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SUMMARY

Somatic stem cells contribute to tissue ontogenesis,
homeostasis, and regeneration through sequential
processes. Systematic molecular analysis of stem
cell behavior is challenging because classic ap-
proaches cannot resolve cellular heterogeneity or
capture developmental dynamics. Here we provide a
comprehensive resourceofsingle-cell transcriptomes
of adult hippocampal quiescent neural stem cells
(qNSCs) and their immediate progeny. We further
developed Waterfall, a bioinformatic pipeline, to sta-
tistically quantify singe-cell gene expression along a
denovo reconstructedcontinuousdevelopmental tra-
jectory. Our study reveals molecular signatures of
adult qNSCs, characterized by active niche signaling
integration and low protein translation capacity. Our
analyses further delineatemolecular cascades under-
lying qNSC activation and neurogenesis initiation,
exemplified by decreased extrinsic signaling capac-
ity, primed translational machinery, and regulatory
switches in transcription factors,metabolism, and en-
ergy sources. Our study reveals the molecular contin-
uum underlying adult neurogenesis and illustrates
how Waterfall can be used for single-cell omics ana-
lyses of various continuous biological processes.

INTRODUCTION

In discrete regions of the adult mammalian brain, quiescent

neural stem cells (qNSCs) continuously generate new neurons

through a recurrent process involving quiescent to active state

transitions, cell-cycle entry, and neuronal fate specification

(Ming and Song, 2011). Understanding molecular mechanisms

underlying adult NSC regulation and neurogenesis will advance

our knowledge of neural development and plasticity and enable

new approaches for regenerative medicine and treatment of
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brain disorders. Mechanistic analysis of stem cell biology re-

quires comprehensive quantification of molecular properties,

such as gene expression. In contrast to traditional approaches

targeting individual candidate genes, transcriptome profiling

through RNA-sequencing (RNA-seq) provides an unbiased and

quantitative proxy for molecular features of cellular states.

Such a blueprint may reveal unexpected features of NSC

biology, generate hypotheses for functional analysis, and lead

to novel strategies to manipulate neurogenesis processes.

Classic approaches for molecular characterization of somatic

stem cell behavior use population-based readouts at a few time

points along development, which faces two major challenges:

resolving cellular heterogeneity and capturing developmental

dynamics. Adult stem cells constitute a minor population within

complex tissues, intermingled with their progeny at different

developmental stages and supporting cells. They switch among

different states, such as quiescence and activation (Li and

Clevers, 2010), and thus exhibit significant cellular andmolecular

differences even upon prospective isolation via fluorescence-

activated cell sorting or genetic labeling (Codega et al., 2014;

Lu et al., 2011). Furthermore, snapshots of molecular composi-

tion at selected time points are not sufficient to elucidate the

dynamic nature of stem cell development.

Single-cell RNA-seq generates gene expression profiles at the

resolution of an individual cell and has thus far revealed

molecular profiles of cell types that were not previously recog-

nized at the population level (Stegle et al., 2015). Single-cell

RNA-seq has not yet been widely adopted for adult somatic

stem cell studies due to technical difficulties in obtaining individ-

ual stem cells from complex tissues. Further, the stochastic na-

ture of gene expression in individual cells (Muramoto et al., 2012;

Novick and Weiner, 1957; Raj et al., 2006) may lead to overesti-

mation of cellular heterogeneity and requires a new approach for

statistical quantification. And for biological systems with only a

few known markers, current approaches are not sufficient to

map out a developmental trajectory at high resolution from sin-

gle-cell datasets (Bendall et al., 2014; Trapnell et al., 2014).

Despite recent advances in acquiring snapshots of tran-

scriptomes, epigenomes, and proteomes from individual cells,

a remaining hurdle is the lack of methodology to identify
nc.
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Figure 1. Single-Cell Transcriptomes of Adult Neural Stem Cells and Their Immediate Progeny

(A) A schematic diagram of the process of adult neurogenesis in the dentate gyrus of themouse hippocampus. Once quiescent neural stem cells (qNSCs) become

activated (aNSCs), they enter the cell cycle and generate early intermediate progenitor cells (eIPCs), which in turn give rise to neuroblasts (NB), immature neurons

(IN), and then mature neurons (MN). Area highlighted with blue background indicates cell types fluorescently labeled in adult Nestin-CFPnuc animals.

(B) Expression levels of transcript encoding CFP in each single-cell and diluted whole-dentate RNA samples (TPM, transcripts per million). Inset: enlarged view of

CFP transcript levels in logarithmic scale of samples with low abundance of CFP transcript.

(C) Representative coverage profile of diluted total RNA from the whole dentate gyrus, CFP– individual cells, and CFP+ individual cells at selected genomic loci,

including house-keeping genes (b-Actin/Actb, Gapdh, and Ubiquitin B/Ubb), known NSCmarkers (Blbp/Fabp7, Gfap, and Sox2), known IPCmarkers (Sox11 and

Tbr2/Eomes), and a potential new NPC marker (Gstm1).

See also Figure S1.
molecular state transitions over a developmental continuum.

Cells are destroyed during acquisition of omic data, so the

same cell can’t be tracked over time. Here we developed a

conceptually different approach, analogous to the ‘‘shot-gun’’

method used in the human genome project characterized

by parallel sequencing and bioinformatic reconstruction. We

focused on the narrow time window of adult qNSC activation

and neurogenesis initiation. Using the Nestin-CFPnuc transgenic

genetic labeling system, we produced single-cell transcriptomes

from a mixed population of precursor cells at different develop-

mental stages. We then developed a bioinformatic pipeline

named Waterfall to reconstruct continuous biological processes

at single-cell resolution using adult neurogenesis as our model,

and we applied this methodology to other stem cell datasets.

RESULTS

Single-Cell RNA-Seq of Neural Precursor Cells from the
Adult Mouse Dentate Gyrus
In the adult dentate gyrus, radial-glia-like qNSCs give rise to

new neurons via a sequential process of activation, proliferation,

and generation of intermediate precursor cells (IPCs; Figure 1A)

(Ming and Song, 2011). To elucidate detailed molecular dy-

namics during initial phases of adult neurogenesis in vivo, we
Cell S
used a transgenic mouse line that expresses nucleus-localized

CFP under the Nestin regulatory elements (Nes-CFPnuc) (Encinas

et al., 2006), in which CFP proteins carry over from adult

qNSCs to their immediate progeny (collectively named NPCs;

Figure S1A). The SMART-seq protocol (Ramsköld et al., 2012)

was modified by the addition of a DNase I treatment step to

remove genomic DNA for single-cell cDNA amplification (Fig-

ure S1A). In total, we performed single-cell RNA-seq for 142

CFPnuc+ and 26 CFPnuc– single cells (Table S1). Total RNA from

wild-type adult mouse dentate gyri was serially diluted to 3 pg

and processed in parallel for comparison.

We achieved, on average, 87% mapping onto annotated

genes (Table S1). Sequencing reads were evenly distributed

throughout thewhole span of transcripts with 30 bias comparable

to recent studies (see Supplemental Experimental Procedures).

