturing setting,
albeit limited to two periods.

The classic references to the entrenchment model are Levin (2002), Board
(2011), and Andrews and Barron (2013) since they feature multiple agents
in a relational contracting setting.

The critical problem for the principal in both settings is to find an opti-
mal employment schedule even though there is no inherent recursion in the
game. Bandit problems are also scheduling problems which need not recur
thus I build upon techniques in the bandit literature. From a methodological
perspective, approaching the principal’s problem as a bandit problem is dif-
ferent from canonical papers in relational incentive contracting, such as Levin
(2003), Baker, Gibbons, and Murphy (2002), and Malcomson et al. (2010).
Most of the literature utilizes inherent recursion to take advantage of various
Folk theorems, which enables a strong characterization of the payoff space
and from this space pick the principal optimal one. The main advantage of
a bandit approach is that it allows for an easily implementable policy when
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there is no recursion while still delivering the principal optimal behavior.
Within the bandit literature this paper builds upon restless bandit prob-

lems. Gittins, Glazebrook, and Weber (2011) provides an excellent treatment
of this literature, and Nino-Mora et al. (2001), Glazebrook, Nino-Mora, and
Ansell (2002), Nino-Mora (2002), Glazebrook, Ruiz-Hernandez, and Kirk-
bride (2006), Glazebrook, Hodge, Kirkbride, et al. (2013) are notable contri-
butions. Restless bandits are bandit problems where even the arms that are
not operated continue to give rewards and to change states, albeit at differ-
ent rates. The pioneering work in that literature is Whittle (1988), where
he derives a heuristic index based on a Lagrangian relaxation of the undis-
counted problem. Papadimitriou and Tsitsiklis (1999) showed that general
restless bandits are intractable and even indexability of the problem is hard
to ascertain. However, here I show that in this special case of bi-directional
restless bandits the intractability can be bypassed via using an equivalence of
policies to calculate indices in closed form. In order to do this, I build upon
the work of Glazebrook, Ruiz-Hernandez, and Kirkbride (2006). Finally I
build upon Jacko (2011) to show that the index policy is optimal.

Finally, as a generalization of bandit problems this paper also utilizes
some general existence results on Markov decision problems. This is also a
vast literature that I do not survey here, Blackwell (1965) is an important
pioneering work, and Puterman (2014) provides a remarkable treatment of
the literature.

2 Single Sourcing and Learning by Doing

In this section, I investigate the optimal relational contract between a single
powerful contract manufacturer and a single client. In situations where the
client’s product is novel and complex, it becomes nearly impossible for the
client to replace a CM. In such cases “an ambitious, upstart CM may decide
to build its own brand and forge its own relationships”. (Arrunada and
Vázquez 2006)

Formally, there are two players, 1 principal (she) and 1 agent (he). Time
is discrete and the horizon is infinite, and both players discount future payoffs
with a discount factor δ ∈ (0, 1). At each period t the following events unfold:

• The agent’s production cost ct is realized and becomes publicly known.

• The principal makes an offer to the agent that specifies a production
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source that is either in-house or the agent, and a payment to the agent.

• The agent decides whether to accept the offer not. If the agent is
accepts production and payments happen as contractually specified,
in addition if the source of production is the agent, the principal also
covers the cost ct. Alternatively the agent can reject the contract and
enter into competition with the principal by paying a fixed fee F . If
the agent enters into competition the principal is forced to produce
in-house from that period onward.

A history at period t consists of all the employment decisions and all
the payments made as well as all the costs, ht = ((I0, p0, c0), (I1, p1, c1),
. . . , (I t, pt, ct)) up to period t. Given that the strategic interaction ends once
the agent enters I implicitly assume that the agent has not entered until
period t while considering a period t history. The set of all histories at pe-
riod t, t + 1, . . . generate a growing sequence of σ-algebras, i.e. a filtration,
{Ft}. The probability triple (i.e. the filtered probability space) is given by
(Ω, {Ft}, P ) where, Ω is the set of all histories P is the probability measure
over Ω and {Ft} is the natural filtration. Let E denote the expectation oper-
ator associated with P . Throughout the analysis I focus on pure strategies.
The principal’s strategy denoted as π is a Ft measurable plan of employment
decisions and payments {I t, pt}t∈N. The agent’s entry decision is an extended
stopping time τe on (Ω, {Ft}, P ), τe : Ω→ N∪{∞} such that the event τe ≤ t
is Ft measurable. A tuple (π, τe) is called a relational contract.

Throughout I assume there is open book accounting and the costs of
production is borne by the agent but paid in full by the principal. In this
section only I abstract away from explicitly modeling potential frictions such
as hold up problems which are prevalent in contract manufacturing. However
hold up will be considered more explicitly in the following section. In this
section such cases can readily be encompassed into the model. The fixed
cost F in principle could take into account future benefits and liabilities of
holding up the principal.

2.1 Costs and Per Period Payoffs

2.1.1 Costs

If the agent works for the principal he may get more efficient. However,
when the principal opts for in-house production the agent is away from the
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technological frontier and may become less efficient in producing cutting
edge products. Formally, the costs of production for the agent is a controlled
Markov chain with a finite state space. For simplicity I assume the following
cost structure and law of motion: The cost of the agent in period t is ct ∈ C ≡
{c1, c2, . . . , cn−1, cn} ⊂ R+ with n ∈ N. The costs are weakly increasing i.e.,
c1 ≤ c2 ≤ . . . cn and satisfy the following convexity assumption: ck − ck−1 ≤
ck+1 − ck for 1 < k < n. That is the efficiency gains get smaller as the agent
moves along the learning curve.

If the production is outsourced to the agent in period t, then the costs
decrease according to the following distribution:

(ct+1|I t = 1, ct = ck) =


ck with 1− r probability if ck > c1

ck−1 with r probability if ck > c1

ck if ck = c1

(CD)

Here a single parameter (r) captures the speed of learning. When r is higher
the agent is likely to experience cost reduction when working. When r is
low the agent is likely to stay with the same cost even if he works. On the
other hand when the principal produces in-house, the agents cost increase
according to the following distribution:

(ct+1|I t = 0, ct = ck) =


ck+1 with q probability if ck < cn

ck with 1− q probability if ck < cn

ck if ck = cn

(CU)

Similarly, the parameter (q) captures the speed of forgetting in this formula-
tion. When q is higher the agent is likely to lose efficiency when not working.
When q is low the agent is likely to stay with the same cost even if he doesn’t
work.

This cost structure captures learning by doing in a simple manner. As
the agent does more work for the principal he gets more efficient, when he
doesn’t work he slowly loses this efficiency.

An alternative interpretation of the cost structure that fits the electronics
industry is as follows. Over time the production of cutting edge technology
incrementally becomes more demanding and technically involved, working
enables the contract manufacturer to at least keep up with the requirements
of the current frontier, while not working the agent may fall behind if the
frontier moves forward and become less proficient.
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In order to capture learning by doing, I assume that at the beginning of
the game the agent is at the beginning of the learning curve, i.e. c0 = cn.

2.1.2 Actions and Per Period Payoffs

The profits from production depend on the market structure (i.e. the number
of producing firms) which, in this model is determined by whether the agent
has entered the market or not. I assume that there are no learning opportu-
nities in the in-house production as the principal has already done the R &
D. The inefficiency in the in-house production arises because the principals
production capabilities are small compared to the agent and hence, does not
have similar scale economies.

Given a relational contract (π, τe) the period t payoff of the principal
up(c

t, π, τe) is given by:

up(c
t, π, τe) =


vo − ct − pt if I t = 1 and P (τe > t|Ft) = 1

wo − pt if I t = 0 and P (τe > t|Ft) = 1

we o.w.

