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Abstract. This article provides a framework for actuaries to think about
cyber risk. We propose a differentiated view on cyber versus conventional risk
by separating the nature of risk arrival from the target exposed to risk. Our
review synthesizes the literature on cyber risk analysis from various disciplines,
including computer and network engineering, economics, and actuarial sciences.
As a result, we identify possible ways forward to improve rigorous modeling of
cyber risk, including its driving factors. This is a prerequisite for establishing
a deep and stable market for cyber risk insurance.
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1 Introduction

This article sets out to provide a framework for actuaries to think about cyber risk. With

the ambition of being fundamental, the article tries to establish a distinct notion of “cy-

ber” which can be associated with a set of characteristics relevant to conceptual as well

as quantitative modeling of cyber risk. To this end, the article identifies and explains im-

portant factors that affect loss distributions after cyber attacks and, by extension, market

participants’ decisions to offer or seek insurance for cyber risk. It reviews selected scholarly

works that apply economic and actuarial concepts to the domain of cyber risk.

Understanding cyber risk is a hard problem. Standard textbooks on technical aspects

of information security have many hundred pages in dense technical jargon and still cover

each topic only superficially. Even seemingly simple security mechanisms used by billions

of people everyday are not fully understood. For example, according to Bonneau et al.

(2012), a few hundred research papers address the problem of password security. The

number of data points analyzed in these works accumulates to many millions. Yet, this

issue is far from being solved. Adding a risk perspective potentiates the problem space by

including the combinatorics of technical, social and economic factors. This article provides

a first step in structuring the field, by making it accessible to analysts trained in more

conventional domains of risk modeling and highlighting the specifics of cyber risk.

Our approach is as follows. We first develop a definition of cyber risk useful for the

insurance industry (Section 2). This involves recalling the key concepts of information

technology and how they shape risk. Then we discuss the treatment of cyber risk from

three relevant angles: cyber risk management by firms and organizations (Section 3), eco-

nomic modeling of cyber risk transfer (Section 4), as well as actuarial modeling of cyber

risk (Section 5). We close by discussing practical challenges to cyber risk insurance and

promising research directions (Section 6).
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The target audience of this article are trained risk analysts and actuaries in the insurance

industry. Some aspects may also be relevant for underwriters, brokers, corporate risk and

information security managers, policy analysts, as well as academics studying related fields.

The article addresses topics with global scope. Therefore we refrain from making policy

recommendations which would be specific to a few jurisdictions.

2 Cyber Risk

Undoubtedly, the term cyber has become a buzzword among marketers and policy mak-

ers, causing a plethora of associations, but lacking a single unanimous definition. The

application of the term cyber is vast, from the “cyber space” popularized after the science

fiction short story “Burning chrome” (Gibson, 1987) to the establishment of the “US Cy-

ber Command” in 2010. The latter is a consequence of recognizing cyber to be the fifth

domain of warfare next to land, sea, air, and space (Lynn, 2010). What matters from a

risk and insurance perspective is whether the qualifier “cyber”, for instance in cyber crime,

is merely an exchangeable technology prefix, such as “electronic” (or shorthand “e”) in

electronic commerce; or if it can meaningfully demarcate cyber risk as a new class of risk

that requires special treatment and tailored conceptual models.

2.1 Technological Context

In order to distinguish cyber from non-cyber (or conventional as a qualifier for risk and

insurance), it is helpful to recall key characteristics of the enabling technology. All ad-

vances in information technology result from progress in microchip manufacturing, chiefly

the technical capability to densely integrate electrical circuits in mass production, along

with the engineering tools to design circuits with millions of logical elements (gates) in a

systematic and largely predictable manner. The design complexity of circuits hints to the
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first source of risk. The number of possible states of a few hundred gates exceeds the num-

ber of atoms in the known universe, and the relation between inputs, states, and outputs

of circuits can be highly non-linear. Therefore it is impractical to test and fully predict the

behavior of arbitrary circuits built with current technology even if their design is known.1

Microchip production is characterized by substantial economies of scale. Creating the

tool (a set of masks) to produce the first batch of a circuit is very expensive; the cost for

every following batch is negligible compared to the upfront cost. The industry has adapted

to this cost structure. It mainly produces general purpose circuits, programmable to control

many different applications. This highlights the crucial role of software in determining the

behavior of most electronic devices. Take for instance electronic elevator control units. In

the 1970s, these devices were built solely for this purpose and designed with exactly the

components needed to realize the required logic. The resulting circuits were complicated,

but it was possible for a trained expert to understand the system completely. The design

complexity still allowed to analyze error sources in case of incidents and possibly infer

about causes and effects. Understanding these relations is essential for risk analysis and the

attribution of losses. Modern control units are built from general purpose microprocessors,

which densely integrate zillions of electronic components. The behavior of such systems is

defined by customized software, which implements the required logic and often only uses a

small fraction of the functionality offered by the general purpose component. The resulting

systems exhibit high design complexity. This increases the risk that design flaws remain

unnoticed and raises the effort of proactive risk research as well as the cost of forensic

analyses after incidents. Both add to uncertainty and raise the transaction costs of risk

transfer arrangements.

These are not the only issues software systems cause from an insurance perspective. It

1 It is possible to design circuits and software with automated verification in mind. This technology is
orders of magnitude more expensive than common personal computer (PC) or smartphone technology
and thus exclusively used for critical applications, such as passenger aircrafts or nuclear power plants.
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is easy to revise software, as compared to upgrading hardware (Shapiro and Varian, 1998).

This leads to short product life cycles and consequently less time to collect actuarial data

for a system in operation. Possibly most worrying is the fact that some classes of common

programming errors allow malicious third parties to reprogram the logic of a device. As

many devices are over-equipped for their purpose, the existence of hidden functionality

is often hard to detect because the modified device still behaves as expected. We have

witnessed such hostile take-overs in the form of computer viruses on personal computers and

malware infections on smartphones. The Stuxnet worm (Chen, 2010), as an early example

of state-sponsored cyber warfare, highlights that programmable devices in industrial control

systems are not exempt. With the proliferation of programmable devices in every aspect

of life – typically referred to as the Internet of Things (IoT) – it is only a matter of time

until cyber criminals enter these platforms.

The ongoing connection of programmable devices to networks with wired or wireless

physical links leverages the risk to be considered by insurers mainly through two chan-

nels. First, compound systems consisting of many interconnected microprocessors, often

owned and controlled by different parties, exhibit additional design complexity. In many

cases no entity has a global plan or view of the overall system, rendering validation and

prediction very hard or impossible. Second, networking increases the surface for and reach

of malicious attacks. While modifying the software of standalone devices requires physical

proximity at least once in the lifecycle (including the supply chain), networked devices,

if not sufficiently secured, can be reprogrammed remotely from any other device in the

network. Consequently, devices connected to the Internet, an inter-network designed for

routing data packets globally, are in principle exposed to threats from any other person

with access to the Internet.

Networked systems further complicate risk analysis because insurers are rarely in the

position of insuring a network as a whole. Instead, different parts of the network (nodes)
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are operated by autonomous decision makers (agents), each with different interests (util-

ity functions), information sets (information asymmetries) and expectations. They make

independent economic decisions while being connected by a common factor that affects

the joint outcome (externalities). Part of the agents’ decision space is whether to invest

in security (risk mitigation) or buy insurance (risk transfer).2 The economic terms in

parentheses suggest that cyber risk analysis is as much about understanding and modeling

the technology as it is about understanding and modeling the economic incentives of the

involved agents (Anderson and Moore, 2006).

But technological advances also yield new opportunities for insurers. This generation

is about to witness a digital revolution because the very same technology opens a large

space for innovation, often with the potential of unleashing unprecedented economic growth

(e. g., Brynjolfsson and Hitt, 2003). To continue the previous example, the microprocessor

powering a digital elevator control has spare capacity to solve more complicated logic. For

instance, it could be programmed to predict demand or to coordinate with a second elevator

in the same building; functions that are typically marketed with the keyword “smart”.

Other examples of recent innovations, such as autonomous vehicles, would not be possible

without microprocessors and networks that supply relevant data on request, e. g., traffic

information. As a result of these and similar developments across many industrial sectors,

businesses, households, and governments increasingly depend on information technology in

numerous ways (Brynjolfsson et al., 2002). What is a center of value creation turns into

a loss center at the moment when the technology fails to serve its purpose. This allows

insurers to offer coverage for technology and assets that depend on it.