Correlation analyses of RNA samples from different batches

indicated minimal technical fluctuation during cDNA amplifica-

tion or across batches compared to significant biological hetero-

geneity among single-cell transcriptomes (Figure S1B; Table

S1). Universally expressed genes, such as b-Actin/Actb, Gapdh,

or Ubiquitin B/Ubb, showed even expression patterns across

all individual cells, whereas known NSC markers Gfap and

Sox2, or early IPC (eIPC) markers Tbr2/Eomes and Sox11,

were expressed in subsets of cells (Figure 1C; Table S2).
tem Cell 17, 360–372, September 3, 2015 ª2015 Elsevier Inc. 361
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Figure 2. Waterfall for Analyzing Single-Cell

Data from a Continuous In Vivo Process

(A) Unsupervised clustering analysis of CFPnuc+

NPCs resulting in two super-groups with six sub-

groups. Different groups are color-coded in the

same fashion in this figure and across all other

figures.

(B) Principal component analysis (PCA) plot shows

one of the possible linear trajectories of different

groups with the exception of SA.

(C) A schematic diagram of multiple components

and workflow of Waterfall. Waterfall is a full range

of algorithms for processing multi-dimensional

single-cell datasets derived from continuous

biological processes. Please see Supplemental

Experimental Procedures formore information and

Waterfall analyses of other biological systems.

(D) Representative expression profiles of marker

genes of adult neurogenesis. Each data point

represents the gene expression level of a single

cell with a color scheme following that of Fig-

ure 2B. Data points are fitted with local polynomial

regression fitting (red lines) with 95% confidence

interval (gray area). HMM-predicted underlying

states are represented as black and yellow

squares on the bottom of the graphs.

See also Figures S2 and S3
The Nes-CFPnuc reporting system also labeled a small

percentage of non-NPCs in the adult dentate gyrus (Figure S1)

(Encinas et al., 2011). CFP transcript levels were multiple orders

of magnitude higher in CFPnuc+ cells compared to CFPnuc– cells

or diluted dentate RNA (Figure 1B). We excluded cells that ex-

hibited transcriptomic profilesmarkedly different from themajor-

ity of the CFPnuc+ population or those that were were clearly

identifiable as non-NPCs, such as oligodendrocyte progenitor

cells or pericytes (Figure S1C). By differential expression anal-

ysis, we identified the top 35 genes enriched in CFPnuc+ cells,

which included known NSC markers Blbp, Spot14/Thrsp,

Sox9, and GLAST/Slc1a3 (Table S2 and Table S3). In total, 31

out of 35 top genes exhibited subgranular zone (SGZ)-enriched

expression patterns and/or were known NPC genes (p = 6.1 3

10�40; hypergeometric test; Table S3). These results provided

an initial validation of our approach.

Waterfall: Analyzing Single-Cell Datasets from
Continuous In Vivo Processes
We next examined the whole-transcriptome dataset of individual

CFPnuc+ NPCs. Unsupervised hierarchical clustering analysis

resulted in two super-groups with six subgroups (Figure 2A).
362 Cell Stem Cell 17, 360–372, September 3, 2015 ª2015 Elsevier Inc.
Notably, these six CFPnuc+ groups were

not clearly segregated on the plot of

principal component analysis (PCA;

Figure 2B), which was consistent over

different batches of sequencing runs

with multiple biological replicates (Fig-

ure S2A; Table S1). The continuous

trajectory called for a new approach not

relying on segmentation into a few

groups of cell clusters. We could not use
currently available single-cell analysis software, such as

Monocle (Trapnell et al., 2010) or Wanderlust (Bendall et al.,

2014), for our system due to the lack of sufficient prior informa-

tion, such as temporal delineators or a robust set of specific

markers (see Supplemental Experimental Procedures). We

thus developed a more generally applicable pipeline of algo-

rithms to perform unbiased statistical analyses of multi-dimen-

sional single-cell datasets from continuous biological processes.

We collectively named the suite of algorithms ‘‘Waterfall,’’ which

involves three steps: pre-processing, pseudotime reconstruc-

tion, and gene expression analysis (Figure 2C; see Experimental

Procedures and Supplemental Experimental Procedures).

Pre-processing defined the trajectory of interest following

dimensionality reduction of the data. Unsupervised clustering

identified six clusters of cells (Figure 2A), which were then

labeled S1–5 and SA based on their relative location in a PCA

plot (Figure 2B). SA was recognized as a branch by the minimum

spanning tree (MST) algorithm (see Supplemental Experimental

Procedures). Although characterizing SA would be interesting

(see Supplemental Experimental Procedures), we focused on

the major neurogenic pathway in the current study. The expres-

sion profiles of a few known developmental genes were used



to orient the most probable trajectory of interest (Figures 2B

and S2B).

To reconstruct the chronology, we first determined the most

probable route of transcriptomic progression. We performed

k-means clustering of single-cell transcriptomes on the PCA

plot after excluding SA, then constructed an MST trajectory to

connect cluster centers (Figure S3A). We then introduced ‘‘pseu-

dotime’’ (Trapnell et al., 2014) to define the relative location of

each cell on theMST trajectory (Figure S3A). Taking the Euclidian

distance defined by the whole transcriptomic difference from

each cell to the next in pseudotime, we found that the total path

length reconstructed by Waterfall was significantly shorter than

would result from random ordering of cells (see Supplemental

Experimental Procedures). The pseudotime algorithm recon-

structs molecular state transitions of a continuous process by

quantifying the gradual divergence of single-cell transcriptomes

individually, rather than as members of pre-classified groups.

For gene expression analysis, we developed an algorithm

to determine the binary on/high or off/low expression state of

each gene along pseudotime in an unbiased fashion using a

hidden Markov model (HMM; Figure S3B). Gene expression at

the single-cell level is highly stochastic and binary (Muramoto

et al., 2012; Novick and Weiner, 1957; Raj et al., 2006). When

analyzing continuous processes represented by single-cell

transcriptomes in the absence of discrete groups, conventional

statistical methods, such as arithmetic mean or t test, are not

appropriate.We adopted HMM to statistically convert stochastic

expression patterns of individual genes into binary on/high or

off/low states (Figure S3B). The binary gene expression states

were then shown as heatmaps, which quantified the molecular

cascade over time (Figures 2C and 2D). To discover novel devel-

opmentally regulated genes, we correlated gene expression

levels with pseudotime and subjected identified genes to gene

ontology (GO) analyses (Figure 2C).

Validation for the Reconstructed Adult Neurogenesis
Process
We validated molecular dynamics revealed by Waterfall at mul-

tiple levels. First, known NSC markers Gfap and Apoe, and eIPC

markers Sox11 and Tbr2, showed non-overlapping expression

states over developmental pseudotime (Figure 2D; Table S2).

