IMPROVEMENT OF THE BILL OF MATERIALS
(BOM) GENERATOR FOR PRODUCT VARIANTS

Sri Raharno', Yatna Yuwana Martawirya®

Mechanical Engineering Department, Faculty of Mechanical Engineering and Aerospace Engineering,
Institut Teknologi Bandung, JIn. Ganesha No. 10, Bandung, Indonesia, Tel. 62-22-2504243,
Fax. 62-22-2534099, Email: *harnos@staff.itb.ac.id; yatna@ftmd.itb.ac.id

Received Date: December 25, 2012

Abstract

In short, a bill of materials (BOM) is a list of parts or components and quantities, which are
required to manufacture a product. A BOM also describes the component structure of a product,
usually as a hierarchical structure implemented within a relational database. Generally, to generate
a BOM of a product that has no variant is a relatively simple process. On the other hand, there are
problems in generating a BOM for a product with many variants. Since the number of variants may
be large, it is impossible to design and maintain a BOM structure for each variant. The high
number of components will certainly results in a time consuming BOM generation. Moreover,
another challenge of data management associated with variety of products is data redundancy. In
order to overcome the problems, previous research has developed a product data model using a
single structure for many product variants. The research also has implemented a heuristic rule as a
BOM generator. However, the implementation has shown that generating a BOM has been time
consuming and required relatively complex codes. This research deals with an improvement of the
BOM generator developed in previous research. The improvement involves reducing the duration
of processes and simplifying the codes.

Keywords: Bill of Materials (BOM) Generator, Improvement, Product Variants

Introduction

The bill of material (BOM), which is a documentation technique on product structure, is
used to demonstrate the structure and relations between the final product, subassemblies, as
well as the corresponding quantities of the subordinate parts and materials of each
assembly [1][2]. A structure model is proposed to record the product tree. Each object in
the tree presents itself as a parent item or a child item. There are different forms of BOM
during the product life cycle. For instance, the production stage involves the Engineering
BOM (EBOM), the Process BOM (PBOM) and the Manufacturing BOM (MBOM).
EBOM is one form of BOM that is widely used in material requirement planning and
manufacture resource planning. EBOM is also the foundation of other BOM forms of a
product. PBOM is used in the stage of processing of parts, which reflects the product
assembly structure and sequences. MBOM includes all material items that are necessary in
the manufacture of the product [3]. In this case, one of the challenges of data management
associated with different forms of BOM is avoidance of the BOM databases redundancy
[4].

In theory, the varieties derived from a product could be in hundreds of thousands. For
instance, a car of common type could be assembled in millions of variants through all
possible combinations of its assemblies. However, practically, the diversification of model
into variants is limited to those assemblies and final products with few differences [1]. In a
customer-oriented environment, generic products replace standardized models. A generic
product is defined through a set of attributes, which may have a set of alternatives
parts/variants. Since the number of variants may be large, it is difficult to design and

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.32

maintain a BOM structure for each variant. A solution is to describe all product variants in
one generic BOM [5][6][7]. The BOM for each product variant may then be generated
from this structure by specifying attributes [8].

A BOM describes the component structure of a product, usually as a hierarchical
structure implemented within a relational database. These descriptions include the relations
between the end-product, subassemblies, and materials. The conventional approach for the
implementation of these structures in an Enterprise Resource Planning (ERP) or a Product
Data Management (PDM) system is to design a single BOM for each product variant.
However, this becomes impossible in a customer-oriented production, where the generic
product is defined through a set of attributes, which may have alternative values or
variants [9].

Previous research has resulted in a product data model using a single structure for
many product variants [10]. The product data model has been implemented using a
relational database management system (RDBMS) and a BOM is generated by employing
some queries based on a heuristic rule. There are many advantages of developing a bill of
material generator based on a query language processor [11]. For instance, the advantages
are (1) least amount of time required to developed and implement the bill of material
generator, (2) database administration and maintenance are made simple by the ability to
easily manipulate the stored data using query language commands and (3) the bill of
materials generator could be expanded readily by adding a new objects.

Previous problem solving approach is shown in Fig. 1. The implementation of the
heuristic rule as BOM generator primarily used a nested procedure to retrieve the product
structure and to collect the material data. In this case, the RDBMS was only used to read
and write the product structure data. This approach has two shortcomings, namely the
process duration and the complexity of codes. Related to the process duration, to generate a
BOM for product variants by retrieving data repeatedly using a nested procedure from the
RDBMS and filtering data outside of the RDBMS certainly is more time consuming.
Furthermore, retrieving product structure data and collecting material data require complex
codes.