2 The canonical risk management instruments further include risk avoidance and risk acceptance.
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2.2 Defining Cyber Risk

We have used the term “risk” informally in the previous section. For our definition of cyber

risk, it is convenient to start with a high-level notion of conventional risk inspired by the

management literature (e. g. Kaplan and Garrick, 1981):

Risk = Probability of a loss event×Magnitude of loss . (1)

This definition of risk has many deficits. It coerces a complicated loss distribution to

a single Bernoulli trial, is agnostic about the time dimension, and does not differentiate

between individual and aggregated losses caused by a single loss event. Yet, this definition

is useful to motivate a differentiation that helps to develop a more precise notion of cyber

risk than commonly used. We propose to distinguish between

• risk arrival, the processes causing loss events, modeled in the simplest possible form

as probability of a loss event in Equation (1), and

• target, the assets that suffer losses, modeled as a fixed magnitude of loss in Equa-

tion (1).

Both risk arrival and target can independently belong to one of the two classes, cyber or

conventional. We classify risk arrival as cyber if the loss event is primarily caused by logic

(and by extensions: computer programs and networks), and as conventional if the loss

event is primarily caused by physical force. Likewise, we speak of a cyber target if the

loss event predominantly devalues information assets, e. g., through destruction (data loss

or unauthorized modification), loss of exclusivity (data breach), and consequences thereof

(data abuse). A conventional target incurs losses by the destruction or unavailability of

physical assets. Borderline cases exist along both dimensions. However, we believe that

this distinction is useful, for instance because insurers can implement a modular approach
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with division of labor: one team specializes on the specifics of cyber at the risk arrival

process; another team of experts valuates cyber assets and quantifies losses. With this

distinction, we can precisely classify all cyber incidents proposed in Box 1.

Box 1: Classification of cyber incidents

Example 1 Ransomware encrypts clients and servers used by the software develop-
ment team. All work carried out since the last backup is lost.

In this example we have cyber risk arrival and a cyber target.

Example 2 An earthquake destroys a data center.

In this example we have conventional risk arrival and a cyber target.

Example 3 A distributed denial-of-service (DDoS) attack against a major airport
interrupts and delays air traffic in a geographic region.

In this example we have cyber risk arrival and a conventional target.

We have collected alternative definitions of cyber risk to cross-check our definition. Most

authors agree that the involvement of networked computers is an essential element (cf.

Öǧüt et al., 2011; Böhme and Schwartz, 2010). Among the more specific definitions, we

observe that some emphasize the cyber element in the arrival process (cf. Anderson et al.,

2008; Mukhopadhyay et al., 2013; Stoneburner et al., 2002) whereas others focus on cyber

targets (cf. Biener et al., 2015; Cebula et al., 2010; ISO/IEC, 2014; Eling and Schnell,

2016). This observation confirms our belief that a unified definition should include both

aspects and weigh them equally.

Our approach is compatible with conventions in the literature to classify cyber crimes

by the role of computers and networks in criminal acts (cf. Goodman, 1997; Alkaabi et al.,

2011). Computers and networks can be targets, facilitating tools, or incidental aspects of

crimes. The third category is dropped in recent definitions of cyber crime since the ubiquity

of the Internet makes computer networks an incidental aspect of almost any crime.
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We have also considered alternative distinctions, such as the difference between tangible

and intangible losses or the difference between random failures and malicious attacks. As

these attributes are known for conventional insurance and do not characterize the specifics

of cyber risk, we consider them as conceptually orthogonal to our distinction by the domain

of risk arrival and target.

2.3 Insuring Cyber Risk

Cyber insurance is a vehicle for cyber risk transfer. In exchange for a defined premium

and for a defined period of time, the insurer contractually agrees to financially compensate

potential losses incurred by the insured through the realization of cyber risk. Like in

conventional insurance, losses may comprise primary and secondary losses (the sum of

which is referred to as recovery cost) and the indemnity may include first party as well as

third party losses for which the insured is held liable (Anderson et al., 2008, p. 82). Box 2

summarizes the state of the cyber insurance market at the time of writing.

Box 2: State of the cyber insurance market

The size of the global cyber insurance market is hard to estimate as insurers do not
share detailed information on premiums and claims. Some industry reports give an
impression of the state of the market in 2015 and 2016:

• AGCS (2015): Gross written premiums estimated at $ 2 billion;

• Betterley (2016): Gross written premiums estimated at $ 3.25 billion (US);

• NetDiligence (2015): Total claim payouts estimated at $ 1.5 billion.

According to AGCS (2015), the US market accounts for the majority of the gross
written premiums. The European market is expected to catch up, driven by new
breach notification laws that may incentivize incident reporting. To put the premi-
ums into context: NetDiligence (2015) reports a total claim payout of $ 75.5 million
based on 132 claims, which constitute approximately 5 % of all claims.

Using the definition of cyber risk from Section 2.2, we differentiate between three forms of
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Figure 1: A classification of cyber risk insurance

cyber insurance as illustrated in Figure 1. The figure tabulates the domains of risk arrival in

rows and the domains of the target in columns. Conventional (non-life) insurance is located

in the top left area. Cyber insurance in a narrow sense is located in the bottom right area.

This is what most authors of early contemplations of cyber insurance presumably had in

mind (e. g., Medvinsky et al., 1994; Schneier, 2001; Grzebiela, 2002; Baer, 2003).

Several reasons explain why the market for cyber insurance in a narrow sense did not

evolve as predicted, chiefly a lack of demand and a lack of claims in the 1990s. The lack of

claims was interpreted as an indication of cumulated risk. This spurred fears of a “cyber

hurricane” which led reinsurers to stop covering cyber risk in the early 2000s (Böhme

and Schwartz, 2010). While this market did not evolve as predicted, nascent markets for

cyber-threat and cyber-asset insurance exist.

The increasing demand for cyber-asset insurance, in the top right corner of Figure 1,

is a consequence of the growing dependence of organizations on information systems and

the data processed therein. While some industry experts initially saw difficulties in writing

precise policies for the intangible losses of information assets, the progress made in valuating

intangible assets in the finance and accounting disciplines has accommodated this concern.

A major development to this end is the uptake of marketplaces for IT services, for example

in various cloud computing models, and for business data (Balazinska et al., 2011; WEF,

2011). Both market types generate price information useful for estimating the monetary
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value of (lost) in-house infrastructure or databases.

Another avenue for the insurance industry to get in touch with cyber risk is the bottom

left corner of Figure 1, provisionally termed cyber-threat insurance. Although cyber attacks

are commonly excluded from property or liability insurance, insurers and reinsurers begin to

realize that they might be exposed to cyber threats indirectly through business interruption

policies. Networked information technology has become so vital, in particular for operations

and the supply chain, that computer networks are an incidental aspect of almost every

business interruption. Policies with explicit exclusions of cyber will therefore become harder

to sell. We observe a trend that exclusions will be defined more narrowly, for instance

specifically naming acts of cyber warfare or cyber terrorism, and combined with a tight

limit in the order of $ 50 million for incidental cyber risk not belonging to the specified

categories. This also limits the exposure if an act of cyber warfare cannot be attributed

unanimously to a nation state (Clarke and Knake, 2012), a situation experienced with the

Sony hack in 2014.3

Another line of business is cyber insurance of third party risk. In that case policy hold-

ers are held liable for monetary amounts which can be passed on to the insurer. This

partly explains the success of insurance policies covering losses from breach reporting obli-

gations (Romanosky, 2013; Kirkpatrick, 2015; Laube and Böhme, 2016; Bandyopadhyay

et al., 2009). Corresponding legislation is high on the policy agenda around the globe in

order to reduce under-reporting of cyber attacks. However, important limitations remain.

Most policies cover only parts of the costs, define rather tight limits on each loss source,

and exclude losses of reputation and subsequent negative stock market reactions, which

are hardly measurable (Acquisti et al., 2006). Moreover, insuring against regulatory fines

is prohibited in many jurisdictions (Gatzlaff, 2012). If quantifying losses ex-post is diffi-

3 For further details on the hack at Sony Pictures, see https://www.washingtonpost.com/news/the-
switch/wp/2014/12/18/the-sony-pictures-hack-explained/.

12



cult, insurer and policyholder may agree on a fixed indemnity ex-ante, provided that the

agreement complies with the codification of the indemnity principle in the jurisdictions

concerned.4

3 Cyber Risk Management

In order to insure cyber risks, insurers must be able to identify essential risk factors and

understand the decision of firms to seek insurance for specific risks.5 To provide a funda-

mental background, this section describes risk factors using the typical chain of causality

from cyber threats to financial losses, and recollects selected aspects of how firms implement

information security in practice.

