

IMPROVEMENT OF THE BILL OF MATERIALS

(BOM) GENERATOR FOR PRODUCT VARIANTS

Sri Raharno
1
, Yatna Yuwana Martawirya

2

Mechanical Engineering Department, Faculty of Mechanical Engineering and Aerospace Engineering,

Institut Teknologi Bandung, Jln. Ganesha No. 10, Bandung, Indonesia, Tel. 62-22-2504243,

Fax. 62-22-2534099, Email:
1
harnos@staff.itb.ac.id;

2
yatna@ftmd.itb.ac.id

Received Date: December 25, 2012

Abstract

In short, a bill of materials (BOM) is a list of parts or components and quantities, which are

required to manufacture a product. A BOM also describes the component structure of a product,

usually as a hierarchical structure implemented within a relational database. Generally, to generate

a BOM of a product that has no variant is a relatively simple process. On the other hand, there are

problems in generating a BOM for a product with many variants. Since the number of variants may

be large, it is impossible to design and maintain a BOM structure for each variant. The high

number of components will certainly results in a time consuming BOM generation. Moreover,

another challenge of data management associated with variety of products is data redundancy. In

order to overcome the problems, previous research has developed a product data model using a

single structure for many product variants. The research also has implemented a heuristic rule as a

BOM generator. However, the implementation has shown that generating a BOM has been time

consuming and required relatively complex codes. This research deals with an improvement of the

BOM generator developed in previous research. The improvement involves reducing the duration

of processes and simplifying the codes.

Keywords: Bill of Materials (BOM) Generator, Improvement, Product Variants

Introduction

The bill of material (BOM), which is a documentation technique on product structure, is

used to demonstrate the structure and relations between the final product, subassemblies, as

well as the corresponding quantities of the subordinate parts and materials of each

assembly [1][2]. A structure model is proposed to record the product tree. Each object in

the tree presents itself as a parent item or a child item. There are different forms of BOM

during the product life cycle. For instance, the production stage involves the Engineering

BOM (EBOM), the Process BOM (PBOM) and the Manufacturing BOM (MBOM).

EBOM is one form of BOM that is widely used in material requirement planning and

manufacture resource planning. EBOM is also the foundation of other BOM forms of a

product. PBOM is used in the stage of processing of parts, which reflects the product

assembly structure and sequences. MBOM includes all material items that are necessary in

the manufacture of the product [3]. In this case, one of the challenges of data management

associated with different forms of BOM is avoidance of the BOM databases redundancy

[4].

In theory, the varieties derived from a product could be in hundreds of thousands. For

instance, a car of common type could be assembled in millions of variants through all

possible combinations of its assemblies. However, practically, the diversification of model

into variants is limited to those assemblies and final products with few differences [1]. In a

customer-oriented environment, generic products replace standardized models. A generic

product is defined through a set of attributes, which may have a set of alternatives

parts/variants. Since the number of variants may be large, it is difficult to design and

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.32

maintain a BOM structure for each variant. A solution is to describe all product variants in

one generic BOM [5][6][7]. The BOM for each product variant may then be generated

from this structure by specifying attributes [8].

A BOM describes the component structure of a product, usually as a hierarchical

structure implemented within a relational database. These descriptions include the relations

between the end-product, subassemblies, and materials. The conventional approach for the

implementation of these structures in an Enterprise Resource Planning (ERP) or a Product

Data Management (PDM) system is to design a single BOM for each product variant.

However, this becomes impossible in a customer-oriented production, where the generic

product is defined through a set of attributes, which may have alternative values or

variants [9].

Previous research has resulted in a product data model using a single structure for

many product variants [10]. The product data model has been implemented using a

relational database management system (RDBMS) and a BOM is generated by employing

some queries based on a heuristic rule. There are many advantages of developing a bill of

material generator based on a query language processor [11]. For instance, the advantages

are (1) least amount of time required to developed and implement the bill of material

generator, (2) database administration and maintenance are made simple by the ability to

easily manipulate the stored data using query language commands and (3) the bill of

materials generator could be expanded readily by adding a new objects.