(RDBMS)

BOM |

BOM

BOM
GENERATOR

\Product Structure 2)

Figure 1. Previous problem solving approach [10]

ProposeD Problem Solving Approach

Based on the previous shortcomings, an improvement method is proposed. As shown in
Fig. 2, the proposed problem solving approach implemented the BOM generator as part of
the RDBMS using object views (virtual object tables). In this case, the RDBMS used to not
only read and write the product data but also to collect and filter material data from the
product structure through object views.

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.33

€ RDBMS)

BOM oy |
GENERATOR
\Product Structure)

Figure 2. Proposed problem solving approach

There are several reasons to develop a BOM generator through creating object views of
RDBMS. First, RDBMS organizes data in tables and relations between tables. The
relationships that could be created among the tables enable a RDBMS to store huge
amount of data efficiently and retrieve selected data effectively. Next, RDBMS has been
used in hundreds of thousands application worldwide and it has been proven adequate for
the job. Moreover, a RDBMS could process up to a few thousand transactions per second,
thus a RDBMS is an ideal system for transaction processing and handling of complex
query work loading. Lastly, a RDBMS has a native language called Structured Query
Language (SQL) developed to work with it. Using the native language could reduce the
processing time and result in easier communication with the BOM generator. Briefly, this
approach has possibilities to reduce processing time and obtaining a BOM by using
simpler codes.

Modelling of Product Structure

Before discussing the product structure and its modeling, first let’s look into the definitions
of product models and product variants that are used in this research. A product model is
defined as a group of products with certain identification and name. A product variant is a
product model that has more detail specifications. A product model may have several
product variants. For example, Airbus A-380 is a product model, while Airbus A380-8XX-
000 with 569 tons MTOW, Airbus A380-8XX-001 with 510 tons MTOW and Airbus
A380-8XX-002 with 569 tons MTOW are product variants.

The relation between a product model and its variants is shown in Fig. 3. It may be
seen that Model 01 has three product variants. They are variant VA, VB, and VC. For these
variants, there is only one product structure model. In general, model of product structure
is a part of product data model that provides information about the breakdown of parts that
construct the product and the relations among final products, assemblies, subassemblies,
and parts or components. As shown in Fig. 3, product model MO1 has 9 elements for its
structure. The attributes of an element are shown at the left bottom side of the Fig. 3.
Furthermore, each element in the structure has an ownership mark. For example, variant
VA, VB, and VVC own the element with ID 0.0 and name Product X. It means that variants
VA, VB, and VC have this element as part of their product structures.

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.34

Structure
Model

Variant
VA

Quantity of
element

Variant
VB

=)

Variant
VC

Node ID

Variant IDs
that own
this node

VA
VB
VC

Part 201

ﬁ2.4 ﬁ

Figure 3. Relations between product models and product variants

As shown in Fig. 3, the elements of product structure may have information about the
material. For example, element 2.0 is made of material A, and its quantity is two.
According to the structure, if material A from element 2.0 will be assembled with material
B from element 2.1 then they will build an upper element namely element 1.0. In this
model, not all of element has information about their materials. In this case, only elements
that is at the bottom of the structure need to have information about the material.

Although the product data model only has one structure model for many variants, but
by using ownership marks, it could generate a product structure from each variant. The
product structure for variant VA, VB, and VC are shown in Fig. 4 to Fig. 6 respectively.
Furthermore, the structure of each variant will be used to generate the BOM by collecting
information about the materials and their quantities. As shown in Fig. 4, the BOM of
variant VA consists of material A from element 2.0 and 1.2 with the quantity of five,
material B from element 2.1 with the quantity of one, material D from element 2.3 with the
quantity of two and one material F from element 2.5.

