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A Bit of History The discussion in Section 2.4 leads

directly to a more analytical approach to trigonometry where

the cosine and sine are defined as the x- and y-coordinates,

respectively, of a point (x, y) on a unit circle. It is this inter-

pretation of the sine and cosine that enables us to define the

trigonometric functions of a real number instead of an angle.

It is this last approach to trigonometry that is used in calculus

and in advanced applications of trigonometry. Moreover, a

trigonometric function of a real number can then be graphed

as we would an ordinary function where the vari-

able x represents a real number in the domain of f.

From a historical viewpoint, it is not known who made

this important leap from sines and cosines of angles to sines and

cosines of real numbers.

y 5 f (x),

3 Unit Circle Trigonometry

123

The shape of a plucked guitar string,
fixed at both ends, can be described by
trigonometric functions of a real variable.
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124 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

3.1

Introduction In Chapter 2 we considered trigonometric functions of angles
measured either in degrees or in radians. For calculus and the sciences it is necessary
to consider trigonometric functions whose domains consist of real numbers rather than
angles. The transition from angles to real numbers is made by recognizing that to each
real number t, there corresponds an angle of measure t radians. As we see next, this
correspondence can be visualized using a circle with radius 1 centered at the origin in
a rectangular coordinate system. This circle is called the unit circle. From Section 1.3
it follows that the equation of the unit circle is In this section the focus will
be on the sine and cosine functions. The other four trigonometric functions will be con-
sidered in detail in Section 3.3.

We now consider a central angle t in standard position; that is, an angle with its vertex
at the center of a circle and initial side coinciding with the positive x-axis. From the
definition of radian measure, (3) of Section 2.1, the angle t is defined to be the
ratio of the subtended arc of length s to the radius r of the circle. For the unit circle
shown in FIGURE 3.1.1, , and so or In other words:

• On a unit circle, the radian measure of an angle of t radians is equal to the
measure t of the subtended arc.

It follows that for each real number t, the terminal side of an angle of t radians in standard
position has traversed a distance of units along the circumference of the unit circle—
counterclockwise if , clockwise if This association of each real number t
with an angle of t radians is illustrated in FIGURE 3.1.2.

t , 0.t . 0
0 t 0

t 5 s.t 5 s/1r 5 1

t 5 s/r,

x2 1 y2 5 1.

The Circular Functions

DEFINITION 3.1.1 Values of the Trigonometric Functions

The value of a trigonometric function at a real number t is defined to be its value at
an angle of t radians, provided that value exists.

x2 + y2 =1

Arc
  length
    tt radians

x

y

1

t radians

x

y

(1, 0)

unitst

(a)  t ≥ 0

t radians

x

y

(1, 0)

unitst

(b)  t < 0

FIGURE 3.1.1 Unit circle

FIGURE 3.1.2 Angle of t radians subtends an arc of length units0 t 0

Trigonometric Functions of Real Numbers We are now in a position to define
trigonometric functions of a real number. Before proceeding we need the following
important definition.
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3.1 The Circular Functions 125

For example, the sine of the real number is simply the sine of
the angle radian that, as we know, is Thus there is really nothing new in evaluat-
ing the trigonometric functions of a real number.

The unit circle is very helpful in describing the trigonometric functions of real num-
bers. If P(t) denotes the point of intersection of the terminal side of the angle t with the
unit circle and P(x, y) are the rectangular coordinates of this point, then from
(2) of Section 2.4 we have

These definitions, along with the definitions of the remaining four trigonometric
functions, are summarized next.

sin t 5
y
r

5
y

1
5 y and cos t 5

x
r

5
x

1
5 x.

x2 1 y2 5 1

1
2.p/6

p/6 5 0.62359 . . . 

DEFINITION 3.1.2 Trigonometric Functions

Let t be any real number and be the point of intersection on the unit
circle with the terminal side of the angle of t radians in standard position. Then the
six trigonometric functions of the real number t are

(1)

 sec t 5
1
x
  csc t 5

1
y

.

 tan t 5
y
x
  cot t 5

x
y

 sin t 5 y  cos t 5 x

P(t) 5 P(x, y)

x

x2 + y2 = 1

(1, 0)cos t

sin tt

P(x, y) = P(t)
            = (cos t, sin t)

y

From the first line in (1) of Definition 3.1.2 we see immediately that

• For any real number t, the cosine and sine of t are the x- and y-coordinates,
respectively, of the point P of intersection of the terminal side of the angle of t
radians (in standard position) with the unit circle.

See FIGURE 3.1.3.
As we will soon see, a number of important properties of the sine and cosine

functions can be obtained from this result. Because of the role played by the unit circle
in this discussion, the trigonometric functions (1) are often referred to as the circular
functions.

A number of properties of the sine and cosine functions follow from the fact that
lies on the unit circle. For instance, the coordinates of P(t) must

satisfy the equation of the circle:

Substituting and into the foregoing equation gives the familiar result
This relationship between the sine and cosine functions is the most

fundamental of trigonometric identities, the Pythagorean identity. Bear in mind this
identity is not just valid for angles as discussed in Sections 2.2 and 2.4; we see now that
it is valid for all real numbers t.

cos2 t 1 sin2 t 5 1.
y 5 sin tx 5 cos t

x2 1 y2 5 1.

P(t) 5 (cos t, sin t)

FIGURE 3.1.3 Coordinates of P(t) are
(cos t, sin t)

THEOREM 3.1.1 Pythagorean Identity

For all real numbers t,

(2)sin2 t 1 cos2 t 5 1.
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126 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

Bounds on the Values of Sine and Cosine A number of properties of the sine
and cosine functions follow from the fact that lies on the unit circle.
For instance, it follows that

Since and the foregoing inequalities are equivalent to

(3)

The inequalities in (3) can also be expressed using absolute values as and
Thus, for example, there is no real number t for which 

Domain and Range The observations in (3) indicate that both and can
be any number in the interval Thus we have the sine and cosine functions,

respectively, each with domain the set R of all real numbers and range the interval
The domains and ranges of the other four trigonometric functions will be dis-

cussed in Section 3.3.

Signs of the Circular Functions The signs of the function values and 
are determined by the quadrant in which the point P(t) lies, and conversely. For example,
if and are both negative, then the point P(t) and terminal side of the corre-
sponding angle of t radians must lie in quadrant III. FIGURE 3.1.4 displays the signs of the
cosine and sine functions in each of the four quadrants.

Sine and Cosine of a Real Number

Use a calculator to approximate and and give a geometric interpretation of
these values.

Solution From a calculator set in radian mode, we obtain and
These values represent the x and y coordinates, respectively, of the

point of intersection P(3) of the terminal side of the angle of 3 radians in standard
position, with the unit circle. As shown in FIGURE 3.1.5, this point lies in the second
quadrant because This would also be expected in view of Figure 3.1.4
since the x-coordinate, is negative and sin 3, the y-coordinate, is positive.

Periodicity In Section 2.1 we saw that the angles of t radians and radians
are coterminal. Thus they determine the same point P(x, y) on the unit circle. Therefore

(4)

In other words, the sine and cosine functions repeat their values every units. It also
follows that for any integer n:

(5) cos(t 1 2np) 5 cos t.
 sin(t 1 2np) 5 sin t

2p

sin t 5 sin(t 6 2p)  and  cos t 5 cos(t 6 2p).

t 6 2p

cos 3,
p/2 , 3 , p.

sin 3 < 0.1411200.
cos 3 < 20.9899925

cos 3sin 3

EXAMPLE 1

cos tsin t

cos tsin t

[21, 1].

f (t) 5 sin t  and  g(t) 5 cos t,

[21, 1].
sin tcos t

sin t 5 3
2.0 sin t 0 # 1.

0 cos t 0 # 1

21 # cos t # 1  and  21 # sin t # 1.

y 5 sin t,x 5 cos t

21 # x # 1  and  21 # y # 1.

P(t) 5 P(x, y)

II

III IV

I

y

x
(–1, 0) (1, 0)

(0, –1)

(0, 1)

sin t > 0
cos t < 0

sin t > 0
cos t > 0

sin t < 0
cos t < 0

sin t < 0
cos t > 0

FIGURE 3.1.4 Algebraic signs of sin t
and cos t in the four quadrants

3 radiansP(3) = (cos 3, sin 3)

y

x
(1, 0)

FIGURE 3.1.5 The point P(3) in
Example 1

DEFINITION 3.1.3 Periodic Functions

A nonconstant function f is said to be periodic if there is a positive number p such that

(6)

for every t in the domain of f. If p is the smallest positive number for which (6) is
true, then p is called the period of the function f.

f (t) 5 f (t 1 p)
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3.1 The Circular Functions 127

The equations in (4) imply that the sine and cosine functions are periodic with
period To see that the period of is actually we observe that 
there is only one point on the unit circle with y-coordinate 1, namely, 5

Therefore,

and so on. Thus the smallest possible positive value of p is In summary, the sine
function and cosine function are periodic with period that
is, and , respectively. For future reference, we have

(7)

for every real number t.

Using Periodicity

Evaluate (a) (b) .

Solution (a) Because is greater than and can be written

,

it follows from with that

See Table 2.3.1

(b) Because

it follows from with and that

Odd–Even Properties The symmetry of the unit circle endows the circular func-
tions with several additional properties. For any real number t, the points P(t) and 
on the unit circle are located on the terminal side of an angle of t and radians, respec-
tively. These two points will always be symmetric with respect to the x-axis. FIGURE 3.1.6

illustrates the situation for a point P(t) lying in the first quadrant: the x-coordinates of
the two points are identical, but the y-coordinates have equal magnitudes but opposite
signs. The same symmetries will hold regardless of which quadrant contains P(t).
Thus, for and any real number t, and

, respectively. Applying the definitions of odd and even functions from
Section 1.6 we have the following result.
g(2t) 5 g(t)

f (2t) 5 2f (t) f (t) 5 sin t and g(t) 5 cos t 

2t
P(2t)

cos 
19p

3
5 cos a

p

3
1 6pb 5 cos 

p

3
5

1

2
.

t 5 p/3,n 5 3cos(t 1 2np) 5 cos t

19p

3
5 6p 1

p

3
,

dsin 
7p

3
5 sina

p

3
1 2pb 5 sin 

p

3
5

!3

2
.

t 5 p/3,sin(t 1 2p) 5 sin t

7p

3
5 2p 1

p

3

2p7p/3

cos(13p/3)sin(7p/3)

EXAMPLE 2

sin(t 1 2p) 5 sin t  and  cos(t 1 2p) 5 cos t

g(t) 5 g(t 1 2p)f (t) 5 f (t 1 2p)
2p;g(t) 5 cos tf (t) 5 sin t

2p.

sin t 5 1  only for  t 5
p

2
, 

p

2
6 2p, 

p

2
6 4p,

sin(p/2)) 5 (0, 1).(cos(p/2),
P(p/2)

2p,sin tp # 2p.

See the first equation in (7).

See the second equation in (7).

FIGURE 3.1.6 Coordinates of P(t) 
and P(–t)

THEOREM 3.1.2 Odd and Even Functions

The sine function is odd and the cosine function is even; that
is, for every real number t,

(8)sin(2t) 5 2sin t  and  cos(2t) 5 cos t.

g(t) 5 cos tf (t) 5 sin t

y

x
t

–t

P(t) = (cos t, sin t)

P(–t) = (cos (–t), sin (–t))
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128 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

Using the Odd–Even Properties

Find exact values of and for the real number 

Solution From (8) we have

sine is an odd function

See Table 2.3.1

cosine is an even function

and

Note that the signs of the answers are consistent with the fact that the terminal side of
the angle radian lies in quadrant IV.

The following additional properties of the sine and cosine functions can be verified
by considering the symmetries of appropriately chosen points on the unit circle. We
first saw the results in (i) and (ii) in the next theorem stated for acute angles in (5) of
Section 2.2.

2p/6

cos a2
p

6
b 5 cos 

p

6
5

!3

2
.

dsin a2
p

6
b 5 2sin 

p

6
5 2

1

2
,

t 5 2p/6.cos tsin t

EXAMPLE 3

THEOREM 3.1.3 Additional Properties

For all real numbers t,

(i) (ii)

(iii) (iv)
(v) (vi) sin(p 2 t) 5 sin tcos(p 2 t) 5 2cos t

sin(t 1 p) 5 2sin tcos(t 1 p) 5 2cos t

sina
p

2
2 tb 5 cos tcos a

p

2
2 tb 5 sin t

For example, to justify properties (i) and (ii) of Theorem 3.1.3 for 
consider FIGURE 3.1.7. Since the points P(t) and are symmetric with respect
to the line we can obtain the coordinates of by interchanging the
coordinates of P(t). Thus,

In Section 3.4 we will use properties (i) and (ii) to justify two important formulas for
the sine function.

Using Theorem 3.1.3

In Table 2.3.1 in Section 2.3 we saw that This result is a special
case of property (i) of Theorem 3.1.3; with we see that

using property (i) of Theorem 3.1.3

Reference Angle—Revisited As we noted at the beginning of this section, for
each real number t there is a unique angle of t radians in standard position that determines
the point P(t), with coordinates ( , ), on the unit circle. As shown in FIGURE 3.1.8,sin tcos t

sin 
p

6
5 sin a

p

2
2

p

3
b 5 cos 

p

3
.

t 5 p/3
cos(p/3) 5 sin(p/6).

EXAMPLE 4

cos t 5 x 5 sin a
p

2
2 tb   and  sin t 5 y 5 cos a

p

2
2 tb.

P(p/2 2 t)y 5 x,
P(p/2 2 t)

0 , t , p/2,

P(t) = (cos t, sin t)

x
(1, 0)

y
y = x

P sint– = cos(π
2( t– (π

2(t  ,– (π
2(( (

FIGURE 3.1.7 Geometric justification
of (i) and (ii) of Theorem 3.1.3

⎞ ⎜ ⎜ ⎜ ⎜ ⎬ ⎜ ⎜ ⎜ ⎜ ⎠

⎞ ⎜ ⎜ ⎜ ⎜ ⎬ ⎜ ⎜ ⎜ ⎜ ⎠
⎞ ⎜ ⎜ ⎜ ⎜ ⎬ ⎜ ⎜ ⎜ ⎜ ⎠
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3.1 The Circular Functions 129

the terminal side of any angle of t radians (with P(t) not on an axis) will form an acute
angle with the x-axis. We can then locate an angle of radians in the first quadrant that
is congruent to this acute angle. The angle of radians is called the reference angle for
the real number t. Because of the symmetry of the unit circle, the coordinates of 
will be equal in absolute value to the respective coordinates of P(t). Hence

As the following examples will show, reference angles can be used to find the
trigonometric function values of any integer multiples of , and 

Using a Reference Angle

Find the exact values of and for the given real number:
(a) (b)

Solution In each part we begin by finding the reference angle corresponding to the
given real number t.

(a) From FIGURE 3.1.9 we find that an angle of radians determines a point 
in the fourth quadrant and has the reference angle radians. After

adjusting the signs of the coordinates of to obtain the fourth-
quadrant point we find that

reference angle

(b) The point lies in the third quadrant and has reference angle as
shown in FIGURE 3.1.10. Therefore

Sometimes, in order to find the trigonometric values of multiples of our basic
fractions of we must use periodicity or the even–odd function properties in addition
to reference angles.

Using Periodicity and a Reference Angle

Find the exact values of the coordinates of on the unit circle.

Solution The point has coordinates We begin
by observing that is greater than and so we must rewrite as an integer
multiple of plus a number less than By division we have

29p

6
5 4p 1

5p

6
5 2(2p) 1

5p

6
.

2p.2p

29p/62p,29p/6
(cos(29p/6), sin(29p/6)).P(29p/6)

P(29p/6)

EXAMPLE 6

p

sin a2
3p

4
b 5 2sin 

p

4
5 2

!2

2
  and  cos a2

3p

4
b 5 2cos 

p

4
5 2

!2

2
.

p/4P(23p/4)

sin 
5p

3
5 2sin 

p

3
5 2

!3

2
   and   cos 

5p

3
5 cos 

p

3
5

1

2
.

P(5p/3) 5 (1/2,2!3/2),
P(p/3) 5 (1/2, !3/2)

tr5 p/3P(5p/3)
t 5 5p/3

t 5 23p/4.t 5 5p/3
cos tsin t

EXAMPLE 5

p/3.p/6, p/4

sin t 5 6sin tr   and   cos t 5 6cos tr.

P(tr )
tr

tr

y

x

P(t ′)P(t)

t
t ′

y

x

P(t ′)

P(t)

t t ′

y

x

P(t ′)

P(t)

t t ′

FIGURE 3.1.8 Reference angle is an acute angletr

T T

FIGURE 3.1.9 Reference angle in 
part (a) of Example 5

π
3

π
3

y

x

P π
3

1
2

√3
 2( (( (= ,

P 1
2

√3
 2( (( (= – ,

5

π
3
5

FIGURE 3.1.10 Reference angle in 
part (b) of Example 5

π
4

π
4

y

P π
4

√2
 2( (( (= ,√2

 2

P √2
 2( (( (= – ,√2

 2
– – 

3

π
4
3

–

x
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130 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

Next, from the periodicity equations in (5) with we know that

Next we see from FIGURE 3.1.11 that the reference angle for is Since 
is a second-quadrant point its x-coordinate is negative and its 
y-coordinate is positive. Finally, using the reference angle as shown in
Figure 3.1.11 we simply adjust the algebraic signs of the coordinates of the

and

Thus, 

3.1

In Problems 1–8, for the given real number t, (a) locate the point 
on the unit circle and (b) find the exact values of the coordinates of P(t). Do not use a
calculator.

1. 2. 3. 4.

5. 6. 7. 8.

In Problems 9–16, for the given real number t, (a) locate the point 
on the unit circle and (b) use a calculator to approximate the coordinates of P(t).

