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We study equilibrium binding agreements, the coalition structures that form
under such agreements, and the efficiency of the outcomes that result. We analyze
such agreements in a context where the payoff to each player depends on the
actions of all other players. Thus a game in strategic form is a natural starting
point. Unlike the device of a characteristic function, explicit attention is paid to the
behavior of the complementary set of players when a coalition blocks a proposed
agreement. A solution concept and its applications are discussed. Journal of
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1. INTRODUCTION

The aim of this paper is to study equilibrium binding agreements, the
coalition structures that form under such agreements, and the efficiency of
the outcomes that result. The approach that we take is in the spirit of
cooperative game theory, in the sense that the concept of “blocking” by a
coalition is one of the primitive features of our analysis. A companion
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paper (Ray and Vohra [28]) studies an alternative theory based on
bargaining.

Our work is motivated by several considerations. First, we shall argue
that a satisfactory description of what constitutes free and unrestrained
negotiation, unhampered by the inability to write agreements that are
binding on all agents, does not appear to exist in the literature. Our paper
takes a step in the direction of a precise concept.

Our second consideration is of central concern to us. It appears to be a
matter of consensus among economists that if binding agreements can be
written in the absence of informational imperfections, then all the gains
from cooperation will indeed be exploited. The outcome must be Pareto-
optimal. The argument goes back at least to Coase [11], and finds explicit
expression in textbooks such as Milgrom and Roberts [24]. Indeed, in the
presence of transferable utility, the assertion of ubiquitous efficiency tri-
vially implies that the aggregate surplus (and the overall agreement, under
mild conditions) will be independent of the assignment of rights to various
parties. It is in this latter form that the Coase Theorem is well known. The
theory that we develop does not support this argument.' Both in general
situations and in natural economic environments, we shall use our concept
to demonstrate the existence of robust inefficient outcomes. The possibility
of such inefficiency stems both from the possible intervention of coalitions
in the negotiation process, as well as from our explicit consideration of
widespread externalities across players (and therefore across coalitions).

Finally, we are interested in the coalition structures that endogenously
form in the process of writing agreements.

We analyze such agreements in a model where the payoff to a player
depends on the actions of all the others. Thus, the natural, primitive
framework to consider is a game in strategic or normal form. Cooperative
equilibrium notions such as the core and the bargaining set study binding
agreements through the characteristic function form. If the actions of the
players outside a coalition do not affect the payoffs to the members of
the given coalition, then the characteristic function form is appropriate.” The
standard approach to the problem in normal form (due to Aumann [1],
see also Scarf [31]) is to convert the normal form game into characteristic
function form, and analyze the core of the cooperative game so induced.
There are several options to choose from in making such a conversion. But,
in general, the specific conversions used do not enjoy obvious consistency
properties. Consider, for instance, the notion of the a-core. This notion

! Because of some restrictions that we impose on coalition formation, it does not demolish
it entirely either.

% Indeed, in this special case our solution concept does coincide with the core of a coalition
structure.
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presumes that when a coalition deviates, it does not expect to receive more
than what it does when members of the complementary coalition act to
minimax this coalition’s payoffs. There is no reason why the complemen-
tary coalition should behave in this bloodthirsty fashion, and there is no
reason for the deviating coalition to mnecessarily expect or fear such
behavior.?

The easiest way to see the problem is to consider the example of a
Cournot duopoly. Here, the a-core is the set of a// individually rational
Pareto optimal allocations. The reason is simple: under weak assumptions,
one player can always be pushed to the point where it is not possible for him
to earn any profits. But it should be obvious that any agreement that yields
a player less than his Cournot—Nash payoff cannot constitute a binding
agreement: by breaking off negotiations, this payoff is what he can credibly
expect.

Matters are, of course, far more complicated when there are more than
two players and non-singleton subcoalitions might form. One ingredient
of the theory to follow will be the idea of noncooperative play across
coalitions in a coalition structure.

Our discussion of the Cournot duopoly hints at a second crucial feature
of our equilibrium notion. This is an explicit consideration of consistency.
When a coalition deviates it should not take as given the strategies of
its complement, nor should it fear the worst. It should look ahead to a
resulting “equilibrium” that its actions induce.* Suppose that a proposal is
made for N, the grand coalition, to which a subcoalition S objects. In the
light of the construction mentioned above, this translates into: in the non-
cooperative environment induced by the deviation of S, namely, the coali-
tion structure {S, N— S}, S can, in “equilibrium”, be better off relative to
the original proposal. Two considerations are crucial in determining what
the resulting “equilibrium” will be after S deviates:

(1) S may break up even further.
(2) N—S may break up even further.

The former would suggest that the original objection of S was not
“credible,” since S is itself vulnerable to further defections. In the context
of characteristic function cooperative games, this issue has received
attention (see Ray [26], Dutta and Ray [13, 14], Mas-Colell [23], and
Dutta, Ray, Sengupta and Vohra [15]). The noncooperative analogue of
this problem has been analyzed in Bernheim, Peleg and Whinston [4].

3 A similar conceptual criticism applies to the f-core and the Strong Nash equilibrium.
4 The phrase “equilibrium” will, of course, be given a precise meaning in the formal analysis
to follow.
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A general taxonomy of consistency approaches, relating them to the defini-
tion of a vIN-M stable set, has been described by Greenberg [17].

However, the latter consideration (2), namely that the complementary
coalition(s) may also break up, introduces entirely new features, as we shall
see later in this paper. For cooperative games in characteristic function
form this consideration is absolutely irrelevant to what S can achieve, and
so its implications are assumed away. In refinements of Nash equilibria
such as Bernheim, Peleg and Whinston [4], this consideration does not
arise because the deviating coalition takes the strategy vector of the comple-
ment as given. Indeed, as we argue below (Section 3), it is precisely this dif-
ference in specification that lies at the heart of the distinction between a
binding agreement and a coalition-based refinement of Nash equilibrium.

For a more complete discussion of the relevant literature, see Section 3.
In the remainder of this introduction, we explain the concept that we use,
and summarize the main results of the paper.