3.1 Risk Factors

We conceptualize a cascade model of cyber risk arrival, depicted in Figure 2, to organize five

classes of risk factors: threats, vulnerabilities, controls, assets, and impacts. Our model is

tailored to the scope of this article. For a more comprehensive path model see Ransbotham

and Mitra (2009).

3.1.1 Threats

Threats subsume accidental physical or logical errors and intentional action by malicious

attackers. Our model defines threats as the root causes of loss events, although it is possible

in principle to dig deeper. As cyber crime became a profit-driven industry in the early

4 The principle of indemnity for non-life insurance states that insureds must not profit from the occurrence
of a loss event (cf. Mehr and Cammack, 1972). Hence, an upper bound for the compensation is the actual
loss incurred.

5 On terminology: we use firms as shorthand for professionally managed organizations in the private or
public sector exposed to cyber risk. Firms appear on the demand side of insurance markets. Policyholders
are firms who have acquired coverage from insurers. Vendors supply information technology and software
to firms.
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Figure 2: Cascade model of cyber risk arrival

2000s (Anderson et al., 2008), scholars have started to analyze the motivations of attackers

drawing on criminology (Cressey, 1953) or the economics of crime (Becker, 1974). Attackers

use various methods including technical means, such as malformed network packets, non-

technical scams, such as social engineering to obtain access credentials, or a combination

of both.

The conservative assumption that attackers always choose the weakest link has almost

become a mantra in security trainings. A more precise model is to broadly classify attack

strategies by their relation to victims (Herley, 2014). Opportunistic attackers do not care

about whom they attack. They standardize attack techniques to enjoy economies of scale

when hitting several targets, of whom only a small fraction gets victimized. Unsolicited

mass email (spam) is an example for this strategy. By contrast, targeted attacks focus on

a specific victim and customize the attack method. They often involve several iterations of

information gathering, with the aim to maximize the success probability against a carefully

selected target. This strategy pays off for high-value targets, such as in extortion and

industrial espionage. An important implication for risk analysis is that modeling threats

as probabilistic is more appropriate for opportunistic attackers than for targeted attacks.

More adequate analytical tools for the latter are worst case approximations and game
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theory.

3.1.2 Vulnerabilities

Not every threat realizes a risk. Threats require vulnerabilities in the target system to

become successful attacks. To continue the examples from above, the malformed network

packet is only harmful if the software processing the data packet enters an undefined state

which allows the attacker to take over control.6 Such vulnerabilities emerge from common

programming mistakes, which are hard to be fully avoided in the software development

process. Likewise, the social engineering attempt is only successful if the victim is tricked

into sharing credentials with unauthorized parties. With respect to Bandyopadhyay et al.

(2009), we may distinguish between symptomatic and systemic vulnerabilities. The former

affect only a single firm (e. g., because it uses custom software or runs an erroneous configu-

ration) whereas the latter exists in many firms (e. g., when standard software is vulnerable

or a default password has not been changed).

Technical vulnerabilities matter for risk analysis in two ways. First, systemic vulner-

abilities expose many targets to the same threat. With the ability to scale attacks by

automating them on programmable devices and using networks as propagation vectors

(cf. Section 2.1), many firms are at risk of suffering losses at the same time. This cor-

relation between risks leads to fatter tails of the cumulated loss distribution and may

hamper insurability (Böhme and Kataria, 2006). Second, information about vulnerabil-

ities is notoriously incomplete, leading to a race for information between attackers and

defenders (Ransbotham et al., 2012). There is some controversy about the right regime of

distributing vulnerability information between stakeholders. Some consider vulnerabilities

a strategic asset for national security (Moore et al., 2010), others a tradable information

good (Böhme, 2006). The distribution regime impacts the vulnerability discovery process

6 In most cases, other parts of the data packet contain instructions that reprogram the software.
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by setting incentives for security researchers. It may also affect vendors’ efforts to produce

software with fewer vulnerabilities and distribute patches. In practice, many disclosure

regimes coexist, with underground markets on one end of the spectrum and organizations

committed to responsible disclosure on the other end (Miller, 2007; Arora et al., 2008; Zhao

et al., 2015). Given the decisive role of vulnerability information, the insurance industry

will likely take part in the vulnerability ecosystem when it covers substantial amounts of

cyber risk.

3.1.3 Controls

Not every pair of threat and vulnerability leads to a successful attack. Firms can place

technical and non-technical controls to mitigate cyber risks. Awareness campaigns and

trainings for employees are examples for non-technical means. Technical controls can be

detective controls, which indicate the realization of threats, possibly trigger alarms, and re-

quire reaction, or preventive controls, which proactively shield specific vulnerabilities from

threats (cf. Cavusoglu et al., 2004). Regarding preventive controls, most people think of

add-ons, such as network packet filters or antivirus software. However, structural changes,

such as dedicated networks for critical data disconnected by “air gaps”, are preventive

controls, too. All controls cause costs which firms must weigh against the expected benefit

in terms of prevented losses. Many scholars have studied this decision problem through

the lens of investment theory (cf. Hoo, 2002; Gordon and Loeb, 2002; Su, 2006; Böhme,

2010). The management of controls often requires strategic decisions, such as prescribing

minimum access rights to information or specifying a patch strategy. In the latter case

firms face a trade-off between fast roll-out of software updates to close known vulnerabili-

ties and the risk that barely tested patches have unanticipated side-effects or break critical

business processes (Beattie et al., 2002; Ioannidis et al., 2012).

All types of controls are relevant for risk analysis. Detective controls improve informa-
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tion and provide a more direct access to data on the risk arrival process than counting

(aggregated) losses. Preventive controls mitigate the risk of specific threats.

3.1.4 Assets

The interaction between threats, vulnerabilities, and controls determines the success of

attacks. Attacks turn into incidents if they hit critical assets. It is not necessary that

the asset is damaged or destroyed; a customer database leaked to outsiders may be as

painful as losing it entirely. In general, any undesired breach of a canonical protection goal

(confidentiality, integrity, availability) is considered a security incident. Including assets as

an individual risk factor is important because firms may use similar technology to secure

assets of very different value and sensitivity. To illustrate this, recall that the technology

behind secure Internet connections, the HTTPS protocol, does not substantially differ

between online banks and well-administered websites of online pizza shops.7

For actuaries the valuation of assets (as discussed in Section 2.3 in the context of cyber-

threat insurance) is an essential prerequisite to the estimation of expected losses if any of

the different protection goals is violated.

3.1.5 Impacts

The value and criticality of affected assets influences the potential impact of an incident

and thus the amount claimed under an insurance policy. The impact may exceed the

asset value by orders of magnitude, for instance if a firm stores customers’ passwords in

plaintext8 and faces substantial liability and compliance cost along with severe reputation

damage after a breach exposed customer data to the public. The impact can also be just

a fraction of the asset’s value, if an effective incident response and recovery prevent larger

7 One may still hope that the bank has better processes and hires more qualified staff to look after its
security.

8 There is no benefit in storing passwords in plaintext. Best practice is to transform them with specialized
cryptographic one-way functions including a different constant (“salt”) for each user account.
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damage. Insurers may provide professional incident response services for their policyholders

to reduce impacts (AGCS, 2015).

3.2 Determinants of Risk Factors

We have introduced the cascade model in order to structure the factors to be considered

when modeling cyber risk arrival and loss distributions for different targets. The model also

allows a risk analyst to reason on what drives these factors. Most experts will accept threats

as exogenous or environmental factors although, in principle, policy or industry initiatives

can try to tame the threat environment (Asghari et al., 2015). In general, threats follow

global trends in the long run, and attacker tactics in the short run.

By contrast, vulnerabilities, controls, and assets are predominantly endogenous factors,

i. e., firms can in principle control them. These three factors together constitute a firm’s

information architecture (as annotated in Figure 2). However, not every firm can exercise

direct control on all three factors. Many vulnerabilities originate in software or components

supplied by external vendors. With high concentration in software markets and the aim for

standardization and interoperability, many firms have little choice about this part of their

architecture (cf. Carr, 2003). Similarly, the type and value of assets largely depends on the

firm’s business, size, and level of technology adoption. By contrast, controls are largely

in the responsibility of individual firms. Therefore risk analysis must consider security

investments as a relevant determinant of cyber risk. Because firms decide strategically on

their security investment, insurers need to understand firms’ incentives in order to prevent

adverse selection and moral hazard (see Sections 4.3.1 and 4.3.2 below).