9. 10. 11. 12.
13. 14. 15. 16.

In Problems 17–24, use periodicity of and to find the exact value of the given
trigonometric function. Do not use a calculator.

17. 18. 19. 20.

21. 22. 23. 24.

In Problems 25–30, justify the given statement by one of the properties of and 
given in this section.

25. 26.
27. 28.
29. 30. cos(2.5 1 p) 5 2cos 2.5cos 0.43 5 cos(20.43)

cos 16.8p 5 cos 14.8psin(23 2 p) 5 2sin(3 1 p)
cos(p/4) 5 sin(p/4)sin p 5 sin 3p

cos tsin t

cos 
27p

4
sin 

7p

2
sin 20pcos 9p

sin a25p

3
bcos 

9p

4
cos 

61p

3
sin 

13p

6

cos tsin t

15.322.63.26.1
0.527.224.41.3

P(t) 5 (cos t, sin t)

5p

4
2

11p

6
2

3p

2

5p

3

2p2
p

2
2

4p

3

7p

6

P(t) 5 (cos t, sin t)

Exercises Answers to selected odd-numbered problems
begin on page ANS-8.

P(29 p/6) 5 (2!3/2, 1/2).

 sin 
29p

6
5 sin 

5p

6
5 sin 

p

6
5

1

2
.

 cos 
29p

6
5 cos 

5p

6
5 2cos 

p

6
5 2

!3

2

P(p/6) 5 (cos(p/6), sin(p/6)):

sin (5p/6)
cos (5p/6)

P(5p/6)p/6.5p/6

sina29p

6
b 5 sina5p

6
b  and  cosa29p

6
b 5 cosa5p

6
b.

n 5 2

P 1
2

√3
 2( (( (= – ,π

6
5

π
6
5

P 1
2

√3
 2( (( (= ,π

6

π
6

y

x

FIGURE 3.1.11 Reference angle in
Example 6
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3.2 Graphs of Sine and Cosine Functions 131

31. Given that and that P(t) is a point on the unit circle in the second
quadrant, find .

32. Given that and that P(t) is a point on the unit circle in the second
quadrant, find .

33. Given that and that P(t) is a point on the unit circle in the third
quadrant, find .

34. Given that and that P(t) is a point on the unit circle in the fourth
quadrant, find .

In Problems 35–38, the y-coordinate of the point on the unit circle is 

Find the exact value of the given trigonometric function. Do not use a
calculator.

35. 36.

37. 38.

In Problems 39–42, use the unit circle to determine all real numbers t for which the
given equality is true.

39. 40.
41. 42.

For Discussion

43. Suppose f is a periodic function with period p. Show that 
is periodic with period p/a.

F (x) 5 f (ax), a . 0,

sin t 5 21cos t 5 21
cos t 5 21

2sin t 5 !2/2

cos a2
5p

8
bsin a2

5p

8
b

sin a
5p

8
2 2pbcos 

5p

8

1
2"2 1 !2.

P(5p/8)

sin t
cos t 5 3

4

cos t
sin t 5 22

3

cos t
sin t 5 1

4

sin t
cos t 5 22

5

3.2

Introduction One way to further your understanding of the trigonometric
functions is to examine their graphs. In this section we consider the graphs of the sine
and cosine functions.

Graphs of Sine and Cosine In Section 3.1 we saw that the domain of the sine
function is the set of real numbers and the interval is its
range. Since the sine function has period we begin by sketching its graph on the
interval We obtain a rough sketch of the graph given in FIGURE 3.2.1(b) by con-
sidering various positions of the point on the unit circle, as shown in Figure
3.2.1(a). As t varies from 0 to the value increases from 0 to its maximum
value 1. But as t varies from to the value decreases from 1 to its mini-
mum value . We note that changes from positive to negative at For t
between and we see that the corresponding values of increase from –1
to 0. The graph of any periodic function over an interval of length equal to its period
is said to be one cycle of its graph. In the case of the sine function, the graph over the
interval in Figure 3.2.1(b) is one cycle of the graph of f (t) 5 sin t.[0, 2p]

sin t2p,3p/2
t 5 p.sin t21

sin t3p/2,p/2
sin tp/2,

P(t)
[0, 2p].

2p,
[21, 1](2`, ` )f (t) 5 sin t

Graphs of Sine and Cosine Functions
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132 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

From this point on we will switch to the traditional symbols x and y when graph-
ing trigonometric functions. Thus, will either be written or
simply 

The graph of a periodic function is easily obtained by repeatedly drawing one
cycle of its graph. In other words, the graph of on, say, the intervals 
and is the same as that given in Figure 3.2.1(b). Recall from Section 3.1 that
the sine function is an odd function since Thus,
as can be seen in FIGURE 3.2.2, the graph of is symmetric with respect to the
origin.

y 5 sin x
f (2x) 5 sin(2x) 5 2sin x 5 2f (x).

[2p, 4p]
[22p, 0]y 5 sin x

y 5 sin x.
f (x) 5 sin xf (t) 5 sin t

y y

t

1

–1

f (t) = sin t, 0 ≤ t ≤ 2π
P π

2( (

P

x

π
4

π
4

π
2

( (

P π
4( (5

P π
2( (3

π
4
3 π

2
3 ππ 2π

4
5 π

4
7

(a) Unit circle (b) One cycle of sine graph

FIGURE 3.2.1 Points P(t) on the unit circle corresponding to points on the graph

y = sin x

π
2

π
2

π
2
3π

2
3 π

2
5 π

2
7

y

x
π4π3πππ 2π–2

1

–1

One cycle

– ––

FIGURE 3.2.2 Graph of y 5 sin x

π
2

–

y = cos x

π
2

π
2
3π

2
3 π

2
5 π

2
7 π4π3πππ 2π–2

y

x

1

–1

One cycle

––

FIGURE 3.2.3 Graph of y 5 cos x

Note: Change of symbols

By working again with the unit circle we can obtain one cycle of the graph of the
cosine function on the interval In contrast to the graph of

where for the cosine function we have 
FIGURE 3.2.3 shows one cycle (in red) of on along with the

extension of that cycle (in blue) to the adjacent intervals and 
We see from this figure that the graph of the cosine function is symmetric with
respect to the y-axis. This is a consequence of the fact that g is an even function:
g(2x) 5 cos(2x) 5 cos x 5 g(x).

[2p, 4p].[22p, 0]
[0, 2p]y 5 cos xg(2p) 5 1.

g(0) 5f (0) 5 f (2p) 5 0,f (x) 5 sin x
[0, 2p].g(x) 5 cos x
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3.2 Graphs of Sine and Cosine Functions 133

Properties of the Sine and Cosine Functions In this and subsequent courses
in mathematics it is important that you know the x-coordinates of the x-intercepts of the
sine and cosine graphs, in other words, the zeros of and 
From the sine graph in Figure 3.2.2 we see that the zeros of the sine function, or the num-
bers for which are These numbers are integer
multiples of From the cosine graph in Figure 3.2.3 we see that 

These numbers are odd-integer multiples of ,
that is, , where n is an integer. Using the distributive law, the zeros of

are often written as The following list summarizes some
of the important properties of the sine and cosine functions that are apparent from
their graphs.

x 5 p/2 1 np.g(x) 5 cos x
x 5 (2n 1 1)p/2

p/263p/2, 65p/2, . . . .x 5 6p/2,
cos x 5 0 whenp.

x 5 0, 6p, 62p, 63p, . . . .sin x 5 0,

g(x) 5 cos x.f (x) 5 sin x

An odd integer can be written as ,
where n is an integer.

2n 1 1

PROPERTIES OF THE SINE AND COSINE FUNCTIONS

• The domain of and the domain of is the
set of real numbers, that is, 

• The range of and the range of is the
interval on the y-axis.

• The zeros of are The zeros of
are an integer.

• The graph of is symmetric with respect to the origin.
The graph of is symmetric with respect to the y-axis.

• The functions and are continuous on the
interval (2`, ` ).

g(x) 5 cos xf (x) 5 sin x
g(x) 5 cos x
f (x) 5 sin x

x 5 (2n 1 1)p/2, ng(x) 5 cos x
 x 5 np, n an integer.f (x) 5 sin x

[21, 1]
g(x) 5 cos xf (x) 5 sin x

(2`, ` ).
g(x) 5 cos xf (x) 5 sin x

As we did in Chapter 3 we can obtain variations of the basic sine and cosine graphs
through rigid and nonrigid transformations. For the remainder of the discussion we will
consider graphs of functions of the form

(1)

where A, B, C, and D are real constants.

Graphs of and We begin by considering
the special cases of (1):

For graphs of these functions are either a vertical stretch or a vertical compres-
sion of the graphs of or For the graphs are also reflected in
the x-axis. For example, as FIGURE 3.2.4 shows we obtain the graph of by
stretching the graph of vertically by a factor of 2. Note that the maximum and
minimum values of occur at the same x-values as the maximum and minimum
values of . In general, the maximum distance from any point on the graph of

or to the x-axis is The number is called the amplitude
of the functions or of their graphs. The amplitude of the basic functions and

is In general, if a periodic function f is continuous, then over a
closed interval of length equal to its period, f has both a maximum value M and a min-
imum value m. The amplitude is defined by

(2)amplitude 5
1

2
[M 2 m].

0 A 0 5 1.y 5 cos x
y 5 sin x

0 A 00 A 0 . y 5 A cos xy 5 A sin x
y 5 sin x

y 5 2 sin x
y 5 sin x

y 5 2 sin x
A , 0y 5 cos x.y 5 sin x

A . 0

y 5 A sin x  and  y 5 A cos x.

y 5 A cos x 1 Dy 5 A sin x 1 D

y 5 A sin(Bx 1 C) 1 D   or   y 5 A cos(Bx 1 C) 1 D,

π
2

π
2
3π π2

y

x

1

–1

–2

2

y = sin x

y = 2 sin x

FIGURE 3.2.4 Vertical stretch of
y 5 sin x
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134 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

Vertically Compressed Cosine Graph

Graph 

Solution The graph of is the graph of compressed vertically
by a factor of and then reflected in the x-axis. With the identification we see
that the amplitude of the function is The graph of on
the interval is shown in red in FIGURE 3.2.5.

The graphs of

are the respective graphs of shifted vertically, up for 
and down for For example, the graph of is the graph of

(Figure 3.2.4) shifted up 1 unit. The amplitude of the graph of either
or is still Observe in FIGURE 3.2.6, the maximum

of is at and the minimum is at From
(2), the amplitude of is then 

By interpreting x as a placeholder we can find the x-coordinates of the x-intercepts
of the graphs of sine and cosine functions of the form and 
(considered next). For example, to solve we use the fact that the zeros of

are where n is an integer. We simply replace x by to obtain

that is, for and so on. See
FIGURE 3.2.7.

x 5 0, 61
2 
p, 62

2 
p 5 p, 63

2 
p, 64

2 
p 5 2p,sin 2x 5 0

2x 5 np so that x 5 1
2 
np, n 5 0, 61, 62, . . . ;

2xx 5 np,f (x) 5 sin x
sin 2x 5 0,

y 5 A cos Bxy 5 A sin Bx

1
2[3 2 (21)] 5 2.y 5 1 1 2 sin x

x 5 3p/2.y 5 21x 5 p/2y 5 3y 5 1 1 2 sin x
0 A 0 . y 5 A cos x 1 Dy 5 A sin x 1 D

y 5 2 sin x
y 5 1 1 2 sin xD , 0.

D . 0y 5 A sin x and y 5 A cos x

y 5 A sin x 1 D and y 5 A cos x 1 D

[0, 2p]
y 5 21

2 
cos x0 A 0 5 0 21

2 0 5 1
2.

A 5 21
2

1
2

y 5 cos xy 5 21
2 
cos x

y 5 21
2 
cos x.

EXAMPLE 1

π
2

1
2

1
2

π
2
3π π2

y

x

–1

1

y = cos x

y =      cos x

–

1
2

–

FIGURE 3.2.5 Graph of function in
Example 1

FIGURE 3.2.6 Graph of 
shifted up 1 unit

y 5 2 sin x

π
2

π
2
3π π2

y

x

–1

1

2

3

y = 1 + 2 sin x

FIGURE 3.2.7 Comparison of the graphs of 
and y 5 sin 2x

y 5 sin x

π
2

π
4

π
2
3π

4
3 π

4
5 π

4
7π π2

y

x

1

–1

y = sin 2xy = sin x

One cycle of
y = sin 2x

One cycle of
y = sin x

Careful here; sin 2x 2 2 sin x

Graphs of and We now consider the graph of
for The function has amplitude 1 since Since the period of

is a cycle of the graph of begins at x 5 0 and will start to repeat
its values when In other words, a cycle of the function is completed
on the interval defined by Dividing the last inequality by B shows that
the period of the function is and that the graph over the interval

is one cycle of its graph. For example, the period of is 
and therefore one cycle of the graph is completed on the interval Figure 3.2.7
shows that two cycles of the graph of (in red and blue) are completed on the
interval , whereas the graph of (in green) has completed only one
cycle. In terms of transformations, we can characterize the cycle of on 
as a horizontal compression of the cycle of on [0, 2p].y 5 sin x

[0, p]y 5 sin 2x
y 5 sin x[0, 2p]

y 5 sin 2x
[0, p].

2p/2 5 p,y 5 sin 2x[0, 2p/B]
2p/By 5 sin Bx

0 # Bx # 2p.
y 5 sin BxBx 5 2p.

y 5 sin Bx2p,y 5 sin x
A 5 1.B . 0.y 5 sin Bx,

y 5 A cos Bxy 5 A sin Bx
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3.2 Graphs of Sine and Cosine Functions 135

In summary, the graphs of

for , each have amplitude and period 

Horizontally Compressed Cosine Graph

Find the period of and graph the function.

Solution Since we see that the period of is We
conclude that the graph of is the graph of compressed horizontally.
To graph the function, we draw one cycle of the cosine graph with amplitude 1 on the
interval and then use periodicity to extend the graph. FIGURE 3.2.8 shows four
complete cycles of (the basic cycle in red and the extended graph in blue)
and one cycle of (in green) on Notice that attains its
minimum at since and its maximum at 
since 

If in either we can use the odd/even properties,
(8) of Section 3.1, to rewrite the function with positive B. This is illustrated in the
next example.

Horizontally Stretched Sine Graph

Find the amplitude and period of Graph the function.

Solution Since we require we use to rewrite the function as

With the identification the amplitude is seen to be Now
with we find that the period is Hence we can interpret the cycle
of on as a horizontal stretch and a reflection (in the x-axis
because of the cycle of on FIGURE 3.2.9 shows that on the
interval the graph of (in blue) completes one cycle, whereas the
graph of (in green) completes two cycles.

Graphs of (Bx 1 C) and (Bx 1 C) We have seen that
the basic graphs of and can, in turn, be stretched or compressed
vertically,

shifted vertically,

and stretched or compressed horizontally,

The graphs of

are the graphs of shifted horizontally.
In the remaining discussion we are going to focus on the graphs of

and For example, we know from Section 3.2
that the graph of is the basic cosine graph shifted to the right. Iny 5 cos(x 2 p/2)

y 5 A cos(Bx 1 C).y 5 A sin(Bx 1 C)

y 5 A sin Bx 1 D and y 5 A cos Bx 1 D

y 5 A sin(Bx 1 C) 1 D  and  y 5 A cos(Bx 1 C) 1 D,

y 5 A sin Bx 1 D  and  y 5 A cos Bx 1 D.

y 5 A sin x 1 D  and  y 5 A cos x 1 D,

y 5 A sin x  and  y 5 A cos x,

y 5 cos xy 5 sin x
y 5 A cosy 5 A sin

y 5 sin x
y 5 2sin 

1
2 x[0, 4p]

[0, 2p].y 5 sin xA , 0)
[0, 4p]y 5 2sin 

1
2 x

2p/ 
1
2 5 4p.B 5 1

2

0 A 0 5 0 21 0 5 1.A 5 21,

y 5 sin(21
2 x) 5 2sin 

1
2 x.

sin(2x) 5 2sin xB . 0,

y 5 sin(21
2 x).

EXAMPLE 3

y 5 A sin Bx or y 5 A cos Bx,B , 0

cos 4 (p/2) 5 cos 2p 5 1.
x 5 p/2cos 4(p/4) 5 cos p 5 21x 5 p/4

y 5 cos 4x[0, 2p].y 5 cos x
y 5 cos 4x

[0, p/2]

y 5 cos xy 5 cos 4x
2p/4 5 p/2.y 5 cos 4xB 5 4,

y 5 cos 4x

EXAMPLE 2

2p/B.0 A 0B . 0

y 5 A sin Bx and y 5 A cos Bx

π
4

π
2

π2

y

x

1

–1

y = cos 4x

y = cos x

FIGURE 3.2.8 Graph of function in
Example 2

π4π3ππ 2

y

x

1

–1

y = –sin    x

y = sin x

1
2

FIGURE 3.2.9 Graph of function in
Example 3
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136 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

FIGURE 3.2.10 the graph of (in red) on the interval is one cycle
of on the interval (in blue) shifted horizontally units to
the right. Similarly, the graphs of and are
the basic sine graph shifted units to the left and to the right, respectively. See 
FIGURES 3.2.11 and 3.2.12.

p/2
y 5 sin(x 2 p/2)y 5 sin(x 1 p/2)

p/2[2p/2, 3p/2]y 5 cos x
[0, 2p]y 5 cos(x 2 p/2)

By comparing the red graphs in Figures 3.2.10–3.2.12 with the graphs in Figures
3.2.2 and 3.2.3 we see that

• the cosine graph shifted units to the right is the sine graph,
• the sine graph shifted units to the left is the cosine graph, and
• the sine graph shifted units to the right is the cosine graph reflected 

in the x-axis.