Bo.0
()
Assy 2

(2 [

BOM for VA
""""""""" ; Matl. ID Quant.
B0 (@21 } / - .
i-Part 200 H-Part ey, - e - A A
-\ B 1
| 1 1 D 2
F 1

Figure 4. The product structure for variant VA and its BOM

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.35

BOM for VB

2.0 |
A 5
B 1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, BOM for VC

|
Part 200 Part 201 A 5
‘ 5 1
¢ 2
F 1

Figure 6. The product structure for variant VC and its BOM

Development of the BOM Generator

In this research, development of the BOM generator employed Oracle XE RDBMS. This is
a RDBMS offered by Oracle, free to distribute on Windows and Linux platforms. This
RDBMS is restricted for use as single CPU with a maximum of 4 GB of user data and 1
GB maximum memory, although it could be installed on a server with any amount of
memory. The simplified physical data model as implementation of the product data model
used in this research is shown in Fig. 7.

r_Model r_Material
model id VARCHARZ{I) <ph= matesial id MARCHARZ(3} zpi>
* name VARCHARZ{10) name VARCHARZ{10)
model_id = model material_id = material
model_id = model id = parent_id
r_Structure
T Variant id WARCHARZZ) =pi=
- - :'_' —— parent_id WARCHARZ2{3) =fi>
variant id VARCHARZ/3) spk> materisl VARCHARZ(2) <h2>
model VARCHAR2(3) <fi> model VARCHARZ(Z) sfudx
name VARCHARZ(10) name WARCHARZ{10}
quantity SMALLINT
ti:l =id

variant_id = variant_id }

r_Owner

“

variant id VARCHARZ(3) <pkfil=
id MVARCHARZ I <ph ficde=

Figure 7. The simplified physical data model for the product data

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.36

Table 1 shows the required data for models, variants, and materials related with the
physical data model above. The structure of product data used in this research is shown in
Fig. 8 and the relations between the elements of product structure and product variants are
shown in Fig. 9.

Table 1. Models, Variants, and Materials Data

1D ‘ Name ‘ 1D Name
Model MO01 Model 01 A Material A
MO02 Model 02 B Material B
W Material C Material C
_ VA Variant A D Material D
Variant - -
VB Variant B E Material E
VC Variant C F Material F
SQL> select ¥ from r_structure;
ID PAR MAT MOD NAME QUANTITY
0.4 M@l Product X 1
1.0 0.8 M@l Assy 1 1
1.1 0.0 M@l Assy 2 1
1.2 0.0 A M@l Part 10@ 3
2.8 1.0 A M@l Part 200 2
2.1 1.0 B M@l Part 201 1
2.3 1.1 D M@l Part 202 2
2.4 1.1 C M@l Part 203 2
2.5 1.1 F M@l Part 204 1
9 rows selected.
SQL>

Figure 8. Product structure data

SQL> select % from R_OWNER
order by VARIANT_ID, ID;

<
®

NNNNEEEONNEEONNNNE RS

UIBHENHEERENOSUIWHENRES

<
9]
N

21 rows selected.

SaL>

Figure 9. Relations between elements of product and product variants

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.37

The basic concept employed in the development of BOM generator as part of a
RDBMS is the use of views. In database terminology, a view consists of a stored query
accessible as a virtual table in a relational database. Unlike ordinary tables in a relational
database, a view is not part of the physical schema. It is a dynamic, virtual table computed
or collated from data in the database. Changing the data in a table alters the data shown in
subsequent of the view. Views provide advantages over tables, such as ability to represent
a subset of data contained in a table, views could join and simplify multiple tables into a
single virtual table, and views could hide the complexity of data. In a relational database,
the primary mechanism for retrieving information from a database is the use of queries.
Generally, a query consists of questions presented to the database in a predefined format
and the RDBMS uses the Structured Query Language (SQL) as the standard query format.

The main view created in this research is a view to retrieve the path of a bottom
element from the top level (product) based on the product structure. For example, based on
Fig. 2 the path for element 2.4 is element 0.0, element 1.1, and element 2.4. Furthermore,
the script used for creating the view is shown in Fig. 10 and the example data of the view is
shown in Fig. 11.