Previous problem solving approach is shown in Fig. 1. The implementation of the

heuristic rule as BOM generator primarily used a nested procedure to retrieve the product

structure and to collect the material data. In this case, the RDBMS was only used to read

and write the product structure data. This approach has two shortcomings, namely the

process duration and the complexity of codes. Related to the process duration, to generate a

BOM for product variants by retrieving data repeatedly using a nested procedure from the

RDBMS and filtering data outside of the RDBMS certainly is more time consuming.

Furthermore, retrieving product structure data and collecting material data require complex

codes.

BOM

GENERATOR

BOM

Matl. ID Quant.BOM

Matl. ID Quant.

RDBMS

Product Structure

Figure 1. Previous problem solving approach [10]

ProposeD Problem Solving Approach

Based on the previous shortcomings, an improvement method is proposed. As shown in

Fig. 2, the proposed problem solving approach implemented the BOM generator as part of

the RDBMS using object views (virtual object tables). In this case, the RDBMS used to not

only read and write the product data but also to collect and filter material data from the

product structure through object views.

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.33

RDBMS

Product Structure

BOM

Matl. ID Quant.BOM

Matl. ID Quant.

BOM

GENERATOR

Views

Figure 2. Proposed problem solving approach

There are several reasons to develop a BOM generator through creating object views of

RDBMS. First, RDBMS organizes data in tables and relations between tables. The

relationships that could be created among the tables enable a RDBMS to store huge

amount of data efficiently and retrieve selected data effectively. Next, RDBMS has been

used in hundreds of thousands application worldwide and it has been proven adequate for

the job. Moreover, a RDBMS could process up to a few thousand transactions per second,

thus a RDBMS is an ideal system for transaction processing and handling of complex

query work loading. Lastly, a RDBMS has a native language called Structured Query

Language (SQL) developed to work with it. Using the native language could reduce the

processing time and result in easier communication with the BOM generator. Briefly, this

approach has possibilities to reduce processing time and obtaining a BOM by using

simpler codes.

Modelling of Product Structure

Before discussing the product structure and its modeling, first let’s look into the definitions

of product models and product variants that are used in this research. A product model is

defined as a group of products with certain identification and name. A product variant is a

product model that has more detail specifications. A product model may have several

product variants. For example, Airbus A-380 is a product model, while Airbus A380-8XX-

000 with 569 tons MTOW, Airbus A380-8XX-001 with 510 tons MTOW and Airbus

A380-8XX-002 with 569 tons MTOW are product variants.

The relation between a product model and its variants is shown in Fig. 3. It may be

seen that Model 01 has three product variants. They are variant VA, VB, and VC. For these

variants, there is only one product structure model. In general, model of product structure

is a part of product data model that provides information about the breakdown of parts that

construct the product and the relations among final products, assemblies, subassemblies,

and parts or components. As shown in Fig. 3, product model M01 has 9 elements for its

structure. The attributes of an element are shown at the left bottom side of the Fig. 3.

Furthermore, each element in the structure has an ownership mark. For example, variant

VA, VB, and VC own the element with ID 0.0 and name Product X. It means that variants

VA, VB, and VC have this element as part of their product structures.

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.34

Model M01

Model M02

Variant

VA

Variant

VB

Variant

VC

0.0
Product X

1.0
Assy 1

1.1
Assy 2

1.2
Part 100

2.0
Part 200

2.1
Part 201

2.3
Part 202

2.4
Part 203

A

VA

VB

VC

2

B

VA

VB

VC

1

D

VA
2

C

VC
2

A

VA

VB

VC

3
VA

VB

VC

VA

VB

VC

VA

VC

2.5
Part 204

F

VA

VC1

Structure

Model

1

1

1

2.1
Part 201

B

VA

VB

VC

1

Node ID

Name of node

ID of material

Quantity of

element

Variant IDs

that own

this node

Figure 3. Relations between product models and product variants

As shown in Fig. 3, the elements of product structure may have information about the

material. For example, element 2.0 is made of material A, and its quantity is two.

According to the structure, if material A from element 2.0 will be assembled with material

B from element 2.1 then they will build an upper element namely element 1.0. In this

model, not all of element has information about their materials. In this case, only elements

that is at the bottom of the structure need to have information about the material.