In other words, we have graphically verified the identities

(3)

We now consider the graph of for Since the values of
range from to 1, it follows that varies between 

and A. That is, the amplitude of is Also, as varies from
0 to the graph will complete one cycle. By solving and 
we find that one cycle is completed as x varies from Therefore,
the function has the period

Moreover, if then

(4)

The result in (4) shows that the graph of can be obtained by shift-
ing the graph of horizontally a distance If the shift is to
the right, whereas if the shift is to the left. The number is called the phase
shift of the graph of 

Equation of a Shifted Cosine Graph

The graph of is shifted units to the right. Find its equation.

Solution By writing and using (4), we find

.

In the last equation we would identify The phase shift is p/12.C 5 2p/3.

f ax 2
p

12
b 5 10 cos 4 ax 2

p

12
b   or   y 5 10 cos a4x 2

p

3
b

f (x) 5 10 cos 4x

p/12y 5 10 cos 4x

EXAMPLE 4

y 5 A sin(Bx 1 C).
0 C 0 /BC . 0

C , 00 C 0 /B.f (x) 5 A sin Bx
y 5 A sin(Bx 1 C)

f  ax 1
C

B
b 5 A sin B ax 1

C

B
b 5 A sin(Bx 1 C).

f (x) 5 A sin Bx,

2p 2 C

B
2 a2

C

B
b 5

2p

B
.

y 5 A sin(Bx 1 C)
2C/B  to (2p 2 C)/B.

Bx 1 C 5 2p,Bx 1 C 5 02p,
Bx 1 C0 A 0 .y 5 A sin(Bx 1 C)

2AA sin(Bx 1 C)21sin (Bx 1 C)
B . 0.y 5 A sin(Bx 1 C),

cos ax 2
p

2
b 5 sin x, sin ax 1

p

2
b 5 cos x , and sin ax 2

p

2
b 5 2cos x.

p/2
p/2

p/2

π

ππ 2

y

x

1

–1

y = cos  x

y = cos x

2

π
2

π
2

–

–

π
2
3

( (

π

ππ 2

y

x

1

–1
y = sin  x

y = sin x

2

π
2

π
2

–

+

π
2
3

( ( y = sin x

ππ 2

1

–1

y = sin  x
2

π

π

2
π
2

–

–

π
2
3

( (y

x

FIGURE 3.2.10 Horizontally shifted
cosine graph

FIGURE 3.2.11 Horizontally shifted
sine graph

FIGURE 3.2.12 Horizontally shifted
sine graph
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3.2 Graphs of Sine and Cosine Functions 137

As a practical matter the phase shift of can be obtained by
factoring the number B from :

For convenience the foregoing information is summarized next.

y 5 A sin(Bx 1 C) 5 A sin B ax 1
C

B
b.

Bx 1 C
y 5 A sin (Bx 1 C)

Horizontally Shifted Sine Graph

Graph 

Solution For purposes of comparison we will first graph The amplitude
of is and its period is Thus one cycle of 
is completed on the interval Then we extend this graph to the adjacent interval

as shown in blue in FIGURE 3.2.13. Next, we rewrite by
factoring 2 from 

From the last form we see that the phase shift is The graph of the given function,
shown in red in Figure 3.2.13, is obtained by shifting the graph of to the
right units. Remember, this means that if is a point on the blue graph, then

is the corresponding point on the red graph. For example,
are the x-coordinates of two x-intercepts of the blue graph. Thus 
and are x-coordinates of the x-intercepts of the red or shifted
graph. These numbers are indicated by the black arrows in Figure 3.2.13.

Horizontally Shifted Graphs

Determine the amplitude, the period, the phase shift, and the direction of horizontal
shift for each of the following functions.

(a) (b)

Solution (a) We first make the identifications Thus
the amplitude is and the period is The phase shift can be
computed either by or by rewriting the function as

The last form indicates that the graph of is the graph of
shifted units to the right.3p/10y 5 15 cos 5x

y 5 15 cos(5x 2 3p/2)

y 5 15 cos 5 ax 2
3p

10
b.

( 0 23p 0 /2)/5 5 3p/10
2p/B 5 2p/5.0 A 0 5 15
A 5 15, B 5 5, and C 5 23p/2.

y 5 28 sin a2x 1  
p

4
by 5 15 cos a5x 2

3p

2
b

EXAMPLE 6

x 5 p 1 p/6 5 7p/6
x 5 0 1 p/6 5 p/6

x 5 0 and x 5 p(x 1 p/6, y)
(x, y)p/6

y 5 3 sin 2x
p/6.

y 5 3 sin a2x 2
p

3
b 5 3 sin 2 ax 2

p

6
b.

2x 2 p/3:
y 5 3 sin(2x 2 p/3)[p, 2p]

[0, p].
y 5 3 sin 2x2p/2 5 p.0 A 0 5 3y 5 3 sin 2x

y 5 3 sin 2x.

y 5 3 sin(2x 2 p/3).

EXAMPLE 5

SHIFTED SINE AND COSINE GRAPHS

The graphs of

are, respectively, the graphs of and shifted
horizontally by The shift is to the right if and to the left if

The number is called the phase shift. The amplitude of each
graph is and the period of each graph is 2p/B.0 A 0

0 C 0 /BC . 0.
C , 00 C 0 /B.

y 5 A cos Bxy 5 A sin Bx

y 5 A sin(Bx 1 C)  and  y 5 A cos(Bx 1 C), B . 0,

π

y = 3 sin 2x

π

y = 3 sin  2x
3

π
6

–

π
6
7

( (

π2

1
2
3

y

x
–1
–2
–3

FIGURE 3.2.13 Graph of function in
Example 5

Note
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138 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

(b) Since the amplitude is With B 5 2 the period is
By factoring 2 from , we see from

that the phase shift is The graph of is the graph of
shifted units to the left.

Horizontally Shifted Cosine Graph

Graph 

Solution The amplitude of is and the period is Thus
one cycle of is completed on the interval In FIGURE 3.2.14 two cycles
of the graph of (in blue) are shown. The x-coordinates of the x-intercepts
of this graph are the values of x for which The last equation implies

or , n an integer. In other words, for
we get , and so on. Now by rewriting

the given function as

we see the phase shift is 1. The graph of (in red) in Figure 3.2.14,
is obtained by shifting the graph of to the left 1 unit. This means that the
x-intercepts are the same for both graphs.

Alternating Current

The current I (in amperes) in a wire of an alternating-current circuit is given by
where t is time measured in seconds. Sketch one cycle of the graph.

What is the maximum value of the current?

Solution The graph has amplitude 30 and period Therefore, we
sketch one cycle of the basic sine curve on the interval as shown in FIGURE 3.2.15.
From the figure it is evident that the maximum value of the current is amperes
and occurs at second since

3.2

In Problems 1–6, use the techniques of shifting, stretching, compressing, and reflecting
to sketch at least one cycle of the graph of the given function.

1. 2.
3. 4.
5. 6. y 5 1 2 2 sin xy 5 22 1 4 cos x

y 5 3 1 3 sin xy 5 2 2 sin x
y 5 21 1 cos xy 5 1

2 1 cos x

Exercises Answers to selected odd-numbered problems
begin on page ANS-8.

I ( 1
240) 5 30 sin (120p # 1

240) 5 30 sin 
p

2
5 30.

t 5 1
240

I 5 30
[0, 1

60],
2p/120p 5 1

60.

I(t) 5 30 sin 120pt,

EXAMPLE 8

y 5 2 cos px
y 5 2 cos(px 1 p)

y 5 2 cos p(x 1 1)

y 5 2 cos(px 1 p)
x 5 61

2, 6
3
2, 6

5
2n 5 0, 21, 1, 22, 2, 23, . . . 

x 5 (2n 1 1)/2 px 5 (2n 1 1)p/2
cos px 5 0.

y 5 2 cos px
[0, 2].y 5 2 cos px

2p/p 5 2.0 A 0 5 2y 5 2 cos px

y 5 2 cos(px 1 p).

EXAMPLE 7

p/8y 5 28 sin 2x
y 5 28 sin (2x 1 p/4)p/8.

y 5 28 sin a2x 1  
p

4
b 5 28 sin 2ax 1  

p

8
b

2x 1 p/42p/2 5 p.
0 A 0 5 0 28 0 5 8.A 5 28

y = 2 cos    x

π π

π

y = 2 cos(   x +   )

1

2

–1
–1

–2

1 2 3 4

y

x

FIGURE 3.2.14 Graph of function in
Example 7

π

t

–30

30
I I(t) = 30 sin 120   t

1
240

1
120

1
60

FIGURE 3.2.15 Graph of current in
Example 8
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3.2 Graphs of Sine and Cosine Functions 139

In Problems 7–10, the given figure shows one cycle of a sine or cosine graph. From the
figure determine A and D and write an equation of the form 

for the graph.

7. 8.

y 5 A cos x 1 D
y 5 A sin x 1 D or

9. 10.

In Problems 11–16, find the x-intercepts for the graph of the given function. Do not graph.

11. 12.

13. 14.

15. 16.

In Problems 17 and 18, find the x-intercepts of the graph of the given function on the
interval Then find all intercepts using periodicity.

17. 18.

In Problems 19–24, the given figure shows one cycle of a sine or cosine graph. From
the figure determine A and B and write an equation of the form 

for the graph.

19. 20.

or y 5 A cos Bx
y 5 A sin Bx 

y 5 1 2 2cos xy 5 21 1 sin x

[0, 2p].

y 5 cos(2x 2 p)y 5 sin ax 2
p

4
b

y 5 3 sin(25x)y 5 10 cos 
x

2

y 5 2cos 2xy 5 sin px

y

x

–3

3

2π

y

x

1
4

1
4

π π–
–

y

x

–2

4

2π –1

2π

y
x

1
2

–

FIGURE 3.2.16 Graph for
Problem 7

FIGURE 3.2.17 Graph for
Problem 8

FIGURE 3.2.18 Graph for
Problem 9

FIGURE 3.2.19 Graph for
Problem 10

–3

π

y

3

x
–2

π

y

2

x

FIGURE 3.2.20 Graph for
Problem 19

FIGURE 3.2.21 Graph for
Problem 20
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21. 22.

x

y

1
2

1
2

–
2

y

x

2

–2

–1 3

FIGURE 3.2.22 Graph for
Problem 21 FIGURE 3.2.23 Graph for

Problem 22

23. 24.

In Problems 25–32, find the amplitude and period of the given function. Sketch at least
one cycle of the graph.

25. 26.

27. 28.

29. 30.

31. 32.

In Problems 33–42, find the amplitude, period, and phase shift of the given function. Sketch
at least one cycle of the graph.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Problems 43 and 44, write an equation of the function whose graph is described 
in words.

43. The graph of is vertically stretched up by a factor of 3 and shifted
down by 5 units. One cycle of on is compressed to 
and then the compressed cycle is shifted horizontally units to the left.

44. One cycle of on is stretched to and then the 
stretched cycle is shifted horizontally units to the right. The graph is also
compressed vertically by a factor of and then reflected in the x-axis.3

4

p/12
[0, 8p][0, 2p]y 5 sin x

p/4
[0, p/3][0, 2p]y 5 cos x

y 5 cos x

y 5 2 cos a22px 2
4p

3
by 5 24 sin a

p

3
 x 2

p

3
b

y 5 2cos a
x

2
 2pby 5 3 sin a

x

2
2

p

3
b

y 5 3 sin a2x 1
p

4
by 5 4 cos a2x 2

3p

2
b

y 5 22 cos a2x 2
p

6
by 5 cos ax 1

p

4
b

y 5 sin a3x 2
p

4
by 5 sin ax 2

p

6
b

y 5 21 1 sin 
px

2
y 5 1 1 cos 

2x

3

y 5 2 2 2 sin pxy 5 2 2 4 sin x

y 5
5

2
  cos 4xy 5 23 cos 2px

y 5 25 sin 
x

2
y 5 4 sin px

y

x

1

–1

–1 1

y

x

3

–3

–4 4

FIGURE 3.2.24 Graph for
Problem 23

FIGURE 3.2.25 Graph for
Problem 24
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In Problems 45–48, find horizontally shifted sine and cosine functions so that each
function satisfies the given conditions. Graph the functions.

45. Amplitude 3, period shifted by units to the right
46. Amplitude period shifted by units to the left
47. Amplitude period shifted by units to the right
48. Amplitude period 4, shifted by units to the left

In Problems 49 and 50, graphically verify the given identity.

49. 50.

Miscellaneous Applications

51. Pendulum The angular displacement of a pendulum from the vertical at time t
seconds is given by where is the initial displacement at t 5 0
seconds. See FIGURE 3.2.26. For and sketch two cycles of
the resulting function.

52. Current In a certain kind of electrical circuit, the current I measured in amperes
at time t seconds is given by

Sketch two cycles of the graph of I as a function of time t.
53. Depth of Water The depth d of water at the entrance to a small harbor at time t

is modeled by a function of the form

where A is one-half the difference between the high- and low-tide depths,
is the tidal period, and C is the average depth. Assume that the

tidal period is 12 hours, the depth at high tide is 18 feet, and the depth at low 
tide is 6 feet. Sketch two cycles of the graph of d.

54. Fahrenheit Temperature Suppose that

is a mathematical model of the Fahrenheit temperature at t hours
after midnight on a certain day of the week.
(a) What is the temperature at 8 AM?
(b) At what time(s) does 
(c) Sketch the graph of 
(d) Find the maximum and minimum temperatures and the times 

at which they occur.

Calculator Problems

In Problems 55–58, use a calculator to investigate whether the given function is periodic.

55. 56.

57. 58.

For Discussion

59. The function is periodic. What is the period of f ?
60. Discuss and then sketch the graphs of y 5 0 sin x 0  and y 5 0 cos x 0 .

f (x) 5 sin 
1
2 
x 1 sin 2x

f (x) 5 x sin xf (x) 5 1 1 (cos x)2

f (x) 5
1

sin 2x
f (x) 5 sin a

1
x
b

T.
T(t) 5 60?

0 # t # 24,

T(t) 5 50 1 10 sin 
p

12
 (t 2 8),

2p/B, B . 0,

d(t) 5 A sin B at 2
p

2
b 1 C,

I(t) 5 10 cos a120pt 1
p

3
b.

u0 5 p/10,v 5 2 rad/s
u0u(t) 5 u0 

cos vt,
u

sin(x 1 p) 5 2sin xcos(x 1 p) 5 2cos x

1/2p5
4,

40.5,0.7,
p/4p,2

3,
p/32p/3,

FIGURE 3.2.26 Pendulum in
Problem 51

θ

θ0
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142 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

3.3

Introduction Four additional trigonometric functions are defined in terms of
quotients and reciprocals of the sine and cosine functions. In this section we will con-
sider the properties and graphs of these new functions.

We begin with a definition that follows directly from (1) of Section 3.1.

Graphs of Other Trigonometric
Functions

DEFINITION 3.3.1 Four More Trigonometric Functions

The tangent, cotangent, secant, and cosecant functions are denoted by , ,
, and , respectively, and are defined as follows:

(1)

(2)sec x 5
1

cos x
,  csc x 5

1

sin x
.

tan x 5
sin x
cos x

,  cot x 5
cos x

sin x
,

csc xsec x
cot xtan x

Note that the tangent and cotangent functions are related by

In view of the definitions in (2) and the foregoing result, , , and are
referred to as the reciprocal functions.

Domain and Range Because the functions in (1) and (2) are quotients, the domain
of each function consists of the set of real numbers except those numbers for which the
denominator is zero. We have seen in Section 3.2 that for 

, and so

• the domain of is 

Similarly, since for it follows that

• the domain of is 

We know that the values of the sine and cosine are bounded, that is, 
and From these last inequalities we have

(3)

and (4)

Recall, an inequality such as (3) means that or Hence the range
of the secant function is The inequality in (4) implies that the cose-
cant function has the same range When we consider the graphs of
the tangent and cotangent functions we will see that they have the same range: 

If we interpret x as an angle, then FIGURE 3.3.1 illustrates the algebraic signs of the
tangent, cotangent, secant, and cosecant functions in each of the four quadrants. This
is easily verified using the signs of the sine and cosine functions displayed in Figure 3.1.4.

(2`, ` ).
(2`, 21] x [1, ` ).

(2`, 21] x [1, ` ).
sec x # 21.sec x $ 1

0 csc x 0 5 `
1

sin x
` 5

1
0 sin x 0

$ 1.

0 sec x 0 5 `
1

cos x
` 5

1
0 cos x 0

$ 1

0 cos x 0 # 1.
0 sin x 0 # 1

5x 0  x 2 np, n 5 0, 61, 62, . . . 6.cot x and of csc x

61, 62, . . . ,n 5 0,x 5 np,sin x 5 0

5x 0  x 2 (2n 1 1)p/2, n 5 0, 61, 62, . . . 6.tan x and of sec x

n 5 0, 61, 62, . . . 
x 5 (2n 1 1)p/2,cos x 5 0

csc xsec xcot x

cot x 5
cos x

sin x
5

1

sin x
cos x

5
1

tan x
.

y

x

II I

III IV

tan x < 0
cot x < 0
sec x < 0
csc x > 0

tan x > 0
cot x > 0
sec x > 0
csc x > 0

tan x > 0
cot x > 0
sec x < 0
csc x < 0

tan x < 0
cot x < 0
sec x > 0
csc x < 0

FIGURE 3.3.1 Signs of tan x, cot x,
sec x, and csc x in the four
quadrants
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3.3 Graphs of Other Trigonometric Functions 143

Example 3 of Section 3.1 Revisited

Find tan x, cot x, sec x, and csc x for 

Solution In Example 3 of Section 3.1 we saw that

Therefore, by the definitions in (1) and (2):

Table 3.3.1 summarizes some important values of the tangent, cotangent, secant,
and cosecant and was constructed using values of the sine and cosine from Section
2.3. A dash in the table indicates the trigonometric function is not defined at that par-
ticular value of x.

