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Introduction.
Some skeletal chemical equations, such as

CO + C02 + H2 = CH4 + H20

are known to have a variety of truly distinct balancings, several
of which describe various different chemical reactions which
have been observed. For example the balancings

CO + 3H2 -*  CH4 + H20
C02 + 4H2 — CH4 + 2H20
2CO + 2H2 CH4 + C02

of the aforementioned skeletal chemical equation are all
known (1) to occur during the synthesis of methane at various
temperatures between 280°C and 370°C in the presence of a

nickel catalyst. We will say that such original skeletal chemical
equations have a many parameter family of balancings. And
we will show how to calculate the number n of parameters
exactly. In the example above the number of parameters can

be shown to be equal to 2. A few more of the infinitely many
members of the 2 parameter family of balancings of the skel-
etal chemical equation above are

C0 + C024- 7H2 = 2CH4 + 3H20
2C0 + C02 + 10H2 = 3CH4 + 4H20
CO 4- 2C02 4- 11H2 = 3CH4 + 5H20

3C0 + C02 + 13H2 = 4CH4 + 5H20

Other skeletal chemical equations, such as

CH4 + 02 = C02 + H20

are known to have an essentially unique balancing. That
balancing is

CH4 + 202 = C02 + 2H20

It would be silly to regard other balancings, such as

2CH4 + 402 = 2C02 + 4H20

or

3CH4 + 602 = 3C02 + 6H20

or even

0CH4 4- 0O2 = oco2 4- 0H2O

as being essentially different from the first balancing. They
just say that, if you put 2 or 3 or 0 times as much in, you get 2
or 3 or 0 times as much out. Such skeletal chemical equations
are said to have a one-parameter family of balancings. This
terminology is synonomous with essentially unique bal-
ancing.

This paper was presented at the Symposium on the Goals of General
Chemistry, Part III, held during the 179th National Meeting of the
American Chemical Society in Houston, Texas, March 23-28, 1980.

Still other skeletal chemical equations, such as

(NH4)2S04 = NH4OH 4- S02

have no balancings at all, except the rather trivial-looking
balancing

0(NH4)2SO4 = ONH4OH + 0SO2

This is a shorthand way of saying that no reaction whatever
takes place if only some, or all, of the components appearing
in the original skeletal chemical equation are allowed to take
part. In this last case we say that the original skeletal chemical
equation has a zero-param eter family of balancings. In other
words, there is no nontrivial balancing.

Only the matrix method (described below) is powerful
enough to balance the skeletal chemical equation

H2 + Ca(CN)2 + NaAlF4 + FeS04 + MgSiOs + KI
+ H3P04 + PbCr04 + BrCl 4- CF2C12 4- S02

= PbBr2 + CrCl3 + MgC03 + KAl(OH)4 + Fe(SCN)3
+ PI3 + Na2Si03 + CaF2 + H20 (1)

Moreover, if shown the balancing (which can easily be ob-
tained by the matrix method)

88H2 + 15Ca(CN)a 4- 6NaAlF4 4- 10FeSO4 + 3MgSi03
+ 6K1 4- 2H3P04 + 6PbCr04 4- 12BrCl-+ 3CF2C!2 + 20SO2

= BPbBra + 6CrCla + 3MgC03 4- 6KA1(0H)4 + 10Fe(SCN)3
4- 2PI3 4- 3Na2Si03 4- 15CaF2 4- 79H20

nobody today has a method at his disposal, other than the
matrix method, capable of saying whether it is the only bal-
ancing of the foregoing original skeletal chemical equation.
The matrix method easily verifies that this is the only possible
balancing, however, in the process of finding it.