 Although the product data model only has one structure model for many variants, but

by using ownership marks, it could generate a product structure from each variant. The

product structure for variant VA, VB, and VC are shown in Fig. 4 to Fig. 6 respectively.

Furthermore, the structure of each variant will be used to generate the BOM by collecting

information about the materials and their quantities. As shown in Fig. 4, the BOM of

variant VA consists of material A from element 2.0 and 1.2 with the quantity of five,

material B from element 2.1 with the quantity of one, material D from element 2.3 with the

quantity of two and one material F from element 2.5.

BOM for VA

Matl. ID Quant.

A 5

B 1

D 2

F 1

0.0
Product X

1.0
Assy 1

1.1
Assy 2

1.2
Part 100

2.0
Part 200

2.1
Part 201

2.3
Part 202

A

2

B

1

D

2

A

3

2.5
Part 204

F

1

1

1

1

Figure 4. The product structure for variant VA and its BOM

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.35

BOM for VB

Matl. ID Quant.

A 5

B 1

0.0
Product X

1.0
Assy 1

1.2
Part 100

2.0
Part 200

2.1
Part 201

A

2

B

1
A

31

1

Figure 5. The product structure for variant VB and its BOM

BOM for VC

Matl. ID Quant.

A 5

B 1

C 2

F 1

0.0
Product X

1.0
Assy 1

1.1
Assy 2

1.2
Part 100

2.0
Part 200

2.1
Part 201

2.4
Part 203

A

2

B

1

C

2

A

3

2.5
Part 204

F

1

1 1

1

Figure 6. The product structure for variant VC and its BOM

Development of the BOM Generator

In this research, development of the BOM generator employed Oracle XE RDBMS. This is

a RDBMS offered by Oracle, free to distribute on Windows and Linux platforms. This

RDBMS is restricted for use as single CPU with a maximum of 4 GB of user data and 1

GB maximum memory, although it could be installed on a server with any amount of

memory. The simplified physical data model as implementation of the product data model

used in this research is shown in Fig. 7.

Figure 7. The simplified physical data model for the product data

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.36

Table 1 shows the required data for models, variants, and materials related with the

physical data model above. The structure of product data used in this research is shown in

Fig. 8 and the relations between the elements of product structure and product variants are

shown in Fig. 9.

Table 1. Models, Variants, and Materials Data

Model

ID Name

Material

ID Name

M01 Model 01 A Material A

M02 Model 02 B Material B

Variant

ID Name C Material C

VA Variant A D Material D

VB Variant B E Material E

VC Variant C F Material F

Figure 8. Product structure data

Figure 9. Relations between elements of product and product variants

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.37

The basic concept employed in the development of BOM generator as part of a

RDBMS is the use of views. In database terminology, a view consists of a stored query

accessible as a virtual table in a relational database. Unlike ordinary tables in a relational

database, a view is not part of the physical schema. It is a dynamic, virtual table computed

or collated from data in the database. Changing the data in a table alters the data shown in

subsequent of the view. Views provide advantages over tables, such as ability to represent

a subset of data contained in a table, views could join and simplify multiple tables into a

single virtual table, and views could hide the complexity of data. In a relational database,

the primary mechanism for retrieving information from a database is the use of queries.

Generally, a query consists of questions presented to the database in a predefined format

and the RDBMS uses the Structured Query Language (SQL) as the standard query format.

The main view created in this research is a view to retrieve the path of a bottom

element from the top level (product) based on the product structure. For example, based on

Fig. 2 the path for element 2.4 is element 0.0, element 1.1, and element 2.4. Furthermore,

the script used for creating the view is shown in Fig. 10 and the example data of the view is

shown in Fig. 11.

Figure 10. The script for creating the view of path of the elements

Figure 11. The path of product structure elements

In the script for creating the view above, the depth of level is limited to five levels

although the depth of level of the product structure is unlimited. If the depth of level of the

product structure is more than five, then the view must be rebuilt in order to make the

BOM generator function properly. Based on Fig. 11, AID means the ID for elements of

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.38

level 1 of the product structure, AM means the material ID for elements of level 1 of the

product structure, and AQ means the quantity of material owned by elements of level 1 of

the product structure. Then BID means the ID for elements of level 2 of the product

structure and so on.

