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Static and dynamic appointment scheduling to improve patient access time
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ABSTRACT
Appointment schedules for outpatient clinics have great influence on efficiency and timely access
to health care services. The number of new patients per week fluctuates, and capacity at the clinic
varies because physicians have other obligations. However, most outpatient clinics use static
appointment schedules, which reserve capacity for each patient type. In this paper, we aim to
optimise appointment scheduling with respect to access time, taking fluctuating patient arrivals
and unavailabilities of physicians into account. To this end, we formulate a stochastic mixed
integer programming problem, and approximate its solution invoking two different approaches:
(1) a mixed integer programming approach that results in a static appointment schedule, and
(2) Markov decision theory, which results in a dynamic scheduling strategy. We apply the
methodologies to a case study of the surgical outpatient clinic of the Jeroen Bosch Hospital.
We evaluate the effectiveness and limitations of both approaches by discrete event simulation; it
appears that allocating only 2% of the capacity flexibly already increases the performance of the
clinic significantly.
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1. Introduction

There is a growing need to improve efficiency as the
expenditures of healthcare, one of the largest industries
in the developedworld, are rapidly rising.Appointment
schedules for outpatient clinics have great influence
on efficiency and patient access times to health care
services, which is important for bothmedical outcomes
and patient satisfaction (Gupta & Denton, 2008). To
this end, in the Netherlands all outpatient clinics have
to comply with nationally set upper bounds for patient
access time (van Boven (RIVM), 2007), which impose
a maximum on the time between requesting an ap-
pointment and the appointment itself for every patient
(which is generally four weeks).

Many outpatient clinics use tactical appointment
schedules in which the available capacity is divided
among all patient types (Hulshof, Kortbeek, Boucherie,
Hans, & Bakker, 2012). This tactical schedule deter-
mines to a large extent patients’ access times, as patients
often get the first available slot for their type when
they request an appointment. However, the number
of arriving patients fluctuates over the year due to, for
example, the weather conditions (more bone fractures
in icyweather) and the day of theweekduringwhich the
arrival takes place (more patients with sports injuries
arrive on Mondays). Moreover, the availability of the
physicians is not constant, due to other obligations
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and holidays. As a consequence, overbooking is often
unavoidable to provide patients with reasonable access
times. Overbooking may result in physicians working
overtime, and in large waiting times for patients.

Appointment scheduling in healthcare has received
considerable attention fromacademics in the past years.
In this paper, we summarise the most related results,
and refer the reader to the reviews (Cayirli & Veral,
2003; Gupta & Denton, 2008; Hulshof et al., 2012) for
a broader view of this field. In this paper, we optimise
the tactical appointment schedule with respect to access
time and idle time, in such a way that the performance
is robust against varying demand and supply. We have
found three papers studying access time improvements
at outpatient clinics at the tactical planning level. Jous-
tra et al. (2010) determine an appointment schedule for
one week using linear programming, and use simula-
tion to evaluate patients’ access times and the number
of overbooked appointments for that schedule. If it ap-
pears that not all access time upper bounds are met, the
linear program is run againwith input basedon the sim-
ulation results, and these iterative steps are repeated if
necessary. Elkhuizen et al. (2007) obtain global insights
into the required capacity tomeet the access time upper
bounds by means of a queuing model, and evaluate
the performance of the clinic in more detail by means
of a simulation model. Creemers et al. (2012) invoke
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a bulk-server queuing model to evaluate access times,
and use complete enumeration to determine the best
assignment of the capacity to different patient types.

Dynamic capacity allocation typically includes re-
serving capacity for urgent or walk-in patients, or ob-
taining policies that describe howmany patients of each
diagnostic group should be admitted into the hospital
from a waiting list to optimise utilisation and access
times (cf. Hulshof, Boucherie, Hans, & Hurink, 2013;
Kolisch&Sickinger, 2008). Several studies evaluate spe-
cific scheduling policies for reserving capacity for dif-
ferent patient types by means of simulation (cf. Klassen
& Rohleder, 1996; Vermeulen et al., 2009).

A different, but related topic is the master surgery
scheduling problem, in which tactical schedules assign
operating rooms and time slots to all (sub-)specialties
in a hospital (van Oostrum et al., 2008). This field of
literature typically studies the objective of balancing the
occupancy of post-operative wards, which differs from
our objective. Moreover, only a few papers incorporate
uncertain demand; for example Holte and Mannino
(2013)minimise the (weighted) queue lengths of differ-
ent patient types for a cyclical schedule with stochastic
demand.

In this paper, we present a new stochastic mixed in-
teger programmingmodel (SMIP) with both stochastic
patient demand and physician capacity (the number
of available consultation hours). The objective of the
SMIP is to obtain a tactical appointment schedule with
minimal access times for a reasonable idle time. This
objective is tailored to the practical problems encoun-
tered in hospitals. In particular, at the Jeroen Bosch
Hospital (JBH), a large Dutch teaching hospital, the
surgical outpatient clinic struggles with the questions:
what is the minimally required capacity to comply with
the access time upper bound, and how could the out-
patient clinic’s appointment schedule be made more
robust with respect to the variance in demand and
capacity? To address these questions, we approximate
the SMIP with two different approaches. We use dis-
crete event simulation to evaluate the performance of
the approaches, and this numerical analysis helped the
JBH assess the benefits of the different schedules. Cur-
rently, the hospital is investigating the possibilities and
requirements for implementing the results. The model
developed in this paper can readily be adapted to other
outpatient clinics and to appointment systems in other
applications than health care.