Firms cannot always control the impacts of a successful attack. While plaintext pass-

words in the example above could have been avoided with the right controls, it is easy to

find examples where the impact is driven exogenously. A breach may lead to more adverse

public reaction if a firm is the first or the only one affected in an industry. Post-breach
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crisis communication and incident response may matter a lot. For example, an industry

report estimates the cost of data breaches per record between a few cents and $ 1.6 mil-

lion (NetDiligence, 2016). The orders of magnitude difference hints to the imponderables

with this type of risk. A particular challenge for modeling the impact of privacy breaches

is that sensitive information often results from joining leaked records with other public or

proprietary databases available at the time of the breach or in the future (Sweeney, 2002;

Narayanan and Shmatikov, 2008). The likelihood and consequences of such events are very

hard to predict.

3.3 Cyber Risk Management in Practice

From an insurance perspective it is important to understand how (well) cyber risks are

managed in firms and where to find such information. Firms synthesize the canonical

instruments from general risk management and IT security to conduct cyber risk manage-

ment. Cyber risk management requires the definition of a security policy, which guides a

firm’s information security operations. This, in turn, is centered around the problem of

managing and enforcing authorization decisions in a systematic and efficient manner.

Approaches to embed risk management in the organizational structure of firms range

from a single centralized department to delegated officers in each business unit. Interme-

diate forms also exist. The key roles that enable cyber risk management are (1) the senior

management, approving an organization’s security policy, (2) the chief information security

officer (CISO), as the person in charge of a firm’s cyber security, and (3) security specialists

(often embedded in IT operations), carrying out security-related tasks (Stoneburner et al.,

2002). Issues may arise if the CISO does not have direct access to the senior management,

or if a source of cyber risk is located outside of the officer’s area of influence.

Several standards support risk management in organizations. They can roughly be di-

vided into two classes: top down (focusing on the risk management process) and bottom
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Figure 3: Framework for economic models of markets for risk cyber insurance (Böhme and
Schwartz, 2010)

up (focusing on identification and quantification of individual risks). A prominent example

of the former category is the ISO 27000 series (ISO/IEC, 2014), adopted by many large

firms across different sectors (PwC, 2016). The OCTAVE methodology is an example for

the latter (Caralli et al., 2007). Moreover, industry-specific standards, such as the Pay-

ment Card Industry Data Security Standard (PCI-DSS), certify compliance with defined

practices (PCI, 2015). From an insurance perspective, standards and certifications of firms

are indicators of good security practices. However, industry experts complain that many

standards and certifications are incoherent, and compliance with them is a weak predictor

of actual security. For instance, the retailer Target was certified to be PCI compliant just

before being hit by a major breach.9 Furthermore, voluntary certifications provide weak

signals because they may suffer from adverse selection: less secure firms have stronger

incentives to seek certification (Edelman, 2011).

9 For further information, see http://www.darkreading.com/risk/compliance/target-pci-auditor-
trustwave-sued-by-banks/d/d-id/1127936.

20



4 Economic Modeling

Most economic models of cyber risk insurance analyze if and under what conditions markets

for cyber risk insurance can exist. This depends on the properties of the loss distribution

and the actions of all market participants involved. We adapt the framework of Böhme

and Schwartz (2010), depicted in Figure 3, to structure the action space of all involved

parties.

4.1 Framework

The framework has two natural components, which correspond to the demand and supply

side of insurance markets. The specific characteristics of cyber risk are modeled by the

component called network environment. The network environment is composed of atomic

but connected elements called nodes. Generally, firms control nodes to extract utility

from the network. As a side effect, they are exposed to risk that arrives as described by

the cascade model of Section 3.1. It is convenient to assume that each node represents

exactly one cascade of risk factors (as annotated in Figure 2). Firms control many nodes,

interconnected by physical, logical, and social links, such as trust relationships. The links

between nodes are typically represented as edges of graph structures.

An obvious example of cyber risk dependencies in a network environment is the prop-

agation of malware, which infects several networked computers (nodes). However, risks

can also arise in the software engineering process, as the security of a software product

depends on all individual components. From this perspective connected nodes can model

single points of failure due to vulnerabilities in common components or dependence on a

single external supplier, for instance a cloud service provider. Risks can also propagate

in systems of an interconnected supply chain or, from the social perspective, by sharing

confidential information with business partners.
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Figure 4: Topologies of connected nodes modeling the dependence in cyber risk arrival for
selected threats

This list of dependence relationships is clearly not exhaustive and each type of rela-

tionship is characterized by a specific graph topology (see Figure 4). Conceptually, every

real-world insurance policy bundles the risk exposure of many nodes; typically those con-

trolled by the policyholder, or a subset if exclusions apply. These nodes possibly maintain

connections to nodes under the control of other firms. This assumption naturally gener-

alizes the model to a setting with interdependent security, a specific type of externality

discussed later in Section 4.4.

The known issues of insurance markets related to information asymmetries, in particular

adverse selection and moral hazard, can be incorporated by instantiating another compo-

nent of the framework called information structure. Information on cyber risk is inherently

asymmetric. The complexity alluded to in Section 2.1 precludes even the vendors of pro-

grammable components from fully predicting their behavior when combined in practical

systems. The information structure bundles modeling decisions that affect the distribution

of information (including remaining uncertainty) about the state of the world among the

economic agents.

The last component, organizational environment, defines general rules. It comprises all

parties who can intervene with the cyber insurance market although they do not directly
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appear on the demand or supply side. In a model world where market participants follow

rational choice, possible interventions take the form of adjusting incentive structures such

that a desirable social outcome becomes more likely. An example is regulators’ introduction

of breach notification laws to incentivize security investments at firms.

4.2 Common Assumptions

Most economic models emphasize the risk arrival process in a single time period short

enough to neglect discounting. A common assumption is to model the loss as binary

outcome: either the firm faces a loss of fixed size l > 0 or no loss at all. The loss amount l

is measured on a monetary scale. This reduces the target dimension of cyber risk to

a Bernoulli random variable L ∼ B(1, p) · l, where B(n, p) is the binomial distribution

parameterized by the number of controlled nodes n and the probability of loss p. Values of

n > 1 are reserved for situations where firms control multiple nodes, often in combination

with variants of the binomial distribution where trials are not independent.

With n = 1 and l fixed,10 the only way to model control over the risk exposure is to

let a firm’s probability of loss p depend on its risk mitigation efforts. This leads to a

monotonically decreasing defense function mapping a monetary security investment s to a

probability of loss p.11 A simple defense function is given by

p = D(s) = β−s , (2)

where β > 0 is a parameter of security productivity. It controls how efficient money

spent on security controls can prevent threats from materializing as successful attacks.

More complicated form of defense functions can be found in the seminal literature on

10 Some authors normalize all monetary values to the unit of the loss, allowing them to define l = 1.
11 Security investment corresponds to the concept of self-protection in the sense of Ehrlich and Becker

(1972).
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information security investment (Gordon and Loeb, 2002). Most defense functions are

convex, suggesting an interpretation of decreasing marginal benefit of security investment.

The rational choice paradigm predicts that firms maximize their expected wealth by

choosing the security investment level s∗ ≤ l which minimizes the sum of expected losses

and the associated cost of controls s:

s∗ = arg min
s

(D(s) · l + s) . (3)

This equation models the optimal decision for risk neutral firms. Insurance markets can

only exist if firms are risk averse, meaning that they are willing to trade expected wealth

for reduced variance. Economists model risk aversion with concave utility functions12

Uσ : R → R, which map monetary wealth to preference scores (Pratt, 1964). Parameter

σ > 0 controls the strength of the risk aversion. Firms’ preferences are ranked by expected

utility – which differs from the utility of the expected wealth – and the utility has to be

computed over the total wealth including security investment. Risk averse firms optimize

the following problem:

s∗σ = arg max
s

(E [Uσ(Ws)]) , (4)

where Ws is a random variable of the firm’s final wealth given security investment s, and

E[·] is the expected value operator. For the simple Bernoulli loss model and initial wealth

w, we obtain

s∗σ = arg max
s

D(s) · Uσ(w − l − s)︸ ︷︷ ︸
bad case: loss

+ (1−D(s)) · Uσ(w − s)︸ ︷︷ ︸
good case

 . (5)

12 Classes of utility function vary in whether and how the preference for certainty depends on initial wealth.
Utility functions with the constant relative risk aversion (CRRA) property are independent of a firm’s
initial wealth.
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Market insurance can be modeled by allowing firms to buy insurance for losses up to a

limit x at the price of a linear premium π · x. In the Bernoulli loss model and respecting

the indemnity principle, it must hold that x ≤ l. With optional market insurance, firms

optimize their action in the (s, x) plane:13

(s, x)∗σ = arg max
s,x

(D(s) · Uσ(w − l − s+ (1− π) · x) + (1−D(s)) · Uσ(w − s− π · x)) .