Second, we evaluated in vivo expression of Aldoc and Stmn1,

which have not been previously studied in adult hippocampal

neurogenesis. Over pseudotime, Aldoc was initially highly ex-

pressed (on/high state), then downregulated (off/low state),

whereas Stmn1 was initially off, then upregulated (Figures 3A

and 3C). In the hippocampal dentate SGZ of adult Nes-GFPcyto

mice (Mignone et al., 2004), Aldoc+GFP+ precursors were

almost exclusively PCNA– qNSCs, with very few PCNA+ active

NSCs (aNSCs) or IPCs (Figure 3B). In contrast, Stmn1+GFP+

precursors were mostly eIPCs and PCNA+ aNSCs, but not

PCNA– qNSCs (Figure 3D). Thus, Waterfall accurately predicted

the in vivo expression dynamics of both known and unknown

genes. Third, for functional validation, we explored the possibil-

ity of genetic labeling of a specific developmental stage based

on Waterfall results. Hopx (Hop homeobox) was highly ex-

pressed in qNSCs but downregulated around the transition point

from qNPC to aNSC (Figure 3E). Upon a single low-dose tamox-

ifen injection into a Hopx-CreERT2 mouse line (Takeda et al.,
Cell S
2011) crossed with an mT/mGf/f reporter line for clonal line-

age-tracing (Bonaguidi et al., 2011), almost all labeled precur-

sors at 3 days post injection were nestin+GFAP+ qNSCs in the

adult SGZ (Figure 3F). By 7 days, we were able to observe

GFP-labeled clones that contained both NSCs and their progeny

(Figure 3G), indicating self-renewal and differentiation, two hall-

marks of NSCs.

Transcription Factor Expression during Adult NSC
Activation and Neurogenesis
Waterfall allows an unbiased prediction of the relative chronolog-

ical position of each individual cell and distribution of binary

gene expression over the developmental trajectory. To delineate

molecular cascades underlying adult qNSC activation and

neurogenesis, we generated a list of the top 1,000 negatively

correlated genes with pseudotime (DOWN1000 genes; Spearman

correlation coefficient < –0.13; Table S4), which represent

qNSC-enriched genes downregulated during activation and

neurogenesis, as well as the top 1,000 positively correlated

genes with pseudotime (UP1000 genes; Spearman correlation

coefficient >0.20; Table S4), which represent newly activated

genes during qNSC activation and early neurogenesis.

Out of these 2,000 genes, we initially focused on transcription

factors (TFs). Most known TFs involved in adult neurogenesis

were discovered by extrapolating findings from embryonic

studies. In contrast, our database provides unbiased genome-

wide profiles of TF expression. Systematic analyses of our data-

set revealed a total of 41 downregulated TFs and 42 upregulated

TFs during adult hippocampal neurogenesis (Figures 4A and S4;

Table S5).

First, the set of dynamic TFs we identified included known

regulators of adult NSCs and neurogenesis, which provided

additional validation of our approach. Among DOWN TFs,

Sox2, Sox9, Id3, nuclear receptor Nr2e1/Tlx, and Hes1 have

been shown to regulate adult NSC maintenance and function.

Among UP TFs, SoxC (Sox4 and Sox11), Foxg1, Tbr2, Insm1,

Tcf12, and Nfib are critical in proliferative adult NPCs (Table S2).

Second, we identifiedmultiple dynamic TFs that are regulators

of embryonic neurogenesis but have not yet been studied in

adult neurogenesis. DOWN TFs include homeobox protein

Dbx2, nuclear glucocorticoid receptor Nr3c1, and Id4. UP

TFs included chromatin protein Hmgb1 and proto-oncogene

N-myc. During embryonic neurogenesis, these DOWN TFs

inhibit the cell cycle (Nr3c1) or prevent premature differentiation

(Id4), whereas UP TFs regulate progenitor proliferation (Hmgb1

and N-myc), suggesting conserved functions during embryonic

and adult neurogenesis (Table S2).

Third, more than half of UP TFs and DOWN TFs are largely un-

characterized in the context of neurogenesis, but many of them

are close paralogs or binding partners to other neurogenesis-

related genes or have been implicated in other somatic stem

cell systems. Examples include Hmgb1 paralogs (Hmgb2,

Hmgb3, and Hmga1-rs1), SWI/SNF-related Brg1/Smarca4-

associated factors (Smarcc1/Baf155 and Smarce1/Baf57), and

Nfib paralogs (Nfia and Nfix). In addition, Mxd3, Zeb2, and

ZT3/Zfp regulate adipocyte, melanocyte, andmyogenic differen-

tiation, respectively, whereas Tsc22d3/Gilz inhibits myogenic

differentiation (Table S2). Hopx, which we found to mark qNSCs

in the adult dentate gyrus (Figures 3E–3G), is expressed in
tem Cell 17, 360–372, September 3, 2015 ª2015 Elsevier Inc. 363



Figure 3. Validation for Waterfall Predictions for Early Adult Neurogenesis
(A–D) Validation of gene expression patterns and on/off binary states of Aldolase C (Aldoc, A) and Stmn1 (C) over pseudotime by immunohistology. Also shown

are sample confocal images of GFP, cell proliferation marker PCNA, Aldoc, or Stmn1 in the dentate gyrus of adult Nestin-GFPcyto mice (left panels) and

quantifications (right panels). Values represent mean ± SEM (n = 3 animals). The pie chart represents the proportion of Aldoc+ or Stmn1+ cells among each

category of the GFP+ progenitor population. Scale bars, 20 mm (left) and 10 mm (right).

(E–G) Validation of gene expression patterns and on/off binary states of Hopx over pseudotime (E) by genetic labeling and lineage tracing. Adult Hopx-

CreERT2::mT/mGmice were injected with a single dose of tamoxifen and examined 3 days (F) or 7 days (G) later. Shown in (F) are sample confocal images of GFP,

GFAP, Nestin, andDAPI. Also shown is the quantification of percentages of GFP+ cells as NSCs or IPCs. Values represent mean ± SEM (n = 5 dentate gyri). Shown

in (G) is an example of a labeled clone containing an NSC and multiple Tbr2+ neuronal progeny. Scale bars, 20 mm (left) and 10 mm (right).
intestinal stem cells and a subset of multipotent hair follicle stem

cells (Table S2).

Together, our single-cell transcriptome datasets are a rich

resource of genome-wide dynamic expression profiles of TFs

during adult neurogenesis. Many TFs that were previously un-

characterized in adult neurogenesis are known to be involved

in embryonic neurogenesis or regulation of other somatic stem

cells, suggesting shared biology among different stem cell sys-

tems and the potential utility of our resource for the general

stem cell field.

Molecular Cascades underlying Adult qNSC Activation
and Neurogenesis Initiation
The vast majority of UP1000 and DOWN1000 genes in our dataset

were not TFs (Table S4). We investigated their characteristics

from three perspectives: transition patterns along the develop-

mental trajectory, cellular location of gene products, and biolog-

ical function.

For transition patterns, plots of the top 150 genes each from

UP1000 and DOWN1000 lists showed a wave of molecular activa-

tion or inactivation events over time, highlighting the sequential

transition of gene expression during qNSC activation and neuro-
364 Cell Stem Cell 17, 360–372, September 3, 2015 ª2015 Elsevier I
genesis (Figure 4B). To obtain biological insight into these transi-

tion patterns, we performed multiple gene ontology analyses.

Strikingly, the predicted cellular localizations of protein products

of UP1000 genes and DOWN1000 genes were drastically different.