2. Mathematical model

The model presented in this paper mimics a typical
Dutch outpatient clinic that uses a tactical appointment
schedule in which a fixed capacity (number of appoint-
ment slots) is reserved for each patient type each week.
For simplicity, we assume that each arriving patient gets

the first available appointment slot that is reserved for
that patient’s type.

The clinic works with a block schedule, in which
each morning or afternoon block (in practice often
called “outpatient clinic session”) consists of a specific
number of time slots that are reserved for certain pa-
tient types; for example, the first five slots are reserved
for new patients and after that 10 slots are reserved
for follow-up patients. Once set, these compositions of
morning or afternoon blocks are not allowed to change
often, due to physician preferences and technical limi-
tations. If a physician is not available, for example due
to a conference or holiday, typically an entire block
is cancelled. If access times exceed the upper bound,
physicians work overtime or add an entire block to the
schedule to ensure timely access for patients. Therefore,
the composition of the blocks, i.e., how many appoint-
ment slots for each patient type, plays a significant role
in patients’ access times.We do not incorporate patient
no-shows; the capacity is lost when patients do not
show up. The term “cancellation” is used for blocks
being cancelled due to the occasional unavailability of
the physician. These blocks are always cancelled suf-
ficient time in advance to avoid that patients need to
be rescheduled, which is common practice at Dutch
outpatient clinics.

As overbooking a clinic block involves much ad-
ditional scheduling efforts and often increases patient
waiting times and/or physicians working overtime, we
determine the minimally required number of sched-
uled blocks and each block type’s composition without
surgeons working overtime. To this end, we present a
stochastic mixed integer programming model (SMIP)
that incorporates stochastic arrivals and capacity. A
direct solution of the SMIP cannot be obtained, due
to the stochasticity involved. Therefore, we approxi-
mate the SMIP’s solution in two ways: (1) a MIP in
which we incorporate stochastic arrivals but assume
that the capacity is fixed, which results in the optimal
static schedule, and, based on this static schedule, (2)
a Markov decision model, which results in the optimal
flexible scheduling policy. The SMIP and both approx-
imation approaches are developed in this section in a
general form; all input details are given in Section 3.

2.1. The stochastic scheduling problem

The JBH uses a cyclic tactical schedule that distributes
the capacity among the different patient types. We de-
velop a SMIP to optimise both the number of scheduled
blocks and the number of appointment slots that are
planned for each patient type during each block. The
objective of the SMIP is to balance patient access time
and physician idle time.

In the following, we define the sets, parameters, vari-
ables and constraints of the SMIP. Let p ∈ P = {1, . . . ,
P} denote the patient types, d ∈ D = {1, . . . ,D} the
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days, and b ∈ {morning, afternoon} the block types.
Note that in the SMIP it is possible to schedule more
days than the number of clinic days in the cycle, because
there are multiple surgeons who may work in parallel
as long as there are enough consultation rooms. The
parameters and variables are denoted as follows, with
the indices subscripted and the “type” of parameter or
variable superscripted.

Lp appointment length for type p (in number of
time slots)

Nb capacity of block b (number of time slots)
M maximum number of blocks during one cycle
Ca “cost” of patient access time
Ce “cost” of an empty time slot

Xpdb number of type p patients scheduled on day d,
block b

Ydb indicator that equals 1 if at least one patient is
scheduled on day d, block b

Tp total number of appointment slots scheduled for
type p

The maximum number of blocks during one cycle,M,
is used to limit the solution space of the SMIP, and is
set sufficiently large to accommodate all demand. The
cost parameters Ca and Ce can be used to give priority
to minimising either the access time or the idle slots,
and can be chosen according to the preferences of the
hospital. Note that the parameters and variables of the
SMIP are not stochastic. As in practice not the schedule
itself, but the realisation of the schedule and the patient
arrivals are stochastic, we formulate the SMIP such
that the stochasticity is incorporated in the objective
function only.

The following constraints hold for the parameters
and variables.

Tp =
∑
d,b

Xpdb ∀p (1)

∑
p

Xpdb · Lp = Nb ∀d, b (2)

∑
d,b

Ydb ≤ M (3)

Xpdb ≤ Ydb · Nb ∀p, d, b (4)
Xpd′b ≤ Xpdb + 1 ∀p, d, d′, b (5)
Xpd′b ≥ Xpdb − 1 ∀p, d, d′, b (6)∑
d

Ydb ≤
∑
d

Ydb′ + 1 ∀b, b′ (7)

∑
d

Ydb ≥
∑
d

Ydb′ − 1 ∀b, b′ (8)

Tp,Xpdb ∈ N ∀p, d, b (9)
Ydb ∈ {0, 1} ∀d, b (10)

The first constraint (1) sets Tp, which is used to cal-
culate the average access time. We assume that the
total number of appointment slots is distributed evenly

over the days in the cycle, but the model is readily
adapted to other arrival patterns. Constraints (2) and
(3) ensure that all time slots of each block are used
in the schedule, and the available capacity is not ex-
ceeded. Constraint (4) makes sure that a surgeon is
scheduled when patients are scheduled on that day.
In practice, the capacity of block b may also depend
on the day of the week; this could be incorporated in
the model and would only affect Constraints (3) and
(4). Constraints (5)–(8) are not necessary for obtaining
a feasible schedule, but reflect preferences of hospital
management and physicians. Constraints (5) and (6)
balance the workload over the surgeons by requiring
that the number of scheduled patients of each type on
each block differs at most one. This constraint should
be adapted when physicians are not all allowed to treat
all patient types; in such clinics the constraint can bet-
ter limit the differences in the number of slots per
block. Constraints (7) and (8) ensure that the number
of morning and afternoon blocks are balanced, such
that on most days both a morning and afternoon block
is scheduled. The last constraints (9) and (10) define the
variable types.