Again, of course, we speak of a one-parameter family of
balancings and we do not consider a balancing such as

880H2 4- 150Ca(CN)2 4- 60NaAIF4 4- 100FeSO4 4- 30MgSiO3
4- 60KI 4- 20H3P04 4- 60PbCrO4 4- I20BrCl 4- 30CF2C12 4- 200SOa

= 60PbBr2 4- 60CrCls 4- 30MgCO3 4- 60KA1(OH)4
4- KX)Pe(SCN);, 4- 20PIa + 30Na2SiOa 4- 150CaF2 4- 790HaO

to be essentially different from the first balancing. If you use
ten times as much of each reactant, you will obviously get ten
times as much of each product. The matrix method does more

than balance the given skeletal equation. It shows that—if you
choose any 19 or fewer of the 20 chemciat species above—it
is impossible to find a balanced chemical equation involving
only those 19 or fewer chemical species. The given List of 20
chemical species is all or nothing. If you want a reaction you
do it the way the above balancing indicates, or not at all.

This paper gives a completely general solution to the
chemical equation balancing problem. It is elementary in the
sense that it uses only the rudiments of algebra, no higher
mathematics, and no specifically chemical principles, other
than conservation of atoms and charges. Though trivial in
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small cases, it is hard to carry out by hand for big examples.
The example in eqn. (1) was originally done by hand before
computer programs had been written, but that was a tedious
job. Finally, the matrix method is far faster than any other
approach when implemented on a large computer. Many very
large examples of skeletal chemical equations (including eqn.
(1)) have been balanced on the computer. The run time (ex-
cluding a 1/2 second program compile time) has always been
less than a second when no more than 20 kinds of molecules
involving no more than 20 chemical elements are involved.

Using Matrices to Solve Mathematical Equations
Before balancing chemical equations we will have to solve

some mathematical equations. This section is a review and
upgrading of universally known high school mathematics
techniques for solving systems of homogeneous linear equa-
tions. Many readers may want to skip this section on a first
reading, and go immediately to the next section to get an idea
of what the method of this paper can accomplish. With this
in mind, readers can see the use of going through the three
examples immediately below. The idea behind them is to use
concrete instances of equations to show how the standard
techniques for solving systems of homogeneous linear equa-
tions lead to the Gauss-Jordan (2, 3) method of row reducing
a matrix to Hermite normal form (4). They also show how to
use Hermite normal form to produce a standard vector space
basis (2,3) for the collection of all solutions of the system.

to emphasize the fact that, no matter what values the unknowns a and
b take on, there is a corresponding solution list (x,y,z,a,b). If he lets
a - 1 and 6 = 0 then the solution is

x = 4, y = —2, z = —1, a = 1, 6 = 0

If hp lets a = 0 and 6 = 1 then the solution is

x = 3, y = —1, z = — 1, a = 0, 6 = 1.

It. is easy to see that these two assignments of values solve the original
system of equations. These two solutions are basic. He has only two
degrees of freedom, amounting to choice of a, followed by choice of
6. Letting one be 0 and the other be 1 is the simplest way to choose.
Nevertheless, there are many other solutions of the final system of
equations. And, of course, the solutions of the final system are the
same as the solutions of the original system. Example of other solu-
tions are

x = 30, y = —10, z = —10, o=0, 6 = 10; or

x = —2, y = 0, z = 1, a — 1. 6 = —2; or

x = 5 y = —3, 2 = —1, n = 2, 6 = —1.

The infinitely many solutions in question form a plane (i.e., a two
dimensional vector subspace) in the five-dimensional vector space
consisting of all lists (x,y,z,a,b) of five real numbers.

Example 2
The variable symbols x,y, z., a and 6 are no help, really, and cannot

be used by a computer. So let us redo the description of Example 1,
using just numbers and arrays, so that it can be programmed on a

computer. Start with the coefficient matrix

Example 1

Suppose somebody wants to solve the system

2x + 2y + 4z = 0
2 + a+6 = 0

y + 2a + 6 = 0

2 =

"2 2

0 0
0 1

4 0
1 1

0 2

0“
1

1

of the original system of equations. The original system of homoge-
neous linear equations in Example 1 is the same as the matrix equa-
tion

of three equations in five unknowns, x,y ,z,a,b. He observes only one

occurrence of x, which is a good sign. He can set out to remove y from
the first equation by subtracting two copies of the third equation from
it. This gives a new first equation of the form