The period t payoff of the agent denoted by uao is as follows:

ua(c
t, π, τe) =


pt if P (τe > t|Ft) = 1

ve − ct − F if P (τe = t|Ft) = 1

ve − ct if P (τe < t|Ft) = 1

I assume we < wo and ve < vo so competition reduces the profits for both
parties.

2.2 Payoffs and Constraints

Given a relational contract (π, τe) the total discounted payoff to agent Ua(π, τe)
is as follows:

Ua(π, τe) = E(
τe−1∑
t=0

δtpt +
∞∑
t=τe

δt(ve − ct)− δτeF |π, τe) (2.1)

Given a relational contract (π, τe) the total discounted payoff of the prin-
cipal Up(π, τe) is as follows:
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Up(π, τe) = E(
τe−1∑
t=0

δt(I t(vo − ct) + (1− I t)wo − pt) +
∞∑
t=τe

δtwe|π, τe) (2.2)

The payoff of the agent when he enters the market is dependent only on
his cost level when he enters. Thus the payoff of the agent after he enters
the market with a ck is:

U e
a(k) = E(

∞∑
t=0

δt(ve − ct)|c0 = ck)− F

=
k−2∑
n=0

(
rδ

1− δ(1− r)

)n
ve − ck−n

1− δ(1− r)
+

(
rδ

1− δ(1− r)

)k−1
ve − c1

1− δ
− F

Finally the agents profits net of the fixed cost after entry with cost level ck
is denoted A(k) and is given by:

A(k) = U e
a(k) + F

I assume the following:

Assumption 1.

(1− δ + δr)wo + δq(vo − cn)

(1− δ)(1− δ + δr + δq)
− U e

a(n− 1) ≥ we
1− δ

Assumption 1 guarantees that that the principal doesn’t want to compete
in the long run. That is the payoff from maintaining the relationships is
larger than eventually allowing the agent to enter. When assumption 1 is not
satisfied, the length of a principal optimal relationship is almost surely finite,
which yields an optimal control problem, there is large body of literature on
such problems, thus I restrict attention to relationships of infinite length.

Assumption 2.
U e
a(n) ≥ 0

10



Assumption 2 guarantees that entry yields non-negative profits for the
agent.3

In order to make sure that the agent doesn’t enter, it must be the case
that for any period the continuation utility for the agent from that period
onward is greater than entering the market. For any period t̂

E(
∞∑
t=t̂

δt−t̂pt|Ft̂) ≥ E(
∞∑
t=t̂

δt−t̂ve − ct|Ft̂)− F. (ICA)

Analogously the incentive constraint of the principal takes the following
form for any period t̂:

E(
∞∑
t=t̂

δt−t̂(I t(vo − ct) + (1− I t)wo)−
∞∑
t=t̂

δt−τpt|Ft̂) ≥
we

1− δ
(ICP )

With all the constraints identified, the principal’s problem can be summed
up as follows:

Problem 1 (Principal’s Problem).

max
{{pt},{It}}t∈N

E(
∞∑
t=0

δtI t(v − ct + (1− I t)wo)−
∞∑
t=0

δtpt)

subject to ICA

ICP

2.3 The Principal Optimal Contract

Under assumption 1, in the principal optimal relational contract the agent is
sometimes employed and sometimes isn’t but is paid enough payments such
that agent never enters. In this section I first identify the payment rules that
satisfy the agents incentive constraints, then I identify the optimal schedule
of outsourcing.

3Assumption 2 is for simplifying the strategy space, it is possible to consider an ex-
tended model where the agent can reject the offer of the principal but not enter. Since
rejection only happens off-path, the assumption guarantees that the optimal punishment
is entry in this broader model. This broader model without the assumption also results
in a qualitatively similar contract but with a slightly different payment scheme.
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2.3.1 The Payment Rule and Thresholds

The following definitions will be important to find the optimal contract.

Definition 1 (Monotone Payments). A monotone payment scheme is identi-
fied by Markovian payments that depends on the current efficiency level of the
agent and whether or not the agent is employed, (pt|ct = ck, I

t = 1) = pa(ck)
and (pt|ct = ck, I

t = 0) = pp(ck) where,

pa(ck) =ve − ck − (1− δ)F

pp(ck) =
A(k − 1) (1− 2δ + δ2 + δq + δr − δ2q − δ2r)

1− δ + δr

− F (1− 2δ + δ2 − δr − δ2r)− (ve − ck)δq
1− δ + δr

The agent can threaten to enter into the market regardless of whether the
principal wants to outsource in that period or not. However, the threat de-
pends on the current efficiency level of the agent thus the monotone payments
reflect only this dependence.

Before fully describing the optimal contract, it is useful to introduce the
following definition and highlight its importance.

Definition 2 (Monotone Utilization Policies). A policy is called monotone
utilization policy if ∃k ∈ {1, 2, . . . , n} such that for all j < k ct = cj ⇒
I(t) = 0 and for all l ≥ k ct = cl ⇒ I(t) = 1

A policy is called monotone utilization policy with threshold k if the
agent is utilized whenever his costs are greater or equal to ck and he is never
employed if his costs are below ck.

2.3.2 An Optimal Monotone Policy Pair

In the appendix propositions 3 and 4 show that a monotone utilization policy
with monotone payments is an optimal solution to the principal’s problem.
The threshold for the monotone utilization policy is characterized by indices.

Definition 3. The index of state cx denoted by λ(cx) is given by

λ(cx) =
fxx − fxx+1

gxx − gxx+1
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Where

fxx =
(1− δ + δq)

(1− δ)(1− δ + δr + δq)
(vo − cx − pa(cx))

+
(δr)

(1− δ)(1− δ + δr + δq)
(wo − pp(cx−1))

fxx+1 =
δq

(1− δ)(1− δ + δr + δq)
(vo − cx+1 − pa(cx+1))

+
(1− δ + δr)

(1− δ)(1− δ + δr + δq)
(wo − pp(cx))

gxx =
(1− δ + δq)

(1− δ)(1− δ + δr + δq)

gxx+1 =
δq

(1− δ)(1− δ + δr + δq)

The index of state cx captures the time normalized marginal change in
profits by adding the state cx to the monotone utilization policy x+ 1.

Theorem 1. In the optimal policy, there ∃k∗ such that, for all k ≥ k∗,
ct = ck ⇒ I t = 1 and for all l < k∗, ct = cl ⇒ I t = 0 . And k∗ is the smallest
integer that satisfies:

λ(ck∗) ≥
(vo − ve + (1− δ)F − δwe)(1− δ + δr + δq)

1− δ + δr

The dynamics of the relationship is driven by the learning opportunities
available to the agent hence comparative statics with respect to learning are
of particular importance. Due to the relatively simple policy and the closed
form of the index it is possible to investigate these relationships.

Proposition 1. As the speed of learning, r, increases, the profits of the
principal and the expected discounted time the agent spends working, decrease.

Proposition 1 highlights the tension in the relationship as the learning
opportunities increase. The decreasing profits for the principal that arises
from higher speed of learning may at first seem surprising but has a very
clear intuition. A higher speed of learning increases the predatory threat of
the agent, that is an agent who learns faster may be able enter the market
and compete with the principal sooner. Thus, the principal has to pay higher

13



wages to prevent entry at the threshold level. Moreover due to faster learning
the time that the agent is utilized for production at the threshold level also
decreases leading to loss of profits for the principal since the agent is more
efficient. Finally, due to monotone payments the gains arising from faster
learning before the threshold is reached goes to the agent. Thus there is no
change to the principal’s profits before the threshold is reached. The three
effects combined leads to a loss for the principal arising from a faster learning
agent.