The SMIP formulation above does not include
stochastic parameters or variables, and is not related
to the actual demand of the clinic. For simplicity we
assume that each block has a cancellation probability
u ∈ [0, 1] and patient arrivals follow a certain probabil-
ity distribution with rate λp for type p patients, which
both may depend on for example the weekday. The
stochastic capacity and demand is incorporated in the
objective function, which is represented by the general
notation:

min Ca
∑
p

f a
(
Tp, λp, u

) + Ce
∑
p

f e
(
Tp, λp, u

)
.

The functions f a and f e may denote any function de-
pending on Tp, λp and u. We choose to let these func-
tion relate the stochastic total realised number of ap-
pointment slots and arrival distribution for each pa-
tient type, to the expected access time and expected
number of empty slots, respectively. We clarify f a (f e)
below, after we derive a relation between the access
(idle) time, the arrival distribution and the realised
number of appointment slots. As both the demand
and capacity are stochastic variables, f a

(
Tp, λp, u

)
and

f e
(
Tp, λp, u

)
are stochastic variables. Furthermore, this

objective allows to set weights for each patient type
individually, if necessary.

In this SMIP, both the demand and the capacity
are stochastic. There exist several approaches for solv-
ing SMIPs, for example decomposition algorithms, cf.
(Sen, 2005), and robust optimisation approaches (cf.
Beyer & Sendhoff, 2007). In this paper, we incorporate
the stochasticity in the patient arrivals in the SMIP by
means of a queuing model, and solve the SMIP with a
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fixed and a flexible approximation approach. For the
first approach we assume that the capacity is deter-
ministic. For the second approach, we make the static
schedule more flexible using Markov decision theory.
We describe the queuingmodel in the remainder of this
subsection, and the two approaches in the following two
subsections.

We incorporate the stochasticity in the patient ar-
rivals in the SMIP by means of a discrete time queue-
ing model. The model relates the realised capacity to
the expected access time (f a) and expected number of
idle slots (f e) for each patient type. The discrete time
queuing model is presented in analogy by the ones
presented in Masselink, van der Mijden, Litvak, and
Vanberkel (2012), Kortbeek et al. (2014) and van de
Vrugt, Boucherie, Smilde, de Jong, and Bessems (2017).
The state of the model is the size of the backlog of a
specific patient type p at the end of day d,Bdp. Every day
a number of patients, at most equal to the capacity Sdp
for this type on this day, is removed from the backlog,
and a random number of new patients, Adp, is added
to the backlog. We do not allow arriving patients to
be scheduled on the same day, which is why a regular
M/D/c queue cannot be used in this analysis even if
the capacity Sdp would be the same for all days d. For
the backlog on day d, we have:

Bdp = (
Bd−1,p − Sdp

)+ + Adp, (11)

in which x+ = x if x > 0 and x+ = 0 otherwise.
Eq. (11) is known as Lindley’s recursion (cf. Cohen,
1982). By means of the queueing model we derive a
relation between the daily capacity and expected access
and idle times by calculating the stationary distribu-
tion of Bdp, if we assume that Sdp is not stochastic.
Appendix 1presentsmoredetails on thequeuingmodel;
the definition of f a is given by (A2), and for f e by (A1).
Note that these functions depend on Tp, λp and u in the
different calculation steps. These expressions allow us
to store all possible values for f a and f e before solving
the SMIP, which is clarified in the next subsection. Note
that the model formulation of both the queuing model
and the SMIP allow to incorporate other performance
measures than the expected values, for example the
probability that the access time upper bound is met
for 90% of the patients.

The two approximationmethods are both practically
relevant and offer the JBH two distinct alternatives with
good performance. Several modelling assumptions are
based on the JBH case study, but we indicated how
the SMIP can be adjusted to other outpatient clinics.
Additionally, we assume that capacity is distributed
evenly over the week as we cannot incorporate time-
dependent arrival rates due to lack of data. The JBH
requires that the block-sizes, measured both in number
of appointment slots for each patient type, are equal

for each day and that the number of morning and
afternoon blocks are balanced.

2.2. Static scheduling

Wecannot solve the SMIP as presented above due to the
stochasticity in the capacity. We first approximate the
SMIP by a mixed integer program (MIP) in which we
assume that exactly a fraction u of all blocks is canceled,
so the realised capacity is (1 − u)Tp for each patient
type. The MIP provides both the number of blocks
that should be scheduled each week, and the number of
appointment slots in each block-type for each patient
type. This schedule is the base scenario for our numer-
ical study. If the variance in the capacity of the clinic
is relatively low, the schedule obtained with the MIP
should result in acceptable performance in practice.
In order to accommodate for higher variability, in the
following subsection we present a flexible scheduling
approach, which is based on the MIP schedule.