drop wiew V_STRUCTURE;

create or replace view V_STRUCTURE as

gelect

A.id AIC, R.MATERIAL RM, (BA.QUANTITY) AL,

B.ID BIC, E.MATERILL BM, (R.QURNTITI*B.QUANTITY) B,

C.ID CIC, C.MATERIAL CM, (R.QUANTITY*E.QUANTITY*C.QUANTITY) C§,

.ID DIC, L.MATERIAL DM, (A.QUANTITY*E.QUANTITY*C.QUANTITY*L.QUANTITY) Dg,
E.ID EIL, E.MATERIAL EM, (B.QUANTITY*E.QUANTITY#C.QUANTITY+L.QUANTITY*E. UANTITY) E{
fror R_STRUCTURE 2

left cuter join B_STRUCTURE B con A.ID = E.FARENT_ IC
left ocuter join B_STRUCTURE C on B.ID = C.FARENT IC
left outer join RB_3STRUCTURE D on C.ID = LD.FARRENT IL
left cuter join B_STRUCTURE E con L.ID = E.FARENT_ IC

where A.FARENT ID is mnull
with read only;

Figure 10. The script for creating the view of path of the elements

SAL? select % from V_STRUCTURE;
AID AM AQ BID BM BG CID CM C@ DID DM DG EID EM EQ

11.1 2.5
11. .

o
QEREREE
b b b
[e]
NERE—

|_l.

NN
= S0
OO0
HNINN—

A

& OOOES

rows selected.
SaL>

Figure 11. The path of product structure elements

In the script for creating the view above, the depth of level is limited to five levels
although the depth of level of the product structure is unlimited. If the depth of level of the
product structure is more than five, then the view must be rebuilt in order to make the
BOM generator function properly. Based on Fig. 11, AID means the ID for elements of

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.38

level 1 of the product structure, AM means the material 1D for elements of level 1 of the
product structure, and AQ means the quantity of material owned by elements of level 1 of
the product structure. Then BID means the ID for elements of level 2 of the product

structure and so on.

After the view of path of the bottom elements has been created, the second view is
required to retrieve the elements that have a material from the previous view. In this view,
the elements that have a material from column A, B, C, D, and E are collected into one
virtual table. The script for creating this view is shown in Fig. 12 and the result is shown in

Fig. 13.

drop view V_STRUCTUREMATER

create or replace view V_35
select AID IC, AM M, RO Q
unicn

select BIL, BM, BQ from V_
unicn

select CILC, CH, CQ frow V_
unicn

select DIC, DM, DQ frow V_
unicn

select EIL, EM, EQ from V_
with read conly;

IRL;

TRUCTUREMATERIAL a3
frowr V_STRUCTURE where AM

STEUCTUEE where BM is not
STRUCTUREE where CM is not
STREUCTUEE where DM is not

STEUCTUEE where EM is not

i3 not null
null and BQ
null and CQ
null and DR

null and EQ

and LD
i3 not
i3 not
i3 not

i3 not

iz not null

null

null

null

null

Figure 12. The script for creating the view of collecting elements that have a material

ord

er by VID;

Figure 13. Data of elements that have a material

SQL> select * from V_STRUCTUREOWNER

After creating the second view, the third view is required to join the second view with
the product variants that own the elements in the second view. The script for creating this
view is shown in Fig. 14 and the result is shown in Fig. 15.

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.39

drop view V_3TRUCTUREOWNEE:

create or replace wview V_STRUCTUREOWMER &3
select O.VARIANT ID WIL, 5.ID 5IC, M MILD, ¢
fror ¥V_STRUCTUREMATERIAL 3

inner join B_OWNER O on 5.ID = Q.IC

with read onlwy:

Figure 14. The script for creating the third view

SAOL> select ¥ from V_STRUCTUREOWNER
order by VID;
VID SID MID Q
VA 1.2 A 3
VA 2.0 A 2
VA 2.1 B 1
VA 2.3 D Z
VA 2.5 F 1
VB 1.2 A 3
VB 2.0 A Z
VB 2.1 B 1
Ve 1.2 A 3
VC 2.0 A pa
VC 2.1 B 1
VC 2.4 C 2
VC 2.5 F 1
13 rows selected.
SQL>

Figure 15. Retrieving data from the third view

After creating the third view, the list of BOM may be generated. By using the third
view, an aggregate function, and supplying the product variant data, as shown in Fig. 16
for the variant VA, the list of BOM will be retrieved. The query that is used to generate the
BOM as shown in Fig. 16 is much simpler than the codes that have been implemented for
the heuristic rule. The query that is used to generate the BOM for variant VB and VB are
shown in Fig. 17 and Fig. 18 respectively.