Periodicity Because the cosine and sine functions are periodic necessarily
the secant and cosecant function have the same period. But from Theorem 3.1.3 of
Section 3.1 we have

(iv) of Theorem 3.1.3

(5)

(iii) of Theorem 3.1.3

Thus (5) implies that tan x and cot x are periodic with a period In the case of the
tangent function, only if , that is, only if and so on.
Therefore, the smallest positive number p for which is The
cotangent function, since it is the reciprocal of the tangent function, has the same period.

In summary, the secant and cosecant functions are periodic with period

(6)

The tangent and cotangent function are periodic with period

. (7)

Of course it is understood that (6) and (7) hold for every real number x for which the func-
tions are defined.

Graphs of y 5 tan x and y 5 cot x The numbers that make the denominators of
, , , and equal to zero correspond to vertical asymptotes of their

graphs. For example, we encourage you to verify using a calculator that

In other words, and are vertical asymptotes. The graph of
on the interval given in FIGURE 3.3.2 is one cycle of the graph

of Using periodicity we extend the cycle in Figure 3.3.2 to adjacent inter-
vals of length as shown in FIGURE 3.3.3. The x-intercepts of the graph of the tangent
function are (0, 0), and the vertical asymptotes of the graph
are x 5 6p/2, 63p/2, 65p/2, . . . .

(6p, 0), (62p, 0), . . . 
p

y 5 tan x.
(2p/2, p/2)y 5 tan x

x 5 p/2x 5 2p/2

tan x S 2` as x S 2
p1

2
 and tan x S ` as x S p2

2
. 

csc xsec xcot xtan x

tan(x 1 p) 5 tan x  and  cot(x 1 p) 5 cot x

p:

sec(x 1 2p) 5 sec x  and  csc(x 1 2p) 5 csc x.

2p:

p 5 p.tan (x 1 p) 5 tan x
x 5 0, 6p, 62p,sin x 5 0tan x 5 0

p # p.

tan(x 1 p) 5
sin(x 1 p)

cos(x 1 p)
5

2sin x
2cos x

5 tan x.

2p

 sec a2
p

6
b 5

1

!3/2
5

2

!3
, csc a2

p

6
b 5

1

21/2
5 22.

 tan a2
p

6
b 5

21/2

!3/2
5 2

1

!3
, cot a2

p

6
b 5

!3/2
21/2

5 2!3

sin a2
p

6
b 5 2sin 

p

6
5 2

1

2
  and  cos a2

p

6
b 5 cos 

p

6
5

!3

2
. 

x 5 2p/6.

EXAMPLE 1

Also, see Problems 49 and 50 in
Exercises 3.2.

d we could also use
cot x 5 1/tan x

TABLE 3.3.1

x 0

0 1 –

– 1 0

1 2 –

– 2 1
2

!3
!2csc x

!2
2

!3
sec x

1

!3
!3cot x

!3
1

!3
tan x

p
2

p
3

p
4

p
6

FIGURE 3.3.2 One
cycle of the graph
of y 5 tan x

y

x
π
2

π
2

–

1

⎞ ⎜ ⎜ ⎜ ⎜ ⎬ ⎜ ⎜ ⎜ ⎜ ⎠
⎞⎜⎜⎜⎜⎬⎜⎜⎜⎜⎠
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144 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

– π
2
3

y

π
2
3π

2
π
2

–

1

y = tan x

x

2πππ–

y

1

y = cot x

x

The graph of is similar to the graph of the tangent function and is given
in FIGURE 3.3.4. In this case, the graph of on the interval is one cycle of
the graph of The x-intercepts of the graph of the cotangent function are

and the vertical asymptotes of the graph are
the vertical lines 

Note that the graphs of and are symmetric with respect to the origin.y 5 cot xy 5 tan x
x 5 0, 6p, 62p, 63p, . . . .

(6p/2, 0), (63p/2, 0), (65p/2, 0), . . . 
y 5 cot x.

(0, p)y 5 cot x
y 5 cot x

FIGURE 3.3.3 Graph of of y 5 tan x

FIGURE 3.3.4 Graph of y 5 cot x

THEOREM 3.3.1 ODD FUNCTIONS

The tangent function and the cotangent function are odd
functions, that

(8)

for every real number x for which the functions are defined.

tan (2x) 5 2tan x  and  cot (2x) 5 2cot x

g(x) 5 cot xf (x) 5 tan x

Graphs of secx and cscx For both and we know that 
and so no portion of their graphs can appear in the horizontal strip of the
Cartesian plane. Hence the graphs of and have no x-intercepts.
As we have already seen, and have period The vertical asymp-
totes for the graph of are the same as , namely, 

Because is an even function so is 
The graph of is symmetric with respect to the y-axis. On the other hand,
the vertical asymptotes for the graph of are the same as 
namely, Because is an odd function so is

The graph of is symmetric with respect to the origin. One
cycle of the graph of on is extended to the interval by perio-
dicity (or y-axis symmetry) in FIGURE 3.3.5. Similarly, in FIGURE 3.3.6 we extend one cycle of

on to the interval by periodicity (or origin symmetry).(22p, 0)(0, 2p)y 5 csc x

[22p, 0][0, 2p]y 5 sec x
y 5 csc xy 5 csc x 5 1/sin x.

y 5 sin xx 5 0, 6p, 62p, 63p, . . . .
y 5 cot x,y 5 csc x

y 5 sec x
y 5 sec x 5 1/cos x.y 5 cos x63p/2, 65p/2, . . . .

x 5 6p/2,y 5 tan xy 5 sec x
2p.y 5 csc xy 5 sec x

y 5 csc xy 5 sec x
21 , y , 1

0 y 0 $ 1y 5 csc xy 5 sec x

2π2π π π–

y = sec x
y

x
–– π

2
3 π

2
3π

2
π
2

–
–1

1

2π2π π π–

y = csc x
y

x
–– π

2
3

π
2
3π

2

π
2

–

–1

1

FIGURE 3.3.5 Graph of y 5 sec x FIGURE 3.3.6 Graph of y 5 csc x

Transformations and Graphs Like the sine and cosine graphs, rigid and nonrigid
transformations can be applied to the graphs of and

. For example, a function such as can be analyzed
in the following manner:

vertical stretch/compression/reflection vertical shift

(9)
horizontal stretch/compression horizontal shift
by changing period

cc
y 5 A tan(Bx 1 C) 1 D.

TT

y 5 A tan (Bx 1 C) 1 Dy 5 csc x
y 5 sec x,y 5 cot x,y 5 tan x,
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3.3 Graphs of Other Trigonometric Functions 145

Of the six trigonometric functions, only the
sine and cosine functions have an amplitude.

If then the period of

(10)

whereas the period of

(11)

As we see in (9) the number A in each case can be interpreted as either a vertical stretch
or compression of a graph. However, you should be aware of the fact that the functions
in (10) and (11) have no amplitude, because none of the functions have a maximum
and a minimum value.

Comparison of Graphs

Find the period, x-intercepts, and vertical asymptotes for the graph of Graph
the function on 

Solution With the identification we see from (10) that the period is 
Since the x-intercepts of the graph occur at the zeros of

From the properties of the sine function given in Section 3.2, we know that
for

.

That is, and so on. The x-inter-
cepts are The vertical asymptotes of
the graph occur at zeros of Moreover, the numbers for which are
found in the following manner:

That is, the vertical asymptotes are On the interval
the graph of has three intercepts, and two ver-

tical asymptotes, In FIGURE 3.3.7 we have compared the graphs
of and on the interval. The graph of is a horizontal com-
pression of the graph of y 5 tan x.

y 5 tan 2xy 5 tan 2xy 5 tan x
x 5 p/4 and x 5 3p/4.

(p, 0),(p/2, 0),(0, 0),y 5 tan 2x[0, p]
x 5 6p/4, 63p/4, 65p/4, . . . .

2x 5 (2n 1 1) 

p

2
  so that  x 5 (2n 1 1) 

p

4
, n 5 0, 61, 62, . . . .

cos 2x 5 0cos 2x.
(0, 0), (6p/2, 0), (6p, 0), (63p/2, 0), . . . .

x 5 0, 6p/2, 62p/2 5 p, 63p/2, 64p/2 5 2p,

2x 5 np so that x 5 1
2 np, n 5 0, 61, 62, . . . 

sin 2x 5 0
sin 2x.

tan 2x 5 sin 2x/cos 2x,
p/2.B 5 2,

[0, p].
y 5 tan 2x.

EXAMPLE 2

y 5 A sec(Bx 1 C)  and  y 5 A csc(Bx 1 C) is 2p/B.

y 5 A tan(Bx 1 C)  and  y 5 A cot(Bx 1 C) is p/B,

B . 0,

π

π

y

x

–1

1

π
2

(a) y = tan x on [0,    ] π

π

y

x

–1

1

π
4
3π

2
π
4

(b) y = tan 2x on [0,    ]

FIGURE 3.3.7 Graphs of functions in Example 2
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146 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

Comparisons of Graphs

Compare one cycle of the graphs of and 

Solution The graph of is the graph of shifted horizontally
units to the right. The intercept for the graph of is shifted to 

on the graph of The vertical asymptotes 
for the graph of are shifted to and for the graph of

In FIGURES 3.3.8(a) and 3.3.8(b) we see, respectively, a cycle of the
graph of on the interval is shifted to the right to yield a cycle 
of the graph of on the interval (2p/4, 3p/4).y 5 tan (x 2 p/4)

(2p/2, p/2)y 5 tan x
y 5 tan(x 2 p/4).

x 5 3p/4x 5 2p/4y 5 tan x
x 5 2p/2 and x 5 p/2y 5 tan(x 2 p/4).

(p/4, 0)y 5 tan x(0, 0)p/4
y 5 tan xy 5 tan(x 2 p/4)

y 5 tan(x 2 p/4).y 5 tan x

EXAMPLE 3

(a) Cycle of y = tan x 
     on (    /2,   /2)π π

y

x

–1

1

π
2

π
2

–

–

π
4
3π

4
π
4

y

x

–1

1

–

(b) Cycle of y = tan (x      /4) 
     on (    /4, 3   /4)π  π–

π–

FIGURE 3.3.8 Graph of functions in Example 3

As we did in the analysis of the graphs of and 
we can determine the amount of horizontal shift for graphs of functions such as

by factoring the number from

Two Shifts and Two Compressions

Graph 

Solution Let’s break down the analysis of the graph into four parts, namely, by trans-
formations.

(i) One cycle of the graph of occurs on Since the period of 
is one cycle of its graph occurs on the interval In other words, the
graph of is a horizontal compression of the graph of Since

the vertical asymptotes occur at the zeros of Using the zeros
of the cosine function given in Section 3.2 we find

FIGURE 3.3.9(a) shows two cycles of the graph one cycle on 
and another on Within those intervals the vertical asymptotes are
x 5 2p/2, x 5 2p/6, x 5 p/6, and x 5 p/2.

[0, 2p/3].
[22p/3, 0]y 5 sec 3x;

3x 5 (2n 1 1) 
p

2
  or  x 5 (2n 1 1) 

p

6
, n 5 0, 61, 62, . . . .

cos 3x.sec 3x 5 1/cos 3x
y 5 sec x.y 5 sec 3x

[0, 2p/3].2p/3,
y 5 sec 3x[0, 2p].y 5 sec x

y 5 2 2 1
2 sec (3x 2 p/2).

EXAMPLE 4

Bx 1 C.
B . 0y 5 A tan(Bx 1 C) and y 5 A sec(Bx 1 C)

y 5 A cos(Bx 1 C)y 5 A sin(Bx 1 C)
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3.3 Graphs of Other Trigonometric Functions 147

(ii) The graph of is the graph of compressed vertically by a
factor of and then reflected in the x-axis. See Figure 3.3.9(b).
(iii) By factoring 3 from we see from

that the graph of is the graph of shifted units
to the right. By shifting the two intervals and in Figure 3.3.9(b)
to the right units, we see in Figure 3.3.9(c) two cycles of 
on the intervals and The vertical asymptotes 

and shown in Figure 3.3.9(b) are shifted to 
Observe that the y-intercept in Figure 3.3.9(b)

is now moved to in Figure 3.3.9(c).
(iv) Finally, we obtain the graph in Figure 3.3.9(d) by shift-
ing the graph of in Figure 3.3.9(c) 2 units upward.

3.3

In Problems 1 and 2, complete the given table.

1.

2.

Exercises Answers to selected odd-numbered problems
begin on page ANS-9.

y 5 21
2 
sec(3x 2 p/2)

y 5 2 2 1
2 
sec(3x 2 p/2)

(p/6, 21
2)

(0, 21
2)and x 5 2p/3.x 5 0, x 5 p/3,

x 5 2p/3,x 5 p/2x 5 p/6,x 5 2p/6, 
x 5 2p/2,[p/6, 5p/6].[2 p/2, p/6]

y 5 21
2 
sec (3x 2 p/2)p/6

[0, 2p/3][2 2p/3, 0]
p/6y 5 21

2 
sec 3xy 5 21

2 
sec (3x 2 p/2)

y 5 2
1

2
 sec a3x 2

p

2
b 5 2

1

2
 sec 3ax 2

p

6
b

3x 2 p/2,

1
2

y 5 sec 3xy 5 21
2 
sec 3x

x

cot x

tan x

2p11p
6

7p
4

5p
3

3p
2

4p
3

5p
4

7p
6p5p

6
3p
4

2p
3

x

csc x

sec x

2p11p
6

7p
4

5p
3

3p
2

4p
3

5p
4

7p
6p5p

6
3p
4

2p
3

π
3
2

y

π
3
2

x
π
2

π
6

π
6

π
2

–

––

1

–1

π
3
2

y

π
3
2

x
π
2

π
6

π
6

π
2

–

––

1

–1

π
6
5

y

π
3
2

x
π
3

π
3

–

π
2

–
1

–1

π
6
5

y

π
3
2

x
π
3

π
3

–

π
2

–
1

–1

(a) Horizontal compression (b) Vertical compression
      and reflection in x-axis

(c) Horizontal shift (d) Vertical shift

FIGURE 3.3.9 Graph of function in Example 4
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148 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

In Problems 3–18, find the indicated value without the use of a calculator.

3. 4. 5. 6.

7. 8. 9. 10.

11. 12. 13. 14.

15. 16. 17. 18.

In Problems 19–22, use the given information to find the values of the remaining five
trigonometric functions.

19. 20.
21. 22.

23. If find all values of , , , and .
24. If find all values of , , , and .

In Problems 25–32, find the period, x-intercepts, and the vertical asymptotes of the
given function. Sketch at least one cycle of the graph.

25. 26.

27. 28.

29. 30.

31. 32.

In Problems 33–40, find the period and the vertical asymptotes of the given function.
Sketch at least one cycle of the graph.

33. 34.

35. 36.

37. 38.

39. 40.

In Problems 41 and 42, use the graphs of and to find numbers A
and C for which the given equality is true.

41. 42.

For Discussion

43. Using a calculator in radian mode, compare the values of tan 1.57 and tan 1.58.
Explain the difference in these values.

44. Using a calculator in radian mode, compare the values of cot 3.14 and cot 3.15.
45. Can for any real number x?
46. Can for any real number x?
47. For which real numbers x is (a) (b) sin x , csc x?sin x # csc x?

7 1 10 sec x 5 0
9 csc x 5 1

csc x 5 A sec(x 1 C)cot x 5 A tan(x 1 C)

y 5 sec xy 5 tan x

y 5 21 1 sec(x 2 2p)y 5 3 1 csca2x 1
p

2
b

y 5 csc x(4x 1 p)y 5 seca3x 2 
p

2
b

y 5 22 csc 
x

3
y 5 3 csc px

y 5 2 sec 
px

2
y 5 2sec x

y 5 tanax 1
5p

6
by 5 21 1 cot px

y 5
1

4
 cot ax 2

p

2
by 5 tana

x

2
 2 

p

4
b

y 5 2cot 
px

3
y 5 cot 2x

y 5 tan 
x

2
y 5 tan px

cos xsin xcot xtan xcsc x 5 sec x,
csc xsec xcot xtan x3 cos x 5 sin x,

sec x 5 25, p/2 , x , pcsc x 5 4
3, 0 , x , p/2

cot x 5 1
2, p , x , 3p/2tan x 5 22, p/2 , x , p

cot (2720°)csc 495°tan 405°sec (2120°)

sec 
29p

4
csc 5pcot 

17p

6
sec 

10p

3

tan a2
5p

6
btan 

23p

4
cot a2

13p

3
bcsc a2

p

3
b

sec 7ptan 
9p

2
csc a2

3p

2
bcot 

13p

6
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3.4 Special Identities 149

48. For which real numbers x is (a) (b)
49. Discuss and then sketch the graphs of 
50. Use Definition 1.6.1 to prove Theorem 3.3.1, that is, and

are odd functions.g(x) 5 cot x
f (x) 5 tan x

y 5 0 sec x 0  and y 5 0 csc x 0 .
sec x , cos x?sec x # cos x?

THEOREM 3.4.1 Pythagorean Identities

For x a real number for which the functions are defined,

(1)

(2)

(3) 1 1 cot2
 x 5 csc2

 x.

 1 1 tan2
 x 5 sec2

 x

 sin2
 x 1 cos2

 x 5 1

3.4

Introduction In this section we will examine identities for trigonometric func-
tions. We have already seen some of these identities, such as the Pythagorean identities,
in earlier sections. A trigonometric identity is an equation or formula involving trigono-
metric functions that is valid for all angles or real numbers for which both sides of the
equality are defined. There are numerous trigonometric identities, but we are going to
develop only those of special importance in courses in mathematics and science.