As stated before, we assume that a fraction u of
the blocks is cancelled (opposed to each block being
canceled with probability u). Therefore, the conver-
sion from Tp to Sdp is Sdp = ⌊

(1 − u)Tp/D
⌋
, with

�x� denoting rounding down to the nearest integer,
and the remaining (1 − u)Tp − D · ⌊

(1 − u)Tp/D
⌋

days added to days with the lowest index and enough
surgeons available. We assume that the total realised
capacity is divided equally over the weekdays, but the
queuing model is readily adapted for different capacity
distributions. Note that the assumption that capacity is
divided equally over the weekdays represents the best-
case scenario because we also assume a constant arrival
rate.

To be able to incorporate functions f a and f e in
the objective of the SMIP, we introduce parametersmp
andMp denoting theminimum andmaximumnumber
of appointment slots scheduled for type p, respectively.
We create an array with f a

(
Tp, λp, u

)
and f e

(
Tp, λp, u

)
,

for a fixed λ and u in each scenario, and calculate
these functions for each patient type and all possible
(1 − u)Tp betweenmp andMp. When the solver solves
the MIP, it can access the array to obtain the objective
value corresponding to the current value of the realised
capacity, (1− u)Tp. We assume parametermp is larger
than the average arrival rate of typeppatients, otherwise
the queuing model is not solvable. Furthermore, Mp
is set sufficiently large to accommodate all arrivals,
and we introduce additional constraints to ensure that
mp ≤ (1 − u)Tp ≤ Mp. Using this array, we can
approximate the SMIP by a MIP.

2.3. Dynamic scheduling

Since both the capacity and the number of patients
requesting an appointment fluctuate during the year,
the performance of the clinic will improve by allocating
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capacity dynamically. However, physicians have the
right to know their working hours several weeks in
advance, so the flexibility of the schedule is limited.
Therefore, the cyclical schedule as determined above is
set as the basis of theflexible schedule, but the clinicmay
decide to add an extra block each cycle. The optimal
policy for determining whether or not to schedule an
additional block is determined by means of a Markov
decision process (MDP), which is explained in the fol-
lowing.

The state of theMarkov process is the number of pa-
tients in the queue for all patient types: s = [q1, ..., qN ]
∈ S , with N the number of patient types, and qp is
finite for all p. Transitions and decisions occur at the
end of every cycle. Each decision epoch, the clinic either
schedules an additional block at the end of the next
cycle (a = 1), or not (a = 0). The composition of the
additional block is the same each time it is added to the
schedule, and is obtained with the MIP. Let P(q′

p|qp, a)
denote the probability that the queue length of type p
equals q′

p at the next decision epoch, given that the
current queue length is qp and decision a is taken.
Furthermore, let Yt denote the total number of blocks
scheduled by the MIP in one cycle, and αp the number
of appointment slots per block for type ppatients. Then,
given that each patient type can only be assigned to
appointment slots that are reserved for their type, the
transition probabilities are:

P(s′|s, a) = P(q′
1|q1, a) · . . . · P(q′

N |qN , a),

with

P(q′p|qp , a) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P(Ap = q′p) if qp ≤ tpYt ,

P(Ap = q′p)
∑j−1

i=0 P(Tp = tpi) if tpj ≤ qp ≤ tp,j−1,

+ ∑Yt
i=j P(Ap = q′p − qp + tpi + a · αp)P(Tp = tpi) for j = 1, . . . ,Yt ,∑Yt

i=0 P(Ap = q′p − qp + tpi + a · αp)P(Tp = tpi) else.

Here, Ap is the random number of arrivals for patient
type p each cycle, and tpi the capacity for patients of type
p in case i blocks are cancelled. We assume that each
block is cancelled with probability u, so P(Tp = tpi)
follows a binomial distribution with probability u.

To enhance readability, we assume that the cycle
length equals the access time upper bound (the max-
imally allowed time between a patient’s arrival and
appointment) and this upper bound is the same for all
patient types, but the model can be adapted to different
values. Therefore, we incur costs in the MDP when the
access time exceeds one cycle length.Additionally, costs
are incurred in theMDP for idle appointment slots.We
use the expected number of empty appointment slots
and the expected queue length at the end of the cycle
for the direct costs, resulting in:

C(s, a) =
Yt∑
i=0

[
P(Tp = tpi) ·

(
Ca

N∑
p=1

(qp + E[Ap]

− tpi + a · αp)
+ + Ce

N∑
p=1

(tpi + a · αp

− qp − E[Ap])+
)]

The total discounted value of the MDP, given policy π ,
satisfies the Bellman-equations:

Vπ(s) = max
a

{
C(s, a) + β

∑
s′∈S

P(s|s′, a)Vπ(s′)
}
,

with β the discount factor. We assume β = 0.95 to
reflect that future access times are important to take
into account with the current decision making.