(6)

Insurers can only offer this policy if they have complete information and all firms are

homogenous. In this case, insurers anticipate firms’ choices and adjust π to reflect the risk

given the common security investment s∗:

π = D(s∗) · (1 + λ) , (7)

where λ is a loading needed to pay administrative costs, the cost of safety capital, and

insurer’s profit. A premium is called actuarially fair if λ = 0, which implies full insurance

(s, x)∗σ = (0, l).14 It also highlights that insurance and security investment are substitutes

in this model. In practice, actuarially fair premiums are only sustainable with subsidies.15

If λ > 0, the existence of an insurance market (i. e., x∗σ > 0) depends on the strength of risk

13 Even simpler models producing the same qualitative results restrict one or both choice variables to two
options, s ∈ {0, s}, x ∈ {0, l}. This simplifies the optimization problem to a comparison of cases.

14 Because firms can eliminate all variance without sacrificing expected wealth. Marginally risk averse
decision makers prefer this situation. Security investment must be zero because otherwise firms could
improve their wealth by reducing s; a move that must be anticipated by the insurer’s choice of π, triggering
a race to the bottom.

15 Ruin theory predicts that if insurers only collected actuarially fair premiums, they eventually go bankrupt
with certainty. Hence, a strictly positive loading λ is necessary to help ensure that the insurer exists
at the time policyholders need it. Moreover, the qualifier “fair” is a technical convention established in
the economics literature. It does not imply a value statement. Other definition coexist. For example,
principle 4 of the Casualty Actuarial Society’s Statement of Principles Regarding Property and Casualty
Insurance Ratemaking specifies: “A rate is reasonable and not excessive, inadequate, or unfairly discrim-
inatory if it is an actuarially sound estimate of the expected value of all future costs associated with an
individual risk transfer.” (emphasis added)
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aversion σ and the shape of the defense function D. In general, higher loadings λ require

more risk averse firms (σ) and less effective risk mitigation (β) for an insurance market to

exist.

4.3 Information Asymmetries

In practice, firms are not homogeneous. Each firm i has an individual level of initial

wealth wi, risk aversion σi, and a defense function Di.
16 Consequently, each firm finds

a different optimal action (si, xi)
∗
σi

from solving Equation (6). Information asymmetries

arise because individual actions are not easily observable.

4.3.1 Adverse Selection

Adverse selection occurs before an insurance the contract is signed. The insurer faces the

problem of finding the right premium π. For all choices of λ reasonable in the homogenous

case, any choice of π in

min
i

(Di(s
∗
i ) · (1 + λ)) < π < max

i
(Di(s

∗
i ) · (1 + λ)) (8)

leads to an adverse selection problem (Rothschild and Stiglitz, 1976). Firms can be divided

in good risks, where π is high enough for the insurer to pay losses and profit, and bad risks,

where π is too low for the individual probability of loss. Since the decision to seek insurance

is made by rational firms, bad risks will seek (disproportionally more) insurance whereas

good risks substitute insurance with security investment or risk acceptance. The resulting

portfolio becomes a loss source for the insurer.17

16 In principle, also the loss size l may differ between firms. We stick with our approach to modify the loss
distribution on the risk arrival side only in order to keep the equations simple. A practical model for
numerical analysis should allow for more realistic loss distributions than Bernoulli trials.

17 Risk aversion and imperfect information on the demand side may counterbalance part of this problem in
practice. Firms who do not know their risk exposure or security level, or who are highly risk averse, may
stay in the pool despite being good risks in objective terms.
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The canonical response against adverse selection is premium differentiation. In the best

case, individual premiums πi can be adjusted to the individual risk Di(s
∗
i ), where s∗i may

be anticipated. To simplify analytical models, D is often fixed for all firms, an assumption

justifiable by the use of commodity technology (Carr, 2003). This allows the insurer to

offer a menu of bundles (sk, πk), such that each firm i chooses and commits to a security

investment sk in exchange for receiving coverage of the residual risk at premium πk. In

practice, security investment and actual security level are not perfectly aligned. Therefore,

insurers have to resort to approximations of sk by evaluating indicators on the firm’s

technical and non-technical risk management practices.

4.3.2 Moral Hazard

Moral hazard occurs if the insurer cannot monitor policyholders’ contractual behavior.

Once a firm has bought coverage x = l at premium πj · x, it can profit from reducing its

security investment to a value s < sk below the agreed level. If the insurer cannot observe

the contract violation, it faces losses. Schwartz and Sastry (2014) note that insurers can

only tolerate a limited share of such “malicious” policyholders in their portfolio.

Moral hazard can be dealt with by vigilant contract monitoring, possibly involving in-

termediaries such as technical auditors. Since cyber risk analysis is a complex and barely

standardized task, the transaction costs caused by contract monitoring are rather high and

might render certain types of insurance uneconomical. Another way to limit moral hazard

are deductibles which technically define an upper bound for x ≤ xmax < l. The deductible

l−xmax helps to better align the incentives of policyholders with the interest of the insurer

(and by extension all policyholders in its pool).
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4.3.3 Insurance Fraud

Insurance fraud occurs at the time of indemnification. Analyzing causal relationships,

attributing losses to events, and verifying insurance policy conditions in (re-)programmable

networked systems is a complex and time-consuming task. Digital forensics are in principle

mature enough to provide reliable results after outside attacks. Nevertheless, ambiguities

remain for technical and political reasons; the latter, if the attack involves a state actor, and

diplomatic relations are concerned. Digital forensics reaches its limits, if an inside attacker

falsifies traces or plants misleading evidence (Böhme et al., 2009). This may open a window

of opportunity for fraudsters to overstate losses until the level of insurers’ fraud prevention

and detection systems in the claims management processes are comparable to those in

conventional insurance. The opposite situation, where policyholders forgo a fraction of

the loss which they cannot substantiate, acts as a barrier to the development of insurance

markets (Öǧüt et al., 2011).

4.4 Interdependent Security

While adverse selection and moral hazard are known and understood in conventional insur-

ance, interdependent security is highly specific to the nature of cyber risk.18 Interdependent

security is a special kind of externality best modeled by modifying the defense function: for

each node in a network, the probability of a loss does not only depend on its own security

(controls), but also on the security of all connected nodes. To illustrate this point, recall

that the much-quoted Target data breach in late 2013 was caused by a security hole at one

of its suppliers.

18 The term has been coined by Kunreuther and Heal (2003), while Varian (2002) has modeled the same
phenomenon for cyber security slightly earlier.
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4.4.1 Model and Example

Taking this to the level of firms in our economic model, the modified defense function I

with interdependent security takes as arguments the investment of all connected firms:

pi = I
(
(s1, . . . , sn), g, i

)
= 1−

n∏
j=1

(1− gi,j ·D(sj)) . (9)

In this specification, n is the number of firms and g is a n×n adjacency matrix of a (possibly

directed) graph describing the first-order dependence between the nodes controlled by the

firms. The matrix can hold binary values for all-or-nothing dependence or values between

zero and one to weigh the importance of links. We require that gii = 1 ∀i to generalize

the case without interdependent security. Function I replaces D in Equations (5), (6), and

(7).