Pythagorean Identities Revisited In Sections 2.2 and 2.4 we saw that the sine
and cosine of an angle are related by the fundamental identity We
saw that by dividing this identity, in turn, by and then by we obtain two
more identities, one relating to and the other relating to These
so-called Pythagorean identities are also valid for a real number x as well as to an
angle measured in degrees or in radians. Also, see (2) in Section 3.1.

The Pythagorean identities are so basic to trigonometry that we give them again for
future reference.

u

csc2 u.cot2 usec2 utan2 u

sin2 ucos2 u

sin2 u 1 cos2 u 5 1.u

Special Identities

Trigonometric Substitutions In calculus it is often useful to make use of
trigonometric substitution to change the form of certain algebraic expressions involv-
ing radicals. Generally, this is done using the Pythagorean identities. The following
example illustrates the technique.

Rewriting a Radical

Rewrite as a trigonometric expression without radicals by means of the sub-
stitution and 

Solution If then

d now use (1) of Theorem 3.4.1

Since and for the original radical is the same as

"a2 2 x2 5 "a2cos2u 5 a cos u.

2p/2 # u # p/2,cos u $ 0a . 0

 5 "a2cos2 u.

 5 "a2(1 2 sin2 u)
 5 "a2 2 a2sin2 u

 "a2 2 x2 5 "a2 2 (a sin u)2

x 5 a sin u,

2p/2 # u # p/2.x 5 a sin u, a . 0
"a2 2 x2

EXAMPLE 1
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Sum and Difference Formulas The sum and difference formulas for the
cosine and sine functions are identities that reduce 

and to expressions that involve and
We will derive the formula for first, and then we will use that

result to obtain the others.
For convenience, let us suppose that x1 and x2 represent angles measured in

radians. As shown in FIGURE 3.4.1(a), let d denote the distance between P(x1) and
P(x2). If we place the angle x1 � x2 in standard position as shown in Figure 3.4.1(b),
then d is also the distance between and P(0). Equating the squares of these
distances gives

or
.5 cos2(x1 2 x2) 2 2cos (x1 2 x2) 1 1 1 sin2(x1 2 x2)

cos2
 x1 2 2 cos x1cos x2 1  cos2

 x2 1  sin2
 x1 2  2 sin x1sin x2 1  sin2

 x2

(cos x1 2 cos x2)2 1 (sin x1 2 sin x2)2 5 (cos (x1 2 x2) 2 1)2 1 sin2(x1 2 x2)

P(x1 2 x2)

cos(x1 2  x2)sin x2.
sin x1,cos x1, cos x2,sin(x1 2  x2)sin(x1 1 x2),

cos(x1 2 x2),cos(x1 1 x2),

THEOREM 3.4.2 Sum and Difference Formulas for the Cosine

For all real numbers 

(4)

(5) cos(x1 2 x2) 5 cos x1 
cos x2 1  sin x1 

sin x2.

 cos(x1 1 x2) 5 cos x1 
cos x2 2  sin x1 

sin x2

x1 and x2,

FIGURE 3.4.1 The difference of two angles

y

x

d

d

x1 – x2

x1 – x2x2

x1

P(x1) = (cos x1, sin x1)
P(x2) = (cos x2, sin x2)

y

x

P(x1 – x2) = (cos (x1 – x2), sin(x1 – x2))

P(0) = (1, 0)

(a) (b)

In view of (1),

and so the preceding equation simplifies to

This last result can be put to work immediately to find the cosine of the sum of two
angles. Since can be rewritten as the difference 

By the even–odd identities, and it follows that
the last line is the same as

The two results just obtained are summarized next.

cos(x1 1  x2) 5 cos x1 
cos x2 2  sin x1 

sin x2.

sin (2x2) 5 2sin x2,cos (2x2) 5 cos x2

 5 cos x1cos(2x2) 1 sin x1sin(2x2).
 cos(x1 1  x2) 5 cos(x1 2 (2x2))

x1 2  (2x2),x1 1  x2

cos(x1 2 x2) 5 cos x1cos x2 1 sin x1sin x2.

cos2(x1 2 x2) 1 sin2(x1 2 x2) 5 1cos2
 x2 1 sin2

 x2 5 1,cos2
 x1 1 sin2

 x1 5 1,
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Cosine of a Sum

Evaluate 

Solution We have no way of evaluating directly. However, observe that

Because radians is a second-quadrant angle we know that the value of 
is negative. Proceeding, the sum formula (4) gives

Using this result can also be written as 
Since we see that as expected.

To obtain the corresponding sum/difference identities for the sine function we will
make use of two identities:

(6)

These identities were first presented in Section 2.2 as cofunction identities and then
rediscovered in Section 3.2 by shifting the graphs of the cosine and sine. However, both
results in (6) can now be proved using (5):

zero

We put the first equation in (6) to work immediately by writing the sine of the sum
as

dby (6)

The preceding line is traditionally written as

sin (x1 1  x2) 5 sin x1cos x2 1 cos x1sin x2.

 5 cos x1sin x2 2 sin x1(2cos x2).

 5 cos ax1 1 ax2 2
p

2
bb 5 cos x1 cos ax2 2  

p

2
b 2 sin x1sin ax2 2  

p

2
b

 sin(x1 1  x2) 5 cos a(x1 1  x2) 2
p

2
b

x1 1 x2

 5 2sin ax 2
p

2
b.

 5 0 # cos a
p

2
2 xb 1 1 # sin a

p

2
2 xb

 5 cos 
p

2
 cos a

p

2
2 xb 1 sin 

p

2
 sin a

p

2
2 xb

 cos x 5 cos a
p

2
2

p

2
1 xb 5 cos a

p

2
2 a

p

2
2 xbb

T

cos ax 2
p

2
b 5 cos x cos 

p

2
1 sin x sin 

p

2
5 cos x # 0 1 sin x # 1 5 sin x

cos ax 2
p

2
b 5 sin x and sin ax 2

p

2
b 5 2cos x.

cos(7p/12) , 0!6 . !2,
cos(7p/12) 5 (!2 2 !6)/4.!2!3 5 !6

 5
1

2
 
!2

2
2

!3

2
 
!2

2
5

!2

4
 (1 2 !3).

 cos 
7p

12
5 cos a

p

3
1

p

4
b 5 cos 

p

3
 cos 

p

4
2 sin 

p

3
 sin 

p

4

cos(7p/12)7p/12

7p

12
 radians 5  105° 5 60° 1 45° 5

p

3
1

p

4
.

cos(7p/12)

cos(7p/12).

EXAMPLE 2

This proves the first equation in (6).

This proves the second equation in (6).

d by (4)

this is (4) of Theorem 3.4.2
⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎬ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎠
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To obtain the sine of the difference we use again and

 5 sin x1cos x2 2  cos x1sin x2.
 sin(x1 2  x2) 5 sin(x1 1 (2 x2)) 5 sin x1cos(2x2) 1 cos x1sin(2x2)

sin(2x2) 5 2sin x2:
cos(2x2) 5 cos x2x1 2  x2,

THEOREM 3.4.3 Sum and Difference Formulas for the Sine

For all real numbers x1 and x2,

(7)

(8)sin(x1 2  x2) 5 sin x1 
cos x2 2  cos x1 

sin x2.

sin(x1 1  x2) 5 sin x1 
cos x2 1  cos x1 

sin x2,

Sine of a Sum

Evaluate 

Solution We proceed as in Example 2, except we use the sum formula (7):

As in Example 2, the result can be rewritten as 

Since we know the value of from Example 2 we can also compute the
value of using the Pythagorean identity (1):

We solve for and take the positive square root:

(9)

Although the number in (9) does not look like the result obtained in Example 3, the val-
ues are the same. See Problem 62 in Exercises 3.4.

There are sum and difference formulas for the tangent function as well. We can
derive the sum formula using the sum formulas for the sine and cosine as follows:

(10)

We now divide the numerator and denominator of (10) by (assuming that
are such that 

(11)tan(x1 1  x2) 5

sin x1

cos x1
 
cos x2

cos x2
1

cos x1

cos x1
 
sin x2

cos x2

cos x1

cos x1
 
cos x2

cos x2
2

sin x1

cos x1
 
sin x2

cos x2

5  
tan x1 1  tan x2

1 2  tan x1tan x2
.

cos x1 
cos x2 2 0),x1 and x2

cos x1 
cos x2

tan(x1 1  x2) 5
sin(x1 1  x2)

cos(x1 1  x2)
5

sin x1 
cos x2 1 cos x1 

sin x2

cos x1 
cos x2 2 sin x1 

sin x2
.

 5
Å

4 1 2!3

8
 5

"2 1 !3

2
.

 sin 
7p

12
5

Å
1 2 cos2

 
7p

12
5

Å
1 2 c

!2

4
(1 2 !3) d

2

 

sin(7p/12)

sin2
 

7p

12
1 cos2

 

7p

12
5 1.

sin(7p/12)
cos(7p/12)

sin(7p/12) 5 (!2 1 !6 )/4.

 5
!3

2
 
!2

2
1

1

2
 
!2

2
5

!2

4
 (1 1 !3).

sin 
7p

12
 5 sin a

p

3
1

p

4
b 5 sin 

p

3
 cos 

p

4
1 cos 

p

3
 sin 

p

4

sin (7p/12).

EXAMPLE 3

this is (7) of Theorem 3.4.3

⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎬ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎠
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3.4 Special Identities 153

The derivation of the difference formula for is obtained in a similar man-
ner. We summarize the two results.

tan(x1 2 x2)

THEOREM 3.4.4 Sum and Difference Formulas for the Tangent

For all real numbers x1 and x2 for which the functions are defined,

(12)

(13)tan(x1 2  x2) 5  
tan x1 2  tan x2

1 1  tan x1 
tan x2

.

tan(x1 1  x2) 5  
tan x1 1  tan x2

1 2  tan x1 
tan x2

Tangent of a Sum

Evaluate 

Solution If we think of as an angle in radians, then

It follows from formula (13):

Strictly speaking, we really do not need the identities for since we can
always compute and using (4)–(8) and then proceed as in
(10), that is, from the quotient .

Double-Angle Formulas Many useful trigonometric formulas can be derived
from the sum and difference formulas. The double-angle formulas express the cosine
and sine of 2x in terms of the cosine and sine of x.

If we set in (4) and use then

Similarly, by setting in (7) and using then

these two terms are equal

We summarize the last two results.

sin 2x 5 sin x cos x 1 cos x sin x 5 2 sin x cos x.
TT

sin (x 1 x) 5 sin 2x,x1 5 x2 5 x

cos 2x 5 cos x cos x 2 sin x sin x 5 cos2
 x 2 sin2

 x.

cos(x 1 x) 5 cos 2x,x1 5 x2 5 x

sin(x1 6 x2)/cos(x1 6 x2)
cos(x1 6  x2)sin(x1 6  x2)

tan(x1 6  x2)

 5
(!3 2 1)2

2
5

4 2 2!3

2
5

2(2 2 !3)
2

5 2 2 !3.

 5
!3 2 1

!3 1 1
# !3 2 1

!3 2 1

 5

1 2
1

!3

1 1 1 # 1

!3

5
!3 2 1

!3 1 1

 tan 
p

12
5 tan a

p

4
2

p

6
b 5

tan 
p

4
2 tan 

p

6

1 1 tan 
p

4
 tan 

p

6

p

12
 radians 5 15° 5 45° 2 30° 5  

p

4
2

p

6
 radians.

p/12

tan (p/12).

EXAMPLE 4

this is (13) of Theorem 3.4.4

⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎬ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎠

dthis is the answer but 
we can simplify the expression

drationalizing the denominator

You should rework this example using
to see that the result is

the same.
p/12 5 p/3 2 p/4
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THEOREM 3.4.5 Double-Angle Formulas for the Cosine and Sine

For any real number x,
(14)
(15) sin 2x 5 2 sin x cos x.

 cos 2x 5 cos2
 x 2 sin2

 x

Using the Double-Angle Formulas

If and find the exact values of and 

Solution First, we compute using Since 
and so we choose the negative square root:

From the double-angle formula (14),

Finally, from the double-angle formula (15),

The formula in (14) has two useful alternative forms. By (1), we know that
Substituting the last expression into (14) yields 

or
(16)

On the other hand, if we substitute into (14) we get

(17)

Half-Angle Formulas The alternative forms of (16) and (17) of the double-angle
formula (14) are the source of two half-angle formulas. Solving (16) and (17) for 
and gives, respectively,

(18)

By replacing the symbol x in (18) by and using , we obtain the follow-
ing formulas.

2(x/2) 5 xx/2

cos2
 x 5

1

2
 (1 1 cos 2x)  and  sin2

 x 5
1

2
 (1 2 cos 2x).

sin2
 x

cos2
 x

cos 2x 5 1 2 2 sin2 x.

cos2 x 5 1 2 sin2 x

cos 2x 5 2 cos2 x 2 1.

cos 2x 5 cos2 x 2 (1 2 cos2 x)1 2 cos2 x.
sin2 x 5

sin 2x 5 2 sin x cos x 5 2a2
1

4
b a2

!15

4
b 5

!15

8
.

 5
15

16
2

1

16
5

14

16
5

7

8
.

 5 a2
!15

4
b

2

2  a2
1

4
b

2
 cos 2x 5 cos2

 x 2 sin2
 x

cos x 5 2 "1 2 sin2
 x 5 2 

Å
1 2 a2

1

4
b

2

5 2 
!15

4
.

cos x , 0
p , x , 3p/2,sin2

 x 1 cos2
 x 5 1.cos x

sin 2x.cos 2xp , x , 3p/2,sin x 5 21
4

EXAMPLE 5

THEOREM 3.4.6 Half-Angle Formulas for the Cosine and Sine

For any real number x,

(19)

. (20)sin2
 
x

2
5

1

2
 (1 2 cos x)

cos2
 
x

2
5

1

2
 (1 1 cos x)

06046_CH03_123-178.QXP  11/2/10  11:41 AM  Page 154



3.4 Special Identities 155

Using the Half-Angle Formulas

Find the exact values of and 

Solution If we let then and formulas (19) and (20) yield,
respectively

and

Because radians is a second-quadrant angle, and 
Therefore, we take the negative square root for the value of the cosine,

and the positive square root for the value of the sine,

sin a
5p

8
b 5

Å

2 1 !2

4
5

"2 1 !2

2
.

cos a
5p

8
b 5 2 

Å

2 2 !2

4
5 2

"2 2 !2

2
,

sin(5p/8) . 0.cos(5p/8) , 05p/8

sin2 a
5p

8
b 5

1

2
a1 2 cos 

5p

4
b 5

1

2
 c1 2 a2

!2

2
b d 5

2 1 !2

4
. 

cos2 a
5p

8
b 5

1

2
 a1 1 cos 

5p

4
b 5

1

2
 c1 1 a2

!2

2
b d 5

2 2 !2

4
,

x/2 5 5p/8x 5 5p/4,

sin(5p/8). cos(5p/8)

EXAMPLE 6

NOTES FROM THE CLASSROOM

(i) Should you memorize all the identities presented in this section?
You should consult your instructor about this, but in the opinion
of the authors, you should at the very least memorize formulas
(1)–(8), (14), (15), and the two formulas in (18).

(ii) If you eventually enroll in a calculus course, check the title of
your text. If it has the words Early Transcendentals in its title, then your
knowledge of the graphs and properties of the trigonometric functions will
come into play almost immediately. The sum identities (4) and (7) are used
in differential calculus to compute functions known as derivatives of sin x and

Identities are especially useful in integral calculus. Replacing a radical
by a trigonometric function as illustrated in Example 1 in this section is a
standard technique for evaluating some types of integrals. Also, to evaluate
integrals of cos2 x and sin2 x you would use the half-angle formulas in the form
given in (18):

At some point in your study of integral calculus you may be required to evaluate
integrals of products such as

.

One way of doing this is to use the sum/difference formulas to devise an identity
that converts these products into either a sum of sines or a sum of cosines. See
Problems 66–70 in Exercises 3.4.

sin 2x sin 5x  and  sin 10x cos 4x

cos2
 x 5 1

2(1 1 cos 2x)  and  sin2 x 5 1
2(1 2 cos 2x).

cos x.
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3.4

In Problems 1–8, proceed as in Example 1 and rewrite the given expression as a trigono-
metric expression without radicals by making the indicated substitution. Assume that

1.

2.

3.

4.

5.

6.

7.

8.

In Problems 9–30, use a sum or difference formula to find the exact value of the given
expression.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.
23. 24.
25. 26.
27. 28.

29. 30.

In Problems 31–34, use a double-angle formula to write the given expression as a single
trigonometric function of twice the angle.

31. 32.

33. 34. 2cos2a
19

2
xb 2 11 2 2sin2

 

p

5

cos2
 2t 2 sin2

 2t2 cos b sin b

tan 
17p

12
cos 

13p

12

sin 345°cos 345°
tan 195°sin 195°
cos 195°tan 165°
sin 165°cos 165°

tan 
7p

12
sin 

11p

12

tan 
11p

12
sin a2

p

12
b

cos a2
5p

12
btan 

5p

12

cos 
11p

12
sin 

7p

12

cos 75°sin 75°

sin 
p

12
cos 

p

12

"5 2 x2

x
,   x 5 !5 cos u, 0 # u # p

1

"7 1 x2
,  x 5 !7 tan u, 2p/2 , u , p/2

"x2 2 3

x2 ,  x 5 !3 sec u, 0 , u , p/2

x

"9 2 x2
,  x 5 3 sin u,   2p/2 , u , p/2

"16 2 25x2, x 5 4
5 
sin u,   2p/2 # u # p/2

"x2 2 a2,  x 5 a sec u,  0 # u , p/2

"a2 1 x2,  x 5 a tan u,  2p/2 , u , p/2

"a2 2 x2,  x 5 a cos u,  0 # u # p

a . 0.