After the view of path of the bottom elements has been created, the second view is

required to retrieve the elements that have a material from the previous view. In this view,

the elements that have a material from column A, B, C, D, and E are collected into one

virtual table. The script for creating this view is shown in Fig. 12 and the result is shown in

Fig. 13.

Figure 12. The script for creating the view of collecting elements that have a material

Figure 13. Data of elements that have a material

After creating the second view, the third view is required to join the second view with

the product variants that own the elements in the second view. The script for creating this

view is shown in Fig. 14 and the result is shown in Fig. 15.

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.39

Figure 14. The script for creating the third view

Figure 15. Retrieving data from the third view

After creating the third view, the list of BOM may be generated. By using the third

view, an aggregate function, and supplying the product variant data, as shown in Fig. 16

for the variant VA, the list of BOM will be retrieved. The query that is used to generate the

BOM as shown in Fig. 16 is much simpler than the codes that have been implemented for

the heuristic rule. The query that is used to generate the BOM for variant VB and VB are

shown in Fig. 17 and Fig. 18 respectively.

Figure 16. A simple query to generate a BOM for variant VA

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.40

Figure 17. A simple query to generate a BOM for variant VB

Figure 18. A simple query to generate a BOM for variant VC

Performance Test

To evaluate the proposed method, a performance test was conducted. The basic idea of the

test is to compare the process duration of previous and proposed methods. The test has

been done by using a simple application written in Java language (see Fig.19). The

application implements both the communication with the RDBMS from the proposed

method and the heuristic rule from the previous method (see Fig. 20 and 21).

Figure 19. A simple Java application to evaluate the performance

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.41

Figure 20. Pseudocode for proposed method

Figure 21. Pseudocode for previous method

The primary steps used in the test are (1) obtaining the start time, (2) executing the

process to generate the list of BOM, (3) obtaining the finish time and (4) calculating the

duration. The test used a hierarchical structure of car with 4367 rows of data in comparing

the performance. Partial data of hierarchical structure of car used in the test is shown in

Fig. 22.

Figure 22. Partial data of hierarchical structure of car

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.42

The test was conducted in two phases. The first phase is evaluation of previous method

and the second phase is evaluation of proposed method. Each phase is performed 10 times.

Examples of screenshot of the application for evaluation of proposed and previous methods

are shown in Fig. 23 and Fig. 24, respectively. Each screenshot of application contains

information about BOM and the duration required to generate the BOM. Each line of BOM

as shown in Fig. 20 or Fig. 21 represents the variant ID, the material ID and the quantity.

In the list, the quantity AR means “as required”. After executing the Java application 10

times for each method, the results of the tests are shown in Table 2.

Figure 23. A screenshot of the application for evaluation of proposed method

Figure 24. A screenshot of the application for evaluation of previous method

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.43

Table 2. Results of Performance Test

 Duration for Previous Method Duration for Proposed Method

Test# min. sec. ms Total (ms) min. sec. ms Total (ms)

1 1 6 637 66,637 0 1 352 1,352

2 1 7 226 67,226 0 0 923 923

3 1 6 960 66,960 0 1 280 1,280

4 1 7 152 67,152 0 1 303 1,303

5 1 8 300 68,300 0 1 316 1,316

6 1 3 960 63,960 0 1 291 1,291

7 1 7 692 67,692 0 1 301 1,301

8 1 6 662 66,662 0 1 308 1,308

9 1 2 121 62,121 0 0 938 938

10 1 6 245 66,245 0 0 929 929

Statistics

Average (ms) 66,296.0 Average (ms) 1,194.1

Minimun (ms) 62,121 Minimun (ms) 923

Maximum (ms) 68,300 Maximum (ms) 1,352

Range (ms) 6,179 Range (ms) 429

As shown in Table 2, the duration of previous method fluctuated between 62,121 ms to

68,300 ms with the average duration of 66,296.0 ms. The duration of the proposed method

also fluctuated from 923 ms to 1,352 ms and the average of 1,194.1 ms. Based on the

average durations, the proposed method took only 1.8% of previous method duration to

generate the BOM from the same data. It shows that the proposed method has taken much

less time in processing than the previous method.