2x + 4z - 4a - 26 = 0

2 2 4 0 0
0 0 111
0 10 2 1

Replacing the old first equation by the new first equation he gets the
equivalent, but simpler looking, system

2x + 42 - 4a - 26 = 0
z + a + 6 = 0

y + 2a + 6 = 0

Now x and y occur only once, which is good. To remove z from the first
equation he can subtract four copies of the second equation from it.
This yields the newer first equation

I^et us now use matrix language to express the solution process we
went through in Example 1. First replace ROW 1 of the matrix 2 by
ROW 1 — 2(ROW 3) to get the matrix

“2 0 4 -4 -2“
0 0 1 1 1

0 10 2 1

In this latter matrix, replace ROW 1 by ROW 1 - 4(ROW 2) to get
the matrix

2x — 8a — 66 = 0

Putting the newer first equation in place of the new, he gets the
equivalent, but even simpler looking, system

2x — 8a - 66
z + a + b

y + 2a + 6

Now the unknowns x, y, and 2 occur only once. At this point he can

pay a little attention to appearances. If he replaces the newer first
equation by half of itself, and interchanges the second and third
equations he gets the equivalent, and simplest possible in appearance,
system

x — 4a — 36 = 0

y + 2a + b = 0
z + a + 6=0

It can, of course, be written

2 0 0 -8 -6
0 0 1 1 1

0 10 2 1

Now, in the matrix immediately above, do two things. Replace ROW
1 by (1/2MROW 1), and interchange ROW 2 with ROW 3, to get

 T 00-4 -3'
0102 1

.001 1 i_

The matrix 4> has been gotten from the original matrix 2 by three
kinds of operations:

1) Replace a row by a nonzero multiple of itself;
2) Replace a row by a nonzero multiple of itself plus a multiple of

another row;
3) Interchange 2 rows.

This last matrix 4’ is in Hermite normal (4) form (i.e., reduced row
echelon form (2, 3, 5)). This means that

x = 4a + 36

y = -2a — 6

z = - a — 6

I. The first nonzero entry in any row is 1;
II. The first nonzero entry in a lower row is to the right of the first

nonzero entry in an upper row; and

Volume 59 Number 9 September 1982 729



III. If the first nonzero entry in ROW i occurs in COLUMN j, then
every other entry in COLUMN j is 0.

If 2 is an m by n matrix then a series of elementary row operations
of types 1,2, and 3 above will take 2 to an m by n matrix 4> in Hermite
normal form. 4> is said to be row equivalent (2, 3, 5) to the original
matrix 2. Moreover, 4> is unique. Almost any book on linear algebra
or matrix theory has a theoretical development of this material. There
are several elementary texts (2, 3), widely used in college freshman
courses, which contain a full treatment, replete with worked out ex-

amples, of Gauss-Jordan reduction to Hermite normal form.
But let us return to the matrix 2 and to its Hermite normal form,

the matrix 4*. Since elementary row operations produced $ from 2
it is well known (2,3, 5) that

10 0-4-3
0 10 2 1

0 0 1 1 1

we know that

(!)(*) + (0)(y) + (0)(z) + (-41(1) + (—3)(0) = 0

(0)(*) + (l)(y) + (0)(z) + (2)(1) + (1)(0) = 0
(0)(x) + (0)(y) + (l)(z) + (1)(1) + (0X0) = 0

and, hence, that

x = 4, -2, -1
*

y
z

a

_b_

if and only if

~x~

y
z

a

b

2 2

0 0
0 1

0 10
_0 0 1

'10 0-4 -3

“0"
0
0

,= e

where we use 6 for the column vector with all zero entries above. The
columns of the Hermite normal form 4> which contain first nonzero

entries of rows will be called slave columns. The rest will be called
master columns. In this example, columns 1, 2 and 3 are slave columns
(corresponding to the fact that the first three unknowns, x, y and z,
in the solution of the original system of equations were “forced” to
take on values determined by a “free" choice of a and b). The fourth
and fifth columns of 4> are master columns (because the last two un-