Exercises Answers to selected odd-numbered problems
begin on page ANS-10.
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3.4 Special Identities 157

In Problems 35–40, use the given information to find the exact values of (a)
(b) and (c)

35. 36.
37. 38.
39. 40.

In Problems 41–48, use a half-angle formula to find the exact value of the given
expression.

41. 42.
43. 44.
45. 46.
47. 48.

In Problems 49–54, use the given information to find the exact values of (a)
(b) and (c)

49. 50.
51. 52.
53. 54.

55. If P(x1) and P(x2) are points in quadrant II on the terminal side of the angles x1

and x2, respectively, with and find
(a) (b)
(c) (d)

56. If x1 is a quadrant II angle, x2 is a quadrant III angle, , and , find
(a) , (b) , (c) , and (d) 

Miscellaneous Applications

57. Mach Number The ratio of the speed of an airplane to the speed of sound is
called the Mach number M of the plane. If the plane makes sound waves
that form a (moving) cone, as shown in FIGURE 3.4.2. A sonic boom is heard at the
intersection of the cone with the ground. If the vertex angle of the cone is then

If find the exact value of the Mach number.
58. Cardiovascular Branching A mathematical model for blood flow in a large

blood vessel predicts that the optimal values of the angles and , which
represent the (positive) angles of the smaller daughter branches (vessels) with
respect to the axis of the parent branch, are given by

where A0 is the cross-sectional area of the parent branch and A1 and A2 are the
cross-sectional areas of the daughter branches. See FIGURE 3.4.3. Let 
be the junction angle, as shown in the figure.
(a) Show that

cos c 5
A2

0 2 A2
1 2 A2

2

2A1A2
.

c 5 u1 1 u2

cos u1 5
A2

0 1 A2
1 2 A2

2

2A0 
A1

 and cos u2 5
A2

0 2 A2
1 1 A2

2

2A0 
A2

,

u2u1

u 5 p/6,

sin 
u

2
5

1

M
.

u,

M . 1,

cos(x1 2  x2).cos(x1 1  x2)sin(x1 2  x2)sin(x1 1  x2)
tan x2 5 3

4sin x1 5 8
17

cos(x1 2  x2).sin(x1 2  x2)
cos(x1 1  x2)sin(x1 1  x2)
sin x2 5 2

3,cos x1 5 21
3

cot x 5 21
4, 90° , x , 180°sec x 5 3

2, 0 , x , 90°
csc x 5 9, 0 , x , p/2tan x 5 2, p , x , 3p/2
cos x 5 4

5, 3p/2 , x , 2psin x 5 12
13, p/2 , x , p

tan (x/2).sin (x/2),
cos (x/2),

sec (23p/8)csc (13p/12)
sin 15°cos 67.5°
tan (p/12)sin (3p/8)
sin (p/8)cos (p/12)

cot x 5 4
3, 0 , x , p/2sec x 5 213

5 , p/2 , x , p

csc x 5 23, p , x , 3p/2tan x 5 1
2,  p , x , 3p/2

cos x 5 !3/5, 3p/2 , x , 2psin x 5 !2/3, p/2 , x , p

tan 2x.sin 2x,
cos 2x,

θ

FIGURE 3.4.2 Airplane in 
Problem 57

θ1
θ1 θ2θ2

A2

+ =ψ

A1

A0 Blood flow

FIGURE 3.4.3 Branching of a large
blood vessel in Problem 58

06046_CH03_123-178.QXP  11/2/10  11:42 AM  Page 157



158 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

(b) Show that for the optimal values of and the cross-sectional area of
the daughter branches, is greater than or equal to that of the
parent branch. Therefore, the blood must slow down in the daughter
branches.

59. Area of a Triangle Show that the area of an isosceles triangle with equal sides
of length x is where is the angle formed by the two equal sides.
See FIGURE 3.4.4. [Hint: Consider as shown in the figure.]

60. Putting the Shot We saw in Problem 66 in Exercises 2.4 that when a projectile,
such as a shot put, is released from a height upward at an angle with velocity

the range R at which it strikes the ground is given by

where g is the acceleration due to gravity. See FIGURE 3.4.5. It can be shown that
the maximum range Rmax is achieved if the angle satisfies the equation

Show that

by using the expressions for R and and the half-angle formulas for the sine and
the cosine with 

For Discussion

61. Discuss: Why would you expect to get an error message from your calculator
when you try to evaluate

62. In Example 3 we showed that Following the example, we then 

showed that Demonstrate that these answers are equivalent.

63. Discuss: How would you express in terms of Carry out your ideas.
64. In Problem 55, in what quadrants do the points and lie?
65. In Problem 56, in which quadrant does the terminal side of lie? The

terminal side of 
66. Use the sum/difference formulas (4), (5), (7), and (8) to derive the product-to-sum

formulas:

In Problems 67–70, use a product-to-sum formula in Problem 66 to write the given
product as a sum of sines or a sum of cosines.

67. 68.

69. 70.  sin 10x cos 4xsin 2x sin 5x

sin 
3t

2
 cos 

t

2
cos 4u  cos 3u

 sin x1 
cos x2 5 1

2[sin (x1 1  x2) 1 sin (x1 2  x2) ].
 cos x1 

cos x2 5 1
2[cos (x1 2  x2) 1 cos (x1 1  x2) ]

 sin x1 
sin x2 5 1

2[cos (x1 2  x2) 2 cos (x1 1  x2) ]

x1 2  x2?
x1 1  x2

P(x1 2  x2)P(x1 1  x2)
sin u?sin 3u

sin 
7p

12
5

"2 1 !3

2
.

sin 
7p

12
5

!2 1 !6

4
.

tan 35° 1 tan 55°

1 2 tan 35°tan 55°
?

t 5 2f.
cos 2f

Rmax 5
v0"v2

0 1 2gh
g

,

cos 2f 5
gh

v2
0 1 gh

.

f

R 5
v0 cos f

g
 av0sin f 1 "v0

2 sin2f 1 2ghb,

v0,
fh,

u/2
uA 5 1

2 
x2 sin u,

A1 1 A2,
u2,u1

x x

θ
2

FIGURE 3.4.4

Isosceles triangle in
Problem 59

Ground

h

R

y

x

v0

φ

FIGURE 3.4.5 Projectile in 
Problem 60
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3.5 Inverse Trigonometric Functions 159

In Problems 71 and 72, use one of the formulas in Problem 66 to find the exact value of
the given expression.

71. 72.

73. Prove the double-angle formula for the tangent function:

.

74. Prove the half-angle formula for the tangent function:

.

In Problems 75 and 76, prove the alternative half-angle formulas for the tangent function.

[Hint: In Problem 75, multiply the numerator and denominator of by 

and then look at (15) and (20).]

75. 76.

77. Discuss: Why are the formulas in Problems 75 and 76 more useful than the
formula in Problem 74?

tan 
x

2
5

sin x

1 1 cos x
tan 

x

2
5

1 2 cos x

sin x

2 sin(x/2)
sin(x/2)

cos(x/2)

tan2
 

x

2
5

1 2 cos x

1 1 cos x

tan 2x 5
2tan x

1 2 tan2 x

sin 75° cos 15°sin 15° sin 45°

3.5

Introduction Although we can find the values of the trigonometric functions of
real numbers or angles, in many applications we must do the reverse: Given the value
of a trigonometric function, find a corresponding angle or number. This suggests we
consider inverse trigonometric functions. Before we define the inverse trigonometric
functions, let’s recall from Section 1.9 some of the properties of a one-to-one function
and its inverse 

Properties of Inverse Functions If is a one-to-one function, then
there is a unique inverse function with the following properties:f 21

y 5 f (x)

f 
21.f

Inverse Trigonometric Functions

Recall, a function f is one-to-one if every
y in its range corresponds to exactly one 
x in its domain.

PROPERTIES OF INVERSE FUNCTIONS

• The domain of range of f.
• The range of domain of f.
• is equivalent to 
• The graphs of f and are reflections in the line 
• for x in the domain of 
• for x in the domain of f.f 21( f (x)) 5 x

f 21.f ( f 21(x)) 5 x
y 5 x.f 21

x 5 f 21(y).y 5 f (x)
f 21 5

f 
21 5
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160 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

Inspection of the graphs of the various trigonometric functions clearly shows that none
of these functions are one-to-one. In Section 1.9 we discussed the fact that if a function
f is not one-to-one, it may be possible to restrict the function to a portion of its domain
where it is one-to-one. Then we can define an inverse for f on that restricted domain.
Normally, when we restrict the domain, we make sure to preserve the entire range of the
original function.

Arcsine Function From FIGURE 3.5.1(a) we see that the function on the
closed interval takes on all values in its range Notice that any
horizontal line drawn to intersect the red portion of the graph can do so at most once.
Thus the sine function on this restricted domain is one-to-one and has an inverse.
There are two commonly used notations to denote the inverse of the function shown in
Figure 3.5.1(b):

and are read arcsine of x and inverse sine of x, respectively.

arcsin x   or   sin21 x,

[21, 1].[2p/2, p/2]
y 5 sin x

– π
2

π
2

π
2

– π
2

1

–1

y

x x

1

–1

yy = sin x
on (–∞, ∞) y = sin x

on [–   /2,    /2]π π

(a) Not a one-to-one function (b) A one-to-one function

FIGURE 3.5.1 Restricting the domain of to produce a one-to-one functiony 5 sin x

In FIGURE 3.5.2(a) we have reflected the portion of the graph of on the interval
(the red graph in Figure 3.5.1(b)) about the line to obtain the graph

of (in blue). For clarity, we have reproduced this blue graph in
Figure 3.5.2(b). As this curve shows, the domain of the arcsine function is and
the range is [2p/2, p/2].

[21, 1]
y 5 arcsin x

y 5 x[2p/2, p/2]
y 5 sin x

DEFINITION 3.5.1 Arcsine Function

The arcsine function, or inverse sine function, is defined by

(1)

where and 2p/2 # y #  p/2.21 # x # 1

y 5 arcsin x   if and only if   x 5 sin y,

–

–

π
2

π
2

π
2

π
2

1

1

–1

–1

y

x

π
2

π
2

1–1

y

x

y = x

y = arcsin x

y = arcsin x

y = sin x

(a) (b)

FIGURE 3.5.2 Graph of is the blue curvey 5 arcsin x

See Example 7 in Section 1.9.
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3.5 Inverse Trigonometric Functions 161

In other words:

The arcsine of the number x is that number y (or radian-measured angle)
between and whose sine is x.

When using the notation it is important to realize that “–1” is not an expo-
nent; rather, it denotes an inverse function. The notation has an advantage
over the notation in that there is no “ ” and hence no potential for misinter-
pretation; moreover, the prefix “arc” refers to an angle—the angle whose sine is But
since and are used interchangeably in calculus and in appli-
cations, we will continue to alternate their use so that you become comfortable with
both notations.

Evaluating the Inverse Sine Function

Find (a) (b) (c)

Solution (a) If we let then by (1) we must find the number y (or radian-
measured angle) that satisfies and Since 
and satisfies the inequality it follows that 

(b) If we let then Since we must choose y such that
we find that 

(c) Letting we have that and 

Hence 

In parts (b) and (c) of Example 1 we were careful to choose y so that
For example, it is a common error to think that because

then necessarily can be taken to be Remember: If
then y is subject to the restriction and does not

satisfy this inequality.

Evaluating a Composition

Without using a calculator, find 

Solution We must find the tangent of the angle of t radians with sine equal to that is,
tan t, where The angle t is shown in FIGURE 3.5.3. Since

we want to determine the value of cos t. From Figure 3.5.3 and the Pythagorean identity
, we see that

Hence we have

and so tan asin21
 
1

4
b 5 tan t 5

!15

15
.

tan t 5
1/4

!15/4
5

1

!15
5

!15

15
,

a
1

4
b

2

1 cos2 t 5 1    or    cos t 5
!15

4
.

sin2 t 1 cos2 t 5 1

tan t 5
sin t

cos  t
5

1
4

cos t
,

t 5 sin21
 
1
4.

1
4,

tan(sin21
 
1
4).

EXAMPLE 2

3p/22p/2 # y # p/2y 5 sin21x,
3p/2.sin21(21)sin(3p/2) 5 21,

2p/2 # y # p/2.

y 5 2p/2.

2p/2 # y # p/2.sin y 5 21y 5 sin21(21),

y 5 2p/6.2p/2 # y # p/2,
sin y 5 21

2.y 5 sin21(21
2),

y 5 p/6.2p/2 # y # p/2p/6
sin (p/6) 5 1

22p/2 # y # p/2.sin y 5 1
2

y 5 arcsin 
1
2,

sin21(21).sin21(21
2), andarcsin 

1
2,

EXAMPLE 1

y 5 sin21xy 5 arcsin x
x.

21sin21x
arcsin x

sin21x

p/22p/2

1

cos t

t
1
4

FIGURE 3.5.3 The angle
in Example 2x 5 sin21

 
1
4

Note of Caution:

(sin x)21 5
1

sin x
2 sin21x

Read this paragraph several times.
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162 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

Arccosine Function If we restrict the domain of the cosine function to the closed
interval the resulting function is one-to-one and thus has an inverse. We denote
this inverse by

which gives us the following definition.

arccos x    or    cos21x,

[0, p],

DEFINITION 3.5.2 Arccosine Function

The arccosine function, or inverse cosine function, is defined by

(2)

where and 0 # y # p.21 # x # 1

y 5 arccos x  if and only if  x 5 cos y,

The graphs shown in FIGURE 3.5.4 illustrate how the function restricted to
the interval becomes a one-to-one function. The inverse of the function shown
in Figure 3.5.4(b) is .y 5 arccos x

[0, p]
y 5 cos x

π π
2

1

–1

y

x
π π

π

2

1

–1

y

x

y = cos x
on (–∞, ∞)

y = cos x
on [0,    ]

0

(a) Not a one-to-one function (b) A one-to-one function

FIGURE 3.5.4 Restricting the domain of to produce 
a one-to-one function

y 5 cos x

FIGURE 3.5.5 Graph of 
y 5 arccos x

π

π

2

–1 1

y

x

y = arccos x

By reflecting the graph of the one-to-one function in Figure 3.5.4(b) in the line 
y 5 x we obtain the graph of shown in FIGURE 3.5.5.

Note that the figure clearly shows that the domain and range of are
and respectively.

Evaluating the Inverse Cosine Function

Find (a) and (b)

Solution (a) If we let then and . Thus

(b) Letting , we have that and we must find y
such that Therefore, since 

Evaluating the Compositions of Functions

Write as an algebraic expression in .

Solution In FIGURE 3.5.6 we have constructed an angle of t radians with cosine equal to
Then , or where Now to find 

we use the identity Thussin2 t 1 cos2 t 5 1.
sin (cos21x) 5 sin t,0 # t # p.x 5 cos t,t 5 cos21xx.

xsin(cos21x)

EXAMPLE 4

cos (5p/6) 5 2!3/2.y 5 5p/60 # y # p.
cos y 5 2!3/2,y 5 cos21(2!3/2)

y 5 p/4.
0 # y # pcos y 5 !2/2y 5 arccos(!2/2),

cos21(2!3/2).arccos (!2/2)

EXAMPLE 3

[0, p],[21, 1]
y 5 arccos x

y 5 arccos x

FIGURE 3.5.6 The angle
in Example 4t 5 cos21x

1

x = cos t

sin t
t
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3.5 Inverse Trigonometric Functions 163

We use the positive square root of since the range of is and the
sine of an angle t in the first or second quadrant is positive.

Arctangent Function If we restrict the domain of tan x to the open interval
then the resulting function is one-to-one and thus has an inverse. This

inverse is denoted by

arctan x  or  tan21x .

(2p/2, p/2),

[0, p],cos21x1 2 x2,

 sin (cos21x) 5 "1 2 x2.
 sin t 5 "1 2 x2

 sin2 t 5 1 2 x2
 sin2 t 1 x2 5 1

DEFINITION 3.5.3 Arctangent Function

The arctangent, or inverse tangent, function is defined by

(3)

where and 2p/2 , y , p/2.2` , x , `

y 5 arctan x  if and only if  x 5 tan y,

– π
2

π
2

y

x

y = tan x

y = tan x
on (–   /2,    /2)π π

(a) Not a one-to-one function (b) A one-to-one function

– π
2

π
2

y

x

FIGURE 3.5.7 Restricting the domain of to produce a one-to-one functiony 5 tan x

The graphs shown in FIGURE 3.5.7 illustrate how the function restricted to
the open interval becomes a one-to-one function.(2p/2, p/2)

y 5 tan x

By reflecting the graph of the one-to-one function in Figure 3.5.7(b) in the line
we obtain the graph of shown in FIGURE 3.5.8. We see in the figure that

the domain and range of are, in turn, the intervals and

Evaluating the Inverse Tangent Function

Find 

Solution If , then where It follows that
tan21(21) 5 y 5 2p/4.

2p/2 , y , p/2.tan y 5 21,tan21(21) 5 y

tan21(21).

EXAMPLE 5

(2p/2, p/2).
(2`, ` )y 5 arctan x

y 5 arctan xy 5 x

y = arctan x

–

π
2

π
2

y

x

FIGURE 3.5.8 Graph of
y 5 arctan x
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164 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

Evaluating the Compositions of Functions

Without using a calculator, find 

Solution If we let then The Pythagorean identity
can be used to find 

In the preceding line we take the positive square root because is in the
interval (the range of the arctangent function) and the secant of an angle
t in the first or fourth quadrant is positive. Also, from we find the value
of from the reciprocal identity:

Finally, we can use the identity in the form to
compute It follows that

Properties of the Inverses Recall from Section 1.9 that and
hold for any function f and its inverse under suitable restrictions on x. Thus

for the inverse trigonometric functions, we have the following properties.
f ( f 21(x)) 5 x

f 21( f (x)) 5 x

sin t 5 tan t cos t 5 a2
5

3
b a

3

!34
b 5 2

5

!34
.

sin (arctan (25
3)).

sin t 5 tan tcos ttan t 5 sin t/cos t

cos t 5
1

sec t
5

1

!34/3
5

3

!34
.

cos t
sec t 5 !34/3

(2p/2, p/2)
t 5 arctan(25

3)

 sec t 5
Å

25

9
1 1 5

Å

34

9
5

"34

3
 .