Opposed to the queuing model, the MDP cannot
be evaluated for each patient type independently, as
we may only add an entire block and blocks consist of
appointment slots for all patient types. The purpose of
the MDP is only to determine whether or not to add a
block and the actual scheduling is carried out following
the results of Section 2.2. Therefore, we aggregate all
patient types in the numerical analysis of the MDP
model. Note that this aggregation also substantially
reduces the size of the state space, which makes the
MDP more tractable. This result can also be obtained
if we assume that patients arrive and are treated in
batches, but that would result in a more difficult and
therefore less practical policy.

3. Application

In this section, we assess the quality of the schedules
derived by the MIP and MDP approaches by means of
the case study of the surgical outpatient clinic of the
JBH, for the sub-specialty oncology. To this end, we
compare the different appointment schedules on the
following performance measures: average access time,
the probability that the access time exceeds one week,
and the utilisation of the appointment slots. The JBH
aims for an access time of at most one week for as many
patients as possible, which is a tighter upper bound than
the national one.

3.1. Case study input

In this subsection, we provide all case study specific
input and assumptions for themethods, howwe test the
methods, and which scenarios we use in the numerical
analysis. In the objective of the (S)MIP we include the
expected access and idle time instead of, for example,
the probability that the access time upper bound is
exceeded. The JBH prefers the average performance
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measures, as they do not have the capacity to accom-
modate rarely occurring high peaks in the number of
arriving patients. In the (S)MIP, the access and idle
time can be given weights to reflect that one is a more
important performance measure than the other. We
first use Ca = Ce, so equal weights for access and
idle time, as the JBH indicated to value patient access
time and physician idle time equally. Additionally, we
investigate scenarios with Ca 	= Ce.

As in many hospitals, in the JBH it is not possible to
use data on the times appointments were requested, as
only the realised appointment times are registered. This
also implies that we cannot incorporate appointments
scheduled for patientswhodid not showup, and cannot
derive the arrival distribution from the data. Therefore,
as input for themodels we use the data in Table 1, which
is based on the realised patient appointments instead of
the times the appointments are requested. Additionally,
we assume that the arrival process is Poisson with a
constant rate.

According to the preferences of the JBH we set the
cycle length to one week. We assume that the proba-
bility that a block is cancelled, is independent for each
block and equals 10%, so u = 0.1, which is desired
by the JBH but currently the cancellation probability is
slightly higher.

We solve the MIP using AIMMS (Bisschop, 2014)
and use the policy iteration algorithm (Puterman,
2005), implemented and solved in Matlab (MATLAB,
2010) to obtain the optimal policy for the MDP. As
stated before, we solve the aggregated version of the
MDP. This because the state space explodes already if
we include a few patient types and assume that access
times are at most four cycle lengths (which is the na-
tional upper bound), as the number of appointment
slots per patient type per cycle can be over 100.

We evaluate the schedules invoking discrete event
simulation. The advantage of simulation is that we can
mimic the processes at the JBH realistically, so we can
incorporate random cancellation of blocks, fluctuating
arrival rates and even patients who have preferences for
a particular physician. In the discrete event simulation
patients of different types arrive one-by-one according
to a Poisson process and take the first available appoint-
ment slot that is reserved for their type. The search for
an available slot starts from the next day, as patients
are not scheduled on the same day when they request
an appointment. Furthermore, all patients show up for
their appointment, which is realistic for the JBH but
can readily be adapted to other clinics. Each block has
a certain probability – independent of the probabilities
for the other blocks – of being cancelled by the physi-
cian in advance, so it is not necessary to reschedule
patients. This cancellation probability is varied in the
simulation. The simulation is programmed in C++.
We use common random numbers (Law & Kelton,

Table 1.Weekly demand and capacity for the case study.

Type p Lp E[Ap] (patients) MIP capacity (appointment slots)

1 2 7.4 9
2 2 115.9 130
3 2 14.0 17
4 2 29.4 34
5 2 8.3 11
6 2 27.7 33
7 2 5.7 8
8 1 24.7 28

2000) for a fair comparison between the schedules. We
simulate 200 runs with 260 clinic days each, in order to
obtain minimally 5% relative precision.

Next to the MIP and MDP schedule, we investigate
scenarios in which the capacity is pooled for all patient
types, denoted by suffix ‘-pool’. In these scenarios, we
investigate to what extent the JBH could improve the
accessibility of the clinic when there are no reserved ap-
pointment slots for each patient type, but each patient
would be treated first come, first served.

The MDP schedule adds capacity to the MIP sched-
ule in a significant number of weeks. In order assess the
added value of dynamic scheduling compared to static
scheduling we additionally investigate a MIP sched-
ule with the same total capacity as the MDP sched-
ule, which is labelled ‘MIP+’; the additional capacity is
added by adding (part of) a block to the MIP schedule
each week such that the total capacity equals the ca-
pacity of the MDP schedule over the entire simulation
run.

3.2. Case study results

The schedule created by the MIP for this scenario re-
quires 512 time slots in 15 blocks each week, divided
over 7 × 18 appointment slots in the morning and 8 ×
18 appointment slots in the afternoon. Note that most
patient types require two time slots per appointment
slot, and we can schedule more than ten blocks per
week (five working days× two blocks per day) because
multiple surgeons can work in parallel. Figure 1 depicts
simulation results for different cancellation probabil-
ities, performance measures and scheduling policies.
Recall that all schedules in this figure are obtained as-
suming that u = 10% in the MIP and MDP models, so
the cancellation probability is only varied in the sim-
ulation. The simulated scenario with 15% cancellation
probability has insufficient capacity in theMIP scenario
to schedule all arriving patients and is therefore not
depicted in Figure 1.