SQL> select VID, MID, SUM(Q) QTY
2 from V_STRUCTUREOWNER where VID = 'VA’
3 group by VID, MID order by MID;

VID MID QTY

VA A)

VA B

VA D Z

VA F 1

SaL>

Figure 16. A simple query to generate a BOM for variant VA

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.40

SQL> select VID, MID, SUM(Q) QTY
2 from V_STRUCTUREOWNER where VID = 'VB’
3 group by VID, MID order by MID;

VID MID QTY

VB A 5

VB B 1

SQL>

Figure 17. A simple query to generate a BOM for variant VB

SOL> select VID, MID, SUM(Q) QTY
from V_STRUCTUREOWNER where VID = 'VC®
group by VID, MID order by MID;

VID MID QTY

VC A 5

VC B 1

VC C 2

VC F 1

SQL>

Figure 18. A simple query to generate a BOM for variant VC

Performance Test

To evaluate the proposed method, a performance test was conducted. The basic idea of the
test is to compare the process duration of previous and proposed methods. The test has
been done by using a simple application written in Java language (see Fig.19). The
application implements both the communication with the RDBMS from the proposed
method and the heuristic rule from the previous method (see Fig. 20 and 21).

W BOM - NetBeans IDE 7.2 -0l =l
File Edit View MNavigate Source Refactor Run Debug Profle Team Tools Window Help Q- Search (Ctrl+1)
1771 % | [emrers 21§ @ D BB
x| Fies | | o [output x| || BOMjava | || BOMDirect.java x| BOMIndrect.java x| | DBConnection.java x| || .. « »| v| O
E@ BOM Source History | I |Ia %—Ll SI_F | ? % R |<::I ED | o O | & =
E}--@ Source Packages _I
H re
LB |:|:| bom w
@ 322 public woid getChild(String id, int total){
N BOM.java - oyt
----- |:‘] BOMDirect.java i . . . m
_____ D BOMIndirect.iay 34 DEConnection obj = new DBConnection():
B] a5 if (obj==null){
""" DBConnection. jz 36 throw new Exception():
P e |:‘| Duration.java 37 \
l 38 Libraries 38 elsef
<| | » 39 Connection conn = obj.createConnection():;
= 40 Statement st = conn. createStaterte’Jt(]
delete—Na\rlgaturX| [=] _ - S
41 String qry = lect * from W M B STRUCTURE " +
Members View LI 42 where NT ID = '" 4+ id + "' and VARIANT ID = 'T
E@ BOMDirect 43 ResultSet rs = execateOJery(qry]
(O addBOM(String material, 44 while(rs.next()){
i O delete) 45 if (rs.getString ("MATERIAL]‘—'1.111]{
O execute) 46 addBOM (r=.getString ("MATERIRL"),
- @ executeQuery() 47 total * rs.getInt| ITITY"),
- @ getChid(String id, inttof | 48 rs.getString ("VARIRNT _ID"});
Hp 49 H
..... O showBOMQ) i
~ 50 else{
51 getChild (rs.getString ("ID"), total * rs.getInt ("CUANTITY
4 | i
v 52 } -
L1 [5] = a 2
@ O [& rlg!_ g = 4| | ’I

| 1415 |ms

Figure 19. A simple Java application to evaluate the performance

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.41

procedure BOMProposedMethod is:

input: string wvariant id
1. get the start time

. display the BOM
. get the finish time

o L b

end BOMProposedMethod

. calculate the duration

. retrive BOM data for wariant_id from database

Figure 20. Pseudocode for proposed method

procedure BOMPrevicusMethod is:

input: string wvariant id
1. get the start time

2
3
variant_id)
4
5. retrieve BOM data from temp table
6. display the BOM
7. get the finish time
8. calculate the duration

end BOMPreviousMethod

procedure AddBOMData is:

. retrieve root of structure for variant_id from database
. 1f root has material data, AddBOMData(material.id,

material .quantity,

. otherwise, GetChild(root.id, root.guantity, variant_id)

input: string material id, material guantity, variant id

1. insert material id, material quantity, variant_id intc temp table in

database
end AddBOMData

procedure GetChild is:
input: string node id, number guantity, string variant id
1. retrieve children of node id from database

-

2. for each node on the children

1. if node has materizl data, AddBCOMData (material.id,
nede.quantity * guantity, variant id)

2. otherwise,
variant id)
end GetChild

GetChild (node.id,

node.quantity * guantity,

Figure 21. Pseudocode for previous method

The primary steps used in the test are (1) obtaining the start time, (2) executing the
process to generate the list of BOM, (3) obtaining the finish time and (4) calculating the
duration. The test used a hierarchical structure of car with 4367 rows of data in comparing
the performance. Partial data of hierarchical structure of car used in the test is shown in

Fig. 22.