 1 1 a2 

5

3
b

2

5 sec2
 t

sec t:1 1 tan2 t 5 sec2 t
tan t 5 25

3.t 5 arctan(25
3),

sin (arctan (25
3)).

EXAMPLE 6

Using the Inverse Properties

Without using a calculator, evaluate:

(a) (b) (c)

Solution In each case we use the properties of the inverse trigonometric functions
given in Theorem 3.5.1.

(a) Because satisfies it follows from property (i) that

sin21 asin 
p

12
b 5

p

12
.

2p/2 # x # p/2p/12

tan21 atan 
3p

4
b.cos acos21

 
1

3
bsin21 asin 

p

12
b

EXAMPLE 7

THEOREM 3.5.1 Properties of the Inverse Trigonometric
Functions

(i) if
(ii) if

(iii) if
(iv) if
(v) if

(vi) if 2` , x , `tan(arctan x) 5 tan(tan21 x) 5 x
2p/2 , x , p/2arctan(tan x) 5 tan21(tan x) 5 x
21 # x # 1cos(arccos x) 5 cos(cos21 x) 5 x
0 # x # parccos(cos x) 5 cos21(cos x) 5 x
21 # x # 1sin(arcsin x) 5 sin(sin21 x) 5 x
2p/2 # x # p/2arcsin(sin x) 5 sin21(sin x) 5 x
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3.5 Inverse Trigonometric Functions 165

(b) By property (iv), 
(c) In this case we cannot apply property (v), since is not in the interval

If we first evaluate then we have

see Example 5

In the next section we illustrate how inverse trigonometric functions can be used to
solve trigonometric equations.

Postscript—The Other Inverse Trig Functions The functions , , and
csc x also have inverses when their domains are suitably restricted. See Problems 49–51
in Exercises 3.5. Because these functions are not used as often as arctan, arccos, and arc-
sin, most scientific calculators do not have keys for them. However, any calculator that
computes arcsin, arccos, and arctan can be used to obtain values for arccsc, arcsec,
and arccot. Unlike the fact that we note that rather,

for Similar relationships hold for and 
See Problems 56–58 in Exercises 3.5.

3.5

In Problems 1–14, find the exact value of the given trigonometric expression. Do not
use a calculator.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Problems 15–32, find the exact value of the given trigonometric expression. Do not
use a calculator.

15. 16.
17. 18.
19. 20.
21. 22.
23. 24.
25. 26. sin(arcsin 0.75)tan(tan211.2)

cos(cos21(24
5))sin(sin21

 
1
5)

sec(tan21 4)csc(sin21
 
3
5)

tan(sin21(21
6))cos(arctan (22))

sin(arctan 
1
4)tan(arccos (22

3))
cos(sin21

 
1
3)sin(cos21

 
3
5)

arctan 0sin21a2!2

2
b

arccos (21
2)arctan a2!3

3
b

sin21
 

!2

2
tan211

cos21
 

!3

2
sin21 a2!3

2
b

arctan (2!3)arccos 
1
2

arcsin 
!3

2
arccos(21)

tan21!3sin21 0

Exercises Answers to selected odd-numbered problems
begin on page ANS-10.

cot21 x.csc21x0 x 0 $ 1.sec21x 5 cos21(1/x)
sec21x 2 1/cos21x;sec x 5 1/cos x,

sec xcot x

tan21 atan 
3p

4
b 5 tan21(21) 5 2

p

4
.

T

tan(3p/4) 5 21,(2p/2, p/2).
3p/4

cos (cos21
 
1
3) 5 1

3.
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166 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

27. 28.

29. 30.

31. 32.

In Problems 33–40, write the given expression as an algebraic expression in .

33. 34.
35. 36.
37. 38.
39. 40.

In Problems 41–48, sketch the graph of the given function.

41. 42.

43. 44.
45. 46.
47. 48.

49. The arccotangent function can be defined by if
and only if where Graph and give the
domain and the range of this function.

50. The arccosecant function can be defined by if
and only if where and Graph 
and give the domain and the range of this function.

51. One definition of the arcsecant function is if
and only if where and (See Problem 52 for an
alternative definition.) Graph and give the domain and the range 
of this function.

52. An alternative definition of the arcsecant function can be made by restricting the
domain of the secant function to Under this restriction,
define the arcsecant function. Graph and give the domain and the
range of this function.

53. Using the definition of the arccotangent function from Problem 49, for what
values of x is it true that (a) and (b) ?

54. Using the definition of the arccosecant function from Problem 50, for what
values of x is it true that (a) and (b) ?

55. Using the definition of the arcsecant function from Problem 51, for what values
of x is it true that (a) and (b) ?

56. Verify that for all real numbers x.

57. Verify that for 
58. Verify that for 

In Problems 59–64, use the results of Problems 56–58 and a calculator to find the 
indicated value.

59. 60.
61. 62.
63. 64. sec212.5arcsec(21.2)

arccot(20.3)arccsc(21.5)
csc21(21.3)cot21 0.75

0 x 0 $ 1.arcsec x 5 arccos (1/x)
0 x 0 $ 1.arccsc x 5 arcsin (1/x)

arccot x 5
p

2
 2 arctan x,

arcsec(sec x) 5 xsec(arcsec x) 5 x

arccsc(csc x) 5 xcsc(arccsc x) 5 x

arccot (cot x) 5 xcot(arccot x) 5 x

y 5 arcsec x,
[0, p/2) x [p, 3p/2).

y 5 arcsec x,
y 2 p/2.0 # y # px 5 sec y,

y 5 arcsec x (or y 5 sec21 x)

y 5 arccsc x,y 2 0.2p/2 # y # p/2x 5 csc y,
y 5 arccsc x (or y 5 csc21 x)

y 5 arccot x,0 , y , p.x 5 cot y,
y 5 arccot x (or y 5 cot21 x)

y 5 cos(arcsin x)y 5 arccos(x 2 1)
y 5 cos21 2xy 5 2 cos21 x
y 5 sin21 (x 1 1)y 5 0 arcsin x 0

y 5
p

2
 2 arctan xy 5 arctan 0 x 0

tan(arccosx)csc(arctan x)
cos(sin21x)cot(sin21x)
sec(arccos x)tan(arcsin x)
cos(tan21x)sin(tan21x)

x

arctan atan 
p

7
bcos21 acos a2

p

4
bb

sin21 asin 
5p

6
btan21(tan p)

arccos acos 
2p

3
barcsinasin 

p

16
b
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3.5 Inverse Trigonometric Functions 167

Miscellaneous Applications

65. Projectile Motion The departure angle for a bullet to hit a target at a distance 
(assuming that the target and the gun are at the same height) satisfies

where v0 is the muzzle velocity and g is the acceleration due to gravity. If 
the target is 800 ft from the gun and the muzzle velocity is 200 ft/s, find the
departure angle. Use [Hint: There are two solutions.]

66. Olympic Sports For the Olympic event, the hammer throw, it can be shown that
the maximum distance is achieved for the release angle (measured from the hori-
zontal) that satisfies

where h is the height of the hammer above the ground at release, v0 is the initial
velocity, and is the acceleration due to gravity. For and

find the optimal release angle. Use 
67. Highway Design In the design of highways and railroads, curves are banked to

provide centripetal force for safety. The optimal banking angle is given by
where is the speed of the vehicle, is the radius of the curve,

and g is the acceleration due to gravity. See FIGURE 3.5.9. As the formula indicates,
for a given radius there is no one correct angle for all speeds. Consequently,
curves are banked for the average speed of the traffic over them. Find the correct
banking angle for a curve of radius 600 ft on a country road where speeds
average Use [Hint: Use consistent units.]

68. Highway Design—Continued If is the coefficient of friction between the car
and the road, then the maximum velocity that a car can travel around a curve
without slipping is given by where is the banking
angle of the curve. Find for the country road in Problem 67 if 

69. Geology Viewed from the side, a volcanic cinder cone usually looks like an 
isosceles trapezoid. See FIGURE 3.5.10. Studies of cinder cones less than 50,000
years old indicate that cone height Hco and crater width Wcr are related to the
cone width Wco by the equations and If

use these equations to determine the base angle of the trapezoid 
in Figure 3.5.10.

For Discussion

70. Using a calculator set in radian mode, evaluate 
and Explain the results.

71. Using a calculator set in radian mode, evaluate 
Explain the results.

72. In Section 3.2 we saw that the graphs of and are related by
shifting and reflecting. Justify the identity

for all x in by finding a similar relationship between the graphs of
and 

73. With a calculator set in radian mode determine which of the following 
inverse trigonometric evaluations result in an error message: (a)
(b) (c) Explain.

74. Discuss: Can any periodic function be one-to-one?
75. Show that [Hint: See (7) of Section 3.4.]arcsin 

3
5 1 arcsin 

5
13 5 arcsin 

56
65.

tan21(22).cos21(22),
sin21(22),

y 5 arccos x.y 5 arcsin x
[21, 1],

arcsin x 1 arccos x 5
p

2
,

y 5 cos xy 5 sin x
and sin21(sin (21)).

cos21 (cos (21)), tan21 (tan (21)), 
arcsin (sin 1.8).

arccos (cos 1.8),arctan (tan 1.8),

fWco 5 1.00,
Wcr 5 0.40Wco.Hco 5 0.18Wco

m 5 0.26.vm

uv2
m 5 gR tan (u 1 tan21m),

vm

m

g 5 32 ft/s2.30 mi/h.

Rvtan u 5 v2/Rg,
u

g 5 9.81 m/s2.h 5 2.25 m,
v0 5 13.7 m/sg

cos 2u 5
gh

v2
0 1 gh

,

u

g 5 32 ft/s2.

R 5
v2

0 sin 2u

g
,

Ru

Volcanic cone

FIGURE 3.5.10 Volcanic cinder cone in
Problem 69

FIGURE 3.5.9 Banked curve in
Problem 67

θ

R

Wcr

Wco

Hco

φ φ
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3.6

Introduction In Section 3.4 we considered trigonometric identities, which are
equations involving trigonometric functions that are satisfied by all values of the variable
for which both sides of the equality are defined. In this section we examine conditional
trigonometric equations, that is, equations that are true for only certain values of the
variable. We discuss techniques for finding those values of the variable (if any) that
satisfy the equation.

We begin by considering the problem of finding all real numbers x that satisfy
Interpreted as the x-coordinates of the points of intersection of the graphs

of and FIGURE 3.6.1 shows that there exists infinitely many solutions
of the equation 

(1)

(2) . . . , 2
5p

4
, 

3p

4
, 

11p

4
, 

19p

4
,  . . . .

 . . . , 2
7p

4
, 

p

4
, 

9p

4
, 

17p

4
,  . . . 

sin x 5 !2/2:
y 5 !2/2,y 5 sin x

sin x 5 !2/2.

Trigonometric Equations

1

–1

– π
4

7 – π
4

5 π
4

3 π
4

9 π
4

11 π
4

17 π
4

19π
4

y

x

y = sin x

y = √2
  2

FIGURE 3.6.1 Graphs of and y 5 !2
2y 5 sin x

Note that in each of the lists (1) and (2), two successive solutions differ by 
This is a consequence of the periodicity of the sine function. It is common for trigono-
metric equations to have an infinite number of solutions because of the periodicity of
the trigonometric functions. In general, to obtain solutions of an equation such
as it is more convenient to use a unit circle and reference angles rather
than a graph of the trigonometric function. We illustrate this approach in the follow-
ing example.

Using the Unit Circle

Find all real numbers x satisfying 

Solution If , the reference angle for x is radian. Since the value of
sin x is positive, the terminal side of the angle x lies in either the first or second quad-
rant. Thus, as shown in FIGURE 3.6.2, the only solutions between 0 and are

Since the sine function is periodic with period all of the remaining solutions can be
obtained by adding integer multiples of to these solutions. The two solutions are

(3)x 5
p

4
1 2np   and   x 5

3p

4
1 2np, 

2p

2p,

x 5
p

4
   and   x 5

3p

4
.

2p

p/4sin x 5 !2/2

sin x 5 !2/2.

EXAMPLE 1

sin x 5 !2/2,

2p 5 8p/4.

π
4

π
4

3

√2
  2

√2
  2

→ →

FIGURE 3.6.2 Unit circle in Example 1
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3.6 Trigonometric Equations 169

where n is an integer The numbers that you see in (1) and (2) correspond, respectively,
to letting and in the first and second formulas in (3). 

When we are faced with a more complicated equation, such as

the basic approach is to solve for a single trigonometric function (in this case, it would
be by using methods similar to those for solving algebraic equations.

Solving a Trigonometric Equation by Factoring

Find all solutions of 

Solution We first observe that this is a quadratic equation in and that it factors as

This implies that either

The first equation has no solution since As we see in FIGURE 3.6.3 the two
angles between 0 and for which equals are

Therefore, by the periodicity of the sine function, the solutions are

where n is an integer.

Checking for Lost Solutions

Find all solutions of

(4)

Solution In order to work with a single trigonometric function, we divide both sides
of the equation by to obtain

(5)

Equation (5) is equivalent to (4) provided that We observe that if 
then as we have seen in Section 3.2, for n an integer.
By the sum formula for the sine,

see (7) of Section 3.4 0

we see that these values of x do not satisfy the original equation. Thus we will find all
the solutions to (4) by solving equation (5).

Now implies that the reference angle for x is radian. Since
, the terminal side of the angle of x radians can lie either in the first or in

the third quadrant, as shown in FIGURE 3.6.4. Thus the solutions are

x 5
p

4
1 2np    and    x 5

5p

4
1 2np,

tan x 5 1 . 0
p/4tan x 5 1

sin a
p

2
1 npb 5 sin 

p

2
 cos np 1 cos 

p

2
 sin np 5 (21)n

2 0,

TTT
(21)n

x 5 (2n 1 1)p/2 5  p/2 1 np,
cos x 5 0,cos x 2 0.

tan x 5 1.

cos x

sin x 5 cos x.

EXAMPLE 3

x 5
p

6
1 2np   and   x 5

5p

6
1 2np,

x 5
p

6
   and   x 5

5p

6
.

1
2sin x2p

0 sin x 0 # 1.

sin x 5
3

2
   or   sin x 5

1

2
.

(2 sin x 2 3)(2 sin x 2 1) 5 0.

sin x,

4 sin2
 x 2 8 sin x 1 3 5 0.

EXAMPLE 2

sin x)

4 sin2 x 2 8 sin x 1 3 5 0,

n 5 2n 5 21, n 5 0, n 5 1,

,
, and so on. In general,

where n is an integer.cos np 5 (21)n,
cos 3p 5 21

cos 2p 5 1,cos 0 5 1, cos p 5 21

π
6

π
6

5

1
2

1
2 → →

FIGURE 3.6.3 Unit circle in 
Example 2

FIGURE 3.6.4 Unit circle in 
Example 3

π
4 π

4

π
4

5

π
4

5

x =

x =
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where n is an integer. We can see from Figure 3.6.4 that these two sets of numbers can
be written more compactly as

where n is an integer.

Losing Solutions When solving an equation, if you divide by an expression con-
taining a variable, you may lose some solutions of the original equation. For example,
in algebra a common mistake in solving equations such as is to divide by x to obtain

But by writing as or we see that in fact x 5 0
or x 5 1. To prevent the loss of a solution you must determine the values that make the
expression zero and check to see whether they are solutions of the original equation.
Note that in Example 3, when we divided by we took care to check that no solutions
were lost.

Whenever possible, it is preferable to avoid dividing by a variable expression. As
illustrated with the algebraic equation this can frequently be accomplished by
collecting all nonzero terms on one side of the equation and then factoring (something
we could not do in Example 3). Example 4 illustrates this technique.

Solving a Trigonometric Equation by Factoring

Solve (6)

Solution To avoid dividing by we write the equation as

and factor:

Thus either

Since the cosine is zero for all odd multiples of , the solutions of are

where n is an integer.
In the second equation we replace by from the double-angle

formula for the sine function to obtain an equation with a single trigonometric function:

Thus the reference angle for is Since the sine is negative, the angle must be
in either the third quadrant or the fourth quadrant. As FIGURE 3.6.5 illustrates, either

2x 5
4p

3
1 2np    or    2x 5

5p

3
1 2np.

2xp/3.2x

sin 2x 1
!3

2
5 0     or    sin 2x 5 2

!3

2
.

sin 2x2 sin x cos x

x 5 (2n 1 1)
p

2
5

p

2
1 np,

cos x 5 0p/2

cos x 5 0    or    2 sin x cos x 1
!3

2
5 0.

 cos x a2 sin xcos x 1
!3

2
b 5 0.

 2 sin x cos2 x 1
!3

2
 cos x 5 0

cos x,

2 sin x cos2 x 5 2
!3

2
 cos x.

EXAMPLE 4

x2 5 x,

cos x,

x(x 2 1) 5 0x2 2 x 5 0x2 5 xx 5 1.
x2 5 x

x 5
p

4
1 np,

This also follows from the fact that tan x is
-periodic.p

See (15) in Section 3.4.

π
3

4

π
3

5

π
3

42x =
π
3

52x =

FIGURE 3.6.5 Unit circle in
Example 4
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3.6 Trigonometric Equations 171

Dividing by 2 gives

Therefore, all solutions of (6) are

where  is an integer.

In Example 4 had we simplified the equation by dividing by and not checked
to see whether the values of x for which satisfied equation (6), we would have
lost the solutions , where is an integer.

