
the Software Frame

work of the Self Adaptive Systems

 C. Govardhan M.Tech C.C. Kalyan Srinivas M.Tech
Asst.Professor Asst.Professor

Department of CSE Department of CSE

KMMITS, Tirupati KMMITS, Tirupati

 Abstract-In the recent years of the distributed computing,

many trends have been emerged for the benchmarking of the

self adaptive systems. Even though architecture of the

software framework for evaluating and benchmarking of the

self adaptive distributed system proposed a meaningful way

for understanding the benchmarks. It will not be given the

precise view of the different benchmarks, In this paper ,

using of the radar charts in the framework of software

component was proposed ,which gives the coherent view of

the different metrics.

I. INTRODUCTION

Traditionally, handling changing requirements,

faults, or upgrades on different kinds of software-based

systems have been tasks performed as a maintenance

activity conducted by human operators at design or

development time. However, factors such as uncertainty in

the operational environment, resource variability, or the

critical nature of some systems which cannot be halted in

order to be changed, have lead to the development of

systems able to reconfigure their structure and behaviour at

run time in order to improve their operation without any

human intervention. This kind of systems, which typically

operate using an explicit representation of their structure

and goals, has been studied within different research areas

of software engineering (e.g., component-based

development, requirements engineering, software

architectures, etc.) and described with different names,

which put their emphasis on different aspects. From those

different names (self-healing, self-managed systems, etc.)

Those are called Self Adaptive sytems .Metrics are always

domain specific which evaluates the performance of the

self adaptive systems and it is always problem specific ,as

such it is hard or even impossible to mention a metric

which is useful to every domain.In this paper , a radar

chart was proposed in the context of the software systems .

II. RELATED WORK

[1]Describes the use of Declarative Benchmarking

Definition Language (DBDL), and Architecture of the

software framework for evaluating and benchmarking self-

adaptive distributed systems. Regarding the radar charts

and its advantages was mentioned in [2]. In this paper we

will be using Radarcharts for clear explanation of different

domain specific metrics.

III. RADAR CHARTS

Radar charts also called spider charts, polar charts,

or kiviat charts are a form of a graph that allows a visual

comparison between several quantitative or qualitative

aspects of a situation, or when charts are drawn for several

situations using the same axes, a visual comparison

between the situations may be made. A radar chart shows

one axis for each aspect of a situation. Close to the center

are the low values for the axis, and near the edge of the

graph the high values are located. Such charts often show a

current situation compared to some target. In the context of

software systems, a certain solution or system can be

considered as one situation and as such a radar chart offers

a graphical display of the differences between actual and

ideal performance and is useful for defining performance

and identifying strengths and weaknesses of different

solutions. Performance can depend on several aspects each

represented in the radar chart. .We are going to visualize

the different benchmark situations arised in the Case

Study: MarsWold [1].

fig: results of the evaluation of the marsworld scenario for three different settings on three areas with different size.every setting was evaluated 50 times. the

values in the parentheses express the speed up of time with respect to setting three for the respective area size.

Area

Size

Mean Time

in Setting 1

(time units)

Mean Time

in Setting 2

(time units)

Mean Time

in Setting 3

(time units)

Small 57.6 (+19%) 59.4 (+16%) 70.8
Medium 235.7 (+48%) 231.7(+49%) 449.4

Large 543.9 (+49%) 456.6 (+58%) 1071.6

using of the Radar Charts in

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

1

In a This experiment, the prototype has been used

to benchmark a distributed scenario called MarsWorld. In

this scenario three different autonomous component types

cooperate in order to explore ore on the Mars. The first

type, called sentry, is responsible for analysing whether

certain places contain ore resources. A second type, called

producer, is in charge of exploiting detected ore resources.

Finally, a type called carrier is responsible for transporting

ore to a factory. This MarsWorld scenario has been

benchmarked in order to evaluate the outcome of two

different coordination strategies. In the first setting all

autonomous component types are moving on the area and

initially determining their next destination by random.

Additionally, the autonomous components are also sharing

all visited destinations. Therefore, they determine their

following destination again randomly but exclude

destinations that have already been visited by them or the

other components. The second setting extended this

coordination functionality with an additional behavior. As

soon as a sentry has found ore resources on a position in

the area it informsalso a carry agent, i.e. in addition to the

producer agent which is also called as it was in the first

setting. The idea of this behavior is to speed up the whole

process. These two settings where compared to a third

setting called basic setting. This setting did not contain the

features of sharing already visited destinations neither the

additional coordination functionality of setting two.

Therefore, this third setting is well suited to benchmark the

effect of the different coordination strategies mentioned

previously.

Table I depicts the results from 50 evaluation runs for each

setting. It shows the time, i.e. mean value, that was

required to find, exploit and transport all ore deposits from

the area. The table also reveals that the scenario has been

evaluated for three areas with different size: small, medium

and large. In general the results reveal the speed up of time

that can be reached with the coordination strategies. For

each evaluation of setting one and two the speed up is

denoted in parentheses in table I with respect to the time

required for setting three for the same area size. Even for a

small area the speed up is significant and for an area with

medium respective large size it is in fact very high. The

results also reveal that the additional coordination function

of setting two pays off only for large areas. Setting two can

therefore be used as a benchmark for this application and

other settings have to ”compete” against this configuration

All the information depicted in the table 1 was

shown comprehensively in a single radar chart .By single

glance we can say that a setting 3 can be observed as a

default benchmark

.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

2

IV. RADAR CHARTS IN THE ARCHITECTURE OF THE SOFTWARE FRAMEWORK FOR EVALUATING

AND BENCHMARKING SELF-ADAPTIVE DISTRIBUTED SYSTEMS.