Conclusions

Improvement of the BOM generator for product variants has been developed through

object views. Based on the performance test, the proposed method average duration is

1.8% of that of the previous method to generate the BOM from the same data. It is because

of the processing using some codes outside the RDBMS requires more time than

processing using native commands. Furthermore, the command to obtain a list of a BOM

for a product variant is relatively simple.

Although the proposed method takes less time in processing and is easier to use

compared to the previous method, it has two limitations. The first limitation is the depth of

levels of the product structure. Although the physical data model of the product structure

has been developed to model the depth of levels without limitation, but the view for paths

of the product structure (as shown in Fig. 11) can only function properly to 5 depths of

levels. If it is required to have more than 5 depths of levels, the view must be rebuilt.

However, in practice the depth of levels of the product structure is rarely larger than 10

depths of levels. For example, the depth of levels for an automobile is only 6 or 7. The

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.44

second limitation is the developed model of product has not specified a validity attribute

for elements in the product structure. The attribute will be useful to limit the period of

validity of an element, such as in the case of change of components. Hence, the proposed

methods have yet to accommodate any changes of product.

References

[1] J. Guoli, G. Daxin, and F. Tsui, “Analysis and implementation of the BOM of a tree-

type structure in MRP II”, Journal of Materials Processing Technology, Vol. 139,

Issues 1-3, pp. 535-538, 2003.

[2] P.W. Stonebraker, “Restructuring the bill of material for productivity: a strategic

evaluation of product configuration”, International Journal Production Economics,

Vol. 45, Issues 1-3, pp. 251-260, 1996.

[3] S. Zhu, D. Cheng, K. Xue, and X. Zhang, “A unified bill of material based on

STEP/XML”, The 10th International Conference on Computer Supported Cooperative

Work in Design, 2006, Nanjing, pp. 267–276, 2007.

[4] F.B. Watts, “Bill of material”, in Engineering Documentation Control Handbook,

Noyes Publication, New York, pp. 115-156, 2000.

[5] J. Jiao, M.M. Tseng, Q. Ma, and Y. Zhou, “Generic bill-of-materials-and-operations for

high-variety production management”, Journal of Concurrent Engineering: Research

and Application, Vol. 8, No. 4, pp. 297-322, 2000.

[6] F. Erens, H. Hegge, E.A. van Veen, and J.C. Wortmann, “Generative bills-of-materials:

an overview”, The IFIP WG5.7 Working Conference on Integration in Production

Management Systems, Eindhoven, pp. 93 – 113, 1992.

[7] J.W.M. Bertrand, M. Zuijderwijk, and H.M.H. Hegge, “Using hierarchical pseudo bills

of materials for custom order acceptance and optimal material replenishment in

assemble to order manufacturing of non modular products”, International Journal of

Production Economics, Vol. 66, No. 2, pp. 171-184, 2000.

[8] K.A. Olsen and P. Saetre, “Describing products as executable programs: variant

specification in a customer-oriented environment”, International Journal of Production

Economics, Vol. 56-57, Issue 1, pp. 495-502, 1998.

[9] J.C.H. Matias, H.P. Garcia, J.P. Garcia, and A.V. Idoipe, “Automatic generation of a

bill of materials based on attribute patterns with variant specifications in a customer-

oriented environment”, Journal of Materials Processing Technology, Vol. 199, Issues

1-3, pp. 431-436, 2008.

[10] Yatna Yuwana M., Sri Raharno, and Indra Nurhadi, “Development of bill of materials

of product variants”, The 9th Asia Pacific Industrial Engineering and Management

Systems Conference, Bali, pp. 2869 – 2870, 2008.

[11] G. Nandakumar, “Bills of material processing with a SQL database”, Computers and

Industrial Engineering Journal, Vol. 18, No. 4, pp. 471- 483, 1990

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.45

