
  2.3. VENN DIAGRAMS & SET OPERATIONS  

 

 

 In this section we introduce Venn diagrams and define four basic operations on 

sets.  We also present some important properties related to these operations.  

 

 

 Venn Diagrams 

 

 The English logician John Venn (1834 – 1923) introduced his famous eponymous 

diagrams in the late 19th century to illustrate relationships between sets and provide a 

pictorial understanding of set operations.  Venn diagrams remain, to this day, powerful 

tools in elementary set theory because they account for all the logical possibilities in set 

interactions.  They consist of circles representing sets (𝐴, 𝐵, 𝐶) enclosed by a 

rectangular box representing the universal set (𝑈).  Different regions of the diagram are 

bounded by the outlines of the circles and the box.  Elements under consideration (i.e. 

elements in the box 𝑈) are placed in regions of the diagram based on which sets they 

belong to.  If they belong to multiple sets, then they are placed in the corresponding 

overlapping region.  If they belong to no set, then they are placed in the region outside 

the circles.  Figure 1 below shows the general Venn diagrams for one, two, and three 

sets.  

 

 

 

 

 

 

Figure 1: From Left to Right, General Venn Diagrams for One, Two, and Three Sets  

 

 

 The universal set corresponds to the domain of discourse and thus consists of all 

the elements under consideration.  The sets 𝐴, 𝐵, 𝐶 are all subsets of 𝑈.  For example, if 

the universe is the set of possible outcomes when throwing a regular die, then         



𝑈 = {1,2,3,4,5,6} and an outcome like 0 or 7 would not be considered.  In other words, 

only the outcomes 1, 2, 3, 4, 5, and 6 are placed inside the box.  Suppose we put all 

even outcomes in set 𝐴 and all prime outcomes in set 𝐵, then the outcome 4 would be 

placed inside circle 𝐴 but not inside circle 𝐵 since 4 is even but not prime, the outcome 

1 would be placed outside both circles since 1 is neither prime nor even, and so on.  

Placing every outcome would eventually produce the Venn diagram seen in Figure 2.  

 

 

Figure 2: Venn Diagram for Even and Prime Die Outcomes 

 

 

 Note how the Venn diagrams in figures 1 and 2 with multiple sets feature 

overlapping circles.  These configurations allow for the most general cases, when 

elements may be common to two, or even three, sets.  For example, the outcome 2 in 

Figure 2 belongs to both sets 𝐴 and 𝐵 since 2 is a number that is both prime and even.  

In some special cases, a small circle may be contained within a larger one (for example, if 

𝐴 ⊆ 𝐵), two circles may overlap entirely and look as one (if 𝐴 = 𝐵), or two circles may 

be drawn separately with no overlapping region if they share no common elements.  

Some of these special cases are considered in exercises. 

 

 Lastly, we mention that Venn diagrams with more than three sets are rarely 

considered for practical reasons.  It is quite difficult to visualize general cases involving 

four sets or more.  To give you an idea of what these pictures may look like, see Figure 

3 below.  The picture on the left with the four intersecting ellipses is due to Venn 

himself, while the picture on the right is due to the British statistician A. W. F. Edwards 

(born 1935). 



 

      

 

 

 

Figure 3: General Venn Diagrams for Four Sets (Left) and Six Sets (Right) 

 

 

 Set Operations 

 

 We now define four basic operations on sets: complementation, union, intersection, 

and difference.  The first three constitute what are called the fundamental operations on 

sets.  We include the fourth operation of set difference because it is a convenient and 

useful one, particularly when working with sets (more on that in the next section).  The 

more advanced operation of a Cartesian product, which is widely used in analytic 

geometry, is omitted here.  

 

 

 COMPLEMENTATION 

 

 

DEFINITION: Given a universal set 𝑈 and a set 𝐴 such that 𝐴 ⊆ 𝑈, the complement 

of 𝐴, denoted by 𝐴, is the set of all elements of 𝑈 that do not belong to 𝐴: 

 

𝐴 = {𝑥 ∈ 𝑈|𝑥 ∉ 𝐴} 
  

 

 Complementation is the only set operation that is unary as it involves one set.  