From the simulation results, it appears that the av-
erage access time and the access time upper bound
compliance improve significantly in case of a lower can-
cellation probability, more capacity (MDP and MIP+
schedules), and when all capacity is pooled, which are
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Figure 1. Results static and dynamic scheduling with u = 10% for multiple cancellation probabilities.

intuitive results. With the current capacity and 10%
cancellations 38.3% of the patients cannot be scheduled
within one week, see Figure 1(c). Also in the other
schedules there are patients for which the access times
exceed one week, but these numbers of patients are
acceptable for the clinic.

For the performance of the clinic it is important to
minimise the cancellation probability, as the simulation
results show that this probability significantly affects all
performance measures when the load of the system is
close to one. For the MDP and MIP+ schedules, the
effect of different cancellation probabilities is relatively
small. Aggregating the capacity for all patient types
would significantly increase the clinic’s performance,
even resulting in better performance compared to the
scenario with only 5% cancellation probability.

TheMDP andMIP+ schedules have relatively many
idle slots each week, the MDP slightly less than the
MIP+ schedule. As each block consists of 32 (morning)
or 36 (afternoon) time slots, on average one block is
canceled each week, which is acceptable for the JBH;
because the appointments are planned in advance the
surgeons can use this time to schedule other activities.
Figure 1(d) depicts how often the MDP policy pre-
scribes to schedule an additional block; this policy im-
plies that for the 10%-scenario on average 2.5% capacity
is added to the schedule.

The decision rule of the MDP can affect at most
one physician for one morning or afternoon per cycle,
which is less than 7% of the capacity in the JBH case
study. FromFigure 1(a) and (c) it appears that theMDP
policy outperforms the MIP+ policy with respect to
both the access and idle time, i.e., dynamic scheduling
outperforms static scheduling already for this small
fraction of flexible capacity. This is an intuitive result,

Table 2.MDP policy queue length threshold values for different
Ca and Ce .

Ce Ca

1 2 5

1 22 20 1
2 32 22 9
5 41 35 22

as both schedules contain the exact same capacity, but
the dynamic schedule schedules the capacity only at
times with many patients in the system. We conjecture
that dynamic scheduling outperforms static scheduling
for all realistic instances. However, in an (extremely
unrealistic) artificial instance in which alternately Yt <
x < 2Yt patients and zero patients arrive each week, the
MIP+ schedule will outperform the MDP schedule; the
MDP policy will add capacity in quiet weeks and will
not add capacity in busy weeks, thereby increasing the
access times significantly.

Similar to the MIP, Figure 1 only depicts the results
of the MDP with equal costs for access and idle time.
With these parameters, it is optimal to add an extra
block when the total queue length exceeds 22 patients.
We investigated the effect of other values of Ca and
Ce, see Table 2. As expected, the threshold to schedule
an additional block decreases for relatively large ac-
cess time costs, and vice versa. As the results of these
schedules are obvious, they are omitted in this paper.
Additionally, we investigated policies that depend on
all patient types separately, assuming that the patient
arrivals for type 2 patients arrive and are served in
batches of size five. We do not present these results
here, as the resulting optimal policies are complex and
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Figure 2.Week-dependent results for 10% cancellation.

Table 3. Simulation results for different values of u.

u Schedule E[AT ] P(AT > 5) E[I]
5% MIP 3.14 14.6% 22.32
5% MDP 1.61 0.2% 32.41
5% MIP+ 1.69 1.0% 39.77
5% MIP-pool 1.55 0.1% 23.31
10% MIP 7.07 41.8% 13.32
10% MDP 1.85 1.2% 26.86
10% MIP+ 2.09 3.5% 32.27
10% MIP-pool 2.71 9.1% 12.69
15% MIP 4.20 27.1% 17.03
15% MDP 1.88 0.8% 29.99
15% MIP+ 2.30 4.4% 32.00
15% MIP-pool 2.24 2.2% 19.45

these policies did not improve the results significantly.
Fromapractical perspective,more complicated policies
are of little use for the JBH.

In Figure 2 we depict simulation results of the con-
ditional average access time of patients arriving in week
x for several scheduling policies with 10% cancellation
probability. Fromthese results it is clear that pooling the
capacity can already improve the performance signif-
icantly. The conditional average access time is always
below the upper bound (five working days) with the
dynamic schedule,while for theother schedules in some
weeks the upper bound is exceeded.

In order to investigate towhat extent the cancellation
probability affects the schedules, we additionally obtain
thefixed andflexible schedule foru = 5%andu = 15%.
In the MIP schedule for u = 5%, eight morning blocks
and seven afternoon blocks are scheduled, while for
u = 15% the schedule contains eight morning and
eight afternoon blocks. Note that each afternoon block
consists of four time slots more than each morning
block, so the MIP schedule for u = 10% contains more
time slots than the MIP schedule for u = 5%. We
depict simulation results for u = 5% and u = 15%
in Figures 3 and 4, respectively, and in Table 3. Note
that the performance of both the 5% and 15% scenario
is better than for u = 10%; in these scenarios the MIP
schedules relativelymuchovercapacity due to rounding
of the number of blocks required, which appears to
improve the performance on the access time, but the
number of idle slots increases.We conclude that for this

Figure 3.Week-dependent results for 5% cancellation.