When choosing the optimal threshold the principal must consider two
factors, first is the effect of utilizing the agent on profits, second the ef-
fect of this utilization on the threat of entry. The index λ(cx) captures the
marginal gains in profits from a utilization decision. An important feature
of the optimal policy is that the payments become larger as the agent gets
more efficient. That is, as the agent gets more efficient the profit gains from
utilization decrease, whereas the payments necessary to maintain the rela-
tionship increase. The driving factor for this result is that a gain in efficiency
increases the outside option of the agent. Thus the efficiency gained precisely
by working for the principal is used to threaten the principal. At the most
efficient level that is reached the agent does not work but is paid just to make
sure he does not enter.

3 Commodified Product and Entrenched CMs

In this section I investigate the optimal relational contract between a single
principal and multiple, imperfectly substitutable contract manufacturers. In
situations where the product of the principal is commodified a principal usu-
ally maintains relationships with multiple contract manufacturers. This is
due to the fact that sometimes the contract manufacturers are entrenched
with other principals (unmodeled). In this case a contract manufacturer can
still work albeit at higher costs due to the overwork required. Moreover since
the product is commodified hold-up becomes a more relevant threat.

Formally, there are N + 1 players; 1 principal (she) and N agents (he).
Time is discrete and the horizon is infinite i.e., t ∈ N. All parties share
a common discount rate δ ∈ (0, 1). At each period t the following events
unfold:

• Agents’ production costs ct = (ct1, . . . , c
t
N) are realized and become

publicly known.
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• The principal chooses at most one agent i ∈ N to utilize and pays
the cost cti, and promises pti out of production. Agents can refuse the
investment before it is made. Formally, let I ti ∈ {0, 1} denote the
principal utilizing agent i in period t.

• The utilized agent manufactures the product of value v and pti is given
to agent v − pti to the principal. Alternatively the agent can hold up
the principal during production and demand up to v− li, where li < v.

In case of contract manufacturing, firms often outsource the entire pro-
duction, and many aspects of the process are not contractible. The maximum
on the hold up, v−li, captures the liabilities associated with intellectual prop-
erty rights of the principal and potential costs of litigation associated if the
agent tries to hold up the principal. The bargaining power of an agent de-
pends on the size of his liabilities li. The case of 0 liabilities becomes a pure
hold-up problem where agents enjoy full bargaining power.

A history at period t consists of all the employment decisions and all the
payments made as well as all the costs, ht = (({I0

i }i∈N , {p0
i }i∈N , {c0

i }i∈N),
({I1

i }i∈N , {p1
i }i∈N , {c1

i }i∈N), . . . , ({I ti}i∈N , {pti}i∈N , {cti}i∈N)) up to period t.
The set of all histories at period t, t + 1, . . . generate a growing sequence
of σ-algebras, i.e. a filtration, {Ft}. The probability triple (i.e. the filtered
probability space) is given by (Ω, {Ft}, P ) where, Ω is the set of all histories
P is the probability measure over Ω and {Ft} is the natural filtration. Let
E denote the expectation operator associated with P . Principals strategy
denoted as π is a Ft measurable plan of employment decisions. Formally,
{{I ti}i∈N}t∈N, where I ti = 1 if agent i is selected at period t and 0 otherwise.
Similarly pti denotes the non-contractible fee that i receives from the princi-
pal. I assume that payment can only be made when an agent is producing
for the principal, thus I ti = 0 ⇒ pti = 0. An agents strategy denoted by
σi is a F measurable plan of fees demanded {pti}t∈N A tuple (π, σ), where
σ = (σ1, . . . , σN) is called a relational contract.

3.1 Costs and Per Period Payoffs

3.1.1 Cost Structure, Entrenchment and Average Demand

In the previous section working could lead to a decrease in costs due to
learning. However, it is often the case that learning is not the main aspect
of the dynamics in a commodified product. The main aspect is rather based
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upon the effect of over-utilizing assets. A frequent use of employment may
lead to higher costs and not lower as in the case of learning by doing. In
addition in this section I allow for multiple agents. When an agent is not
working for the principal, he does not encounter any capacity constraints.
Thus his costs decrease to a lower bound. On the other hand if an agent
is employed by the principal, he may encounter capacity problems. He may
have to over-utilize his assets (e.g., pay overtime) and his contracting costs
will increase due to over-utilization. Formally, principal’s costs of investing in
an agent is a controlled Markov chain with a finite state space. For simplicity
I assume the following cost structure and law of motion: The cost of an agent
i at period t is cti ∈ Ci ≡ {ci,1, ci,2, . . . , ci,ni−1, ci,ni

} ⊂ R+ with ni ∈ N. The
costs are weakly increasing i.e., ci,1 ≤ ci,2 ≤ . . . ci,ni

and satisfy the following
convexity assumption: ci,k − ci,k−1 ≤ ci,k+1 − ci,k for 1 < k < ni. The whole
vector of costs in period t is denoted ct = (ct1, . . . , c

t
N) ∈ C1 × . . . CN .

I assume v > ci,ni
for all i, so if there were no payments to the agents, the

principal would always like to produce. Similarly the liabilities are smaller
than the cost of production, thus for all i, ci,1 > li. If agent i is chosen
by the principal in period t, his costs increase according to the following
distribution:

(ct+1
i |I ti = 1, cti = ci,k) =


ci,k+1 with qi probability if ci,k < ci,ni

ci,k with 1− qi probability if ci,k < ci,ni

ci,k if ci,k = ci,ni

(CU)

If agent i is not chosen by the principal in period t, he catches up with his
entrenchments and his costs decrease to their initial levels:

(ct+1
i |I ti = 0, cti = ci,k) = ci,1 (CD)

This cost structure displays entrenchments and spillovers in the economy in a
simple manner. CU captures the upward movements in costs due to reaching
capacity constraints after being employed and CD captures the reinitializa-
tion. So, demand for an agent increases his costs (price of employment), and
the spillover from demand for an agent is the opportunity generated for other
agents to catch up on their entrenched work/rest so that their future costs
are not as high.

Finally I assume that there is a normalized per period demand of 1 for
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the good, thus principal contracts with at most one agent in every period:∑
i∈N

I ti ≤ 1

3.1.2 Actions and Per Period Payoffs

The period t payoff of the principal denoted up(c
t, π) given a relational con-

tract (π, σ) is given by

up(c
t, π, σ) =

N∑
i=1

I ti (v − cti − pti)

The period t payoff of an agent i denoted ui(c
t, π) given a relational

contract (π, σ) is given by

ui(c
t, π, σ) = I tip

t
i

3.2 Payoffs and Constraints

The total discounted payoff of agent i denoted Ui(π, σ) given (π, σ) is as
follows:

Ui(π, σ) = E(
∞∑
t=0

δtI tip
t
i|π, σ) (3.1)

Similarly the profits of the principal Up(π, σ) given (π, σ) is as follows:

Up(π, σ) = E(
∞∑
t=0

N∑
i=1

δtI ti (v − cti − pti)|π, σ) (3.2)

From the profits it is easy to isolate the profits raised from agent i as follows:

U i
p(π, σ) = E(

∞∑
t=0

δtI ti (v − cti − pti)|π, σ)

Since the principal only incentivizes agents when they are employed, the
incentive constraint depends on the times she employs agent i. Let τi,1 =
inf{t ≥ 0 : I ti = 1} denote the first time agent i is employed by the principal.
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Inductively, let τi,n = inf{t > τi,n−1 : I ti = 1} denote the nth time agent i is
employed by the principal. Thus the sequence of random variables {τi,n}n∈N
denotes all the periods that agent i is utilized by the principal. Hence, the
incentive constraint takes the following form:

E(
∞∑
k=n

δτi,k−τi,np
τi,k
i |π, σ) ≥ E(I

τi,n
i (v − li)) for all n. (ICi)

Analogously the incentive constraint of the principal takes the following
form:

E(
∞∑
k=n

δτi,k−τi,n(v − cτi,ki − pτi,ki )|π, σ) ≥ 0 for all n for all i. (ICP )

Notice that this incentive condition implies that the punishments are bilat-
eral. The main reason for this is to broaden the scope of industries captured
by the model. Depending on the industry, agents may or may not be able
to jointly punish a principal, but if a relational contract is sustainable under
bilateral punishments, then it is necessarily sustainable when multiple agents
cooperate to punish the principal.