Moreover, it is the only operation that requires a universal set.  In contrast, the other 

three set operations we will present later are all binary as they involve two sets and do 

not require a universal set.  Other standard notations for 𝐴, the complement of 𝐴, 

include 𝐴′ and 𝐴𝐶 .   

 



 The complement of 𝐴 can be represented as the shaded region in the Venn 

diagram below.  This region includes everything that is not in the set under 

consideration. 

 

 
 

 

EXAMPLES:  

 If 𝑈 = {1,2,3, … ,9,10} and 𝐴 = {2,3,5,7}, then 𝐴 = {1,4,6,8,9,10}.  
 Consider the set of all the female students who play varsity at a college.  The 

complement of this set consists of all the male students at the college and all 

the female students who do not play varsity. 

 If 𝑈 = ℕ = {1,2,3, … }, then the set of odd natural numbers 𝑂 = {1,3,5, … } is 
the complement of the set of even natural numbers 𝐸 = {2,4,6, … }.  

 Amongst the 8 planets in our solar system, the complement of the set of 

terrestrial planets {Mercury, Venus, Earth, Mars} is the set of gas giants {Jupiter, 

Saturn, Uranus, Neptune}.  

 In Ancient Chinese philosophy, the concept of yin-yang (depicted by the symbol 

below) is founded on the idea that seemingly opposite cosmic forces are 
interdependent and complementary.  Thus, dual entities such as light and dark, 

fire and water, the sun and the moon, etc. belong to either the yin (black) or 

the yang (white). 

  
 

 On the real numbers line, the complement of the interval                    
(−∞, 1) = {𝑥 ∈ ℝ|𝑥 < 1}, which consists of all real numbers less than 1, is the 

interval [1, ∞) = {𝑥 ∈ ℝ|𝑥 ≥ 1}, which consists of all real numbers greater 

than or equal to 1.   

  

 



UNION 

 

 

DEFINITION: Given two sets 𝐴 and 𝐵, the union of 𝐴 and 𝐵, denoted by 𝐴 ∪ 𝐵, is 

the set of all the elements that belong to 𝐴 or 𝐵 or both: 

 

𝐴 ∪ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵} 
 

 

 The union of two sets 𝐴 and 𝐵 is formed by adding all the elements of 𝐴 to 𝐵 

(or vice versa).  Consider the creation of a new federal agency that combines two 

existing ones to eliminate redundancies or the merger of two corporations with 

overlapping interests.  These are both instances of the union operation.  

 

 The union of 𝐴 and 𝐵 can be represented as the shaded region in the Venn 

diagram below.  

 

 

  

 

EXAMPLES:  

 The set of all students at a college consists of students who have taken an 

introductory logic class and students who have not taken an introductory logic 

class.  This example is an illustration of the property that the union of a set and 

its complement always results in the universal set.  

 ℕ = 𝑂 ∪ 𝐸 since the set of natural numbers (ℕ) is the union of the set of even 

natural numbers (𝐸) and the set of odd natural numbers (𝑂).  

 If 𝐴 = {2,3,5,7} and 𝐵 = {2,4,6,7,10}, then 𝐴 ∪ 𝐵 = {2,3,4,5,6,7,10}.  Note 

how adding all the numbers in 𝐴 to 𝐵 results in the list of numbers in 𝐴 ∪ 𝐵.  

For convenience, numbers are listed in increasing order and numbers repeated 

in both sets (2 and 7) are listed only once in 𝐴 ∪ 𝐵.  

 Let 𝑉 = {𝑎, 𝑒, 𝑖, 𝑜, 𝑢} be the set of vowels and 𝐿 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} be the set 



consisting of the first five letters.  Then the union of these sets is given by      

𝑉 ∪ 𝐿 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑖, 𝑜, 𝑢}.   
 In algebra, the union of two real number intervals is often considered.  For 

example, [0,1] ∪ [1, ∞) = [0, ∞) since the interval [0, ∞) (i.e. all non-negative 

real numbers) contains the interval [0,1] (i.e. all real numbers between 0 and 1, 

including 0 and 1), and the interval [1, ∞) (i.e. all real numbers greater than, or 

equal to, 1).  