We must state at the outset that our treatment is limited by the assump-
tion that agreements can be written only between members of an existing
coalition; once a coalition breaks away from a larger coalition it cannot
forge an agreement with any member of its complement. Thus, deviations
can only serve to make an existing coalition structure finer—never coarser.
This is also the assumption in the definition of a coalition proof Nash equi-
librium. It must be emphasized that an extension of these notions to the
case of arbitrary blocking is far from trivial.®

With this in mind, consider the following story. Initially, all the players
are gathered together in a grand negotiation room. In the course of their
deliberations, subsets of these players might irrevocably leave (or threaten
irrevocable departure). Each defecting coalition is now cloistered in its own
negotiation room. Players in a single room may cooperatively choose (and
having chosen, enforce) a strategy vector among themselves. But they must
do so independently of what the players in the other rooms will do. Indeed,
this last postulate is taken as a defining feature of coalitional structure.

Of course, in the case of the grand coalition (where all negotiations are
presumed to “begin”), this last consideration is empty. Nevertheless, it is
necessary to describe what happens in all other coalition structures, to
understand what it is that the grand coalition can achieve.

Therefore, each player must look ahead and try to predict the behavior of
other players, for every possible assignment of players to negotiation rooms.
It is well-known that such introspection does not guarantee Nash-like

5> For discussions in other contexts, see, for example, Chakravorti and Kahn [8], Dutta
et al. [15], and Greenberg [17]. A theory based on noncooperative coalitional bargaining
may also throw some light on the matter: see Bloch [ 5] and Ray and Vohra [28]. A forth-
coming paper will take up these issues explicitly in the blocking context.
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behavior (Bernheim [3], Pearce [25]). We abstain from these considera-
tions as they lead us far afield of our program, and suppose that there is
not only common knowledge, but common beliefs regarding outcomes. We
presume, then, that these assignments will indeed lead to Nash-like play
across coalitions, with players in the same room playing (vector) best
responses to the (commonly known) strategies of the others.® With these
outcomes internalized by all players, negotiations may proceed.

Suppose that a proposal (strategy vector) x is under discussion by the
grand coalition, and must be collectively accepted or rejected the next day.
People are free to intermingle and discuss the proposal, individually or in
groups. Suppose now, that a coalition S (we shall call it the leading per-
petrator in our formal definition) understands that it can actually do better
than x, provided that a particular coalition structure forms, and a strategy
vector y is played. The question is: what are the minimum requirements
that need to be fulfilled before S can actually convince all concerned that
such a structure might indeed come into existence?

First, it must be the case that under this coalition structure, y satisfies
the best response property: no coalition can do (Pareto) better than play
their piece of y, given that all other coalitions are doing the same.

Second, the strategy vector y under this new coalition structure must
itself be immune to the kind of foul play that S is currently plotting against
the grand coalition. No new coalition 7 must be able to perpetrate a
further reorganization of the coalitional structure. This is the requirement
of consistency (see (1) and (2) above).

Third, each of the other coalitions that are needed to form the new struc-
ture have the option to not do what S is suggesting they will do. In the
formal definitions, these coalitions will be referred to as (secondary) per-
petrators. These secondary perpetrators (if there are any)’ must visualize,
independently, the consequences of not having defected. This must have
two implications. First, the “intermediate” coalition structure thereby
achieved must in itself be unstable, just as the grand coalition is currently
in danger of being. Second, at least one of the coalitions that are respon-
sible for this instability must be one of the secondary perpetrators that are
contemplating this counterfactual, and in its blocking it must use precisely
the coalition structure suggested by S.

¢ There is only one additional mild condition that needs to be met. It is that each coalition
must be aware of any defections that might occur from that coalition, and that this ability (to
be aware) is commonly known. This is not really an additional assumption at all. After all,
an agreement for each coalition must be signed by all its members. In particular, this is why
an entire coalition plays a best response to its complement, whereas a subcoalition of a
coalition in a coalition structure cannot do the same.

7By the way, there may be no such additional coalitions needed, in which case S’s task is
made far easier!
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These three conditions are necessary for S to convince the others. In
this paper, we take them to be sufficient as well, though it is certainly
reasonable to claim that they are not sufficient. In particular, S is being
granted a high degree of optimism, for even if it were able to induce the
desired structure, strategies other than y may be possible outcomes. We
discuss this issue in detail in Sections 2 and 4.

Return, now, to our original proposal x. If S can engineer a defection as
just described, then x cannot be an agreement for the grand coalition. Only
those proposals that are immune to these considerations qualify as binding
agreements for the grand coalition.

A similar definition applies to proposals for any other coalition struc-
ture, though the term “binding agreement” is a bit of a misnomer in such
cases: the agreement is noncooperative across players in different negotia-
tion rooms. What we have is really a collection of such agreements, one for
each coalition in the coalition structure.

It might be useful to keep this story in mind when considering the formal
definition in Section 2. Section 2 also contains a detailed discussion of a
number of issues and alternatives relevant to the definition. In Section 3,
we relate our definition to the existing literature, and a list of references for
the interested reader is to be found there.

A central point of this paper is that binding agreements, once carefully
defined, are not necessarily efficient. In Section 4, we show that for any
assignment of strategy sets to players (satisfying some mild restrictions),
there are open sets of payoff functions with the property that every binding
agreement is inefficient, provided that there are at least three players.®
Moreover, we argue that this result is robust to substantial changes in the
definition, ranging from very optimistic to very pessimistic predictions by
potential perpetrators.

In Section 5, we consider the first of our two applications in detail: a
public goods economy. One aim of these applications is to describe the
coalition structures that form in natural economic situations, in addition to
establishing efficiency or inefficiency of the final outcomes. The proposi-
tions in this section establish that efficient outcomes recur only along
a subsequence (in the total number of agents); this subsequence is, in
general, “sparse” in a sense made clear in that section. In the remaining
inefficient cases, the grand coalition breaks up into a subcoalition, which
carries out production of the public good, and a number of free riders who
enjoy the good but do not contribute to its production. We reiterate that
this inefficient outcome occurs despite the presence of complete and perfect
information.

8 Two-player games in strategic form have a natural superadditive structure, which
precludes any reasonable examples of inefficiency in such games.
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In Section 6, we turn our attention to symmetric transferable utility
games. Transferable utility (TU) is a special case but an important one, we
feel. For instance, the propositions of Coase are all based on the presump-
tion that payoffs are transferable among the players. In addition, the sym-
metry condition allows us to obtain an enormous computational simplifica-
tion: for a large subclass of these games, one can obtain the equilibrium
coalition structures by simply considering allocations that involve equal
divisions of utility among players in a coalition, and a rudimentary concept
of blocking.