With all the constraints identified, the principal’s problem can be summed
up as follows:

Problem 2 (Principal’s Problem).

max
{{pti}i∈N ,{Iti }i∈N}t∈N

E(
∞∑
t=0

N∑
i=1

δtI ti (v − cti − pti))

subject to ICi ∀i
ICP

3.3 The Principal Optimal Contract

The principal optimal contract consists of employment decisions and pay-
ments. In this section, first I identify a simple payment rule that gives away
the minimal economic rents for any employment rule. Then, I identify the
optimal employment rule.
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3.3.1 Fastest Prices

Once an employment rule is chosen payments can be done in a myriad of
ways while satisfying the incentive constraints of the agents. The fastest
prices were introduced in Board (2011) as a payment scheme that satisfies
the incentive conditions for all agents at every period with equality, i.e., while
giving minimum economic rents. The remarkable feature of fastest prices is
that they tie payments directly to employment, without relying on any other
variables.

Definition 4 (Fastest Prices). For any employment rule {I ti}t∈N, the fastest
prices are given by

p
τi,n
i = (v − li)E(1− δτi,n+1|τi,n) for all n ∈ N

Proposition 2 (Board). For any employment rule {I ti}t∈N, no pricing rule
can yield higher profits than fastest prices.

The proof of proposition 2 is identical to Board (2011), hence omitted.

3.4 Optimal Employment Rule

The optimal employment rule is crucial since the payment rule can be readily
characterized for a given employment rule using fastest prices. Hence, the
behavior of the entire principal optimal contract depends on the properties
of the employment rule.

Despite the complex nature of the problem, the optimal employment rule
is surprisingly simple. The optimal employment rule is an index rule. In
particular, each agent is assigned an index that is only dependent on his
current cost, and the principal employs the agent with the highest index
given that the index is positive. If all indices are negative, the principal does
not employ any agent.

Definition 5. The index of agent i at state ci,x is given by :

λi(ci,x) =
fxi,x − fxi,x+1

gxi,x − gxi,x+1
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Where

gxi,x =

1
1−δ(1−qi) + δ qiδ

1−δ(1−qi)

[∑x−2
n=0

1
1−δ(1−qi)

(
δqi

1−δ(1−qi)

)n]
1− δ

(
δqi

1−δ(1−qi)

)x
gxi,x−1 =

δ
[∑x−2

n=0
1

1−δ(1−qi)

(
δqi

1−δ(1−qi)

)n]
1− δ

(
δqi

1−δ(1−qi)

)x−1

fxi,x =

v−ci,x
1−δ(1−qi) + δ qiδ

1−δ(1−qi)

[∑x−2
n=0

v−ci,n+1

1−δ(1−qi)

(
δqi

1−δ(1−qi)

)n]
− (v − l)

1− δ
(

δqi
1−δ(1−qi)

)x
fxi,x−1 =

δ
[∑x−2

n=0
v−ci,n+1

1−δ(1−qi)

(
δqi

1−δ(1−qi)

)n]
− δ(v − l)

1− δ
(

δqi
1−δ(1−qi)

)x−1

Theorem 2. The optimal employment rule is characterized by a set of indices
{{λi(ci,x)}ci,x∈Ci

}i∈N ,

I ti = 1⇔ λi(c
t
i) = max

i∈I
{λi(cti)} and λi(c

t
i) ≥ 0

When making employment decisions the principal could potentially be
relying on the entire history of all the relationships she maintains, as well as
all the promises she made. However, the optimal employment scheme takes
a rather simple form. The indices only depend on the current cost level
of an agent. In an economy with heterogenous agents and laws of motion,
the indices provide a simple employment scheme to maximize profits, where
just employing the cheapest agent is a simple, but not necessarily profit
maximizing policy.

An important feature of the index is that it does not depend on employ-
ment history. Thus, in an optimal employment rule, whether an agent has
worked or not for the principal does not factor into the employment decision.
In particular the index of an agent does not depend on the employment his-
tory of any agents, including himself. So, in the optimal contract an agent
who has worked for the principal does not receive preferential treatment over
an agent who has never worked for the principal before.

Moreover initial costs do not factor into the indices either. In particular,
at the start of a relationship an agent might have significant cost advantages
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or disadvantages, resulting in very frequent or very rare employment in the
early periods. However, these frequencies do not necessarily last throughout
the game. Where an agent starts from has no bearing on the relationship in
the long run.

Finally, the indices do not depend on other agents at all. Any employ-
ment decision necessarily implies that some agents are preferred over others.
However, in the optimal contract this preference is simple comparison. The
principal compares the agents by their marginal contribution to her profit and
only utilizes the best one, given that the best one still guarantees positive
profits. Adding or removing inefficient agents does not alter this comparison
at all.

There are two kinds of loyalty that could be considered in this setting.
The first one is being loyal to promises, that is, if the principal promises
future work she will indeed employ the agents in the future. The principal is
loyal to her promises, in the sense that any employment promise she makes
will be fulfilled in finite time. This is especially important since the entire
economy need not follow a recurring pattern, even in the very long run,
unless the strategies chosen by the players are precisely intended to cause
the economy to recur. When recursion is easily avoidable, breaking promises
is a very plausible strategy, unlike a repeated environment. However, even
though the optimal contract does not start with a cyclical pattern, a patient
principal will maintain her relationships by being loyal to her promises and
will eventually converge to a cyclical employment pattern. The second kind
of loyalty that could be considered is preferential treatment of agents based
on a longer employment history. As the indices do not depend on history at
all, this kind of loyalty is not present in the optimal contract.

4 A Short Description of the Methodology

The optimal contracts identified in this paper are mostly tied to the opti-
mal utilization schedules which are characterized by indices. Index policies
are unorthodox in relational contracting settings, but they are prevalent in
bandit problems. The pioneering work of Gittins (1979) showed that some
bandit scheduling problems can be solved by a rather simple index policy,
which is characterized arm by arm via identifying indifference points. The
methodology for solving the principal’s problem is slightly more involved
than a bandit problem but capitalizes on the same idea.

21



The main reason for utilizing a bandit approach is that existing Folk
theorem based approaches are inapplicable. In the setting that I explore the
inapplicability arises from the fact that costs are tied to employment. In par-
ticular players have the power to reduce the payoff relevant state space by
refusing to work/employ, turning the game into a reducible stochastic game.
Unlike irreducible games, reducible games do not have Folk Theorems. Re-
ducibility necessarily breaks down recursion since some continuation payoffs
that are currently available need not be available ever again, which prohibits
Folk like results relying on the payoff space to be independent from the
strategies of players at least in the very long run. This lack of ability to use
recursion is not limited to the current setting either, such a phenomena is
bound to occur in other settings where a player’s decisions have long lasting
effects; such as liquidity constraints tied to performance, long lasting invest-
ments, or settings where the recurring payoff space is very hard to deal with
such as cases where players have different discount factors. Hence, a new
methodology is required. Since relational contracts are essentially schedul-
ing problems, (whether it is a problem of when to employ or when to induce
effort), bandit techniques are applicable.