To study the implication of interdependent security, it is convenient to regard symmetric

interdependence between two firms 1 and 2 only. We obtain

p1 = I(s1, s2, α) = 1− ((1−D(s1))(1− α ·D(s2))) , and (10)

p2 = I(s2, s1, α) = 1− ((1−D(s2))(1− α ·D(s1))) , (11)

where α ∈ ]0, 1] is the degree of interdependence corresponding to the values in g1,2 and

g2,1 of the general model. Without loss of generality we restrict the security investment to

si ∈ {1, 2}, assume the security productivity β = 1/2, initial wealth w = 3, and the loss

l = 4. Table 1 shows the payoffs of a matrix game between both firms deciding on security

investment without the option to seek market insurance as a function of α.19

For any degree of interdependence α > 0, the only pure strategy Nash equilibrium is

(s1, s2) = (1, 1) – both firms invest little in security – because no firm can improve its

19 The example assumes risk neutral firms because we do not consider market insurance. Qualitatively
similar results can be found for models with risk aversion (e. g., Johnson et al., 2011).
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Table 1: Interdependent cyber risk as a matrix game between two defenders

Security of firm 2

Security of firm 1 low: s2 = 1 high: s2 = 2

low: s1 = 1 −α, −α −1
2α, −3

2α

high: s1 = 2 −3
2α, −1

2α −3
4α, −3

4α

payoff by unilaterally switching to si = 2. However, the social optimum of this game is

(s1, s2) = (2, 2) – both firms invest much in security. This indicates a classical prisoner’s

dilemma. In other words, if networked firms secure their nodes, interdependent nodes may

free-ride on their efforts. As a result, no single party wants to contribute to the network

security, which exhibits characteristics of a public good in this kind of model.

4.4.2 Implications

Interdependent security has two important implications for insurers. First, insurers not

only face the difficulty of measuring and monitoring the security practices and exposure

of their policy holders. To precisely model the risk arrival, they also need to collect in-

formation about the security of interconnected nodes. These may be owned and operated

by parties without contractual relationship with the insurer, possibly residing in different

jurisdictions. In the absence of this information, insurers must resort to conservative ap-

proximations. They may at least consider to include the number of incoming edges and

indicators about the degree of interdependence in the premium calculation.

Second, insurers may provide the social coordination mechanism to resolve this instance

of the prisoner’s dilemma. If the insurer can observe firms’ security effort, it can (and

should) design a pricing scheme which incentivizes security investment at the social opti-

mum. This is in the best interest of all policyholders and leads to welfare improvements

30



beyond of what is achievable with risk pooling in conventional insurance lines. This idea

is a strong argument for bootstrapping a deep market for cyber risk insurance, possibly

with the help of subsidies justifiable with the provision of a public good. However, impor-

tant limitations remain. There may be free-riders who do not buy insurance. They enjoy

the benefits of the public good while having no incentive to contribute. Another issue is

competition in the insurance market. A monopolist is in the best position to act as social

coordinator, but it is well-known that absence of competition leads to inefficiencies and

premiums levels that generate monopoly rents. However, if multiple carriers compete and

insure different parts of interdependent networks, they would have to engage in information

sharing at a depth and speed unprecedented in conventional lines of insurance. To thwart

the concerns of price-rigging in such close relationships between competitors, the whole

scheme would have to be run under the watchful eyes of a trusted party.

4.4.3 Literature

Interdependent security has inspired many analytical models.20 Most prominently, Öğüt

et al. (2005) are the first to combine the concept with market insurance and study the

social coordination mechanism. Hofmann (2007) considers imperfect information and adds

premium differentiation to the analysis. Bolot and Lelarge (2008) explore mean-field ap-

proximation to analyze the possibility of coordinated solution with the help of insurance

for selected network topologies (also Lelarge and Bolot, 2009). Shetty et al. (2010) note

that a coordination mechanism that maximizes welfare with the help of market insurance

will not, in general, maximize the overall security investment (later extended and refined

20 Many economic analyses of cyber risk insurance have appeared in technical venues. This has led to some
abuse of terminology, which may cause confusion to people entering the area. For example, a conference
paper with “market analysis” in its title does not model a market (Pal et al., 2014); or a workshop paper
with “insurance” in its title does not consider risk aversion (a necessary condition for insurance), but
models a social redistribution scheme (Naghizadeh and Liu, 2014); Öǧüt et al. (2011) use “correlation”
in the title but model interdependent risk; Shetty et al. (2010) model an unconventional type of risk
aversion by leaving the security investment outside the utility function (unlike Equation (27) of Ehrlich
and Becker (1972)).
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in Schwartz and Sastry, 2014). Johnson et al. (2011) study symmetric equilibria in fully

connected graphs where firms can buy market insurance and invest in two types of security

controls, one that generates externalities and another one that does not. Against the back-

drop of this research, it is remarkable that we could not find any empirical quantification

of interdependent security in a real network.

4.5 Market Structure

The insurance business benefits from economies of scale and scope. The amount of safety

capital needed per policyholder is smaller for large and diverse portfolios for several reasons.

The central limit theorem predicts that realized losses deviate less from the distribution

mean as the portfolio size increases, and fixed administrative costs can be distributed

over many policyholders. Moreover, transaction costs per contract (for underwriting and

monitoring) are smaller if each policyholder has multiple policies from the same insurer.

Empirical evidence suggest that some conventional lines of insurance have features of a

natural monopoly (Emons, 2001), although the data confounds public and privately run

carriers (e. g., von Ungern-Sternberg, 1996). Cyber risk insurance generates additional scale

effects related to the monitoring of policyholders and the topology of their connections to

interdependent systems owned and operated by others. Finally, the social coordination

function (see Section 4.4.2) would require tight guidance and widely accepted standards if

it is to be realized by competing organizations.

Another aspect is the market structure of potential policyholders. Insurance is most

efficient if insurers can pool many diversifiable risks, each big enough to be substantial for

the policyholder, but not catastrophic for the insurer. Concentration among policyholders

renders insurance less attractive because firms may prefer to accept small risks, avoiding

the transaction costs of risk transfer. Risk acceptance remains problematic for larger

or internally correlated risks (Böhme and Kataria, 2006), but there may remain too few

32



policyholders to pool such risks. This is one facet of the more general “N = 1 problem”

in the technology sector, where dominant suppliers are unparalleled. Tendencies of such

concentration can be observed in industries such as standard software, Internet search,

cloud hosting, and online social networking.

Finally, how does the existence of a market for cyber risk insurance affect competition?

Arguably, if insurance can price cyber risk precisely, then premium differentiation would

make more diverse risks less expensive to insure. This could partially offset the advantage of

incumbent platforms and therefore stimulate technical diversity and economic competition.

Both are considered desirable goals that generate positive externalities on firms who do

not participate in a market for cyber risk insurance.

5 Actuarial Modeling

Formal economic models often simplify loss distributions to central moments or Bernoulli

trials. By contrast, premium calculation in practice requires knowledge of the full loss

distribution in order to determine the right amount of safety capital (cf. Equation (7)).

5.1 Data Sources

The preferred data source for actuarial modeling in conventional insurance are historical

claims. Due to the novelty of cyber risk, the nascent insurance market cannot look back at

a long history. Deductibles and rational under-reporting keep the number of data points

artificially low. Moreover, historical data is of limited use, because threats, vulnerabilities,

and controls evolve rapidly with the pace of the technological development.

Technical indicators are an alternative data source for monitoring the threat landscape.

Typical measurement setups include

• sensors measuring traces of known attacks (e. g., packet backscatter or passive DNS
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analysis, see Bilge et al. (2011)),

• spam traps and “honeypot” computers that mimic vulnerable devices and are instru-

mented to sense attack behavior (Provos and Holz, 2007), as well as

• trackers observing command-and-control information of the botnets21 that serve as

primary infrastructure for cybercrime.

Several organizations collect this type of data and make it available to interested parties.22

Proprietary threat intelligence may also include information collected by vendors of an-

tivirus software on their clients’ devices. A shortcoming of these data sources is that they

do not include controls and ultimately loss amounts.

The security practices of firms (and to some extent their suppliers) are primarily mea-

sured with self-assessments, typically as part of the underwriting process. Moreover, a

new industry of intermediaries for cyber risk analysis is forming. These services promise

security ratings based on remote technical measurements (e. g., scans of the corporate In-

ternet address space, maturity of the corporate website technology, etc.) and aggregation

of incident reports.23 In contrast to self-assessments, rating availability does not depend

on the cooperation of the rated firms. However, due to proprietary models and the novelty

of these businesses, little is known about the accuracy of the ratings and their robustness

to attempts of deception.

With the introduction of breach reporting obligations for the loss of personal data, public

and private registers began to collect information on incidents at the firm level.24 Incidents

21 A botnet (robot network) is a network of compromised computers, reprogrammed to be controlled re-
motely by criminals.

22 For example https://zeustracker.abuse.ch by the feed providers Zeus Tracker, http://

www.confickerworkinggroup.org by The Conficker Working Group, https://www.shadowserver.org by
the Shadowserver Foundation, https://honeynet.org by The Honeynet Project, or http://www.zone-
h.org that was created by Roberto Preatoni.