Section 7 uses the results of Section 6 to study our second application:
the case of a symmetric Cournot oligopoly. Here again, our interest is not
only in the issue of efficiency but also in the nature of equilibrium coalition
structures. We observe that if the outcome is inefficient, equilibrium coali-
tion structures must be asymmetric even though the game is symmetric,
and moreover, the coarsest of these must be “sufficiently” coarse (see
Proposition 7.1). The existence of coarse structures is a general insight: if
coalition structures were to be too fine, then the grand coalition must be
able to achieve a binding agreement. Finally, we present an algorithm for
studying equilibrium coalition structures in the Cournot oligopoly. We
compute such structures up to 9 agent games. We show that if the number
of agents is 5, 6, 7, or §, the outcome must be inefficient, whereas in the
remaining cases there exists an efficient equilibrium.

In both the economic applications of Section 5 and Section 7, there
emerges a cyclical pattern of efficiency as the numbers of players increases.
This is a curious observation that might bear more general investigation.
To see the intuition, at least for symmetric games, observe that if the grand
coalition does not have an equilibrium binding agreement, then there must
be some intermediate sized (and asymmetric) coalition structure which is
stable, destroying the grand coalition. If no such structure were to be
viable, we would have Nash equilibrium as the outcome of interaction
among singletons, which as we know is generally dominated by the grand
coalition. Put another way, the grand coalition survives if there exist
“large” zones of instability in intermediate coalition structures. This
suggests that as the number of players increases, there might be a cyclical
pattern in the viability of the grand coalition. This is borne out in both the
applications studied.

2. BINDING AGREEMENTS

Consider a game in normal form I"'=(N, (X, u;);c ), Where N denotes
a (finite) set of players, X; the strategy set of player i and u;: [];,cn X;— R
the payoff function of player i. A coalition is any nonempty subset of N.
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Let 4" be the collection of all coalitions. For any Se ./ we will use X
to denote [ ;.5 X; and X _g to denote [];_,\s X;- We will also use X to
denote X,. For any x=(x,);.y€X and SN we will use xg to denote
(x;);cs and (if N\S is nonempty) x g to denote (X;);e m\s- Similarly, for
xe X and Se .V, denote (u,;(x));.s by ug(x). A partition of N will be called
a coalition structure. For a coalition structure 2, let Z(Z) denote all coali-
tion structures that are refinements of #.

The primary objective of this section is to define the set of equilibrium
binding agreements %(%) that can arise should negotiations commence
from some arbitrary coalition structure 2. A typical binding agreement will
be a strategy vector x, to be interpreted as “equilibrium actions” taken by
each of the agents. If equilibrium binding agreements do exist for a given
coalition structure &, we shall refer to # as an equilibrium coalition
structure.

A central feature of what follows is the possible formation of new coali-
tion structures from old ones. As discussed in the Introduction, we consider
only the “internal” case in this paper, where new coalition structures can
form only by the disintegration of existing coalitions.

We wish to capture the idea that the interaction between coalitions is
noncooperative and that within each coalition, binding agreements, while
feasible, must be constrained by consistency considerations. Thus we shall
model interaction between coalitions in the spirit of Nash, retaining the
feature of cooperation within coalitions. But there is one crucial qualifica-
tion. Every “equilibrium” of this kind is not necessarily an equilibrium
binding agreement. Specifically, such “equilibria” must also be immune to
the possibility of defection by a subcoalition. To be sure, the outcomes that
defecting subcoalitions can achieve will also be constrained in a consistent
way.

We proceed, therefore, in two steps. In the first step we formalize equi-
librium noncooperative play across coalitions in a coalition structure. We
will say that a strategy vector x e X satisfies the best response property
(relative to 2) if for each coalition S € 2, there is no yse Xg with ug(ys,
X _g)>ug(x). We shall denote by f(Z£) the set of such strategy profiles.
Observe that strategy vectors satisfying the best response property do not
permit outcomes that require precommitment across coalitions. At the
same time, by allowing each coalition to choose a (restricted) Pareto
optimal outcome, they permit cooperation within coalitions.

Consider two coalition structures £ and 2', with 2’ € Z(2). Think of
having “moved” from £ to 2’ by the formation of one or more new coali-
tions, each a subset of some element of 2. Some of these coalitions may be
thought of as “active movers”, or perpetrators, in the creation of ', and
others might be residual coalitions, or simply residuals, of individuals left
behind by the perpetrators. Observe that we cannot uniquely identify a
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class of perpetrators. But we can say this: if a coalition in £ breaks into
n new coalitions, n—1 of them must be labeled perpetrators, and the
remaining coalition must be taken to be a residual. A collection of perpe-
trators and residuals in the move from 2 to ' is any labeling of the relevant
elements of 2’ which satisfies the requirement in the previous sentence.

Let 2 and 2’ with 2’ € #(2) be given. Fix a collection of perpetrators
and residuals in the move from £ to 2'. A re-merging of 2’ is a coalition
structure 2 formed by merging any collection of perpetrators with their
respective residuals. Below, this will be used to capture situations in which
some perpetrators contemplate not moving to #'.

We now recursively define equilibrium binding agreements. We will
denote by #(2) the set of equilibrium binding agreements for a coalition
structure 2. We begin with the finest possible coalition structure, 2*, of
singleton coalitions. In this case, f(#2*) is just the set of Nash equilibria of
the game and #(2*) = p(2*).

Next, consider coalition structures 2 which have 2* as their only refine-
ment. Let xe f(2). Say that (2*, x*) blocks (2, x) if x*e B(P*) and
there exists a perpetrator S such that ug(x*) > ug(x).

Recursively, suppose that for some # the set #(#’') has already been
defined for all 2' € #(%). Moreover, assume that for each x' € f(2') we
have defined all (2", x") that block (2, x").

Let x € f(2). We will say that (2, x) is blocked by (2, x') if ?' € #(P),
and there exists a collection of perpetrators and residuals in the move from
2 to 2’ such that

(B.1) X' is a binding agreement for 2’ : x' € Z(2').

(B.2) There is a leading perpetrator S which gains from the move:
us(x') > ug(x), and

(B.3) Any re-merging of the other perpetrators is blocked by (2, x')
as well, with one of these perpetrators as a leading perpetrator. Formally,
let 7 be the set of all perpetrators, other than S, in the move from £ to
Z'. Let 2 be a coalition structure formed by merging some of the elements
of 7 with their respective residuals.” Then #(#) = f and there is £ € f(2)
and S’ € .7, such that (2, %) is blocked by (#', x') with S’ as the leading
perpetrator.