knowns, a and b, were considered to be free to take on any value).
Correspondingly the first three entries, x,y,z, of a solution vector

for this first basis vector, which is therefore equal to

Next let a = 0, b
_ 0_

1. Since we must have

'10 0-4 -3"
0 1 0
0 0 1

x

y
z

0
LL

we know that

UX*) + <0)(y) + (0)(z) + (—4)10) + (-3)(1) = 0

(0)(x> + (l)(y) + (0)(z) + (2)(0) + (1)(1) = 0

(OX*) + (0)(y) + (l)(z) + (1)(0)+ (!)(!)= 0

and, hence, that

x = 3, y = —1, z =-1

for this second basis vector, which is therefore equal to

y
z

a

b

are called slave entries and the last 2 entries, a ,b, are called master
entries. There are thus two degrees of freedom in picking solutions
to the original system of equations. But another way, there is a 2 pa-
rameter family of solutions to the system. In geometric language we

say that the solutions of the matrix equation above form a vector
space. Its dimension is the number of columns of ‘l1 minus the number
of nonzero rows of 4>. In this case its dimension is 5 — 3 = 2. The so-

lutions thus form a plane through the origin of the 5 dimensional
column-vector space. To describe this solution plane we first find 2
vectors which form a vector space basis (2, 3, 4, 5) for this solution
space. In other words we want 2 solutions

with the property that every other solution is a linear combination
(2, 3) of them, i.e., that it is of the form

solution vector =

x

y
z

a

_6J

+ <? z*
a*

l_6*_

px + qx*~
py + qy*
pz + qz*
pa + qa*

for some choice of real numbers p and q. A standard, easy, informative
way (2,3,4,5) to pick a vector space basis vector is to let one master
variable be 1, let all the other master variables be 0, and then find out
what each slave variable must be to satisfy the matrix equation. Doing
this with each master variable in turn provides the vector space basis.
So let a = 1,6=0. Since we must satisfy the equation

Examples of other solutions are found by building vectors of the form
pa + (//3 for various choices of p and q. Three cases in point are

0a + 10/3 = 0

la + (-2)13 = 1

2a + (-1)13= 2

4
-2
-1

1

0.

4~|
-2
-1

1

0.

4'
-2
-1

1

0J

+ 10

' 3'
-1
-1

0
.

1

+ (-2)

+ (-l)

3~
— 1

-1
0

. 1_
"

3"
-1
-1

0
_ 1_

30'
-10
-10

0

ioj
__2_

0
1

1

2_
“ 5"

-3
-1

2
_-l_

All these solutions are matrix descriptions of the solutions given at
the end of Example 1. The general solution vector is, of course, of the
form

pa + q(S = p

4'
-2
-1

1

0_J

+ q

r
-i
-l

o
L i.

4p + 3<j~

—2p - q
-p- q

P

for any numbers p and q.
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Example 3
Consider the system

which is the s

4uj 4- 2z = 0
w + y =0

2x + 2y + 2=0

0 0
= 8

The Gauss-Jordan reduction process (2, 3) applied to

4 0 0
1 0 1

0 2 2

subtracts four copies of ROW 2 from ROW 1 to get a new ROW 1 and,
thus, a new matrix

0 0-4
1 0 1

0 2 2

In this latter matrix, ROW 2 is replaced by ROW 1 plus 4 copies of
ROW 2 to yield

0 0-4
4 0 0
0 2 2

In this third matrix, ROW 3 is replaced by ROW 1 plus 2 copies of
ROW 3 to produce

“0 0 -4 2“
4 0 0 2

0 4 0 4

Now that several columns have been pretty well emptied out, it is time
to spruce things up a bit. This is done by multiplying ROW 1 by —1/4,
ROW 2 by 1/4, and ROW 3 by 1/4. The resulting matrix is

“0 0 1 -1/2"
10 0 1/2

_0 1 0 1

rtn

8 =

0
0

_0_

A vector space basis for this 1 dimensional vector space consists of a

single nonzero vector. Evidently w,x, and y are slave variables (since
the first three columns of $ are slave columns). So we consider the
master variable z and let 2 = 1. To solve

y
,1J <-

o o
mw~

x

y
Li.