51% of DOWN1000 genes, as opposed to 20% of UP1000 genes,

encode proteins associated with the membrane (Figure 5A,

p = 2.6 3 10�29). On the other hand, 58% of UP1000 genes, as

opposed to 20% of DOWN1000 genes, encode proteins associ-

ated with the nucleus (Figure 5A, p = 1.23 10�36). Similar results

were obtained using different thresholds for generating lists of

UP and DOWN genes (Figure S5A).

Molecular Signatures of Adult qNSCs Revealed by
DOWN1000 Genes
Functional annotation of DOWN1000 membrane genes revealed

enrichment for ion or protein transport, cell communication,

and cell adhesion (Figure 5B). Further classification identified

proteins specific to the plasma membrane, ER, Golgi apparatus,

and cytoplasmic vesicles (Figure S5B). KEGG (Kyoto Encyclo-

pedia of Genes and Genomes) pathway analysis revealed

diverse functional entities involved in intra- and inter-cellular

communication (Figure 5B). Specifically, genes related to Notch
nc.



signaling, GABAergic synapses, glutamatergic synapses, BMP

pathways, the MAPK pathway, calcium, and cell adhesion

were downregulated upon qNSC exit from quiescence (Figures

5B, 6A, 6B, and S6A). Electrophysiological recordings of

Nestin-GFPcyto+NSCs in acute slices from adult animals showed

responses to both AMPA and NMDA, suggesting expression

of functional receptors (Figure 6B). Each functional signaling

pathway entity contained key genes that encode receptors, sub-

units, or downstream mediators (Figures 6A and 6B). Notably,

many ligands for these receptors, including glutamate, GABA,

Wnts, BDNF/neurotrophin, Jagged1, BMPs, FGFs, and Insulin/

IGF2, are known to be present in the adult SGZ niche (Table

S2), suggesting active signaling in qNSCs. While previous

studies have examined each of these ligands and receptors in

regulation of adult neurogenesis in isolation, our systematic

genome-wide analyses unified disparate information and sug-

gested a novel model wherein quiescent adult NSCs are not

passive or dormant, but instead are actively integrating various

niche signals. More surprisingly, qNSC activation was associ-

atedwith decreased expression of genes involved in transducing

local environment cues and pervasive downregulation of various

signaling-pathway-related genes (Figure 6A). These results

suggest that, once activated, adult NSCs shunt their capacity

to respond to external regulation.

KEGG analysis of DOWN1000 genes also revealed a shift

in energy source and metabolism. First, multiple lipid-meta-

bolism-related functional entities, including fatty acid degrada-

tion and sphingolipid metabolism, were enriched in qNSCs, but

downregulated upon activation (Figure 5B). As previously re-

ported (Knobloch et al., 2013), qNSCs exhibited the highest level

of Spot14 (Figure S6B), which regulates lipid metabolism.

qNSCs alsomaintained an active fatty acid degradation pathway

(Acsl3, Acsl6, and Acsbg1; Figure S6B; Table S2). Second,

pathway analysis consistently indicated glutathione metabolism

and glycolysis as an adult qNSC characteristic, which was lost

upon activation. Among glycolysis genes, aldolase A, aldolase

C, and Ldhb decreased significantly, whereas most other glycol-

ysis genes, including Gapdh, did not change during initiation of

neurogenesis (Figure S6C; Table S2).

To validate results from analyses of the top 1,000 significantly

downregulated genes, which contained a limited number of

genes in each particular pathway, we performed analysis using

all expressed genes and an independent functional annotation

database wikipathway (Pico et al., 2008). Virtually identical re-

sults were obtained (Figure S7; Table S7). Together, analyses

of downregulated genes provided novel insight into molecular

signatures of adult qNSCs, including both intrinsic properties

and regulation of intra- or inter-cellular signaling pathways.

Sequential Molecular Dynamics during Adult
Neurogenesis Revealed by UP1000 Genes
Wenext analyzed UP1000 genes, which were nucleus-associated

and/or related to the cell cycle, DNA/RNAmetabolism, and chro-

mosome organization (Figure 5A). Detailed analysis revealed

pervasive activation of cell-cycle-related genes, ranging from

cell-cycle-supporting genes, such as those involved in nucleo-

tide synthesis, protein/RNA synthesis, and DNA fidelity controls

(DNA repair and p53 signaling pathways), to genes directly

involved in the cell cycle, such as those involved in DNA replica-
Cell S
tion, the kinetochore complex, cyclin/cyclin-dependent kinases,

or the cytosolic mitotic spindle (Figure 5B).

As opposed to downregulation of glycolysis-related genes,

oxidative-phosphorylation-related genes were upregulated

(Figure S6C). Specifically, in contrast to stable expression

of earlier mitochondrial respiratory chain complexes (complex

I, II, III, and IV), expression of subsequent complexes

(complex V) increased over pseudotime, implying a gradual

completion of the full electron transport chain during neuro-

genesis (Figure S6C).

The high resolution of Waterfall analyses revealed temporal

relationships among genes in different functional groups. Cell-

cycle checkpoint genes were sequentially activated following

the known biological sequence of cell cycles: G1 to S transition,

followed by G2 to M transition, and then chromosomal segrega-

tion, indicating that our pseudotime accurately reconstructs

sequential biological events (Figure S6D). Initiation of the cell cy-

cle preceded the major transcriptomic shift (Figure 6C). Notably,

upregulation of genes encoding ribosomal subunits preceded

the appearance of any cell-cycle checkpoint genes (Figures 6C

and S6D), suggesting that priming of protein synthesis

machinery may mark the G0 to G1 transition ahead of cell-cycle

entry during adult qNSC activation.

Together, analyses of UP1000 genes suggested that molecular

dynamics of qNSC activation and initiation of neurogenesis are

largely defined by priming of protein synthesis machinery, cell-

cycle entry, activation of RNA and protein biogenesis, and a shift

in energy metabolism from glycolysis to oxidative phosphoryla-

tion. An independent approach using a different functional anno-

tation database showed similar results (Figure S7; Table S7).

Holistic Picture of Molecular Cascades underlying Adult
Neurogenesis Initiation
Based on the molecular dynamics from qNSCs to aNSCs and

then eIPCs, we have reconstructed sequential waves of biolog-

ical events from single-cell RNA-seq data and Waterfall (Fig-

ure 7). The process begins with adult qNSCs downregulating

TFs defining quiescence and decreasing competence for cell

signaling (RTKs, GPCRs, neurotransmitter receptors, cytokines,

and calcium). Concurrently, glycolysis, glutathione, and fatty

acid metabolism begins to wane, while upregulation of protein

translation capacity is the first marker of a pre-activation stage.

As NSCs enter the cell cycle, oxidative phosphorylation be-

comes the primary energy source. Progression through the cell

cycle accompanies a major decline in NSC metabolism (gluta-

thione, fatty acid, and drug metabolism) and an increase in

eIPC TFs. Finally, kinetochore and chromosomal segregation

occurs in the first neurogenic progeny. Overall, the develop-

mental trajectory is defined by a coordinated switch from amem-

brane-targeted to a nuclear-targeted transcriptome, suggesting

a transition from qNSCs dominated by extrinsic signaling to

eIPCs dominated by a pre-programmed intrinsic molecular

cascade.