Note that the notion of blocking itself appears in (B.3), which is why a
recursive definition of blocking is needed as well.

We may now complete the recursion. A strategy profile x is an equi-
librium binding agreement for 2 if xef(#) and there is no (£, x’)

 Of course, 2 € A(2).
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that blocks (2, x). Denote by #(#) the set of all equilibrium binding
agreements for £.

Thus, objections or blocks are defined perfectly consistently. A per-
petrator can only expect to induce some binding agreement in some refine-
ment of the coalition structure £ (and such agreements are well-defined by
our recursive procedure). Moreover, if this refinement involves the defec-
tion of other subcoalitions, conditions must be imposed that make it
worthwhile for such coalitions to have defected. (B.3) captures this. To see
this, observe that a re-merging partially reverses the defection process,
returning to intermediate coalition structures of the form #. What (B.3)
states is that each such merger should lack the ability to write equilibrium
binding agreements, and moreover that there is some allocation with the
best response property (relative to #) which is blocked by the original
defection(s).

Note that the re-merging always excludes the leading perpetrator, and
indeed in the rest of the paper, the term “re-merging” will always be taken
to exclude the leading perpetrator.

Typically, many coalition structures admit equilibrium binding agree-
ments. Which of these should be considered as the set of equilibrium binding
agreements for the game? The answer to this question depends on what we
consider to be the “initial” coalition structure under which negotiations
commence. In keeping with the spirit of our exercise, which is to under-
stand the outcomes of free and unconstrained negotiation, we take it that
the initial structure is the grand coalition itself. Under this supposition, it
is natural to focus on the set of binding agreements for the grand coalition,
or, if this set is empty, on the next level of refinement for which the set of
equilibrium binding agreements is non-empty.

The following remarks highlight various aspects of the definition.

Remark 2.1.  Our definition of what a coalition can induce is based on
an optimistic view of what transpires after the initial deviation. A leading
perpetrator need only find some equilibrium binding agreement in some
coalition structure induced by the act of its deviation. Note that this
optimism on the part of the leading perpetrator is consistently mirrored
in the presumed pessimism of the other perpetrators (see condition
(B.3))."°

Clearly, there are alternatives to optimism. Observe that there are two
components here: a leading perpetrator feels (i) that a coalition structure
will be formed (subject to the described constraints) that is best from
its point of view; and (ii) that an equilibrium will be played under this
structure which is also best from its point of view. Thus versions of our

19 This is in the sense that one may view the pessimism of the other perpetrators as an
optimistic conjecture by the leading perpetrator regarding their behavior.
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definition are certainly possible that incorporate increasing degrees of
pessimism, culminating in the requirement that a leading perpetrator must
be better off in every equilibrium binding agreement of every coalition
structure induced by it. However, this pessimistic version has a serious
drawback. In many interesting cases where transfers of utility are possible
within a coalition, a coalition may have a choice between several equilibria
such that its complement is indifferent between all of them. It would then
be unreasonable to assume that members of a coalition should be so
pessimistic as to focus on the least desirable of these equilibria for them. In
this sense, (ii) interacts with (i), and a proper specification of (ii) is
required so as not to eliminate “reasonable” coalition structures following
a deviation. On the other hand, a degree of optimism that ignores the
possible multiplicity of responses by players external to a coalition (in the
sense of simply anticipating the coalition structure that is “best” for the
leading perpetrator) is also open to criticism. A satisfactory definition
based on pessimism will, therefore, have to treat these two sets of issues
differently.!! In general, though, we realize that there is very little to be said
about choosing from among these alternatives, and so proceed with one
of them (see Greenberg [17] for a discussion of these issues in a general
context). We return to this issue briefly in Section 4.

Remark 2.2. Suppose (2, x') blocks (2, x) with S! as a leading per-
petrator. Suppose there are several other perpetrators as well. Let 7 =
{S?, .., 8"} be the set of other perpetrators. Condition (B.3) in our
definition requires, in particular, that even if several perpetrators from 7
are simultaneously re-merged, the resulting coalition structure is blocked
by (2’, x'). One can explore several interesting variations on precisely what
the leading perpetrator should be allowed to assume regarding the
behavior of other perpetrators. While we shall leave a more comprehensive
study of this issue to another paper, it will be instructive to consider one
variation in which the leading perpetrator suggests a particular sequence in
which the other perpetrators move, and at each intermediate step, the final
outcome (#', x') justifies the move to the next step. As we shall see, this
form of blocking is implied by our basic definition of blocking. We begin
by formally defining a sequential notion of blocking.

Let xe f(2). (2, x') is said to sequentially block (2, x) if there exists
a sequence {(2° x°), (2!, x"), .., (2™, x™)} such that:

' For instance, as a referee (who initiated and clarified this discussion) points out, it is
possible to define conjectures where each deviating coalition supposes that it can choose intra-
coalitional transfers, but anticipates the worst possible (equilibrium) action from external
players. This is only one of many possibilities.
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(S.1) (2° x°)=(2, x), (2™, x")=(2', x') and for every i=1, .., m,
there is a coalition S’ such that S’ is the only perpetrator in the move from
2'~! to 2. Moreover, for every i, x'e f(2

(S.2) x'e#B(2).
(S.3) #(2")= & for all i such that 0 <i<m.
(S4) ug(x")>ug(x’"YHYforali=1,..,m

Note that this notion of blocking does not require a recursive definition.
(Of course, #(2) still needs to be defined recursively.) It has an explicitly
sequential account of how coalitions move, unlike our definition. Neverthe-
less, our notion of blocking subsumes the sequential notion:

ProrosiTioN 2.1, If (2, x") blocks (2, x), then (2, x") sequentially
blocks (2, x).