= 8

is the same as to solve

1 0 0
0 1 0

L0 0 1

1/2

-1/2.

= 8

which means

(l)(ia) + (0){*) + (0)(y) + (1/2)(1) = 0

(0)(uj) + (l)(x) + (0)(y) + (1)(1) = 0
(0)(x) + (0)(x) + (l)(y) + (-1/2)(1.) = 0,

and thus the vector

-1/2
-1

1/2
1

is a basis for the vector space of solutions of the original matrix
equation. Other members of this vector space are —50a, 2.71a and,
more generally,

-z/2"
—2

z/2
z

In other words (w,x,y,z) is a solution of the original system of linear
equations if and only if

w - -z/2, x - -z, y « z/2

-1/2

1

Interchanging ROW 1 and ROW 2 leads to where z is any number.

TOO 1/2
0 0 1 -1/2
0 10 1

Now, upon interchanging ROW 2 and ROW 3, we obtain the Hermite
normal form

d> =

1

0
0

0 0
1 0
0 1

1/2
1

—1/2
_

Sincehas 4 columns and 3 nonzero rows it is clear that the collection
of all solut ions X of

4>X = <t>

W
x

y
L Z .

1

0

.0

0 0
1 0
0 1

1/2
1

—1/2_

is a one-dimensional vector subspace of the four-dimensional space
consisting of all columns

Outline of the Matrix Method for Balancing Chemical
Equations

it is clear to anybody who thinks about the algebraic
method (6, 7) of balancing chemical equations that the
problem is to solve a system of homogeneous linear equations.
Various authors (8-10) have therefore pointed out that ma-

trices are valuable tools for balancing chemical equations.
They did not, use all the most appropriate mathematical
methods (especially module theory (//)) to analyze the solu-
tion, and gave short shrift to the question of what happens
when the balancings of the original skeletal chemical equation
make up a two (or more) parameter family. Hut they opened
up interesting theoretical approaches and their work may be
influential in the long run.

Example 4

The idea of the matrix method is to turn a skeletal chemical equa-
tion, such as

~w~

x

y
_z_

of four real numbers. In other words, there is one degree of freedom
in choosing solutions to the original system, i.e., there is a one-pa-
rameter family of solutions. In more geometric language, the solution
set is a line containing the zero vector (again symbolized by 0)

ch4 + o2 = co2 + h2o

(or, if you prefer, to turn merely any list of chemical species, such as

C02, CH). 02, H20) into a matrix 2. In this case the matrix is

2 =

CH4 02 C02
Too
I 0 1

0 2 2

h2o
2'
0
1

hydrogen
carbon
oxygen
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It is obtained by entering the number of atoms of a given element e

occuring in a given type of reagent molecule m into the matrix in the
row corresponding to e and the column corresponding to m. Thus,
reading down the first column of the matrix 2 above, we find that a

single molecule of methane consists of:

4 atoms of hydrogen;
I atom of carbon; and
0 atoms of oxygen.

<t> =

"1 0 0“
0 1 0
0 0 1

^0 0 0_

and observe that $ has 3 columns and 3 nonzero rows. Since 3 — 3 =

0 its kernel consists only of the zero vector 6, and there is only a

zero-parameter family of balancings of any original skeletal equation
such as

We then use Gauss-Jordan elimination by row reduction to bring
the original matrix 2 to Hermite (4) normal form $. Then we use
standard techniques (2-5) to find a vector space basis for the collec-
tion of all column vectors X such that = 8 (where, as above, 6 stands
for the column vector with 0 in every entry). This collection is called
the kernel (3) of '!>, or the null space (4) of 4>. For the matrix 2 above
it follows from Example 3 above that