In order to utilize bandit techniques, the first step is to transform the
principal’s problem. The critical feature that is utilized here is the existence
of payments, which enables handling forward looking constraints in a Marko-
vian fashion by tying them to utilization. This is a relaxation of the original
problem, but the transferable utility achieved by the presence of money en-
sures that the solution to the relaxed problem is feasible in the constrained
problem as well. Once the forward looking constraints of the agents are set-
tled the optimization readily resembles a standard bandit problem, with one
caveat: the arms that are not pulled also change their state. Such a problem
is readily found in the the bandits literature as restless bandits.

The work on restless bandits was pioneered by Whittle (1988), based
on a Lagrangian relaxation of the utilization constraint, as the non-relaxed
problems are generally intractable as shown by Papadimitriou and Tsitsiklis
(1999). However, even the relaxed problems are not guaranteed to be solved
by index policies, and ascertaining that a problem is indexable is a daunting
task. Furthermore like the Gittins (1979) index, calculating indices in closed
form is also usually not feasible. In order to tackle these problems I utilize
the bi-directional nature of the cost structure, building upon the work of
Glazebrook, Kirkbride, and Ruiz-Hernandez (2006) and Niño-Mora (2007)
and acquire indices in closed form, which enables ascertaining the indexability
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of the problem via monotonicity of the indices. Finally, for the optimality of
the index policy I build upon the work of Jacko (2011).

The index has a natural interpretation in an economic setting. Consider
a single agent problem where employment yields the same returns, and un-
employment yields a subsidy equal to λ and the problem is to choose when
to employ the agent. Utilizing the fact that employment and unemployment
force the costs to go into opposite directions, the optimal policies in the sin-
gle agent problem can be shown to be threshold policies. Utilizing threshold
policies, the subsidy level for indifference of employment at particular cost
values can be identified in closed form and yields the indices much like Gittins
(1979) index. The main characteristics of the indices are quite similar, they
provide a way to capture the marginal value of employing an agent/activating
an arm in a state, taking into account the entire law of motion. They do not
depend on other agents, they do not depend on history, they only depend on
the current state. The original Gittins index policy is for a problem where
arms that are not pulled remain the same, thus the Gittins index has the
natural interpretation as the time normalized average returns of utilization
and looks like a stopping problem. The index identified here captures the
time normalized marginal returns to utilization and is a problem of selecting
an active and passive set.

The two different settings are essentially solved by utilizing similar tech-
niques highlighting the applicability of the methodology. Despite differences
in incentive conditions, differences in the number of agents and the non-
recursive nature, this new approach promises wide applications to economic
problems where lack of recursion causes technical challenges.

5 Conclusion

Outsourcing entire manufacturing of a product allows original equipment
manufacturers to reduce labor costs, free up capital, and improve worker
productivity (Arrunada and Vázquez 2006). Global contract manufacturing
had an expected volume of $515 billion in electronics industry and $40.7
billion in pharmaceutial industry (Rajaram 2015, Pandya and Shah 2013).
Under such potential gains contract manufacturing is inevitable, though it
entails inescapable hazards. (Arrunada and Vázquez 2006). This paper
explores two frequent problems, under different incentive conditions. First, I
explore potential predation by a single contract manufacturer when there are
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opportunities for learning by doing. Second, I explore a setting with multiple
contract manufacturers where entrenchments and hold up opportunities are
need to be navigated.

In the first setting the opportunity to learn by working for the client has
two effects, while it becomes cheaper to employ the contract manufacturer as
he gets more efficient, under the threat of predation the efficiency gains are
only enjoyed by the contract manufacturer. The principal tries to limit the
rents that need to be paid by stopping utilization once the agent becomes
too efficient. As the contract manufacturer loses its edge by being kept out
of production, he is employed again. The rents that need to be paid slowly
increases as the agent becomes more efficient and reaches a maximum when
utilization is stopped.

In the second setting a commodified product with multiple potential con-
tractors poses new incentive frictions. As McCoy (2003) notes, entrenchment
is a frequent problem, and changes the dynamics of not one, but multiple bi-
lateral relationships. This paper characterizes the optimal policy completely.
The optimal policy is time consistent, and is in a simple closed form charac-
terized by indices. The principal keeps her promises, but she does not prefer
one agent over another just because she had employed one of them in the
past. So, past employment does not lead to preferential treatment.
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6 Appendix

In most calculations it is necessary to utilize a common version (see Serfozo
(2009)) of Wald’s identity for discounted partial sums with stopping times.
For convenience I will include the identity here as well.

Identity 1 (Wald’s Identity for Discounted Sums). Suppose that X1, X2, . . .
are i.i.d. with mean x̄. Let δ ∈ (0, 1) and τ be a stopping time for X1, X2, . . .
with E(τ) <∞ and E(δτ ) exists. Then

E(
τ∑
t=0

δtXt) =
x̄(1− δE(δτ ))

1− δ

6.1 Sole Sourcing Model

This is the principals problem in the sole sourcing model(PPS).

max
{{pt},{It}}t∈N

E(
∞∑
t=0

δtI t(v − ct + (1− I t)wo)−
∞∑
t=0

δtpt) (PPS)

subject to

E(
∞∑
t=t̂

δt−t̂pt|Ft̂) ≥ E(
∞∑
t=t̂

δt−t̂ve − ct|Ft̂)− F. for all t̂

E(
∞∑
t=t̂

δt−t̂(I t(vo − ct) + (1− I t)wo)−
∞∑
t=t̂

δt−τpt|Ft̂) ≥
we

1− δ
for all t̂

Consider the following relaxation of PPS:

max
{{pt},{It}}t∈N

E(
∞∑
t=0

δtI t(v − ct + (1− I t)wo)−
∞∑
t=0

δtpt) (RPPS)

subject to

E(
∞∑
t=0

δtpt|F0) ≥ E(
∞∑
t=0

δtve − ct|F0)− F.

Letting VPPS denote the optimal value of PPS and VRPPS denote the
optimal value of RPPS, it must be the case that

VRPPS ≥ VPPS
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Focusing on RPPS, since the action space is compact and the returns
function is upper semi-continous, Puterman (2014) shows that there is an
optimal Markovian solution.

Proposition 3. Any Markovian policy has an equivalent monotone utiliza-
tion policy.

Proof.

Observation 1. Any Markov policy, will map states into payments and uti-
lization decisions. Let π be any Markov policy and let Sπ denote its active
set, such that I t = 1⇔ ct ∈ Sπ.

Notice that the initial cost is cn, and consider any Markov policy π,
identified with its active set Sπ. Let cx = max{c ∈ C : c 6∈ Sπ}. Then by
definition under policy π, for all t ct ∈ {cx+1, . . . cn}. Moreover, for all t,
I t = 1 ⇔ ct > cx. Now, consider the monotone utilization policy that has
the same payment rule as π, identified with cx+1 denoted by πx+1. Then, by
definition under policy πx+1 for all t, ct ∈ {cx+1, . . . cn}. Moreover, for all t,
I t = 1⇔ ct > cx. Thus the two policies are equivalent.

Thus for any Markov policy, starting from any initial state, there is an
equivalent monotone utilization policy.

Proposition 4. For a monotone utilization policy with threshold k, no pay-
ment scheme can yield higher profits than a monotone payments.

Proof. Consider any monotone utilization policy πk with threshold k. Under
a monotone utilization policy πk the CM will be utilized repeatedly until his
costs reach the threshold ck and after reaching the threshold he will be rested
whenever his costs hit ck−1 and will be utilized again when the costs again
rise to ck. Thus, under a monotone utilization policy, all states cl with l > k
are transient and the states ck and ck−1 are recurrent. Given this a monotone
payment scheme satisfies the incentive constraints with equality at all states.