It has been given Detailed description about the

architecture in [1]. By taking the quick recall at the

architecture,The benchmarking manager is responsible for

all aspects that are related to the runtime management. It is

responsible for the execution of the specified sequences at

the right time. The benchmarking manager is also

responsible for monitoring the termination condition of the

conducted benchmark.For certain scenarios, it might be

helpful to have a control center which gives (status)

information about currently executed benchmarks. On the

one hand, the control center offers an online visualisation

component to obtain information about important metrics.

Also, the online visualisation offers the possibility

to stimulate discussions between software developers and

domain experts about the characteristics of the self-

adaptive software system in early stages of the

development process. On the other hand, the control center

has a component called manual injection. It supports the

manipulation of conducted benchmarks at runtime since it

allows changing the configuration of the SuT via the

CRUD interface.

Finally, the software architecture contains a

reporting component. It offers the possibility to search for

already conducted benchmarks and helps to identify

settings that have already been benchmarked or that have

still to be done.

Moreover, it can visualise the results of already

conducted experiments. Obviously, the reporting

component requires interaction with a database.They are

very useful when a relatively small number of samples

need to be compared and the number of variables or factors

to look at is large.

We will be using radar charts in the reporting component

to better support offline visualization.Since they are well

suited to depict different metrics in the same diagram.

In this architecture the radar charts with the

Reporting Component,this is mainly because, entire

benchmarks was reported here with the different

metrics.,so for the easy visualization of the entire

benchmarks Moreover, it can visualise the results of

already conducted experiments.for easy view of the

different benchmarks radar charts had been used here.

Radar chart can be defined as arelevant way to

judge functional adequacy of a self adaptive system. An

ideal system is on the radar center because it outperforms

the other in all the dimensions. Radar chart

 Allow us to apply these metrics in overall evaluation and

comparison approach. Because of these different solutions

can be compared along with the multiple dimensions.

V. CONCLUSION

In this paper the main advantage is visualization

of different metrics in the single radar chart, there by

getting the benchmarks that are conducted for the self

adaptive systems. As a Future works ,radar charts can be

used in the online visualization also,along with the reusable

metrics.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

3

REFERENCES

1. Ante Vilenica & Winfried Lamersdorf ,” Benchmarking and

Evaluation Support for Self-Adaptive Distributed Systems”

Complex, Intelligent and Software Intensive Systems (CISIS),
2012 Sixth International Conference on Digital Object

Identifier: 10.1109/CISIS.2012.115 Publication Year: 2012 ,

Page(s): 20 - 27 IEEE Conference Publications
2. B. Edmonds, “Using the experimental method to produce

reliable self-organised systems,” in Engineering Self-

Organising Systems: Methodologies and Applications, ser.
LNAI, S. e. a.Brueckner, Ed. Springer, 2004, no. 3464, pp. 84–

99.

3. E. Kaddoum, M.-P. Gleizes, J.-P. George, and G.
Picard,“Characterizing and evaluating problem solving self-*

systems,” in Future Comp., Service Comp., Cognitive,

Adaptive,Content, Patterns, COMPUTATIONWORLD ’09,
2009, pp.137 –145.

4. T. De Wolf and T. Holvoet, “Evaluation and comparison of

decentralised autonomic computing systems,” Dept. of Comp.
Sc., K.U.Leuven, CW Rep. 437, Mar. 2006, accessedon 1-11-

2011. [Online]. Available: https://lirias.kuleuven.be/

handle/123456789/131666

5.

H. Madeira and P. Koopman, “Dependability benchmarking:

making choices in an n-dimensional problem space,” in
Proceedings of the first Workshop on Evaluating and

Architecting System Dependability, 2001.

6.

P. Reinecke, K. Wolter, and A. van Moorsel, “Evaluating the
adaptivity of computing systems,” Perform. Eval., vol. 67, pp.

676–693, August 2010.

7.

A. G. Ganek and T. A. Corbi, “The dawning of the autonomic
computing era,” IBM Syst. J., vol. 42, pp. 5–18, 2003

8.

M. Salehie and L. Tahvildari, “Self-adaptive software:

Landscapeand research challenges,” ACM Trans. Auton.
Adapt. Syst., vol. 4, pp. 14:1–14:42, May 2009.

9.

R. Laddaga, “Self-adaptive software,” December 1997dARPA

Broad Agency Announcement, BAA-98-12.

10.

J. O. Kephart and D. M. Chess, “The vision of autonomic

computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

11.

A. Computing, “An architectural blueprint for autonomic
computing.” White Paper, vol. 36, no. June, p. 34 2006.

[Online]. Available: http://users.encs.concordia.ca/∼ac/ ac-
resources/AC Blueprint White Paper 4th.pdf

12.

T. DeWolf and T. Holvoet, “Emergence and self-organisation:
a statement of similarities and differences,” in Proceedings

ofthe International Workshop on Engineering Self-Organising

Applications. Springer, 2004, pp. 96–110.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

4