10 0 ,1/2
0 10 1

.0 0 1 -1/2.
is the Hermite normal form of 2. Balancings of the original skeletal
chemical equation correspond to column vectors X which # right
annihilates, i.e., column vectors, such that the matrix product 3>\ is
equal to the zero column vector 8. For example if

it is clear in this example that 2A = 4>X = 8. Thus the kernel of 2 is
equal to the kernel of <b. The balancing corresponding to X is

1CH4 + 202 = 1C02 + 2H20

obtained by attaching the successive entries of X to the successive
molecules which identified the columns of 2, and then sorting the
terms with positive coefficients onto one side of the equations and
those with negative coefficients onto the other side (while stripping
off their negative signs in the process). This is a one-parameter family
of balancings because the kernel of d? is a 1 dimensional vector space.
This, in turn, is so (3) because d1 has 4 columns and 3 nonzero rows,
and 4 — 3 = 1. Balancings such as

(NH4)2S04 + NH4OH = S02

or

(NH4)2S04 = NH4OH + S02

This means that the only balancing is the trivial balancing
with all zero coefficients written down in the Introduction. In
other words no reaction involving only those three chemical
species can proceed. If you want some or all of them to take
part you must either provide more reactants or accept more

products (or both).

Example 6

Consider the problem of finding all reactions among hydrogen (H2),
carbon monoxide (CO), carbon dioxide (C02), methane (CH4) and
water (H20). We saw in Example 2 in the section on matrices that the
matrix

2 =

h2 h2o
'2 2

0 0
0 1

CH4
4
1

0

co2
0
1

2

has the Hermite normal form
^10 0

$=010
0 0 1

CO
0“
1

1

-3
1

1

hydrogen
carbon
oxygen

Since it has five columns and three nonzero rows, and 5 - 3 = 2, it has
a two-dimensional kernel. In other words, there is a two-parameter
family of balancings of the skeletal chemical equation

3CH4 + 602 = 3C02 + 6H20 H2 + H20 = CO + C02 -I- CH4
or

7CH4 + 1402 = 7C02 + 14H20
Six of the infinitely many column vectors X belonging to this two-
dimensional kernel are

merely repeat the first balancing on a larger scale, and so we regard
them as not essentially different from it. In vector space terms, the
first balancing shown is a vector space basis of the one-dimensional
vector space of all balancings. It is, in fact, a module basis {11) of the
kernel of $. hi other words, every balancing of the equation can be

gotten from X by multiplying it through by a whole number (i.e., an

integer).

Example 5
What reactions Involving only ammonium sulfate ((NH4)2S04),

ammonium hydroxide (NH4OHi and sulfur dioxide (S02) are possi-
ble? To ask the question is to form the matrix

(NH,)2S04
“8

,
_

2
“

4
_1

NH4OH
5
1

1

0

S02
cr
0
2
i_

hydrogen
nitrogen
oxygen
sulfur

To answer the question is to produce the Hermite normal form $ of
the matrix 2,

Evidently they correspond, respectively, to the balancings

H2 + C02 = H20 + CO (a)
3H2 + CO = H20 + CH4 (jS)
4H2 + C02 = 2H20 + CH4 (7)
2H2 + 2C0 = C02 + CH, (5)

2H20 + 4C0 = 3C02 + CH4 (t)
5H2 + 2C02 = 3H20 + CO + CH4 (jj)

The second, third, and fourth (/3, 7 and 5) were discussed at the be-
ginning of this paper. Any pair of these six vectors are a vector space
basis for the two-dimensional kernel of 2 (which is the same as the
kernel of $). However, while the vector space bases In',/?!, |.a,7l, |«,5}t
1)3,7! and 1/3,5) of the kernel of 2 are module bases (11) for the kernel
of 2, the vector space basis [7,6! of the kernel of 2 is not a module basis
for the kernel of 2. To make this clearer we note that it is easy to verify
the vector equalities

la + 1/3 = 7
(-l)a +1/3 = 5
(—3)« + 1/3 = f
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2a + 1 0 =
J)