Let T (z)yx denote the expected discounted time spent in cz starting from
state cy under πx.

Starting from the recurrent states, ck and ck−1, the incentive conditions
have to satisfy the following:
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pa(ck)T (k)kk + pp(ck−1)T (k − 1)kk =E(
∞∑
t=0

δtve − ct|c0 = ck)− F

pp(ck−1)T (k − 1)k−1
k + pa(ck)T (k)k−1

k =E(
∞∑
t=0

δtve − ct|c0 = ck−1)− F

Lemma 1. For any 0 < r, q ≤ 1,

T (x)xx =
(1− δ + δq)

(1− δ)(1− δ + δr + δq)
(6.1)

T (x− 1)xx =
δr

(1− δ)(1− δ + δr + δq)
(6.2)

T (x)x−1
x =

δq

(1− δ)(1− δ + δr + δq)
(6.3)

T (x− 1)x−1
x =

1− δ + δr

(1− δ)(1− δ + δr + δq)
(6.4)

Proof of lemma 1. T (x)xx is the unique solution to the following system

T (x)xx = 1 + δ(1− r)T (x)xx + δrT (x)x−1
x

T (x)x−1
x = δqT (x)xx + δ(1− q)T (x)x−1

x

Since expected discounted time is equal to 1/(1− δ), T (x− 1)xx satisfies

T (x− 1)xx = 1/(1− δ)− T (x)xx

Thus,

T (x)xx =
(1− δ + δq)

(1− δ)(1− δ + δr + δq)

T (x− 1)xx =
δr

(1− δ)(1− δ + δr + δq)

Similarly T (x− 1)x−1
x is the unique solution to the following system

T (x− 1)xx = δrT (x− 1)x−1
x + δ(1− r)T (x− 1)xx

T (x− 1)x−1
x = 1 + δqT (x− 1)xx + δ(1− q)T (x− 1)x−1

x

27



Identically, T (x− 1)x−1
x satisfies

T (x− 1)x−1
x = 1/(1− δ)− T (x)x−1

x

Thus,

T (x)x−1
x =

δq

(1− δ)(1− δ + δr + δq)

T (x− 1)x−1
x =

1− δ + δr

(1− δ)(1− δ + δr + δq)

Letting A(k) denote E(
∑∞

t=0 δ
tve−ct|c0 = ck), by utilizing Strong Markov

property and Wald’s identity we have

A(k) =
k−2∑
n=0

(
rδ

1− δ(1− r)

)n
ve − ck−n

1− δ(1− r)
+

(
rδ

1− δ(1− r)

)k−1
ve − c1

1− δ

Finally, noticing A(k) and A(k − 1) satisfies the following identity

A(k) =
δr

1− δ(1− r)
A(k − 1) +

ve − ck
1− δ(1− r)

A straightforward application of Farka’s Lemma implies that there are two
positive numbers pa(ck) and pp(ck−1) that satisfies the incentive conditions
with equality. Solving the system yields

pa(ck) = ve − ck − (1− δ)F

pp(ck−1) =
A(k − 1) (1− 2δ + δ2 + δq + δr − δ2q − δ2r)

1− δ + δr

− F (1− 2δ + δ2 − δr − δ2r)− (ve − ck)δq
1− δ + δr

The incentive condition is satisfied with equality starting from the state ck,
thus for pa(ck+1), letting τk denote inft≥0{t : ct = ck} for the incentive con-
dition to hold with equality we must have:

E(

τk−1∑
t=0

δtpa(ck+1) + δτ (A(k)− F )) =
rδ

1− δ(1− r)
A(k) +

ve − ck+1

1− δ(1− r)
− F
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Plugging in the expectation yields:

(pa(ck+1)))

1− δ(1− r)
+

δr

1− δ(1− r)
(A(k)− F ) =

δr

1− δ(1− r)
A(k) +

ve − ck+1

1− δ(1− r)
− F

Simplifying yields:

pa(ck+1) = ve − ck+1 − (1− δ)F

Inductively for all x ≥ k + 1 we must have

pa(cx) = ve − cx − (1− δ)F

Where the incentive conditions hold with equality at every state. Since the
incentive conditions hold with equality, no payment scheme can yield higher
profits under a monotone utilization policy.

Now, with the monotone payments baked in I introduce the following
augmented return function R(ct|I t), that is conditional on employment.

R(ct|I t = 1) = vo − ct − pa(ct)
R(ct|I t = 0) = wo − pp(ct)

Now, consider the following relaxed hypothetical problem with no con-
straints, and the law of motion for ct is identical to the principals problem.

max
{It}

E(
∞∑
t=0

δtR(ct|I t)) (6.5)

Due to proposition 3 any Markovian policy is equivalent to a monotone
policy. Let πx denote a monotone policy, such that I t = 1 ⇔ ct ≥ cx. Let
fkx denote expected discounted returns under policy πx with initial state ck.
Similarly let gkx denote expected discounted utilization under policy πx with
initial state ck. Formally:

fkx = E(
∞∑
t=0

δtR(ct|I t)|πx, c0 = ck)

gkx = E(
∞∑
t=0

δtI t|πx, c0 = ck)
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Since monotone policies automatically induce a family of nested sets,
utilizing Niño-Mora (2007), the marginal productivity index for any state cx
denoted λ(cx) for the relaxed problem can be readily computed as

λ(ck) =
fxx − fxx+1

gxx − gxx+1

Utilizing the strong Markov property along with Wald’s Identity, the
components of the index can be calculated in closed form.

fxx =
(1− δ + δq)

(1− δ)(1− δ + δr + δq)
(vo − cx − pa(cx))

+
(δr)

(1− δ)(1− δ + δr + δq)
(wo − pp(cx−1))

fxx+1 =
δq

(1− δ)(1− δ + δr + δq)
(vo − cx+1 − pa(cx+1))

+
(1− δ + δr)

(1− δ)(1− δ + δr + δq)
(wo − pp(cx))

Similarly,

gxx =
(1− δ + δq)

(1− δ)(1− δ + δr + δq)

gxx+1 =
δq

(1− δ)(1− δ + δr + δq)

Due to Gittins, Glazebrook, and Weber (2011) we know that that the
index being monotone in the state is a sufficient condition for the problem
to be indexable, hence the index identified indeed captures the marginal
productivity. Furthermore as there is just a single restless arm as shown by
Jacko (2009) the relaxed problem is optimally solved by indices.

The next step is to observe that the optimal solution of the relaxed prob-
lem is feasible in PPS. Due to proposition 4 the incentive constraint of the
agent binds with equality on every history that is reachable under the index
policy. The only thing that needs to be checked is the principals constraint
is satisfied.

Proposition 5. Under a monotone utilization policy with threshold x the
principal’s incentive condition is satisfied at both state cx and cx−1.
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Proof. The proof is by induction, for the basis step observe that under as-
sumption 1, λ(cn) > 0 and the principal’s incentive condition is satisfied
under a monotone policy with threshold n, at both the state cn and state
cn−1.

For the inductive step the following two lemmas are necessary

Lemma 2. If fxx ≥ we/(1− δ) then fx+1
x+1 ≥ we/(1− δ).

Proof of lemma 2. Observe that

fxx =
(1− δ + δq)

(1− δ)(1− δ + δr + δq)
(vo − ve + (1− δ)F )

+
(δr)

(1− δ)(1− δ + δr + δq)
(wo − pp(cx−1))

and

fx+1
x+1 =

(1− δ + δq)

(1− δ)(1− δ + δr + δq)
(vo − ve + (1− δ)F )

+
(δr)

(1− δ)(1− δ + δr + δq)
(wo − pp(cx))

But since pp(cx) ≤ pp(cx−1) we must have, fx+1
x+1 ≥ fxx ≥ we/(1− δ).