Proof. Suppose (2',x') blocks (2, x). Let S' be the leading per-
petrator in this move. If there are no other perpetrators, then it is clear that
(2', x') sequentially blocks (9 x) with m = 1. Suppose, therefore, that the
set of other perpetrators is 7 = {S?, .., S”}. Define 2" to be the coalition
structure obtained by re-merging all other perpetrators in 7. Since (#', x')
blocks (2, x), by condition (B.3), Z(2') = ¥, and there exists x' € f(2!
such that (2, x') blocks (2', x'), with a leading perpetrator from 7.
Without loss of generality let this leading perpetrator be S Define 22 to
be the coalition structure obtained by re-merging all perpetrators S°, ..., S™
with their respective residuals. By appealing to condition (B.3) we can
assert that there exists x? € f(2?) such that (22 x?) is blocked by (2, x')
with S* (say) as a leading perpetrator. In this way we obtain a sequence
(2, x), (2!, x"), .., (2™, x™) such that (a) (2™, x")=(2', x'), (b) for
every i=1,.,m, x'eB(P), (c) for every i=1,.,m, (P, x~1) is
blocked by (2', x') with S’ as the leading perpetrator. To complete the
proof it suffices to show that the sequence {(2, x), (2', x'), .., (2", x")}
satisfies conditions (S.1)—(S.4). Condition (S.1) is clearly satisfied. Condi-
tion (S.2) follows from (B.1). Conditions (S.3) and (S.4) follow from (B.3)
and properties (b) and (c). ||

Remark 2.3. Our definition of binding agreements, in effect, considers
the “intersection” of the set of best response strategies for any coalition
structure with the set of unblocked strategies for that structure. Alter-
natively, one might wish to consider the set of best response strategies sub-
Jject to the condition that they not be blocked. Because we insist on Pareto
optimality (and no more) in the definition of best responses, it is easy to
see that these two approaches yield equivalent outcomes. But this equiv-
alence fails to hold in cases where best responses are defined by additional
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considerations (e.g., Nash bargaining within coalitions, or the equal split of
surplus over threat points). Extensions to these cases will proceed through
the introduction of a generalized game.'?

Remark 2.4. Under reasonable assumptions, the possible emptiness of
the set of binding agreements for any coalition structure will stem from the
blocking of best response strategies, but not from the more technical (and
less interesting) consideration that the set of best responses B(P) is empty.
For instance, the set $(Z) for the partition of singleton coalitions is simply
the set of Nash equilibria of the game. For the grand coalition, it is simply
the Pareto frontier of the game. For this paper, we are not interested in
situations where these, and related sets are empty. For completeness, the
following Proposition guarantees conditions under which £(Z) is non-
empty for each structure #.

ProposITION 2.2.  Suppose for all i, X; is non-empty, compact, convex

1

and u; is continuous and quasi-concave. Then (P)# & for all P € Il.

Proof. Consider Z € Il. For every S e #2 define a preference ordering on
X as follows. For a coalition S, the “better than set” relative to xe X is
defined as

Pg(x)= {ys eXglus(ys, x_5) >”s(x)}-

By quasi-concavity of u; it follows that Py(x) is convex for all S and x. It
is easy to see that while this does not define a complete ordering, the graph
of Pgis open. We can, therefore, appeal to the existence result of Shafer
and Sonnenschein [32] to assert that there exists X such that X is a best
response of S to X _g for all Se 2, ie., xef(2). |

3. RELATIONSHIP TO THE LITERATURE

Various aspects of our equilibrium notion are related to existing
literature. We discuss these connections under the following headings.

Extensions of the Characteristic Function

In response to some of the considerations that motivate this paper,
characteristic function forms have been extended to partition function

12 This will require a notion of a generalized game (along the lines of Debreu [ 12], Ichiishi
[20] and Shafer and Sonnenschein [32]) in which each coalition has a constraint set which,
depending on the prevailing coalition structure, consists of strategies that are unblocked. Of
course, the definition will again proceed by recursion.
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forms (Lucas [22], Thrall and Lucas [34] and Lucas and Maceli [22])"®
A partition function is based on the idea that the worth of a coalition
depends on the entire coalition structure of which that coalition is a part.
But partition functions themselves represent a reduced form, and do not
involve the complex consistency relationships that are inherent in starting
from the normal form.' In any event, the normal form represents the
primitive specification of such games and agreements in cartels or
partnerships are typically written over strategies rather than over a division
of the aggregate payoff- Accordingly, we derive our solution concept
directly from the normal form.

Coalition Formation

Consider a game given in characteristic function or partition function
form. Suppose that there is a given rule for payoff division within a coali-
tion. One can then ask the question: which coalition structures will form?
In Hart and Kurz [19] and Aumann and Myerson [2] the division rule
is based on the Shapley value. This induces a game in partition function
form, and coalition formation can now be studied in this partition function.

Hart and Kurz [ 19] study the stability of coalition structures in a fresh
normal form game derived from the above partition function form. They
are explicit in their motivation for doing so:

...dynamic theories usually rely on additional (arbitrary) assumptions (in our
case, for example, the order in which players ‘talk’ to one another) which
significantly affect the outcome. Our stable coalition structures may be regarded
as ‘universal’ outcomes, independent of the specification of the process.

They consider two notions of coalitional stability based on the concept of
a strong equilibrium. Their notion of J-stability corresponds to a strong
equilibrium of a game in which a deviation by a coalition T < S leaves S\T
as a residual, and all other coalitions remain unchanged. Their notion of
y-stability is based on the idea that when a coalition 7= S deviates, the
members of S\T break up into singletons, while all other coalitions remain
the same."

A key difference between the Hart—Kurz approach and ours is that they
do not address the consistency issue. An advantage of their formulation is
that the formation of arbitrary coalitions is permitted, not just those which
are subsets of coalitions in the existing coalition structure. As in Bernheim,

13 See also Rosenthal [29] on the related notion of effectiveness forms.

4 Moreover, this earlier literature seeks generalizations of the vN-M solution or the
Shapley value, which is not of concern in this paper. It should be said, moreover, that in
introducing some of these generalizations, notions of the kind involved in constructing
an a-characteristic function were reintroduced.

!5 They consider other equilibrium notions as well, based on the a-core and the f-core.
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Peleg and Whinston [4], we permit only internal deviations. The problem
lies not only with the conceptual extension to a more general case, but also
possibly with existence: in Hart and Kurz [19], as also in Shenoy [33], a
stable structure may not exist for precisely this reason.

Aumann and Myerson [2] study coalition formation through an exten-
sive form game where a given rule of order specifies the sequence in which
players are allowed to form links (coalitions). There are restrictions on the
players who can move after a certain node. In particular, once a coalition
has formed, it is not allowed to break up. This ensures that the extensive
form game is finite and, therefore, possesses a subgame perfect equilibrium.
Bloch [5] considers a similar model in partition function form, which is
more explicitly one of coalition formation rather than a linking game. This
approach is also explored in Ray and Vohra [28], where coalition forma-
tion and the payoff division between players in a coalition are determined
endogenously and simultaneously, in the context of a bargaining game.