2939 2912 MK451382

29472 2941 MC125371
29423 2941 MS66@167
2944 %912 MF247251

2951 2948 ME747348

2955 2954 ME765001

2961 2952 ME765002
4367 rows selected.

D CLAMP, HOSE

D CLIP,HOSE

D CLIP HOLDER

D CLIP,HOSE (13.8)

D BOLT.WASHER ASSEMBLED (8X2@)
D POWER BRAKE BOOSTER

D MASTER ASSY, VACUUM

D NUT, HITH WASHER

D CYLINDER,BRAKE MASTER 1.3/16
D BODY COMP,T.M/

D PISTON ASSY,SECONDARY

D PISTON ASSY,PRIMARY

D BODY COMP,T.

D PISTON ASSY.SECONDARY

D COCK ASSY,DRAIN

D PISTON ASSY,SECONDARY

D PISTON ASSY,PRIMARY

Figure 22. Partial data of hierarchical structure of car

[A [T TS WLV SV N TRV AT

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.42

The test was conducted in two phases. The first phase is evaluation of previous method
and the second phase is evaluation of proposed method. Each phase is performed 10 times.
Examples of screenshot of the application for evaluation of proposed and previous methods
are shown in Fig. 23 and Fig. 24, respectively. Each screenshot of application contains
information about BOM and the duration required to generate the BOM. Each line of BOM
as shown in Fig. 20 or Fig. 21 represents the variant 1D, the material ID and the quantity.
In the list, the quantity AR means “as required”. After executing the Java application 10
times for each method, the results of the tests are shown in Table 2.

[c+.| Command Prompt

TZ00 MU4AEOOe4
TZ00 MUAE1096
TZ00 MU4AE1891
TZ00 MU4AE1193
TZ00 MU481194
T/00 MU670811
TZ00 MUSB@127
TZ00 MU818519
TZ00 MWe23299
TZ00 MWe24353
TZ00 MWe24823
TZ00 MWO28255
TZ00 MWe29715
TZ00 MWO31118
T/00 MWO33388
T/00 MWe33389
TZ00 MYe1524@ 12

T/00 MZ160166 3

Duration for Proposed Method: @ minute(s) @ second(s) 929 milisecond(s)

N R R

kRN R D
=== S

D:\X-Main\bom\app\BOM\dist>

Figure 23. A screenshot of the application for evaluation of proposed method

[Command Prompt

17708 MUAB1898 1
17708 MUAB1891 1
17708 MUAB1193 1
17700 MUAB1194 1
7700 MU670011 2
7700 MUSBE127 2
7700 MU810519 2
TZ700 MWB23299 AR
TZ00 MWe24353 12
T700 MWe24823 5
17700 MWA28255 2
17708 MWe29715 2
17700 MWe31118 2
17700 MWe33388 AR
TZ00 MWO33389 AR
TZ00 Mye15240 12
T/00 MZ100166 3
Duration for Previous Method: 1 minute(s) 6 second(s) 245 milisecond(s)

D:\X-Main\bom\app\BOM\dist>

Figure 24. A screenshot of the application for evaluation of previous method

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.43

Table 2. Results of Performance Test

Duration for Previous Method Duration for Proposed Method
Test# | min. sec. ms | Total (ms) | min. sec. ms | Total (ms)
1 1 6 637 66,637 0 1 352 1,352
2 1 7 226 67,226 0 0 923 923
3 1 6 960 66,960 0 1 280 1,280
4 1 7 152 67,152 0 1 303 1,303
5 1 8 300 68,300 0 1 316 1,316
6 1 3 960 63,960 0 1 291 1,291
7 1 7 692 67,692 0 1 301 1,301
8 1 6 662 66,662 0 1 308 1,308
9 1 2 121 62,121 0 0 938 938
10 1 6 245 66,245 0 0 929 929
Statistics
Average (ms) 66,296.0 | Average (ms) 1,194.1
Minimun (ms) 62,121 | Minimun (ms) 923
Maximum (ms) 68,300 | Maximum (ms) 1,352
Range (ms) 6,179 | Range (ms) 429

As shown in Table 2, the duration of previous method fluctuated between 62,121 ms to
68,300 ms with the average duration of 66,296.0 ms. The duration of the proposed method
also fluctuated from 923 ms to 1,352 ms and the average of 1,194.1 ms. Based on the
average durations, the proposed method took only 1.8% of previous method duration to
generate the BOM from the same data. It shows that the proposed method has taken much
less time in processing than the previous method.