Lemma 3. If fxx+1 ≥ we/(1 − δ), and λ(cx) >
(vo−ve+(1−δ)F−δrwe)(1−δ+δr+δq)

1−δ+δr ,
then fxx , f

x−1
x > we/(1− δ).

Proof of lemma 3. λ(cx) > (vo−ve+(1−δ)F−δrwe)(1−δ+δr+δq)
1−δ+δr > 0 implies that

fxx − fxx+1 > 0 since gkk − gkk+1 > 0 for all k. Hence it must be the case
that fxx > fxx+1 > we/(1− δ). Moreover we must have

fxx =
vo − ve + (1− δ)F

1− δ + δr
+

δr

1− δ + δr
fx−1
x

≥ fxx+1 +
(vo − ve + (1− δ)F − δrwe)

1− δ + δr

Since fxx+1 ≥ we/(1− δ), it must be the case,

vo − ve + (1− δ)F
1− δ + δr

+
δr

1− δ + δr
fx−1
x ≥ we

1− δ
+

(vo − ve + (1− δ)F − δrwe)
1− δ + δr
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Rearranging the terms yield

fx−1
x ≥ we/(1− δ)

For the inductive step, assume that for thresholds k + 1 the statement
is true. For state k to be the threshold, it must be the case that λ(ck) >
(vo−ve+(1−δ)F−δrwe)(1−δ+δr+δq)

1−δ+δr . By the inductive hypothesis, it must be the

case that fkk+1 ≥ we/(1 − δ), but then by lemma 3 it must also be the case
that both fkk > fxk+1 > we/(1 − δ), concluding incentive compatibility on
behalf of the principal.

6.1.1 Proof of Proposition 1

Proof of Proposition 1. The proposition follows directly from the following
lemmas and corollaries.

Lemma 4. For any x and −1 ≤ k ≤ n− x, as r increases gx+k
x decreases.

Proof of lemma 4. Starting from the recurrent states:

gxx =
(1− δ + δq)

(1− δ)(1− δ + δr + δq)

gx−1
x =

δq

(1− δ)(1− δ + δr + δq)

are both decreasing in r. For any higher state x+ k for k ≤ n− x.

gx+k
x =

1

1− δ(1− r)

1−
(

rδ
1−δ(1−r)

)k+1

1−
(

rδ
1−δ(1−r)

) +

(
rδ

1− δ(1− r)

)k+1
(δq)

(1− δ)(1− δ + δr + δq)

Differentiating yields

∂gx+k
x

∂r
=− k

δ(1− rδ
1−δ(1−r))

(1− δ(1− r))2
(

rδ

1− δ(1− r)
)k − qδ2

1− δ
( rδ

1−δ(1−r))
k+1

(1− δ + δq + δr)2

+
kqδ2

(1− δ)(1− δ + δr + δq)

δ(1− rδ
1−δ(1−r))

1− δ(1− r)
(

rδ

1− δ(1− r)
)k ≤ 0
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Lemma 5. For any k > 1 as r increases U e
a(k) increases.

Proof of lemma 5. The proof is done by straight forward calculations, for
any state ck,

U e
a(k) =

k−2∑
l=0

(
rδ

1− δ(1− r)

)l
ve − ck−l

1− δ(1− r)
+

(
rδ

1− δ(1− r)

)k−1
ve − c1

1− δ
− F

Differentiating yields

∂U e
a(k)

∂r
=

1

r2δ

[
(k − 1)

(
(v − c1)

rδ

1− δ + δr

)k
+ r2

]

+
k−2∑
l=0

rl−1δl
v − ck−l

(1− δ + δr)l+2
(l(1− δ) + rδ) ≥ 0

From lemma 5 it is easy to ascertain by a straightforward calculation, the
following corollary.

Corollary 1. For any x as r increases pp(cx) increases.

Lemma 6. Holding the threshold constant, the expected profits of the prin-
cipal decrease as r increases.

Proof of lemma 6. Let the threshold level be cx. First, observe that before
due to monotone payments before at any cost level ck ≥ cx higher than the
threshold the monotone payments to the agent for utilization is ve − cl −
(1 − δ)F . But this also implies that above the threshold level the profits
of the principal is independent of the cost level of the agent and equal to
vo − ve + (1 − δ)F . Thus the principal’s expected profits with monotone
payments starting from any state ck ≥ cx is equal to:

fkx = gkx(vo − ve + (1− δ)F ) +

(
1

1− δ
− gkx

)
(wo − pp(cx))

But from lemma 4 and corollary 1 we know that that gkx is decreasing in r,
and pp(cx) is increasing in r. Since (vo − ve + (1 − δ)F ) ≥ (wo − pp(cx)) for
any x, it must be the case that fkx is decreasing in r.

Lemma 7. Expected profits of the principal is weakly decreasing in r.
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Proof of lemma 7. Suppose not, then there exists r′ ≥ r such that the profits
of the principal at the beginning of the game with r′ denoted by fnx∗(r′)(r

′)
is greater than the expected profits of the principal at the beginning of the
game with r, denoted fnx∗(r)(r). Let cx∗(r′) denote the optimal threshold with
learning speed r′ and similarly let cx∗(r) denote the optimal threshold with
learning speed r. By assumption we must have

fnx∗(r′)(r
′) > fnx∗(r)(r)

Now consider the expected payoffs of the principal with the suboptimal
policy, that adopts the threshold cx∗(r′) with learning speed r, denoted by
fnx∗(r′)(r). Since r′ ≥ r by lemma 6 it must be the case that:

fnx∗(r′)(r) ≥ fnx∗(r′)(r
′) > fnx∗(r)(r)

But cx∗(r) is the optimal threshold for learning speed r, thus it must also be
the case that:

fnx∗(r)(r) ≥ fnx∗(r′)(r) ≥ fnx∗(r′)(r
′) > fnx∗(r)(r)

leading to the desired contradiction.

6.2 Multiple Sourcing Model

Fixing the payment rule to be the fastest prices, let Ri(c
t
i) = v − cti − pti.

Similar to the sole sourcing model, consider the following relaxed version of
the principal’s problem.

[
max

{{Iti }i∈N}t∈N
E(

∞∑
t=0

N∑
i=1

δtI tiRi(c
t
i))

]

subject to E(
∞∑
t=0

N∑
i=1

δt(1− I ti )) ≥ 0

ICP

(6.6)
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Ignoring the incentive constraint of the principal, the Lagrangian for the
relaxed problem is as follows

max
{{Iti }i∈N}t∈N

[
E(

N∑
i=1

∞∑
t=0

δt(I tiRi(c
t
i))|c0) + λ

(
E(

N∑
i=1

∞∑
t=0

δt(1− Ii(t))|c0)

)]
Rearranging the terms yield,

max
{{Iti }i∈N}t∈N

E(
N∑
i=1

∞∑
t=0

δt(I tiRi(c
t
i) + (1− Ii(t))λ)|c0) (6.7)

Due to the linearity of expectations equation 6.7 can be further rearranged
as follows:

max
{{Iti }i∈N}t∈N

[
N∑
i=1

E(
∞∑
t=0

δt(I tiRi(c
t
i) + (1− Ii(t))λ|c0))

]
(6.8)

The final iteration yields a relaxed restless bandit problem. Whittle
(1988) has shown that this relaxation is solved optimally arm by arm by
index policies if the problem is indexable. In particular, it is easy to see
that the entire sum is going to be maximized if each individual summand is
maximized. A single summand is a single arm restless bandit problem where
passive rewards are equal to λ.