23 For example the enterprises SecurityScorecard, Bitsight, and QuadMetrics.
24 For example, https://datalossdb.org operated by the Open Security Foundation, http://

www.privacyrights.org/data-breach by the Privacy Rights Clearinghouse – see Edwards et al. (2016)
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at the device (or network address) level can be inferred from various blacklists which are

compiled from end users’ abuse reports as well as from technical measurements. Law

enforcement agencies maintain registers of cyber-related incidents primarily to compile

official police statistics. However, these sources are known to be particularly prone to

under-reporting. We expect that registers will become more relevant in the future as

many jurisdictions plan mandatory reporting for general security incidents and sanction

non-compliance (e. g., EC, 2013).

Victimization surveys25 complement the list of data sources. Unlike technical indicators

and incident reports, surveys draw a more representative picture of the impacts of cyber

attacks on consumers and businesses. They may serve as basis to estimate the baseline

risk. Well-known limitations of consumer surveys are that questions must be notoriously

superficial and the resulting data is prone to response biases (Florêncio and Herley, 2011).

The last data source are indicators inspired from finance. For example, Geer and Pareek

collect and publish a monthly sentiment indicator from a panel of security experts.26 Others

suggest to monitor underground marketplaces for prices of goods and services related to

cyber crime (Thomas et al., 2015; HPE, 2016) or track volumes and prices on markets for

vulnerabilities (Zhao et al., 2015).

5.2 Individual Loss Distribution

Research on loss distributions for cyber risk is scattered over multiple disciplines. The

shortage of data may require Bayesian methods for extracting the maximum information

from a few data points and finding appropriate ways of incorporating expert knowledge.

for a statistical model of breach sizes in this dataset – , and the VERIS Community Database
http://vcdb.org, one of the data sources of the annual data breach investigation report published by
Verizon.

25 Prominent examples are the annual reports of the Computer Security Institute (CSI) that got published
between 1996–2011 (e. g., CSI, 2011), periodical Eurobarometer studies (e. g., EC, 2015), and global
studies carried out by private firms, (e. g., PwC, 2016).

26 http://www.cybersecurityindex.org
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Actuaries also need to find the right balance between parsimonious models and represen-

tative models, which convey the complexity of the networked environment. However, there

is no consensus on data sources or appropriate methodology so far. Industry reports of-

ten provide estimates of central moments. NetDiligence (2016), for example, analyze 176

cyber insurance claims. They report an average cost per incident of about $ 0.7 million in

2016. In a study on insurability of cyber risk, Biener et al. (2015) select 994 cyber events

from a commercial database of publicly reported general operational losses between 1971

and 2009. They report a mean loss per cyber incident of $ 40.5 million. Several authors

(Gordon et al., 2011; Gatzlaff and McCullough, 2010) consistently report a negative stock

market reaction following the announcement of breaches at publicly traded companies. The

effect is in the order of 1 % in terms of short-term cumulative abnormal return, a common

metric of the event study method (MacKinlay, 1997). This translates to losses per incident

in the order of $ 300 million under the assumption of an average market capitalization of

NASDAQ-100 companies between 2000 and 2010.27

All these figures are not directly comparable because contexts, conditions and methods

vary between studies. Should average losses be reported per record, per incident, per firm,

or for entire sectors or economies? Shall losses include indirect costs? Shall they include or

exclude recovered values? Unfortunately, some of the frequently cited studies are not even

transparent about their methodology. Academics have flagged these issues (e. g., Anderson

et al., 2013; Riek et al., 2016), but a commonly agreed knowledge base is still not within

reach. One may hope that the experience of the insurance industry will facilitate the

development of comparable standards for this risk class.

Even if estimates of central moments were accurate and comparable, they reveal very

little about the shape of a loss distribution. Most loss distributions are skewed to the right.

27 The number is considerably smaller at $ 80 million for the average company in the NYSE Composite,
which includes smaller and less technology-focussed companies.
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For example, the mean estimate of $ 40.5 million in Biener et al. (2015) originates from a

distribution with a median of only $ 1.9 million. Its mean is inflated by a few outliers of up

to $ 13.3 billion. This calls for a closer look at the tails of the individual loss distributions.

In comparison to operational losses not classified as cyber, Biener et al. (2015) observe that

cyber losses exhibit shorter (right) tails than conventional risks. This somewhat qualifies

concerns raised by earlier studies reporting distinctive features of heavy tails in cyber loss

data (Maillart and Sornette, 2010; Edwards et al., 2016; Wheatley et al., 2016).28

The left tail deserves attention as well. Data from a consumer victimization survey indi-

cates that loss distributions are zero-inflated even after controlling for the (rather unlikely)

event of becoming a victim of cyber crime. According to Riek et al. (2016), only 33 % of

identity theft29 victims in online banking suffer monetary losses. This subset of victims

experiences direct financial losses of on average e 2,150 per incident; the median is e 630.

This highlights the errors caused by replacing these kind of loss distributions with a simple

Bernoulli loss model (see Section 4.2), where the probability of a fixed loss of e 2,150 would

be p = 0.007 in five years, suggesting an actuarially fair (i. e., lower bound) premium of

about e 3 per year if the entire population was insured.30 Recall that knowledge of the

shape of the individual loss distribution is necessary (but not sufficient) for determining

the compound loss distribution.

28 Note that heavy tails are observed primarily for the count data of breached records whereas moderate
tails are observed in monetary losses (of otherwise incomparable data sources). Besides many other
factors, this may hint to a concave relationship between the number of breached records and the total
cost of a breach.

29 Attackers impersonate their victims using stolen access credentials or identifying information.
30 The survey asked for incidents in the past five years. About 2 % of the sample reported victimization

experience for the specific case of identity theft in online banking. The data is representative for the
adult population of Internet users in six European countries: Germany, Estonia, Italy, The Netherlands,
Poland, and the UK.
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5.3 Compound Loss Distribution

The compound loss distribution determines the realization of aggregate claims against an

insurer who covers a pool of many risks. It is given by the convolution of all individual

loss distributions if the risks are statistically independent. However, this important condi-

tion does not apply to large parts of cyber risk. The very success factors of information

technology, economies of scale, standardization of programmable devices, and global net-

works, create complicated dependence structures between loss distributions of networked

components. This is because standard software has common vulnerabilities that can, in

the worst case, be exploited remotely at global scale.

The risk of correlated failure has been prominently mentioned by Geer et al. (2003), at the

time attributed to the near-monopoly of Microsoft on the desktop software market. With

Unix-based alternatives regaining strength as well as competing and fragmented platforms

in the mobile market, the situation has somewhat changed. However, vulnerabilities in

popular libraries such as zlib or OpenSSL, which are open source and widely used on all

platforms, remain a source of concern. Similarly, concentration on the market for basic

cloud services (infrastructure and platforms) may lead to correlated failures of downstream

cloud services. Consequently, an insurer’s profitability in cloud services policies (or business

interruption if the business depends on such services) lasts on the second or third-tier cloud

operators’ ability to avoid single points of failure.31

Positively correlated risks generally shift the probability mass of the compound distri-

bution to the extremes, thereby thwarting the balancing property of pooled risk, the very

principle that makes insurance economically viable. Figure 5 illustrates this for n = 200

homogeneous Bernoulli risks, each causing a fixed loss of l = $ 1 million with probabil-

ity p = 0.2. We use a single-factor model of correlation, where a fraction % of the loss

31 Insurers may exclude this type or risk, but the resulting policies will be considerably less attractive to
businesses using cloud services. They might also try to hold suppliers liable after incidents, but large
events will soon exhaust the suppliers’ capital stock.
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Figure 5: Probability density of compound loss distribution for uncorrelated (left) and cor-
related (right) risks

probability is determined by a common Bernoulli trial, for instance a newly discovered

vulnerability in standard software. The model is set up to keep the expected portfolio loss

independent of the strengths of correlation % (see Böhme, 2005, for the specification). It

demonstrates that correlation affects the shape of the compound loss distribution. With

increasing %, more and more probability mass is shifted to the sensitive right tail. In the

extreme case of % = 0.3, the insurer faces a non-negligible risk of losing $ 100 million in a

period, more than twice as much as he can expect in premiums if the actuarial fair premium

is taken as a baseline. To some extent, this can be compensated by increasing the loading

λ (cf. Equation (7)), but the market disappears if higher premiums π render risk transfer

uneconomical for firms’ levels of risk aversion.