Using a Trigonometric Identity

Solve 

Solution We observe that the given equation involves both the cosine of x and the
cosine of 2x. Consequently, we use the double-angle formula for the cosine in the form

See (16) of Section 3.4

to replace the equation by an equivalent equation that involves cos x only. We find that

Therefore, and the solutions are

where n is an integer.

So far in this section we have viewed the variable in the trigonometric equation as
representing either a real number or an angle measured in radians. If the variable rep-
resents an angle measured in degrees, the technique for solving is the same.

Equation When the Angle Is in Degrees

Solve , where is an angle measured in degrees.

Solution Since the reference angle for is and the angle must
be in either the second or the third quadrant. FIGURE 3.6.6 illustrates that either 
or Any angle that is coterminal with one of these angles will also satisfy

These angles are obtained by adding any integer multiple of to 
or to 

where n is an integer. Dividing by 2 the last line yields the two solutions

Extraneous Solutions The next example shows that by squaring a trigonometric
equation we may introduce extraneous solutions. In other words, the resulting equation
after squaring may not be equivalent to the original.

u 5 60° 1 180°n   and   u 5 120° 1 180°n.

2u 5 120° 1 360°n  or  2u 5 240° 1 360°n,

240°:
120°360°cos 2u 5 21

2.
2u 5 240°.

2u 5 120°
2u60°2ucos 2u 5 21

2,

ucos 2u 5 21
2

EXAMPLE 6

x 5 (2n 1 1) 
p

2
5

p

2
1 np,

cos x 5 0,

3 cos2 x 2 (2 cos2 x 2 1) 5 1    becomes    cos2 x 5 0.

dcos 2x 5 2 cos2 x 2 1

3 cos2 x 2 cos 2x 5 1.

EXAMPLE 5

nx 5 p/2 1 np

cos x 5 0
cos x

n

x 5
p

2
1 np, x 5

2p

3
1 np, and x 5

5p

6
1 np,

x 5
2p

3
1 np    or    x 5

5p

6
1 np.

2   = 240°

240°

120°

θ

2   = 120°θ

FIGURE 3.6.6 Unit circle in 
Example 6
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Extraneous Roots

Find all solutions of where is an angle measured in degrees.

Solution The equation does not factor, but we see that if we square both sides, we can use
a fundamental identity to obtain an equation involving a single trigonometric function:

See (2) of Section 3.4.

The values of in for which are

Since we squared each side of the original equation, we may have introduced extraneous
solutions. Therefore, it is important that we check all solutions in the original equation.
Substituting into , we obtain the true statement 
But after substituting we obtain the false statement Therefore,

is an extraneous solution and is the only solution in the interval 
Thus, all the solutions of the equation are given by

where n is an integer. For these are the angles that are coterminal with 

Recall from Section 1.5 that to find the x-intercepts of the graph of a function
we find the zeros of f, that is, we must solve the equation The

following example makes use of this fact.

Intercepts of a Graph

Find the first three x-intercepts of the graph of on the positive x-axis.

Solution We must solve that is, It follows that either
or 

From we obtain , where n is an integer, or where 
is an integer. From we find where n is an integer. Then for

gives whereas for gives
respectively. Thus the first three x-intercepts on the positive 

x-axis are and 

Using Inverse Functions So far all of the trigonometric equations have had
solutions that were related by reference angles to the special angles ,
or If this is not the case, we will see in the next example how to use inverse trigono-
metric functions and a calculator to find solutions.

Solving Equations Using Inverse Functions

Find the solutions of in the interval 

Solution We recognize that this is a quadratic equation in Since the left-hand
side of the equation does not readily factor, we apply the quadratic formula to obtain

cos x 5
3 6 !41

8
.

cos x.

[0, p].4 cos2 x 2 3 cos x 2 2 5 0

EXAMPLE 9

p/2.
0, p/6, p/4, p/3

(3p/2, 0).(p/2, 0), (p, 0),
x 5 p/2 and x 5 3p/2,

x 5 p/2 1 npn 5 0 and n 5 1,x 5 p,x 5 np/2n 5 2,
x 5 p/2 1 np,cos x 5 0,

nx 5 np/2,2x 5 npsin 2x 5 0,
cos x 5 0.sin 2x 5 0

sin 2x cos x 5 0.f (x) 5 0,

f (x) 5 sin 2xcos x

EXAMPLE 8

f (x) 5 0.y 5 f (x)

0°.n 2 0,

a 5 0° 1 360°n 5 360°n,

[0°, 360°).a 5 0°180°
1 1 0 5 21.a 5 180°,

1 1 0 5 1.1 1 tan a 5 sec aa 5 0°

a 5 0°    and    a 5 180°.

tan a 5 0[0°, 360°)a

 tan a 5 0.
 2 tan a 5 0

 1 1 2  tan a 1 tan2 a 5 1 1 tan2 a

d 1 1 2 tan a 1 tan2 a 5 sec2 a

 (1 1 tan a)2 5 (sec a)2

a1 1 tan a 5 sec a,

EXAMPLE 7

172 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY
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3.6 Trigonometric Equations 173

At this point we can discard the value because cannot be
greater than 1. We then use the inverse cosine function (and the aid of a calculator) to
solve the remaining equation:

Of course in Example 9, had we attempted to compute with
a calculator, we would have received an error message.

cos21[ (3 1 !41 )/8]

cos x 5
3 2 !41

8
   which implies   x 5 cos21 a

3 2 !41

8
b < 2.01.

cos x(3 1 !41)/8 < 1.18,

3.6

In Problems 1–6, find all solutions of the given trigonometric equation if x represents
an angle measured in radians.

1. 2.
3. 4.
5. 6.

In Problems 7–12, find all solutions of the given trigonometric equation if x represents
a real number.

7. 8.
9. 10.

11. 12.

In Problems 13–18, find all solutions of the given trigonometric equation if represents
an angle measured in degrees.

13. 14.
15. 16.
17. 18.

In Problems 19–46, find all solutions of the given trigonometric equation if x is a real
number and is an angle measured in degrees.

19. 20.
21. 22.
23. 24.
25. 26.
27. 28.
29. 30.
31. 32.
33. 34.
35. 36.
37. 38.

39. 40.

41. 42.

43. 44.

45. 46. cos u"1 1 tan2u 5 1cos u 2 !cos u 5 0

sin x 1 !sin x 5 0
Ä

1 1 2 sin x

2
5 1

sin x 1 cos x 5 0sin u 1 cos u 5 1

1 1 cos u

cos u
5 2sec x sin2x 5 tan x

tan4 u 2 2sec2 u 1 3 5 0sin4 x 2 2 sin2 x 1 1 5 0
sin 2u 1 2 sin u 2 2 cos u 5 2cos 2u 5 sin u

cos 2x 1 sin2 x 5 1sin 2x 1 sin x 5 0
csc (u/3) 5 21cot (x/2) 5 1
tan 4u 5 212 sin 3u 5 1
sec 2x 5 2cos 2x 5 21
2 sin2u 1 (2 2 !3)sin u 2 !3 5 0cot2

 u 1 cot u 5 0
2 sin2u 2 sin u 2 1 5 02 cos2 u 2 3 cos u 2 2 5 0
tan2x 1 (!3 2 1)tan x 2 !3 5 03 sec2 x 5 sec x
2 sin2x 2 3 sin x 1 1 5 0cos2 x 2 1 5 0

u

2cos u 1 !2 5 0sec u 5 22
!3 sin u 5 cos u1 1 cot u 5 0
2sin u 5 !2csc u 5 2!3/3

u

!3 cot x 5 12csc x 5 1
!3 sec x 5 2tan x 5 0
2 sin x 5 21cos x 5 21

csc x 5 2cot x 5 2!3
tan x 5 21sec x 5 !2
cos x 5 2!2/2sin x 5 !3/2

Exercises Answers to selected odd-numbered problems
begin on page ANS-11.
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174 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

In Problems 47–54, find the first three x-intercepts of the graph of the given function
on the positive x-axis.

47. 48.

49. 50.

51. 52.

53. 54.
[Hint: Write .]

In Problems 55–58, by graphing determine whether the given equation has any solutions.

55. [Hint: Graph and on the same set of axes.]
56.
57.
58.

In Problems 59–64, using a inverse trigonometric function find the solutions of the
given equation in the indicated interval. Round your answers to two decimal places.

59.
60.
61.
62.
63.
64.

Miscellaneous Applications

65. Isosceles Triangle From Problem 59 in Exercises 3.4, the area of the isosceles
triangle with vertex angle as shown in Figure 3.4.4 is given by If
the length x is 4, what value of will give a triangle with area 4?

66. Circular Motion An object travels in a circular path centered at the origin with
constant angular speed. The y-coordinate of the object at any time t seconds is
given by At what time(s) does the object cross the x-axis?

67. Mach Number Use Problem 57 in Exercises 3.4 to find the vertex angle of the
cone of sound waves made by an airplane flying at Mach 2.

68. Alternating Current An electric generator produces a 60-cycle alternating cur-
rent given by where I(t) is the current in amperes at t
seconds. Find the smallest positive value of t for which the current is 15 amperes.

69. Electrical Circuits If the voltage given by is impressed on
a series circuit, an alternating current is produced. If volts, 
radians per second, and when is the voltage equal to zero?

70. Refraction of Light Consider a ray of light passing from one medium
(such as air) into another medium (such as a crystal). Let be the angle
of incidence and the angle of refraction. As shown in FIGURE 3.6.7,
these angles are measured from a vertical line. According to Snell’s
law, there is a constant c that depends on the two mediums, such that 

Assume that for light passing from air into a crystal, 

Find and such that the angle of incidence is twice the angle of refraction.uf

c 5 1.437.
sin f

sin u
5 c.

u

f

a 5 2p/6,
v 5 120pV0 5 110

V 5 V0 
sin (vt 1 a)

I(t) 5 30 sin 120p(t 2 7
36),

y 5 8 cos (pt 2 p/12).

u

A 5 1
2 
x2sin u.u

tan4 x 2 3 tan2 x 1 1 5 0, (2p/2, p/2)
5 cos3 x 2 3 cos2 x 2 cos x 5 0, [0, p]
3 sin 2x 1 cos x 5 0, [2p/2, p/2]
tan2 x 1 tan x 2 1 5 0, (2p/2, p/2)
3 sin2 x 2 8 sin x 1 4 5 0, [2p/2, p/2]
20 cos2 x 1 cos x 2 1 5 0, [0, p]

cos x 1 x 1 1 5 0
cot x 2 x 5 0
sin x 5 x

y 5 xy 5 tan xtan x 5 x

3x 5 x 1 2x
f (x) 5 cos x 1 cos 3xf (x) 5 sin x 2 sin 2x

f (x) 5 1 2 2 cos ax 1
p

3
bf (x) 5 sin x 1 tan x

f (x) 5 1 1 cos pxf (x) 5 2 2 sec 
p

2
x

f (x) 5 2 cos ax 1
p

4
bf (x) 5 25 sin (3x 1 p)

FIGURE 3.6.7 Light rays in
Problem 70

AirIncident
ray φ

θ
Crystal Refracted

ray
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CHAPTER 3 Review Exercises 175

71. Snow Cover On the basis of data collected from 1966 to 1980, the extent of
snow cover S in the northern hemisphere, measured in millions of square
kilometers, can be modeled by the function

where w is the number of weeks past January 1.
(a) How much snow cover does this formula predict for April Fool’s Day?

(Round w to the nearest integer.)
(b) In which week does the formula predict the least amount of snow cover?
(c) What month does this fall in?

S(w) 5 25 1 21 cos 
p

26
 (w 2 5),

A. True/False__________________________________________________

In Problems 1–20, answer true or false.

1. If then and ___
2. In a right triangle, if then ___

3. ___

4. There is no angle t such that ___
5. ___
6. ___
7. is an x-intercept of the graph of ___
8. is a point on the graph of ___
9. The range of the function is ___

10. The graph of does not intersect the y-axis. ___
11. The line is a vertical asymptote for the graph of ___
12. If then ___
13. For the function the range is defined by ___
14. ___sin 20 x 5 2 sin 10x cos 10x

22 # y # 2.f (x) 5 22sin x,
tan x 5 0.3.tan (x 1 2p) 5 0.3,

y 5 tan x.x 5 p/2
y 5 csc x

 (2`, 21] x [1, ` ).y 5 csc x
y 5 cot x.(2p/3, 21/!3 )

y 5 3sin (px/2).(22, 0)
1 1 sec2 u 5 tan2 u

sin (2p 2 t) 5 2sin t
sec t 5 1

2.

sec (2p) 5 csc a
3p

2
b

cot u 5 60
11.sin u 5 11

61,
cos t 5 4.sin t 5 3tan t 5 3

4,

Review Exercises Answers to selected odd-numbered
problems begin on page ANS-11.

CHAPTER 3

Circular functions:
unit circle
central angle
reference angle

Periodic functions:
period of sine
period of cosine
period of tangent
period of cotangent
period of secant
period of cosecant

Graphs of trignometric functions:
cycle
amplitude
phase shift

Identities:
Pythagorean
odd-even

Special formulas:
addition
subtraction
double-angle
half-angle

Inverse trigonometric functions:
arcsine
arccosine
arctangent

Graphs of inverse trigonometric 
functions:

arcsine
arccosine
arctangent

Trigonometric equations

CONCEPTS REVIEW You should be able to give the meaning of each of the following concepts.
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176 CHAPTER 3 UNIT CIRCLE TRIGONOMETRY

15. The graph of is the graph of shifted units to
the right. ___

16. The graphs and are the same. ___
17. Since then ___
18. ___
19. The function is not periodic. ___
20. ___

B. Fill in the Blanks______________________________________________

In Problems 1–14, fill in the blanks.

1. If and then
___________.

2. The y-intercept for the graph of the function is ___________.

3. The period of the function is ___________.

4. The first vertical asymptote for the graph of to the right of the
y-axis is ___________.

5. The phase shift for the graph of is ___________.

6. If then ___________.

7. The amplitude of is ___________.

8. ___________.

9. The exact value of ___________.

10. The period of the function is ___________.
11. The fifth x-intercept on the positive x-axis for the graph of the function

is___________.

12. If is a point on the unit circle, then ___________.

13. If where then the exact values of

___________, ___________, ___________, and 

___________.
14. From the results in Problem 13, we find

___________ and ___________.

C. Review Exercises________________________________________________

In Problems 1–4, graph the given functions. Give the amplitude, the period, and the
phase shift where appropriate.

1. 2.

3. 4. y 5 24 cos a
1

4
x 2 pby 5 10 cos a23x 1

p

2
b

y 5 2
4

3
 cos xy 5 5(1 1 sin x)

tan 2x 5tan 
x

2
5

cos 2x 5

sin 2x 5cos 
x

2
5sin 

x

2
5

3p/2 , x , 2p,cos x 5 !2
3 ,

sin 2t 5P(t) 5 (21
3, 

2!2
3 )

y 5 sin px

y 5 tan 4x

arccos acos 
9p

5
b 5

cos a
p

6
2

5p

4
b 5

y 5 210 cos a
p

3
 xb

cos at 2
p

2
b 5sin t 5 1

6,

y 5 5 cos  (3x 2 4p)

y 5 tan ax 2
p

4
b

y 5 2 sin 
p

3
x

y 5 2sec(x 1 p)
cos  (u 1 v) 5

cos v 5 1/!5,  3p/2 , v , 2p,sin u 5 3
5, 0 , u , p/2,

arcsin (1
2) 5 30+

f (x) 5 arcsin x
tan 8p 5 tan 9p

arctan (1) 5 5p/4.tan (5p/4) 5 1,
y 5 23 cos (2x 2 p/2)y 5 3 sin (22x)

p/3y 5 sin 2xy 5 sin  (2x 2  p/3)
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CHAPTER 3 Review Exercises 177

In Problems 5–10, find all solutions of the given equation in the interval 

5. 6.
7. 8.
9. 10.

In Problems 11 and 12, find the solutions of the given equation in the interval
Round your solutions to two decimal places.

11. 12.

In Problems 13–20, find the indicated value without using a calculator.

13. 14.

15. 16. 
17. 18. 
19. 20.

In Problems 21 and 22, write the given expression as an algebraic expression in x.

21. 22.

In Problems 23–26, give two examples of the indicated trigonometric function such
that each has the given properties.

23. Sine function with period 4 and amplitude 6
24. Cosine function with period amplitude 4, and phase shift 
25. Sine function with period amplitude 3, and phase shift 
26. Tangent function whose graph completes one cycle on the interval 

In Problems 27–30, the given graph can be interpreted as a rigid nonrigid trans-
formation of the graph of and of the graph of Find an equation of
the graph using the sine function. Then find an equation of the same graph using the cosine
function.

27. 28.

29. 30.

y 5 cos x.y 5 sin x
/

(2p/8, p/8)
p/4p/2,

1
2p,

sec(tan21x)sin(arccos x)

arctan(cos p)sin(arccos ( 5
13))

cos(arccos 0.42)sin21(sin p)
cos(arcsin 

2
5)cot(cos213

4)
arcsin(21)cos21(21

2)

tan4 x 1 tan2 x 2 1 5 03 cos 2x 1 sin x 5 0

(2p/2, p/2).

tan x 2 3 cotx 5 2cos 4x 5 21
sin x 5 2 tan x4sin2x 2 1 5 0
cos x 2 sin x 5 0cos x sin x 2 cos x 1 sin x 2 1 5 0

[0, 2p].

ππ

y

x

1

–1
–

FIGURE 3.R.1 Graph for
Problem 27

ππ

y

x

1

–1

–

FIGURE 3.R.2 Graph for
Problem 28

π π

y

x

1

2

FIGURE 3.R.3 Graph for
Problem 29

ππ

y

x

–1
–

FIGURE 3.R.4 Graph for
Problem 30
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