Figure 4.Week-dependent results for 15% cancellation.

Figure 5. Results static and dynamic scheduling for fluctuating
arrival rates for 10% cancellation.

case study inmost weeks the conditional average access
time of a patient is less than five days, but the static
schedule results in several time periodswhere the upper
bound is exceeded, especially for higher cancellation
probabilities.

In reality, patients could have a preference for one of
the doctors when requesting an appointment. With the
simulation model, we investigated scenarios in which
40% or 80% of the patients had a preference for a ran-
dom physician; the JBH does not have data on patient
preferences. These preferences, obviously, increased
the average access time and number of idle slots. The
probability that the access time exceeds one week ap-
proximately doubled compared to the scenarios where

HEALTH SYSTEMS 155



Figure 6. Results static and dynamic scheduling for strongly
fluctuating arrival rates for 10% cancellation.

patients do not have preferences. These effects should
be taken into account when the results of the models
would be implemented in practice, and imply that the
performance as presented here will probably not be
achieved by the JBH.

For this case study we do not have data on week-
or season-dependent patient arrival rates. However, in
practice the arrivals at the surgical outpatient clinic
are significantly higher in certain weeks, for example
during cold winter months with icy weather. Dynamic
scheduling is promising for coping with these vary-
ing arrival rates, and to investigate to what extent we
simulate scenarios in which the arrival rate changes
every four weeks. When the arrival rate is changed,
we multiply the rate by a (uniformly drawn) random
number between 0.8 and 1.2 to obtain the new arrival
rate. Additionally, we investigate a scenario where the
random number is between 0.5 and 1.5, which reflects
more strongly fluctuating arrival rates. The results for
these simulations are depicteds in Figures 5 and 6.

With fluctuating arrival rates, the capacity at the
outpatient clinic may be insufficient to cope with the
arriving patients for several weeks in the simulation. As
a consequence, patient access times increase, as Figures
5 and 6 depict, especially for theMIP schedule. In these
scenarios, pooling theMIP capacity for all patient types
cannot always avoid exceptionally long access times.
Additionally, the numerical results in both scenarios in-
dicate that the expected access time is atmost equal, but
more often lower with dynamic scheduling, compared
to static scheduling. Especially in the first 70 weeks of
the simulation the access times are significantly lower
with dynamic scheduling, even for the scenario with
strongly fluctuating arrival rates. In weeks 120–160 of
the scenario with strongly fluctuating arrival rates, both
methods seem to perform comparably bad; this may
indicate that one block of flexible capacity per week
is not enough to anticipate for all fluctuations in the
arrival rate.

In the models, we assume that the capacity of the
clinic is distributed evenly over all weekdays, which is

Figure 7. Flexible schedule simulation results of different
weekly capacity distributions and u = 10%.

often not common practice in hospitals. As we do not
have information on weekday-dependent patient ar-
rival rates, we assume that this rate is constant. Because
of this assumption, distributing capacity evenly over
the weekdays will represent a best-case scenario for the
JBH. When a hospital knows that there are relatively
many arrivals on Mondays, the capacity distribution
over the weekdays can be adapted accordingly. Figure 7
depicts simulation results for a constant arrival rate,
flexible schedule with u = 10%, and two scenarios
with a different capacity distribution: “All days equal”
denotes that each day has the exact same number of
appointments for each patient type, and “Monday and
Tuesday” denotes that all capacity is allocated to Mon-
days and Tuesdays. The “Standard” scenario schedules
two blocks each weekday, and adds an additional block
onMonday,Wednesday andFriday,which ismotivated
by the current schedule at the JBH. From the simulation
results it appears that the “Standard” schedule and “All
days equal” schedule perform comparably well, which
is intuitive as these schedules do not differmuch.When
the clinic is only open two days per week, Mondays and
Tuesdays, conditional patient access times are higher
on average, and the peaks of the average conditional
access time exceeds the upper bound of five workdays
quite often in the simulated days. Concluding, when
we assume that patient arrival rates are equal for each
weekday, the “Standard” scenario investigated in this
paper is close to best-case performance.

The “Standard” scenario investigated in this paper is
also best-case because we assume that patients always
take the first available slot. In practice, this is not always
the case as patients may for example have preferences
for a different weekday. It would be interesting for
further research to extend the models to incorporate
such practical settings.

For this outpatient clinic, the JBH aims to schedule
similar blocks for all weekdays and physicians because
this ensures a balanced workload for all physicians.
For other outpatient clinics with, for example, many
sub-specialisations of the physicians or many specific
appointments that only take place on certain weekdays,
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it would be interesting for further research to extend the
models accordingly. Additionally, in some clinics the
different patient types may have different access time
upper bounds, physicians are allowed to work over-
time up to a certain maximum per block or week, and
patients may take an appointment slot that is reserved
for a different patient type when the slot is expected
to remain idle. Including these practical assumptions
would be interesting for further research.

This research results in a structured decision rule
for adding capacity in case patient access times are
perceived as excessive, which is often done at hospitals
in anunstructured fashion. For further research,we aim
to investigate if we can add a block to the schedule based
on actual patient access times. The question how to
include access time information in the state space while
avoiding state space explosion is intriguing. Addition-
ally, future work will focus on extending the models to
make longer-term decisions, so a block could be added
for, for example, next month. The hospital in this case
study uses the same access time upper bound for all
patient types, but to generalise the model it would be
interesting to investigate patient types having different
access time upper bounds.