DISCUSSION

Understanding adult NSC behavior and neurogenesis requires

quantification of molecular states along a continuous develop-

mental process. In the current study we generated three major
tem Cell 17, 360–372, September 3, 2015 ª2015 Elsevier Inc. 365
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Figure 5. Functional Characterization of UP1000 Genes and DOWN1000 Genes

(A) Quantification of predicted cellular location of gene products of UP1000 genes and DOWN1000 genes (two middle panels). Also shown are numbers of genes

with indicated functions for membrane-associated DOWN genes (left panel) and those for nucleus-associated UP genes (right panel).

(B) Functional GO analysis for DOWN1000 and UP1000 genes. The color of each functional entity represents the proportion of UP genes (blue) and DOWN genes

(red). Connections between each pair of data points represent sharing more than five genes between the pair. Functionally similar entities are grouped with same

background colors. Broken lines represent two categories of DOWN genes: genes encoding proteins involved in the intra- or extra-cellular communication and

genes encoding proteins defining intrinsic stem cell properties.

See also Figures S5, S6, and S7.
resources. First, we provide a comprehensive dataset of single-

cell transcriptomes of qNSCs and their immediate progeny in the

adult mouse hippocampus in vivo. Second, we provide Water-

fall, a bioinformatic pipeline for in silico reconstruction of molec-

ular trajectories based on snapshots of single-cell transcrip-

tomes and statistical gene expression analysis over continuous

developmental processes. Third, we provide a holistic picture

of adult qNSCmolecular signatures and dynamic molecular cas-

cades underlying initial phases of adult neurogenesis at unprec-

edented temporal resolution (Figure 7). Our study provides an

example of how to resolve cellular heterogeneity and reveal

developmental dynamics for systematic molecular characteriza-

tion of stem cells and their differentiation in vivo. Our approach

can be adapted for various single-cell omics analyses (transcrip-

tomics, proteomics, epigenomics, lipidomics, and metabolo-
Figure 4. Molecular Cascade underlying Adult qNSC Activation and Ne

(A) Lists of DOWN and UP TFs and their Spearman correlation coefficient with p

(B) On/High (yellow) or Off/Low (black) states of top 150 DOWN (left) and UP (rig

tograms of the numbers of individual cells examined along the pseudotime prog

See also Figure S4.

Cell S
mics) of many continuous biological processes, such as devel-

opment, physiological and pharmacological stimulation, and

disease progression (see examples in Supplemental Experi-

mental Procedures).

A Resource of In Vivo Single-Cell Transcriptomes of
qNSCs and Their Immediate Progeny
Our study provides a single-cell RNA-seq dataset and the first

comprehensive view of transcriptome dynamics underlying adult

qNSC behavior in vivo. Currently, there is no published dataset

for transcriptome dynamics during stem cell development in

any somatic system in vivo. We performed multiple levels of

validation of our dataset and approach, including comparison

with an in situ database, confirmation with known and unknown

marker expression during adult neurogenesis in vivo, and
urogenesis Initiation

seudotime.

ht) genes sorted by the timing of transition points. Shown on the top are his-

ression. The colors on the histogram follow the color scheme of Figure 2B.
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Figure 6. Sequential Molecular Dynamics during Adult NSC Activation and Neurogenesis

(A) Gradual downregulation of averaged binary states of each functional entity defining intrinsic stem cell properties (top) and those defining intra- or extra-cellular

communication (bottom). On/off binary states of expressed genes within each functional entity were averaged and normalized to show the timing of the transition.

(B) Number of genes in different DOWN GO groups and representative example genes. Expression patterns of representative genes over developmental

pseudotime are shown in Figure S6A. Electrophysiological recording of Nestin-GFPcyto+ NSCs in acute hippocampal slices showed responses to both AMPA and

NMDA (bottom).

(C) Gradual upregulation of averaged binary states of each functional entity defining cell-cycle checkpoints and cytoplasmic ribosomal subunits. On/off binary

states of upregulated genes within each functional entity are averaged and normalized to exemplify the timing of the transition. Cell-cycle checkpoint genes were

upregulated in the sequence of the cell-cycle progression. The upregulation of cytoplasmic ribosomal subunits preceded upregulation of the earliest cell-cycle

checkpoint gene.

See also Figure S6.
functional validation via clonal lineage tracing and electrophysi-

ology (Figures 3 and 6B; Table S3).

Our resource of holistic molecular profiles during early neuro-

genesis has three unique features that increase its versatility.

First, our whole-transcriptome information includes unannotated

transcripts, isoforms, and retrotransposon-derived transcripts,

as opposed to multiplexed qPCR or microarray-based studies,

which can only provide limited annotated transcripts (Hoppe

et al., 2014). Second, we animated static single-cell transcrip-

tomes over the in vivo neurogenesis trajectory, allowing queries

of molecular dynamics for each gene over the continuous biolog-

ical process and generation of novel hypotheses during specific

phases of adult qNSC maintenance, activation, and neurogene-

sis initiation. For example, expression of nuclear glucocorticoid

receptor Nr3c1 in adult qNSCs, but not in eIPCs (Figure 4A), sug-

gests a cellular target of glucocorticoids during adult hippocam-

pal neurogenesis and a means to manipulate qNSCs in vivo. Our

resource also reveals potential prospective markers of adult

neurogenesis, such as Hopx-CreERT2, which can target adult

qNSCs in vivo (Figures 3E–3G). Third, each transcriptome in
368 Cell Stem Cell 17, 360–372, September 3, 2015 ª2015 Elsevier I
our dataset represents a biological state within a single cell.

This modular construction allows for flexible reorganization of

the dataset to probe different questions as our understanding

of the biology evolves. For example, instead of generating re-

porter lines for individual genes or using different surface

markers for physical sorting of specific cell populations,

investigators can perform unlimited in silico cell sorting with

any individual gene, or multiple genes in combination, to obtain

a selected cell population to be probed for their gene expression

characteristics at the genome-wide level using our single-cell

datasets.

Developmental Dynamics of Adult Neurogenesis at the
System Level
Recent genome-wide studies have begun to provide a system-

level understanding of in vivo adult NSC biology using marker-

defined NPC populations (Bracko et al., 2012; Codega et al.,

2014; Kriegstein and Alvarez-Buylla, 2009). Yet previous studies

have only acquired snapshots of transciptomes, which limits

investigation of developmental dynamics among different
nc.
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Shown on top is an illustration of knownmarker expression and cell-cycle activation during adult hippocampal neurogenesis. Shown in themiddle is an illustration

of molecular signatures of adult qNSCs and their immediate progeny. Shown at the bottom are functional categories of genes that show a clear shift during adult

qNSC activation and generation of eIPCs. qNSCs exhibit intra- and inter-cellular signaling to actively sense the local niche, rely mostly on glycolysis for energy,

and have highly active fatty acid, glutathione, and drugmetabolism. Upon activation, NSCs increase translational capacity, followed by cell-cycle entry with G1 to

S transition. Oxidative phosphorylation starts to be active and stem-cell-specific properties are downregulated. eIPCs maintain active cell-cycle genes, ribo-

somal activity, and fully active oxidative phosphorylation for energy generation. The color scheme on the top and the middle illustration follows that of Figure 2B.
cellular states. We co-opted the imperfection of the Nestin-

CFPnuc genetic labeling system to collect individual qNSCs

and their immediate neuronal progeny concurrently. Aligning

cells along the developmental trajectory yielded, for the first

time, a molecular continuum with sequential progression of the

individual transcriptome from qNSC to aNSC and then eIPC.