In an extensive form game, the consistency notion—looking ahead at
resulting equilibria—is, of course, interpretable as subgame perfection.
However, as these authors point out, the subgame perfect equilibria of their
extensive form games depend on the exogenously defined rule of order. The
fact that arbitrary details in the specification of the extensive form have a
significant influence on the equilibria is, of course, well known. We are able
to sidestep this problem since we do not model consistency through an
extensive form.'® In this respect, our treatment of consistency is analogous
to that of Bernheim, Peleg and Whinston [4], Chwe [ 10] and Greenberg
[17]. For a more detailed comparison of our present approach with one
that relies on an extensive-form description, we refer the reader to Ray and
Vohra [28].

Another difference between these papers and ours is that we start the
analysis explicitly from a game in strategic form. In a sense, our approach
can be divided into two parts. First, we derive a partition function (simply
by considering for each partition the set of strategy profiles satisfying the
best response property). Our second step may be regarded as using this
partition function to provide an analysis of coalition structures. This
second phase can be compared to the cited papers. In general, this two-step
process has the drawback that it separates the question of what a coalition
can achieve from the question of which structures might form. As we
pointed out in Remark 2.3, when the internal behavior of coalitions is
specified as a (constrained) best response, the two-step procedure is valid.!”

!¢ This also seems to have been a motivation of Hart and Kurz [19] in avoiding the
specification of a “dynamic process” as discussed above.

7In Section 6 we introduce a class of games in which the separation of these two issues
is even more stark.
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Moreover, our definition can readily be modified, as indicated in Remark
2.3, to allow for other internal rules by imposing the given rule over those
strategies of a coalition that are immune to blocking.

Noncooperation Across Coalitions

Ichiishi’s [20] notion of noncooperative play between coalitions is
similar to the one we develop in this paper. He studies the existence of an
equilibrium notion that is based on the idea underlying the Strong Nash
equilibrium. Zhao [37] considers a similar model and considers equilibria
in which each coalition is constrained by the requirement that it choose
elements of its a-core. There are also several papers on economic models
with externalities in which the “equilibrium” outcome corresponding to a
coalition structure is a best response strategy profile (f(Z) in the language
of the present paper). For example, Dutta and Suzumura [ 16] study coali-
tion formation in a model of research joint ventures. However, they assume
that when a coalition deviates, the remaining coalitions do not alter in any
way, as in the Hart-Kurz notion of J-stability. Carraro and Siniscalco [ 7]
study a similar equilibrium concept in a model with international pollution.
Chander and Tulkens [9] analyze the pollution problem assuming that
when a coalition deviates, the rest of the players disintegrate into singletons,
as in the Hart-Kurz notion of p-stability. Not surprisingly, the results
depend on the specific assumption regarding the new coalition structure
that emerges following a deviation. In this paper, in contrast, the notion of
a best response strategy is just one of the building blocks in the definition
of equilibrium: what a coalition can achieve is limited by consistency con-
siderations that are fully incorporated in the equilibrium concept.

While it will be interesting to apply our notion of equilibrium binding
agreements to these economic models, in the present paper we shall confine
ourselves to two economic applications: public goods and a Cournot
oligopoly.'®

Consistent Self-Enforcing Agreements

This notion has been formalized in Bernheim, Peleg and Whinston [4].
Despite the common concern for consistency, there is a fundamental dif-
ference between our concept and that of coalition-proof Nash equilibrium
(CPE), introduced by these authors. The latter applies only to games
where no binding agreements are possible (CPE are always Nash). On the
other hand, our concept applies only to models where binding agreements

18 We note, however, that similar considerations of consistency have already been applied
to a model of customs unions by Yi [36] (this study also uses our solution concept), and to
research joint ventures by Bloch [6].
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are possible. Our solutions are not subsets of Nash equilibria and do not
involve passive behavior on the part of complementary coalitions. For
example, in the Prisoner’s dilemma the non-cooperative outcome is the
unique CPE, while the only equilibrium binding agreement for the grand
coalition is the cooperative outcome. For a three-person example in which
the set of equilibrium binding agreements is disjoint from the CPE, we refer
the reader to Section 3 of an earlier version of this paper, Ray and Vohra
[271.7

The difference is formally captured by the specification of what follows
a coalitional deviation. Imagine two players at a negotiating table. If no
binding agreements are possible, the CPE are precisely those Nash equi-
libria which are Pareto-optimal in the class of all Nash equilibria. If binding
agreements are possible, the word “deviation” translates as “breaking-off of
negotiations.” In this example, the environment then shifts to the coalition
structure of the two players acting independently (two singleton coalitions).
When one of the two players “deviates,” there is no question of taking the
other player’s strategy as given, as in CPE. Therefore, it is imperative to
explicitly model the “game” that results after the deviation, and use the
“equilibria” of this game to determine the limits of the original negotiation
process.

Social Situations

Greenberg [ 17] develops the theory of “social situations.” This very use-
ful classification scheme relates numerous solution concepts (such as sub-
game perfection, coalition-proof Nash equilibrium, the core, and others) to
one another, by viewing each of these concepts as inducing a partial order
on a space of possible outcomes, and studying the von-Neumann-
Morgenstern stable set with respect to that order. The present concept can
possibly be embedded within this general taxonomy, but this does not yield
anything new, either conceptually or in the way of general results. In this
context, it might be useful to summarize what a reasonable theory of
binding agreements should incorporate. In our opinion, there are two
features.

First, the theory should predict (under conditions of complete and perfect
information), an efficient outcome for a two-person game. For instance, if
binding agreements can be written, then in the Prisoner’s dilemma the
cooperative outcome should be the only equilibrium.

19 There is, however, a special case in which the set of binding agreements has a nonempty
intersection with CPE. Suppose there exists a strong Nash equilibrium, x, and that there is
a unique best response equilibrium in every coalition structure other than the grand coalition
(this must, of course, be x). Then it is easy to see that x is an equilibrium binding agreement
for every coalition structure. Of course, x is also a CPE.
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Second, any theory of binding agreements must have a precise descrip-
tion of counterfactuals: most importantly, what happens if the grand coali-
tion disintegrates. Our theory rests on the idea that in such cases, we
predict noncooperative play across coalitions, coupled with attempts to
cooperate within coalitions.

These two features are absent in the theory of social situations. Indeed,
it is unfair to that theory to expect them to be present, because the
taxonomy is intentionally designed to be far more abstract and general (as
can easily be seen from the plethora of different solution concepts that
come under it).