6.2.1 Single Arm Problems

Each of the summands in problem 6.8 is as follows:

max
{Iti }t∈N

E(
∞∑
t=0

δt(I tiRi(c
t
i) + (1− I ti )λ)|c0

i ) (λ-passive problem for agent i)

For this problem consider the following policies

Definition 6 (Monotone Policies). A policy is called monotone if ∃ĉi ∈
{ci,1, ci,2, . . . , ci,ni−1, ci,ni

} such that for all xi > ĉi Ii(t) = 0 and for all
zi ≤ ĉi Ii(t) = 1

A policy is called monotone if the agent is employed whenever his costs
are below a level ĉi and he is never employed if his costs are higher than ĉi.
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Proposition 6. Any Markovian policy has an equivalent monotone policy.

Proof of proposition 6. Since definition is based on a single agent the nota-
tion regarding the agent is suppressed.

Observation 2. Any Markov employment policy π can be identified by its
active set Sπ, such that I t = 1⇔ ct ∈ Sπ.

Let c0 = ĉ denote the initial state and consider any Markov employment
policy π, identified with its active set Sπ. Let cx = max{c ∈ Sπ : c ≤ ĉ} and
let c̄x = min{c ∈ C \ Sπ : c ≥ ĉ}. There are two possible cases

Case 1. ĉ ∈ Sπ. Under policy π for all t, ct ∈ {ĉ, . . . c̄x}. Moreover, for all
t, I t = 1 ⇔ ct < c̄x. Now, consider the monotone policy, identified with c̄x
denoted by Px̄. Then, by definition under policy Px̄ for all t, ct ∈ {ĉ, . . . , c̄x}.
Moreover, for all t, I t = 1⇔ ct < c̄x. Thus the two policies are equivalent.

Case 2. ĉ 6∈ Sπ. Under policy π for all t, ct ∈ {cx, . . . , ĉ}. Moreover, for all
t, I t = 0 ⇔ ct > cx. Now, consider the monotone policy, identified with cx
denoted by Px. Then, by definition under policy Px for all t, ct ∈ {cx, . . . , ĉ}.
Moreover, for all t, I t = 0⇔ ct > cx. Thus the two policies are equivalent.

Thus for any Markov policy, starting from any initial state, there is an
equivalent monotone policy.

Similar to the previous section the single agent problems can be solved
optimally via an index policy.

For x > y, let σyx denote the time when an agent i who starts in state x
at time 0, and who works every period reaches the state y. Formally:

σyx = inf{t ≥ 0 : (cti) = y and c0
i = x and Is = 1 ∀s ≤ t}.

The expected waiting just before changing state E(δσ
x+1
x −1)

E(δσ
x+1
x −1) =

∞∑
n=0

δn(1− q)nq

=
q

1− δ(1− q)

Let πx denote a monotone policy, such that I t = 1 ⇔ ct ≥ cx. Let
fkx denote expected discounted returns under policy πx with initial state ck.
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Similarly let gkx denote expected discounted utilization under policy pix with
initial state ck. Formally:

fkx = E(
∞∑
t=0

δtR(ct|I t)|πx, c0 = ck)

gkx = E(
∞∑
t=0

δtI t|πx, c0 = ck)

Since monotone policies automatically induce a family of nested sets,
utilizing Niño-Mora (2007), the marginal productivity index for any state cx
denoted λ(cx) for the relaxed problem can be readily computed as

λ(ck) =
fxx − fxx−1

gxx − gxx−1

The nested sets are decreasing now since the law of motion under the
active action is reversed.

Finally, once again utilizing Wald’s identity along with strong markov
property the components of the index can be calculated as follows:

fxx =

σx+1
x −1∑
t=0

δt(v − cx) + δσ
x+1
x +1

σx
1−1∑
n=0

δnv − cn+1 + δσ
x
1 fxx

− (v − l)

=
v − cx

1− δ(1− q)
− (v − l)

+ δ
qδ

1− δ(1− q)

[
x−2∑
n=0

v − cn+1

1− δ(1− q)

(
δq

1− δ(1− q)

)n
+

(
δq

1− δ(1− q)

)x−1

fxx

]

=

v−cx
1−δ(1−q) + δ qδ

1−δ(1−q)

[∑x−2
n=0

v−cn+1

1−δ(1−q)

(
δq

1−δ(1−q)

)n]
− (v − l)

1− δ
(

δq
1−δ(1−q)

)x

fxx−1 = δ

σx
1−1∑
n=0

δnv − cn+1 + δσ
x
1 fxx−1 − (v − l)


=
δ
[∑x−2

n=0
v−cn+1

1−δ(1−q)

(
δq

1−δ(1−q)

)n]
− δ(v − l)

1− δ
(

δq
1−δ(1−q)

)x−1
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gxx =

σx+1
x −1∑
t=0

δt1 + δσ
x+1
x +1

σx
1−1∑
n=0

δn1 + δσ
x
1 gxx


=

1

1− δ(1− q)

+ δ
qδ

1− δ(1− q)

[
x−2∑
n=0

1

1− δ(1− q)

(
δq

1− δ(1− q)

)n
+

(
δq

1− δ(1− q)

)x−1

gxx

]

=

1
1−δ(1−q) + δ qδ

1−δ(1−q)

[∑x−2
n=0

1
1−δ(1−q)

(
δq

1−δ(1−q)

)n]
1− δ

(
δq

1−δ(1−q)

)x

gxx−1 = δ

σx
1−1∑
n=0

δn1 + δσ
x
1 gxx−1


=
δ
[∑x−2

n=0
1

1−δ(1−q)

(
δq

1−δ(1−q)

)n]
1− δ

(
δq

1−δ(1−q)

)x−1

6.2.2 Optimality of Indices

The indices solve the relaxed problem, but the main problem is as follows:[
max

{{Iti }i∈N}t∈N
E(

∞∑
t=0

N∑
i=1

δtI tiRi(c
t
i))

]

subject to
N∑
i=1

(1− I ti ) ≥ 0

ICP

(6.9)

Jacko (2011) shows that the solutions to the problems 6.6 and 6.9 coin-
cide if the incentive constraint of the principal is ignored. Furthermore by
definition the optimal value of problem 6.6 is weakly larger than the optimal
value of problem 6.9.
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For a contradiction suppose there exists some agent i and some periods
{τ̂i,n}n∈D for some D ⊆ N such that I

τi,n
i = 1 but the incentive constraints

of the principal is not satisfied. Let

τ̂i,? = inf{n ∈ D}

By definition it must be the case that for any period t < τ̂i,? the principals
incentive constraint is satisfied, but at period τ̂i,?:

E(
∞∑

k=τ̂i,?

δτi,k−τ̂i,?(v − cτi,ki − pτi,ki )) < 0.

The incentive constraint only needs to bind in periods where I ti = 1. However
under the index policy for I ti = 1 it must be the case that λi(c

t
i) ≥ 0.

Furthermore since the index is Markovian ∃ci,? such that cτ̂i,? = ci,? and
λi(ci,?) ≥ 0. Since τ̂i,? is the first time the incentive constraint is not satisfied,
it must be the case that for all states visited prior the incentive constraint
has to be satisfied. In particular for state ci,?−1 which implies f ?i,?−1 ≥ 0.
However since the incentive constraint is not satisfied it also must be the
case f ?i,? < 0, which implies f ?i,? − f ?i,?−1 < 0. Since gki,k − gki,k−1 > 0 for all k,
it must be the case that λi(ci,?) < 0 a contradiction.
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