  

 

 INTERSECTION 

 

 

DEFINITION: Given two sets 𝐴 and 𝐵, the intersection of 𝐴 and 𝐵, denoted by   

𝐴 ∩ 𝐵, is the set of all the elements that belong to both 𝐴 and 𝐵: 

 

𝐴 ∩ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵} 
  

 

 The intersection of two sets 𝐴 and 𝐵 consists of all the elements that are 

common to both sets.  Consider vegetables that are green and rich in vitamin A, living 

artists who have won an Emmy and an Oscar, or natural numbers that are both odd and 

divisible by 11.  These are all examples of intersections.  In the last instance, the 

elements under consideration (natural numbers) belong to two sets: the set of odd 

natural numbers and the set of natural numbers divisible by 11.  Natural numbers like 3 

or 22 would then belong to one of these two sets but not both.  A natural number like 

33, however, would belong to both sets.  You can check that this intersection is given 

by the set {11, 33, 55, 77, …}.   

 

 The intersection of 



A and 



B can be represented as the shaded overlapping 

region in the Venn diagram below.    

 

 



 EXAMPLES:  

 If 𝐴 = {2,3,5,7} and 𝐵 = {2,4,6,7,10}, then 𝐴 ∩ 𝐵 = {2,7}.  The numbers in   

𝐴 ∩ 𝐵 are the ones repeated in both sets.   
 In a standard deck of cards, the set of red cards (𝑅) that are also face cards (𝐹) 

is the set 𝑅 ∩ 𝐹 containing the jack, queen, and king of hearts and diamonds 

(six cards altogether).  
 The intersection of the set of all registered female voters and the set of all 

registered independent voters is the set of all registered female independent 

voters.   

 The set of even prime numbers is given by 𝐸 ∩ 𝑃 = {2}.  

 The intersection of 𝑉 = {𝑎, 𝑒, 𝑖, 𝑜, 𝑢} and 𝐿 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} is the set of vowels 

in the first five letters given by 𝑉 ∩ 𝐿 = {𝑎, 𝑒}.    
 Squares are rectangles with equal sides.  Therefore, the set of squares is the 

intersection of the set of rectangles and the set of equilateral polygons (i.e. 
plane figures with equal sides).  

 In algebra, a compound inequality such as −3 < 𝑥 < 5 is typically written as the 

interval (−3,5).  This is logically equivalent to stating that the real number 𝑥 
must satisfy the left inequality 𝑥 > −3 and the right inequality 𝑥 < 5.  
Therefore, the interval is in fact the following intersection:                                     

(−3,5) = {𝑥 ∈ ℝ|𝑥 > −3 𝑎𝑛𝑑 𝑥 < 5} = (−3, ∞) ∩ (−∞, 5).  
  

 

 A special case that happens frequently is when two sets have no common 

elements and their intersection is empty.  Such sets are said to be disjoint.  The definition 

and Venn diagram for such sets is given below. 

 

 

DEFINITION: Given two sets 𝐴 and 𝐵, if the intersection of 𝐴 and 𝐵 is empty      

(i.e. 𝐴 ∩ 𝐵 = ∅), then 𝐴 and 𝐵 are called disjoint sets.     

  

 

 



EXAMPLES:  

 Since no natural number can be both odd and even, 𝑂 and 𝐸 are disjoint sets.  

 In a standard deck of cards, the set of red cards and the set of clubs are 

disjoint. 

 The set of all North American species of aquatic mammals is disjoint from the 

set of all African species of aquatic mammals. 

 The interval [1,3] is disjoint from the interval [4,5] since no number can belong 

to both intervals.   

 The set of quadrilaterals (i.e. four-sided plane figures) is disjoint from the set of 

triangles. 

 The set of people living on Long Island is disjoint from the set of people living 

in Manhattan or the Bronx. 