4. INEFFICIENCY

Our definition permits the writing of any agreement to which players can
jointly agree. Indeed, implicit in our formulation is the idea that any out-
come can, in principle, be costlessly precommitted to. The main theme of
our paper is that despite this ability, inefficient outcomes are possible. In
later sections of this paper, we shall argue that such inefficiency crops up
in natural economic contexts. Our goal in this section is to record the fact
that such situations are robust to arbitrary small perturbations of the
underlying game, unrestricted in any way by the underlying economic
context.

In keeping with the spirit of our discussion in Section 2 (see Remark 2.1),
we are unwilling to seriously consider instances of inefficiency that rely
solely on extreme optimistic views of blocking. Such examples rely on the
multiplicity of equilibria following a block, each coalition optimistically
anticipating the equilibrium most beneficial to it.>° They will not be robust
to reasonable alternative definitions that rely on a lesser degree of
optimism.

We therefore demand of inefficient outcomes that they be compatible
with a wumique best response strategy for coalition structures that are
involved in acts of blocking (modulo possible transfers of utility among
players in the same coalition that leave the complement unaffected). In this
way, one rules out a notion of blocking that relies on a deviating coalition

20 Consider, for example, a modified version of the battle of the sexes. There are two
players, and two pure Nash equilibria yielding payoff vectors of (5, 1) and (1, 5). Suppose,
now, that there are (non-Nash) payoffs that Pareto-dominate either of these two outcomes,
but do not dominate the vector (5, 5). This game has no efficient binding agreement. But this
is so solely because of the assumption of optimism, and we discard such candidates as serious
examples of inefficiency.
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gaining in some (but not every) coalition structure that it can induce. Thus,
in our construction in the proof of the proposition below, each perpetrator
will be able to induce only one possible coalition structure.

Fix the number of players and a (finite) space of strategies for each. Then
the set of games (payoff functions) may be identified with an appropriate
Euclidean space, open sets of payoff functions being identified with open
sets in this space.

PROPOSITION 4.1. Suppose that there are at least three agents with at
least three strategies each. Then there exists an open set of games such that
for every game in this set, there is (in terms of payoffs) at most one binding
agreement under each coalition structure. Moreover, no binding agreement is

efficient.

Remark 4.1. We have already remarked on the robustness of this
proposition to various degrees of optimism. Note, moreover, that in a
three-player game there is no difference between sequential blocking and
blocking. From our proof of Proposition 4.1 it will be clear that this result
remains valid for a notion of binding agreements based on sequential
blocking. We therefore also have “robustness” in this additional sense.

Remark 4.2. Suppose there is a unique Nash equilibrium or there exists
a strategy profile that Pareto dominates every Nash equilibrium. Then it is
easy to see that in any two-player game, every equilibrium binding agree-
ment must necessarily be efficient; this follows simply from the natural
superadditive structure of a two-player normal form game.*! To demon-
strate inefficiency, therefore, we need to construct a game with at least
three players.

Remark 4.3. The proposition holds under the condition that there are
at least three strategies for at least three of the players. This assumption
cannot be dropped free of charge, but we do not know whether some
weakening is possible.

Proof of Proposition 4.1. We start with the case of three players and
exactly three strategies of each of the players. The remaining cases are
treated by extending this argument; we outline the extension below.

Consider the following normal form. Player 1 chooses rows, player 2
chooses columns and player 3 chooses matrices.

211t is worth mentioning, in passing, that in general, superadditivity breaks down with
more than two players, though such breakdowns are not needed for inefficiency. The Cournot
example in Section 7 illustrates this breakdown.
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T2q T2p Z2e
T1q 2.6,26,26 | 3.2,22,32 | 3.7,1.7,3.7
T3q Z1p 2.2,32,32 | 27,2.7,3.7 | 3.1,2.1, 4.1
Tie 1.7,3.7,3.7 | 2.1,3.1,4.1 2.6, 2.6, 4.6
T2a T2b Z2¢
T, | 3.2,32,22 | 3.7,2.7,27 | 4.1,2.1,3.1
Z3p Z1p 27,3727 3.1,3.1,3.1 | 3.6,2.6, 3.6
Tic 2.1,4.1, 3.1 2.6,3.6,36 | 29,29, 3.9
T2a T2p T2¢
Tia 3.7,3.7,1.7 | 41,3.1,2.1 4.6,2.6,2.6
I3 Z1p 3.1,4.1,2.1 3.6,3.6,26 | 3.9,2.9,29

T | 26,46,26 | 29,39,29 | 3.3,33,3.3

We claim that in this example there is no efficient equilibrium binding
agreement, and that the grand coalition breaks up into an intermediate coali-
tion structure. Notice first that every player i has a dominant strategy, x,,.
Thus the unique Nash equilibrium, and the only equilibrium binding agree-
ment for 2%, is (X,,, X2, X3,), Which is Pareto dominated by (x,., X,., X3.).

Next, we examine the equilibrium binding agreements for an inter-
mediate coalition structure 2 = ({i}, {J, k}). Since the game is symmetric,
there is no loss of generality in considering the coalition structure
2= ({1}, {2, 3}). Since player 1’s dominant strategy is x,,, any z € f(2)
must be such that z; = x,,. Thus we need only look at the first row of each
matrix. Clearly, both (x,,, x5,) and (x,., x5.) are dominated by (x,,, X33).
In fact, it is easy to see that (x,,, X, X3,) € f(£). Moreover, this strategy
cannot be blocked by a deviation to #*. It is, therefore, an equilibrium
binding agreement. Indeed, this is the only one for this coalition structure.
To see this, notice that in all other best response equilibria, either player
2 or player 3 receives less than 2.6, the unique Nash payoff. Since the game
is symmetric, we can now claim that for every intermediate coalition struc-
ture ({i}, {/, k}), the only equilibrium strategy profile is (x,,, X, x;). The
payoffs to i, j and k are 3.7, 2.7 and 2.7 respectively. But this outcome is
not efficient. It is Pareto dominated by (X, X;., Xx).

Finally, consider the grand coalition. For any strategy profile it must be
the case that there exists a player, i, who gets less than 3.7. This player can
then block this proposal by deviating to ({i}, {/, k}) and earning 3.7. This
in fact, is the only coalition structure that i can induce by deviating from
the grand coalition. Thus, the grand coalition breaks up into some inter-
mediate coalition structure with an inefficient equilibrium. And the only
equilibrium in the finest coalition structure too is inefficient.