Importantly, this novel approach does not divide developmental

processes into discrete stages that are defined a priori by

capturing populations sharing specific markers.

Our resources provide unparalleled temporal resolution to

identify new mechanisms underlying adult NSC biology. For
Cell S
example, we showed that Acyl-CoA synthetases (Acsl3, Acsl6,

and Acsbg1), the enzymes for the first step of fatty acid b-oxida-

tion, were highly expressed only in qNSCs (Figure S6B), sug-

gesting a novel role for active fatty acid b-oxidation in qNSCs

and thereby extending previous findings on the role of fatty

acid metabolism in adult neurogenesis (Knobloch et al., 2013)

(Table S2). We also found that ribosomal subunits were the first

genes upregulated upon adult qNSC activation and early differ-

entiation (Figures 6C and S6D), suggesting a possible demarca-

tion of G0 to G1 transition and providing the timing for switches

in protein synthesis, the regulation of which is important for
tem Cell 17, 360–372, September 3, 2015 ª2015 Elsevier Inc. 369



somatic stem cell function (Signer et al., 2014). The holistic pic-

ture we obtained unifies disparate information and illuminates

novel biological themes in stem cell biology. For example, our

analysis suggests that qNSCs actively respond to local environ-

mental cues through various signaling pathways, but gradually

and globally shut off signaling capacity upon activation. These

observations support the concept of a niche wherein mamma-

lian somatic stem cells are tightly controlled by a regulatory

microenvironment (Schofield, 1978) and predict that eIPCs are

less responsive to environmental input (Berg et al., 2015). This

novel biological insight may be applicable to many somatic

stem systems defined by stochastic behavior (Simons and

Clevers, 2011).

Waterfall Analysis of Single-Cell Transcriptomes within
a Continuum
Waterfall has three key differences from previous methodolo-

gies. First, it requires very little prior information to generate a

highly accurate temporal trajectory at single-cell resolution. Pre-

vious methods have been able to reconstruct accurate trajec-

tories by relying on a robust set of known markers to establish

cell order and validate cell alignment at numerous points along

the timeline. For many biological systems and processes, we

have much less information. Second, in contrast to Monocle

(Trapnell et al., 2014) or Wanderlust (Bendall et al., 2014), Water-

fall uses k-means clustering to build a trajectory and assign an

individual cell a pseudotime based on each cell’s proximity to

the cluster-derived trajectory, rather than construct a trajectory

by directly connecting each cell to the next. Third, in order to

analyze stochastic gene expressions, we adopted HMM to pre-

dict consecutive binary states in gene expression activity over

pseudotime. HMM permits the interpretation of highly variable

data without logarithmic transformation, normalization, or the

input of any arbitrary parameters, such as threshold for gene

expression noise or Markovian parameters (transition probabil-

ity, initial probability, and emission probability). Our validation

for known and unknown genes in adult neurogenesis indicated

that HMM correctly predicted temporal dynamics of in vivo

biology.

There is no conceptual restriction of our approach to transcrip-

tome studies of adult neurogenesis. Indeed, in the Supplemental

Experimental Procedures we provide examples of howWaterfall

could be broadly applicable for single-cell RNA-seq datasets

from analyses of in vitro myogenesis and in vivo embryonic

lung development, for a single-cell mass-cytometry dataset

from analysis of in vivo B cell development, and for two synthetic

datasets. We expect that Waterfall algorithms can be adopted

for diverse single-cell multi-dimensional datasets, including sin-

gle-cell transcriptomes, epigenomes, proteomes, and metabo-

lomes, of various continuous biological processes.

EXPERIMENTAL PROCEDURES

Preparation of Individual Cells from Adult Mouse Dentate Gyrus

Homozygous transgenic mice expressing nuclear localized CFP (CFPnuc)

driven by the Nestin regulatory elements (Encinas et al., 2006) were used for

all single-cell RNA-seq experiments. Mice were euthanized by cervical dislo-

cation, and brains were immediately immersed into ice cold Dulbecco’s Phos-

phate-Buffered Saline (DPBS, Corning). All procedures were performed with

approved protocols in accordance with institutional animal guidelines.
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The dissected dentate gyrus was incubated in Hibernate A (BrainBits) con-

taining papain (100 U; Sigma) and RNase-free DNase I (100 units; NEB) at 37�C
for 18 min with intermittent flicking. The tissue was triturated into individual cell

suspension by 1 ml pipette (Denville Scientific). Enzymes and cellular debris

were removed with multiple rounds (�4–5 times) of mild centrifugation at

200 g and washing with Hibernate A minus Ca2+ and Mg2+ (BrainBits). The in-

dividual cell suspension was plated onto a glass bottom plate (MatTek) and

picked up using glass pipettes (World Precision Instruments) under a fluores-

cent microscope. The glass tip was broken into the bottom of each PCR tube

containing water (2.4 ml) with RNase-free DNase I (0.2 ml; NEB) and Murine

origin RNase inhibitor (0.25 ml; NEB). Importantly, the addition of DNase I signif-

icantly improved the quality of the data by removing contamination from the

random amplification of genomic DNA (see Supplemental Experimental

Procedures).

Library Preparation and Sequencing

cDNA amplification followed the previously published SMART protocol (Ram-

sköld et al., 2012). Briefly, we first inactivated the DNase I by increasing the

temperature (75�C for 10 min), and samples were then stored on ice. Custom

designed 2A oligo 1 ml (12 mM, Integrated DNA Technologies, sequence shown

in Figure S1A) was added and annealed to the polyadenylated RNA by under-

going a temperature increase (75�C for 3 min) and being quenched on ice. A

mixture of 2 ml Superscript II First-Strand Buffer (53, Invitrogen), 1 ml custom

designed TS oligo (12 mM, Integrated DNA Technologies, Figure S1A), 0.3 ml

MgCl2 (200 mM, Sigma), 0.5 ml RNase inhibitor (Neb), 1 ml dNTP (10 mM

each, Thermo), 0.25 ml DTT (100 mM, Invitrogen), and 1 ml Superscript II

(200 U/ml, Invitrogen) were incubated at 42�C for 90 min, which was followed

by enzyme inactivation at 75�C for 10 min. A mixture of 29 ml water, 5 ml

Advantage2 taq polymerase buffer, 2 ml dNTP (10 mM each, Thermo), 2 ml

custom-designed PCR primer (12 mM, Integrated DNA Technologies, Fig-

ure S1A), and 2 ml Advantage2 taq polymerase was directly added to the

reverse transcription product and the amplification was performed for

19 cycles. The amplification product was purified using Ampure XP beads

(Beckman-Coulter). Library preparation was performed using Ovation Ultralow

library systems (Nugen Inc.). Libraries were multiplexed and sequenced using

Illumina Hiseq 2500 (Illumina Inc) (Table S1).