  

 

 DIFFERENCE  

 

 

DEFINITION: Given two sets 𝐴 and 𝐵, the difference 𝐴 − 𝐵 is the set of all the 

elements that belong to 𝐴 but do not belong to 𝐵: 

 

𝐴 − 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵} 
  

 

 The set difference 𝐴 − 𝐵 can be represented as the shaded region in the Venn 

diagram below. 

 

 
 

 The set difference 𝐴 − 𝐵 is also called the relative complement of 𝐵 in 𝐴, which is 

denoted by 𝐴\𝐵.  Note that, in general, 𝐴 − 𝐵 is not the same set as 𝐵 − 𝐴.  It is easy 

to check that these two set differences can only be equal provided 𝐴 = 𝐵.  

 

 



EXAMPLES:  

 If 𝐴 = {2,4,6,8,10} and 𝐵 = {2,3,5,8,10}, then 𝐴 − 𝐵 = {4,6} and                 

𝐵 − 𝐴 = {3,5}. 
 The set of odd natural numbers that are not prime is given by                       

𝑂 − 𝑃 = {1,9,15,21,25, … }.  
 In a standard deck of cards, the set 𝑅 − 𝐹 consists of all the aces, 2’s, 3’s, …, 

9’s, and 10’s that are either hearts or diamonds (i.e. reds), while 𝐹 − 𝑅 consists 

of all the jacks, queens, kings that are either clubs or spades (i.e. blacks). 

  

 

 Properties of Sets  

 

 We now look at some general properties of the four basic set operations 

presented in this section.  These important properties (also called set laws) are identities 

that hold for any sets 𝐴, 𝐵, and 𝐶.  As usual, 𝑈 denotes the universal set and we assume 

that 𝐴 is a subset of 𝑈.  

 

 The complement of the complement of 𝐴 is 𝐴, or 𝐴 = 𝐴. 
 

 Complement Laws:            𝐴 ∪ 𝐴 = 𝑈   &   𝐴 ∩ 𝐴 = ∅   

 

 Identity Laws:                    𝐴 ∪ ∅ = 𝐴   &   𝐴 ∩ 𝑈 = 𝐴   

 

 Idempotent Laws:              𝐴 ∪ 𝐴 = 𝐴   &   𝐴 ∩ 𝐴 = 𝐴   

 

 Set Difference Laws:          𝐴 − ∅ = 𝐴   &   𝐴 − 𝐴 = ∅   

 

 Commutative Laws:           𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴      

o 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 
 

 Associativity:                     (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶)   

o (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶) 
 

 Distributivity:                    𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)         

o 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) 
 

 Cardinality (assume 𝐴, 𝐵 are finite sets):   

 

o |𝐴| ≤ |𝐴 ∪ 𝐵|   &   |𝐵| ≤ |𝐴 ∪ 𝐵| 

o |𝐴| ≥ |𝐴 ∩ 𝐵|   &   |𝐵| ≥ |𝐴 ∩ 𝐵| 

o |𝐴| ≥ |𝐴 − 𝐵|   &   |𝐵| ≥ |𝐴 − 𝐵| 
 



 The proofs for most of these properties immediately follow from our definitions 

or from basic principles of logic.  For example, the complement law 𝐴 ∩ 𝐴 = ∅ is true 

since no element can possibly belong to both a set and its complement (e.g. you cannot 

own a red car and not own a red car).  Similarly, the identity law 𝐴 ∪ ∅ = 𝐴 holds since 

adding nothing to a set must yield the same set (e.g. combining a set of 13 golf clubs with 

another empty golf set yields the original set of 13 golf clubs).   

 

 Other set properties, like the absorption laws, are left as exercises.  Others are 

omitted.  Here’s an example of one we did not include in our list but is commonly used: 

𝐴 ∩ ∅ = ∅.  This property is true since there cannot be a common element between an 

empty set and any other set.  Can there be, for example, a mammal that is both aquatic 

and a shark?  No, because sharks are fish and not mammals.  In this example, the empty 

set corresponds to the set of mammals that are sharks.   

 

 Some of the properties in this list need to be proved more formally, such as the 

distributive properties or the properties involving cardinalities.  Some of these will be 

revisited in the next section.  

 

 

   