(-l)a + l7 = 0
(—2)« +17=6
(—4)a + I7 — f

la + I7 = v

All coefficients above are whole numbers (integers). On the other
hand

(1/2)7 + (“1/2)5 = a

(1/2)7+ <1/2)5 = 0
(-1)7+ 25 = f

(3/2)7 + (-1/2)5 = v

In other words, every vector r which belongs to the kernel of—and
which has only integer entries—can be written in the form

xa + yfi = t

where the weights (numerical coefficients) x and y of the vectors a

and 0 are integers. Similarly |a,7i, (a,5), j0,7|, |0,5|. However, it is
sometimes (not always) necessary to use fractional weights v,w in
order to write

r = vy + w6

as a linear combination of the vectors 7 and 6.

Example 7

Suppose a chemist knows only that bradykinin (C50H73N [5O] 1) does
not contain any amino acids (12) other than arginine (C6H14N4O2),
glycine (C2H5NO2), phenylalanine (C9H11NO2), proline (C5H9NO2),
and serine (C3H7NO3). If he wants to know whether it has any cyclic
peptide bonds, he forms the matrix

do not isolate one bradykinin molecule and a few water molecules on
one side of the equation and keep ail five kinds of amino acid mole-
cules on the other side.

The chemist wants to know all hydrolyses in the kernel of X. In
other words, he wants to know all lists (a,6,c) of numbers such that
the linear combination

w ~ aa + bQ + c7

is a hydrolysis. Here he plays his hole care, the fact that («,0,7| is a
module basis. It enables him to ignore fractional coefficients and
concentrate exclusively on integer values of a, 6 and c. In other words
the seventh entry of w must be —1. Its second entry must be a negative
(or at least nonpositive) integer. These two conditions get one
bradykinin molecule and an as yet unknown number of water mole-
cules on the side specified by negative signs. The other five entries
of w must be positive (or at least nonnegative) integers to get the
amino acids onto the opposite side. He thus has the following seven
conditions

18a + 126 + 41c >0
a + 36 + 15c < 0

-13a - 96 - 32c > 0
-2a - 6 - 6c > 0

3a >0
6 >0

c = —1.

When he simplifies them by plugging in —1 for c, he gets the following
six inequalities

X =

c2hsno2
2
5
1

2

H20
0
2
0
1

C;iH7N03
3

7

1

3

C6H14N4O2
6

14
4
2

c5h9no2
5
9
1

2

and finds its Hermite normal form <t> by row reduction. In fact it is not
hard to verify that

3<1>;

'3 0 0 0
0 3 0 0
0 0 3 0

0 0 0 3

-18 -36
-1 -9
13 27

2 3

-123
-45

96
18

Since $ has seven columns, and four nonzero rows, and since 7 — 4 =

3, he knows that there is a three-parameter family of balancings of
the skeletal chemical equation

H20 = C2H5N02 + C3H7NO3 + C5H9N02 + CfiH,4N402
+ C9HnN02 + CsoC72NisOxi

CgHnNOs
9

11
1

2

C50H73N15O11
50 ~1 carbon
73
15

hydrogen
nitrogen

11J oxygen

18a + 126 >41
-a - 36 > -15

-13a - 96 > -32
—2a — b > —6

a > 0
6 > 0.

They readily yield two further inequaiities

-13a > -32, and -96 > -32

from which it is obvious that

—a > —2, and —6 > —3

As it stands this equation is chemically absurd. But the matrix
method automatically sorts terms onto the proper sides and deletes
terms which should not appear. The standard methods presented in
the previous section proceed from to the following vector space basis
of the kernel of X (i.e., the collection of all balancings of the original
skeletal chemical equation):