Conclusions

Improvement of the BOM generator for product variants has been developed through
object views. Based on the performance test, the proposed method average duration is
1.8% of that of the previous method to generate the BOM from the same data. It is because
of the processing using some codes outside the RDBMS requires more time than
processing using native commands. Furthermore, the command to obtain a list of a BOM
for a product variant is relatively simple.

Although the proposed method takes less time in processing and is easier to use
compared to the previous method, it has two limitations. The first limitation is the depth of
levels of the product structure. Although the physical data model of the product structure
has been developed to model the depth of levels without limitation, but the view for paths
of the product structure (as shown in Fig. 11) can only function properly to 5 depths of
levels. If it is required to have more than 5 depths of levels, the view must be rebuilt.
However, in practice the depth of levels of the product structure is rarely larger than 10
depths of levels. For example, the depth of levels for an automobile is only 6 or 7. The

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.44

second limitation is the developed model of product has not specified a validity attribute
for elements in the product structure. The attribute will be useful to limit the period of
validity of an element, such as in the case of change of components. Hence, the proposed
methods have yet to accommodate any changes of product.

References

[1] J. Guoli, G. Daxin, and F. Tsui, “Analysis and implementation of the BOM of a tree-
type structure in MRP II”, Journal of Materials Processing Technology, Vol. 139,
Issues 1-3, pp. 535-538, 2003.

[2] P.W. Stonebraker, “Restructuring the bill of material for productivity: a strategic
evaluation of product configuration”, International Journal Production Economics,
Vol. 45, Issues 1-3, pp. 251-260, 1996.

[3] S. Zhu, D. Cheng, K. Xue, and X. Zhang, “A unified bill of material based on
STEP/XML”, The 10th International Conference on Computer Supported Cooperative
Work in Design, 2006, Nanjing, pp. 267-276, 2007.

[4] F.B. Watts, “Bill of material”, in Engineering Documentation Control Handbook,
Noyes Publication, New York, pp. 115-156, 2000.

[5] J. Jiao, M.M. Tseng, Q. Ma, and Y. Zhou, “Generic bill-of-materials-and-operations for
high-variety production management”, Journal of Concurrent Engineering: Research
and Application, VVol. 8, No. 4, pp. 297-322, 2000.

[6] F. Erens, H. Hegge, E.A. van Veen, and J.C. Wortmann, “Generative bills-of-materials:
an overview”, The IFIP WG5.7 Working Conference on Integration in Production
Management Systems, Eindhoven, pp. 93 — 113, 1992,

[7] J.W.M. Bertrand, M. Zuijderwijk, and H.M.H. Hegge, “Using hierarchical pseudo bills
of materials for custom order acceptance and optimal material replenishment in
assemble to order manufacturing of non modular products”, International Journal of
Production Economics, Vol. 66, No. 2, pp. 171-184, 2000.

[8] K.A. Olsen and P. Saetre, “Describing products as executable programs: variant
specification in a customer-oriented environment”, International Journal of Production
Economics, Vol. 56-57, Issue 1, pp. 495-502, 1998.

[9] J.C.H. Matias, H.P. Garcia, J.P. Garcia, and A.V. Idoipe, “Automatic generation of a
bill of materials based on attribute patterns with variant specifications in a customer-
oriented environment”, Journal of Materials Processing Technology, Vol. 199, Issues
1-3, pp. 431-436, 2008.

[10] Yatna Yuwana M., Sri Raharno, and Indra Nurhadi, “Development of bill of materials
of product variants”, The 9th Asia Pacific Industrial Engineering and Management
Systems Conference, Bali, pp. 2869 — 2870, 2008.

[11] G. Nandakumar, “Bills of material processing with a SQL database”, Computers and
Industrial Engineering Journal, VVol. 18, No. 4, pp. 471- 483, 1990

ASEAN Engineering Journal Part A, Vol 3 No 2, ISSN 2229-127X p.45