Estimating the compound loss distribution for a portfolio of real cyber risks is a ma-

jor challenge. Cyber risk insurance suffers from a lack of reliable data in general, and

estimating multivariate properties, such as correlation coefficients between distributions,

demands even more data points than estimates of univariate (central) moments. Moreover,

the dependence structure between many risks is most likely not homogenous, and may be

more complex than linear correlation between central moments. Extreme value theory has

been applied in finance and insurance (Embrechts et al., 1999) in order to characterize and

estimate tail risk in compound loss distributions. If individual risks are dependent, copulas
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offer very general models of dependence between variables that can be parametrized to ac-

count for co-occurrence of extreme events (Nelsen, 1999). These ideas have been brought to

cyber risk analysis. Using a t-copula, which captures tail dependence, Böhme and Kataria

(2006) report evidence for positive dependence between the attack activity observed at 35

globally distributed sensors (honeypots, cf. Section 5.1). This data source tracks threat in-

formation, not losses or claims. The result can nevertheless be interpreted as an indication

of structural dependence, which will also drive the relevant loss distributions for insurers.32

In the absence of empirical data, analysts must resort to simulations. They can leverage

the network environment component of the cyber risk insurance framework (Figure 3) to

study propagation of risk along the edges of the graph structure. Lorenz et al. (2009)

propose a methodology based on the popular (but often misleading) mean field approxi-

mation.33 Johnson et al. (2014) study the computational complexity of the exact solution

for different classes of topologies. While homogeneous networks and star-shaped topologies

(see the second and third example in Figure 4) permit efficient solutions, the problem is

NP-hard in general. For the special case of scale-free networks, the authors show that the

compound loss distribution cannot be computed from a random sample of nodes, a plausi-

ble situation for an insurer who shares the market with competitors or firms who mitigate,

accept or avoid their risks. Many natural networks, foremost the routing topology of the

Internet, exhibit scale-free characteristics.

Note that this topology may be, but is not necessarily aligned with the topology gov-

erning interdependent security (see Section 4.4). Both concepts are related, but distinct.

Interdependent security connects defense functions and thus parameters of individual loss

distributions. By contrast, risk propagation leads to cumulated risk, that is dependence

32 Copulas have also been proposed to obtain more precise individual loss distributions of large enterprises
where a single threat can affect many devices at the same time (see Herath and Herath, 2007).

33 The drastic simplification of this approach drops all local information about interactions between nodes
and replaces it with a global average.
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between realizations of losses. Correlation is a special form of the latter. In other words,

firms anticipate interdependent security in their cyber risk management, whereas insurers

(and their regulators) must primarily be concerned about cumulated risk.

The fear of cumulated cyber risk led reinsurers to explicitly exclude cyber risk in the

early 2000s, a fact still named as barrier to the development of cyber risk insurance a

decade later (ENISA et al., 2012). Alternative forms of bulk cyber risk transfer, such as

securitization or catastrophe bonds have been discussed, but cause concerns about moral

hazard by investors who may find themselves in a position where they benefit from cyber

incidents (Anderson et al., 2008).

6 Conclusion

Cyber risk insurance as a risk management tool has not kept pace with the adoption of

information technology. At the time of writing, the market is about to develop, primarily

in comfortable niches, but increasingly taking on more substantial exposure. If there is

anything to be learnt from the last financial meltdown, adding layers of indirection is only

a good idea if the party who takes the risk is in a better position to understand, mitigate,

and eventually bear it. Cyber risk quantification faces many challenges in the first place.

It differs, as laid out in this article, in many important respects from the conventional risks

that the insurance industry has built an expertise to model and price.

This article could close with the known mantra and call for more actuarial data; or

complain about the chicken-and-egg problem that actuarial data will not become available

unless policies are written and claims filed. However, even decades of claims about “yester-

day’s attacks” will not inform about “tomorrow’s risk” in a domain where “moving-target

defense” has become a dictum. Models of cyber risk arrival need to be more predictive.

They must draw on the available data at earlier stages of our cascade model of cyber risk
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arrival (cf. Figure 2). This includes information about the dependence topology. This calls

for data sharing frameworks between competitors or with intermediaries in order to be able

to calculate compound loss distributions for the parts of a larger network in an insurer’s

portfolio.34 Some authors see a role for the government as a standard-setter to facilitate

this exchange (e. g., Biener et al., 2015).

More systematic collection and evaluation of data at early stages is also essential for

identifying risk factors and quantifying their effects. The checklists used for underwrit-

ing cyber risk today may help lawyers identifying conditions precedent to liability, but

they seem too superficial for meaningful premium differentiation. Premium differentiation,

however, is a crucial instrument to stimulate better security practices at deployment and

operations and, in the long run, pass the signal upward the supply chain, where it could

stimulate more risk-conscious software development and systems engineering (Heitzenrater

et al., 2016). If this channel is too indirect and slow, insurers could take a more active

role and liaise with software vendors. Laszka and Grossklags (2015) outline how insurers

can proactively try to remove software vulnerabilities in order to reduce correlated risk

and tighten the critical right tail of the compound loss distribution. While the idea is

appealing, and has been mentioned by Anderson (2008) and Böhme (2005), it implies that

insurers enter an unfamiliar partnership with the software industry. Moreover, it requires

collective action because no insurer has incentives to be the first mover if all competitors

benefit equally from the fruits of the efforts.35 These and other lessons learned from the

analysis in this article are summarized in Box 3.

34 Compliance with privacy and data protection laws is an important requirement for such information
sharing arrangements. The legal and technical aspects thereof require further scrutiny.

35 A conceivable, but morally and economically questionable alternative would be to allow for hardened
versions of software or services for policyholders of “activist insurers”. The increasing system diversity
would nonetheless generate positive externalities for competitors and uninsured firms.
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Box 3: Key messages

• We propose a differentiated view on cyber versus conventional risk by separat-
ing the nature of risk arrival from the target exposed to risk.

• Cyber risk is technically characterized by high design complexity, (re)program-
mable behavior of networked components, and a global dynamic threat surface.

• Cyber risk is economically characterized by incomplete information, external-
ities, and correlation caused by common risk factors.

• Cyber security is a timing game of information on threats and vulnerabilities.

• Cyber risk insurers need to establish communication channels with policyhold-
ers in order to quickly react to changes in the threat environment.

• Quantification of cyber risk suffers from a lack of relevant data. This is due to
missing standards for data collection and missing incentives for data sharing.

• Cyber risk analysis should emphasize early indicators over historical claims. It
can draw on methods of network science to estimate portfolio loss distributions.

• Cyber risk insurers may need to share more information with competitors than
in conventional lines of insurance.

• Cyber risk and insurance are nascent fields of interdisciplinary research.

• As information technology gets pervasive, more industries follow the model of
the ICT industry. More risks will take the characteristics of cyber risk.

Foreseeable future developments include that more industries will follow the model and

the economic logic of the software industry. Consequently, more risk is taking the charac-

teristics of cyber risk. Current technology trends, such as the Internet of Things, the wake

of a fourth industrial revolution, autonomous vehicles, and mass-customized medication

based on computer-assisted diagnosis, just to name a few, support this point. In this con-

text, the need for cyber risk analysis is paramount on the individual and compound level.

It is barely responsible to embrace further increases in the society’s dependence on infor-

mation technology without being able to monitor the resulting cyber risk with principled

43



and scientific methods.

Another stream of current technology development explores massively distributed sys-

tems formed by pseudonymous actors who execute long-running protocols on top of the

Internet infrastructure. These protocols update a cryptographically secured global data

structure and resolve inconsistencies and conflicts without a central party. The success of

Bitcoin, a virtual currency scheme and the most prominent example today, has drawn at-

tention to this technological paradigm (Böhme et al., 2015). Although its future is subject

to high uncertainty, a possible wider adoption has two important implications for cyber

risk analysis. First, distributed ledgers (an umbrella term for said systems) produce a very

different sort of cyber risk than described in this article. Besides technological factors,

this “novel” cyber risk is determined by new “laws of nature” enforced by cryptography

as well as the aggregate behavior of many autonomous algorithms reacting to these laws.

Ground-breaking research and modeling effort is needed before these risks can be priced

and transferred. Second, this technology has become a platform for disruptive innovation

of financial intermediation, with Bitcoin taking the lead on payments systems. Specula-

tively, this may change not only the type of risk insured, but revolutionize the way we

think about and organize insurance.
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Rainer Böhme. Cyber-insurance revisited. In Workshop on the Economics of Information

Security (WEIS), Harvard University, Cambridge, MA, USA, 2005.
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