The two approximation approaches presented in this
paper do not solve the SMIP to optimality, or guar-
antee a certain performance for the clinic. When all
capacity is allocated flexibly in a pooled way, the clinic’s
performance will be close to optimal. However, physi-
cians have the right to know their working schedule
some time in advance, which restricts the flexibility
of the schedule. To this end, we restricted the flexible
capacity in this paper and focused on practically rele-
vant approximation approaches. It would be interesting
for further research to investigate different solution
approaches.

4. Conclusion

In this paper, we have formulated a SMIP and devel-
oped two approximation approaches by which a practi-
cally relevant static and dynamic appointment schedule
can be made for an outpatient clinic with time-varying
demand and capacity. The schedule resulting from the
MIP model can replace the current schedule at the
JBHwithout further changes when the physicians agree
on their new working hours. The MDP decision rule
that extends the fixed schedule will further improve
the clinic’s performance with respect to patient access
times and the number of idle slots.We have shown that
optimally allocating only a small fraction of the capacity
dynamically, already increases both the efficiency and
performance of the hospital, thus improving the quality
of care. Although this methodology is designed for a
hospital case study, it can also be applied to different ap-
pointment systems with time-varying demand and/or
capacity.

For the JBH, the insights in their currently available
capacity and patient arrival rate were already very valu-
able. At first, the idea of flexible capacity did not appeal
to the JBH, but the effect of allocating only 2% of the
capacity dynamically opened up the discussion on how
to implement flexible capacity at the clinic. However,
the main discussion at the clinic is on the addition
of 2.5% capacity. The required additional capacity is
currently not available on paper, but is presumably
already used because surgeons work overtime. Aggre-
gating capacity does not seem a valid option for all
patient types at the JBH, as there are some patient
types with shorter access time upper bounds that arrive
relatively less often. The JBH is eager to investigate
more scenarios, mentioned in the end of the previous
section, to tailor themodelsmore to the JBH case study.
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Appendix 1. Discrete time queueingmodel

This appendix provides the formulas relating the daily capacity to the expected access time and number of empty slots through
the stationary distribution ofBdp, the backlog for patient type p onday d (which are patients that have requested an appointment,
but have not yet been treated at the clinic). These results are similar to the ones presented in (Kortbeek et al., 2014), but we
simplified the formulas where possible. Recall that the conversion from Tp to Sdp is Sdp = ⌊

(1 − u)Tp/D
⌋
, with �x� denoting

rounding down to the nearest integer, and the remaining (1 − u)Tp − D · ⌊
(1 − u)Tp/D

⌋
days added to days with the lowest

index and enough surgeons available.
Recall that Bdp = (

Bd−1,p − Sdp
)+ + Adp, with Sdp the daily capacity and Adp the random number of new appointment

requests on day d. The transition probabilities for this model are given by:

P
(
Bdp = q′∣∣Bd−1,p = q

) = P(Adp = q′ − (q − Sdp)+).

We consider a cyclic schedule, so index d := d mod D, with D the cycle length. As the JBH does not have data on the arrival
distribution, we assume Poisson arrivals, which implies:

P(Adp = j) =
λ
j
dp e

λdp

j! ,

with λdp the arrival rate on day d. The stationary distribution of Bdp is obtained by solving πP = π , with P the transition
probability matrix.

Let πdpq the stationary probability that the backlog on day d equals q for type p, and Tp the total number of slots scheduled
for this patient type during one cycle. The expected number of empty slots reserved for type p patients per cycle, E[Ip], is given
by:

E[Ip] =
D−1∑
d=0

Sdp−1∑
q=0

(Sdp − q)πdpq. (A1)

The expected access time is derived by conditioning on the backlog of patients on a day d:

E[ATp] =
D−1∑
d=0

∞∑
y=1

P(ATdp > y|Bdp = q)πdpq · E[Adp]∑D−1
j=0 E[Ajp]

.

Here, P(ATdp > y|Bdp = q) is the probability that the access time of a type p patient arriving on day d exceeds y days, given
that the backlog at the end of day d equals q. Define S̄dp(y) := ∑y

i=1 Sd+i,p the sum of the capacity from day d + 1 until day y.
Then P(ATdp > y|Bdp = q) = 1 if S̄dp(y) ≤ q, and for S̄dp(y) > q it holds:

P(ATdp > y|Bdp = q) =
∑∞

j=S̄dp(y)+1 (j − S̄dp(y))P(Adp = j)

E[Adp] .

Concluding, the average access time is given by:

E[ATp] =
D−1∑
d=0

∞∑
y=1

∑∞
j=S̄dp(y)+1 (j − S̄dp(y))P(Adp = j)∑D−1

j=0 E[Ajp]
· πdpq. (A2)

Formula f e
(
Tp, λp, u

)
equals Equation (A1), for which we need to derive Sdp from Tp as explained above and in Section 2.2.

In order to evaluate formula f a
(
Tp, λp, u

)
, we determine S̄dp(y) with y equal to five days in our case study, and evaluate

Equation (A2).
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