Bioinformatic Analyses

Mapping and Calculating Gene Expression Levels

Raw reads were trimmed for the Illumina adaptor sequences using Trimmo-

matic (Bolger et al., 2014) and trimmed for the 50 TS oligo sequences

and the 30 primer sequences using custom R codes. RSEM (Li and Dewey,

2011) was used to map and calculate gene expression levels represented

as transcripts per million (TPM). The reference genome was modified to

include chrC, which contained the sequence of part of the Nestin enhancer

followed by eCFP transcripts, and reconstructed from sequencing reads.

We used the following parameters: rsem-calculate-expression -p 12–frag-

ment-length-mean 500 $input.fastq $rsem_ref $cell_id. For downstream ana-

lyses, we used a table with single cells at the columns and the genes at the

rows (Table S6).

Waterfall 1: Pre-Processing

Waterfall input is an expression matrix from RSEM after the elimination of out-

liers (Figure S1C). Unsupervised clustering was performed using a distance

matrix based on Pearson correlation between each pair of single cells (Fig-

ure 2A). We defined the neurogenic trajectory on the PCA plot and determined

the direction using known markers such as Sox11, Tbr2, Blbp, and Gfap.

Waterfall 2: Building an In Vivo Trajectory

We used custom R codes (see file Data S1) to determine pseudotime for each

single cell on the trajectory (Figure S3A; also see Supplemental Experimental

Procedures). Briefly, we performed parametric PCA and extracted k-means

from the distribution of single-cell transcriptomes. We generate an unbiased

trajectory by connecting k-means centers using an MST algorithm (Paradis

et al., 2004). First, we set zero for the origin of the continuous trajectory, deter-

mined by pre-processing. Second, we assigned locations to individual cell

data points on the trajectory. We assigned each cell to the closest MST

segment (lines between k-means) or vertex (k-mean) with a single perpendic-

ular projection. Third, we straightened all the segments into one horizontal line

and determined the relative order of the assigned locations of single cell data
nc.



points on the trajectory. Pseudotime values ranged from 0 (at the origin) to 1

(at the end).

Waterfall 3: Gene Expression Analysis by HMM

We used custom R codes to apply an HMM to predict gene expression states

throughout pseudotime. Briefly, we divided pseudotime into 40 bins, each of

which contained an average of 2.5 single cells. We averaged the expression

level within each bin and assigned the expression values to observed variables

for HMM. We used a Baum-Welch algorithm to extract the most probable

emission probabilities and transition probabilities. Using the output from the

Baum-Welch algorithm along with observed variables, we applied the Viterbi

algorithm to predict binary gene expression states (Figure S3B).

Functional Gene Expression Analysis

We calculated the Spearman correlation coefficient between pseudotime

points and each gene’s expression TPM values. Genes with relatively high

Spearman correlations were defined as UP genes and genes with relatively

low correlations were DOWN genes, and the highest and lowest 1,000

genes were defined as UP1000 and DOWN1000, respectively (Table S4). A small

subset of the UP1000 and DOWN1000 genes with low average expression values

(<50 TPM) and low coefficient of variation (<1.95) were from repeat elements

within their exons and were excluded from downstream analyses. Raw map-

ping profiles of all genes shown in pseudotime figures were closely inspected

to rule out false positives. We identified TFs using public databases (Zhang

et al., 2012). We used GO (Ashburner et al., 2000), KEGG (Kanehisa and

Goto, 2000), and wikipathway (Pico et al., 2008) for functional GO analyses,

along with the R bioconductor package (Gentleman et al., 2004) or Cytoscape

software (Shannon et al., 2003).

For alternative functional gene expression analysis (Figure S7), we first

divided the entire transcriptome dataset into three equal groups based on their

Spearman correlation to pseudotime: positively correlated, uncorrelated, and

negatively correlated (Table S7).We then evaluated the proportion of positively

correlated genes versus negatively correlated genes within each functional en-

tity from an independent functional annotation database wikipathway rather

than the KEGG pathway database. If a functional entity contained a dispropor-

tionally larger number of upregulated genes than downregulated genes, we

considered the functional entity to be generally activated, and, conversely, a

disproportionally larger number of downregulated genes indicated that the

pathway was generally inactivated over time.

Validation with In Situ Database Comparison, Immunohistology,

Genetic Labeling, and Electrophysiology

We validated our NPC-enriched genes by the Allen mouse brain atlas in situ

hybridization dataset (Lein et al., 2007) (Table S3). We inspected the gene

expression patterns within the adult dentate gyrus at sagittal views. Genes

with clear and relatively even distribution within the SGZ were determined to

be ‘‘SGZ enriched,’’ whereas genes with subtle or scattered enrichment within

the SGZ were determined to be ‘‘ambiguous.’’ Genes without any enrichment

at the SGZ were determined to be ‘‘not SGZ enriched.’’

Adult Nestin-GFPcyto animals were used for immunohistochemical valida-

tion. Hopx-CreERT2 f/+;;mT/mGf/+mice were generated by crossing Hopx-

CreERT2 f/+ (Takeda et al., 2011) [strain: Hopxtm2.1(cre/ERT2)Joe/J, Jackson

Labs Stock: 017606] with the mT/mGf/f reporter line [strain: B6.129(Cg)-

Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J; Jackson Labs Stock: 007676].

Tamoxifen (62 mg/ml; Sigma; T5648) was prepared in a 5:1 ratio of corn oil/

ethanol, heated to 37�C, and mixed. Eight-week-old HopX-CreERT2 f/+;;mT/

mGf/+ animals were injected intraperitoneally with 124 mg/kg tamoxifen and

analyzed by immunohistology as previously described (Bonaguidi et al.,

2011). The following antibodies were used: Aldoc (1:200, goat; Cat#SC12065;

Santa Cruz), GFAP (1:2,000, rabbit; Cat#Z0334; DAKO), GFP (1:1,000,

chicken; Cat#GFP-1020; Aves), GFP (1:1,000, goat; Cat#600-101-215; Rock-

land), Nestin (1:500, chicken; Cat#NES; Aves), PCNA (1:2,000, rabbit;

Cat#ab18197; Abcam), PCNA (1:500, goat; Cat#SC9857; Santa Cruz),

Stmn1 (1:200, rabbit; Cat#ab24445; Abcam), and Tbr2 (1:1,000, rabbit;

Cat#Ab23345; Abcam). GFP cells were identified with an Axiovert 200Mmicro-

scope (Zeiss) and then acquired as z-stacks on Zeiss 710 single-photon

confocal microscope using 403 or 633 objectives. For quantification of

Stmn1, Aldoc, and PCNA expression in Nestin-GFPcyto mice, z-stacks were

acquired from three animals. Images were analyzed using Imaris 7.1.1 (Bit-

plane). Radial-glia-like NSCs were identified by their radial processes and
Cell S
somas situated in the SGZ and IPCs were identified by their small somas

and tangential processes as previously described (Bonaguidi et al., 2011).