18
1

-13
-2

3
0
0

0 =

12
3

-9
-1

0
1

0

7 =

r 411
15

-32
-6

0
0
1

The vector space basis ja,0,7j of the kernel of X is, in fact, a module
basis (11). None of the members of the basis |a,0,7l correspond to a

hydrolysis of bradykinin. In other words, the three corresponding
balancings

I8C2H5NO2 + HaO + 3C5H9NO2 = 13C;,H7NO;i + 2C6HMN402 (a)
12CzHftN02 + 3HzO + C9H,,N02 = 9C3H7N03 + CgHxxNxO,, (/))
41C2H5NO2 + 15H20 + C50H73N1SOH = 32C3H7N03

+ 6CrHx4N402 (7)

(since a and b must be integers). It is now easy to check ail twelve
integer lists (a,6,c) such that

0 < a < 2, and 0 < 6 < 3, and c = —1

against the original seven conditions and verify that only the list

(a,6,c) = (1,2, — 1)

satisfies all seven of them. Because he has the power of a module basis
(11) at his disposal, not just that of a vector space basis, he is thus
assured that « = la + 20 — I7 is the only possible hydrolysis bal-
ancing of the original skeletal chemical equation. In other words the
hydrolysis

C2HsN02 + C3H7NO3 + 2C6Hx4N402 + 3C5H9N02
+ 2C9H„N02 = 8H20 + C5oH73N15On

of bradykinin is unique. This is, of course, the empirically discovered
relationship (12). Since the balancing above involves nine amino acid
molecules and only eight water molecules it is clear that no cyclic
peptide bond is present. Note, finally, that the initial assumption was

only that no amino acids other than arginine, glycine, phenylalanine,
proline, and serine were present in bradykinin. No one of the five was

actually assumed to be present. But the analysis above proved that
all were, in fact, present.
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Example 8

Somebody who knows that gramicidin-S (C6oH92Ni2Oio) contains
no amino acids (12) other than leucine (CgHi3N02), ornithine
(C5H12N2O2), phenylalanine (C9H11NO2), proline (C5H9NO2) and
valine (C5H11NO2) can go quickly from

complete answer. Virtually every unconstrained chemical
equation balancing problem which has ever been posed to date
is mathematically trivial, although it is now possible to for-
mulate nontrivial unconstrained equation balancing problems

2 =

c6h9no2
5
9
1

L2

P
R
O

c5h„no2
5

11
1

2

V
A
L

CsHmNOa
6

13
1

2

L
E
U

C9Hi,N02
9

11
1

2

P
H
E

CsHi2N202
5

12
2
2

0
R
N

CeoHBiNisOu
60
92
12
10

P
R
0
T
E
1

N

H.O
O'
2

0

carbon
hydrogen
nitrogen

1J oxygen

W
A
T
E
R

to

2$ :

2
0
0

LO

8
-14

8
0

40
-114

70
14

-2“
9

-5
-1-

to the module basis

Thus, there is a three-parameter family of solutions to this equation
balancing problem. A manipulation of inequalities analogous to the
one in Example 7 then leads to only four possible hydrolysis balancing
vectors

Counting water molecules and amino acid molecules, we see that a

corresponds to three cyclic peptide bonds, to 2,7 to 1 and 5 to none.
No leucine, ornithine or phenylalanine occurs in a. No proline or

valine occurs in &. The empirically observed (12) hydrolysis of
gramicidin-S is 7. In other words, there are four possible solutions to
our constrained problem. The only one so far observed in nature is
the one corresponding to 7, namely

(i.e., problems involving very large numbers of chemical
species). It has, of course, always been a nontrivial matter to
find all suitably constrained solutions—such as all hydrolysis
balancings—of a balancing problem. A computer program to
do this should be available next year.

The proper place for chemical reasoning is before the
equation balancing process and after it, not during it. Be-
forehand, chemical insight can be used to come up with a good
list of chemical species to examine with a view to what reac-
tions have the entries on the list as reactants or products.
Afterwards, if a two or more parameter family of balancings
is found, it then is necessary to decide which balancing pro-
vides—or which few balancings provide—an appropriate
description of the reaction which takes place under the given
conditions of temperature, pressure, incident and excident
radiation, catalysts, etc.
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