Adult Nestin-GFPcyto transgenic mice were used to validate expression of

functional glutamate receptors on NSCs. GFP+ radial-glia-like NSCs in slices

prepared acutely from adult animals were recorded bywhole-cell patch-clamp

upon puffing of AMPA or NMDA in the presence or absence of antagonists as

previously described (Song et al., 2012).
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Figure S1. Single-cell RNA-seq of labeled precursor cells from the adult mouse dentate 
gyrus, related to Figure 1. 
(A) A schematic diagram of experimental procedures for achieving single-cell transcriptomes from 
fluorescently labeled individual cells isolated from the adult Nestin-CFPnuc mouse dentate gyrus. 
Shown at the top is a sample confocal image of Nestin-CFPnuc adult mouse dentate gyrus for CFP 
and Nestin immunostaining. Scale bar: 100 m. Isolation of individual NPCs involved the following 
steps: (1) microdissection of tissues of interest; (2) dissociation of tissue using papain and DNase I; 
(3) eliminating cell debris via multiple rounds of mild centrifugation; and (4) picking up fluorescently 
labeled individual cells using a micromanipulator with a pulled glass micropipette and breaking the 
tip of the glass pipette into PCR strips. The SMART amplification protocol (Ramskold et al., 2012) 
was followed with minor modifications, including DNase I digestion before adding polyT primer. 
Library generation followed conventional Illumina library preparation protocol after fragmentining the 
amplified cDNA. TS oligo: Template Switch oligo; RT primer: primer for reverse transcription; 
SMART: Switching Mechanism At 5' end of RNA Template. 
(B) Unsupervised clustering for individual CFP+ and CFP– cells, and single-cell equivalent amount 
(3 pg) of whole-dentate gyrus RNA samples (n = 4). Whole dentate RNA samples are highlighted to 
show the extensive biological variability of single-cell transcriptomes, compared to negligible 
technical variability. 



(C) Expression heat map of known markers for oligodendrocyte precursor cells 
(OPC)/oligodendrocytes (OL), pericytes, and blood cells. Horizontal bar under the heat map 
represents putative cell types determined by marker expression profiles. Green: cells with potential 
NPC lineages; Orange: cells with OPC/OL lineages; Purple: cells with differentiated neuronal 
characteristics; Gray: uncharacterized outliers or cells with non-neuronal lineages. 



Figure S2. Reproducibility and orientation of the developmental trajectory on the PCA plot, 
related to Figure 2. 
(A) Shown are PCA plots with all Nestin-CFPnuc+ NPCs (top left panel) and with Nestin-CFPnuc+ 
NPCs in five individual sequencing runs. 
(B) Normalized expression levels of known marker genes on the PCA plot, represented by the size 
of data points. Colors of data points follow the color codes in Figure 2B. Notably, known NSC 
markers Blbp/Fabp7 and Gfap were highly expressed on the left side, whereas eIPC markers 
Tbr2/Eomes and Sox11 were highly expressed on the right side.  
 



 

Figure S3. Waterfall algorithms, related to Figure 2.  
(A) An illustration of steps to generate an averaged trajectory and assign pseudotime to each 
individual cell: (a) Representing individual cells on the PCA plot with PC1 and PC2 and performing 
k-means from the PCA data (small red dots); (b) Building a trajectory connecting k-means as 
minimum spanning trees (MST); (c) Determining the relative location of each cell using orthogonal 
line to connect each cell to the closest trajectory line; (d) Assigning pseudotime for each cell based 
on its relative location on the trajectory. 
(B) An illustration of the approach to predict underlying states from gene expression (TPM) over 
pseudotime progression. The Baum-Welch algorithm predicts the most likely transition probability 
and emission matrix from observed variables (TPM). The Viterbi algorithm uses observed variables 
(TPM) along with the output from the Baum-Welch algorithm to predict hidden On/High and Off/Low 
gene expression states. 



Figure S4. Pseudotime profiles of sample transcription factors, related to Figure 4. 
Shown are pseudotime profiles of representative transcription factors that were down-regulated (A) 
or up-regulated (B) over developmental pseudotime progression. Similarly plotted as in Figure 2D.  
 



Figure S5. Cellular compartment analysis for UP and DOWN genes, related to Figure 5. 
(A) Cellular compartment analysis for UP and DOWN genes with different thresholds. Shown are 
summaries of enrichment patterns of UP and DOWN genes with cutoff for top 500 genes (left 
panel) or top 250 genes (middle panel), and average for all genes (right panel). 
(B-C) Detailed predicted cellular locations for gene products of DOWN1000 genes (B) and of UP1000 
genes (C). The size of each data point represents the number of genes within each predicted 
location, and color of each data point represents P value of enrichment to each predicted location. 
P values are from hypergeometric test and corrected by Holm–Bonferroni method (Bonferroni step-



down correction). Connections between pairs of data points represent sharing more than 50% of 
genes between the pair. Similar entities are grouped with the same background colors. 



Figure S6. Representative pseudotime profiles of key genes related to niche signaling, cell 
cycle progression, and energy metabolism, related to Figures 6 & 7. 



(A-B) Pseudotime profiles of representative genes related to niche signaling (A) and genes related 
to fatty acid metabolism (B), both of which exhibited down-regulation upon qNSC activation. 
Similarly plotted as in Figure 2D. 
(C) Reciprocal changes of expression of mitochondrial electron transport genes and glycolysis 
genes. Roman numerals represent electron transport complex. Complex V exhibited a clear 
increase throughout early neurogenic pseudotime. Shown at the bottom are pseudotime profiles of 
some genes related to glycolysis (gradual down-regulation) and complex V genes in mitochondrial 
electron transport chain (gradual up-regulation). 
(D) Developmental pseudotime recapitulates cell cycle progression during qNSC activation and 
initiation of neurogenesis. Shown on the top is a schematic illustration of cell cycle phases 
correlated with pseudotime. Cell cycle checkpoint genes were up-regulated following the sequence 
of biological cell cycle progression. Shown at the bottom are pseudotime profiles of genes related to 
cell cycle checkpoints and cytoplasmic ribosomal subunits. Note that ribosomal genes were up-
regulated earlier than any of the cell cycle related genes. 
 



Figure S7. Independent validation for GO entity enrichment test for up-regulated and down-
regulated genes during quiescent stem cell activation and neurogenesis, related to Figures 



5 & 6.  
Shown is a summary of the proportion of up-regulated and down-regulated genes within each key 
functional GO entity. GO entities with a disproportionally higher proportion of up-regulated genes 
represent functional pathways that are activated during exit of quiescence and early stages of 
neurogenesis, whereas GO entities with a disproportionally higher proportion of down-regulated 
genes represent functional pathways that are qNSC-specific pathways. 



Supplementary Tables 

Table S1. Summary of sequencing statistics, related to Figure 1. 

Table S2. List of literatures consistent with the predicted molecular dynamics of adult neural stem 

cell, related to all figures. 

Table S3. Adult NPC-enriched gene list and validation based on the Allen Brain in situ database, 

related to Figure 1. 

Table S4. 1000 UP genes and 1000 DOWN genes and their Spearman correlation coefficient to 

pseudotime, related to Figure 4. 

Table S5. List of UP TFs and DOWN TFs, related to Figure 4. 

Table S6. Single-cell gene expression table according to the pseudotime progression, related to 

Figure 5. 

Table S7. Three groups of genes based on their correlation with pseudotime, related to Figure 5. 

 

Supplementary Data 

This zipped file contains R codes to run Waterfall for datasets in the main text and in the 

Supplementary Methods, a README text file, and a PDF file for the Supplementary Methods and 

references.  
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