Since all the best response equilibria are strict, it follows that this example
is robust. An open set of payoff functions that yield the same qualitative out-
come can therefore be constructed.
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We now extend this example to consider additional strategies and/or
additional players. First, consider the case of additional strategies for any
of these three players. For each player, say i, and each such strategy, say
X4, let the payoff to every player be zero whenever x,, is played. This
specification guarantees that such additional strategies are irrelevant, and
we continue to have a robust set of games satisfying the properties of the
proposition.

Finally, consider additional players. Take any such player j>4. Define
his payoff from any strategy vector to be 1 provided (x,., X,., X3.) is
played by the first three players, and zero otherwise. For the first three
players, treat all such additional players as dummies, holding to the payoff
matrix described above regardless of the actions of the additional players.
It is easy to see that, in terms of payoffs, this modification does not change
the earlier conclusions. This completes the proof of the proposition. ||

Recall that the three-person example used in the proof of this proposi-
tion did not allow for utility transfers among players within a coalition. As
a referee pointed out, it is natural to ask whether this feature is critical for
the result. The answer is no. It can be shown that the conclusion remains
unchanged even if such transfers are permitted. In fact, in the next section
we shall study in some detail an interesting economic model in which such
utility transfers are permitted, and one in which it is easy to generate three-
person examples with the same basic properties as the one discussed above.

It is useful to end this section with an intuitive description of the factors
that drive (and limit) our inefficiency result. We have here a three-person
structure where a single player, say i, by inducing the coalition structure
consisting of just himself in one coalition, and the other two players in
another, can do better than the average payoff to a player in the (efficient)
grand coalition. The consequent inefficiency hinges on the fact that in such
a case, the other two players are better off staying together than also
breaking apart.”? Observe that while the payoffs to the three potential
singleton deviants jointly dominate the outcome that can be achieved by
the grand coalition, the game is still superadditive in the sense that the
grand coalition can still Pareto-dominate each inefficient outcome. The
point is that the dominating outcome will need to be changed for each
inefficient outcome.

Nevertheless, one might ask, why are matters not renegotiated at this

stage to the dominating (yet unequal) outcome (x;, X, xi)? This is a

22 A reading of the Cournot example in Section 7 will show that the absence of this feature
is what maintains efficiency in the three-firm case. There, one firm can deviate profitably as
well, provided the other two stay together, but this latter event will not occur. Thus inef-
ficiency in the Cournot example does not arise until a minimum of five firms is present.
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serious issue that is neglected in our model, because we only permit “inter-
nal” deviations (see the Introduction). However, one should note that
matters cannot end there, as further negotiation may follow on return to this
outcome (now firm j might object). At any rate, a satisfactory study of such
issues requires an explicit consideration of the dynamics of negotiation.

5. PUBLIC GOODS ECONOMICS:
BINDING AGREEMENTS AND FREE RIDERS

Consider a public goods economy. The free rider problem for such an
economy is well known. If agents make voluntary contributions towards
the production of the public good, the equilibrium outcome will not, in
general, be Pareto optimal. Is it possible to sustain a Pareto optimal
allocation in such an economy? Without exception, the literature addresses
this question under the assumption that individual characteristics are
imperfectly observed, analyzing game forms or mechanisms to implement
socially desirable outcome (see, for example, Groves and Ledyard [18]
and Walker [35]).

An implicit presumption underlies such an approach. The inability to
enforce Pareto optimal outcomes is taken to be a consequence of incomplete
information. In other words, if all characteristics are commonly known, the
issue of attaining some Pareto optimal outcome can be trivially resolved.
We will argue that there is a difficulty with this presumption. In the pro-
cess, we obtain a natural application of our theory of binding agreements.

The aim of this section, then, is to characterize equilibrium binding
agreements in a simple public goods economy. We shall demonstrate that
in general, there do not exist efficient equilibrium binding agreements.

We consider a very simple economy with a single public good. There are
n identical agents. Each agent owns one unit of a private good x. The good
may be used to produce a pure public good y, according to some linear
production function f. We will find it more convenient to represent the
technology through the linear cost function cy (the inverse of /). Each per-
son derives linear utility from x and strictly concave utility from y. We
write the utility function of agent i as u,;(x;, y) = g(»y) + x;, where g is an
increasing, strictly concave function. Assume that g satisfies natural
endpoint conditions, so that unbounded production of the public good is
never optimal.

We will use lower case letters to denote the cardinality of coalitions. For
example, for a grand coalition N and a coalition S, n and s refer to the
number of agents in N and S respectively.

If there is a nontrivial coalition structure, then each coalition makes its
own decision about how much to contribute towards the public good. It
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will be useful to start with a description of what a coalition S with car-
dinality s would produce in isolation. Note that for any such coalition, an
allocation is efficient if and only if production levels of the public good
maximize sg(y)—cy. For each s, let y(s) maximize sg(y)—cy. By our
assumptions on ¢ and g, y(s) is well-defined for each s, and if y(s) >0, it
is characterized by the familiar condition sg’( y(s)) =c. Note that y(s) is
an increasing function of s. The per capita payoff to coalition S is then
given by

cy(s)
=

a(s)=g(y(s)) +1—

It is easy to see that for two coalitions of cardinalities s and ¢, with s> ¢,
a(s) > a(t) whenever y(s)>0. So larger coalitions have higher per capita
payoffs, revealing an increasing returns property that models of public
goods quite naturally possess.

Now we will describe best response strategy vectors and payoffs for each
coalition structure 2. It is easy to see that each coalition 7'e 2 will make
a contribution so that, given the other contributions, the production of the
public good is no less than (but as close as possible to) y(#). If the comple-
ment contributes z, coalition 7 will contribute max(cy(¢) —z, 0). If 2 has
a unigue maximal coalition of size s, given that y(s) is increasing in s, it
follows that the maximal coalition is the only one that contributes towards
the production of the public good. Thus, there is a unique per capita payoff
accruing to each coalition in £ under any strategy vector with the best
response property: the maximal coalition carries out its optimal produc-
tion, earning a per capita return of a(s), while all other coalitions free-ride,
earning a per-capita payoff a’(s) = g(y(s)) +1> a(s).

If 2 has more than one maximal coalition (say of size s), then there are
many possible per capita payoff vectors. Non-maximal coalitions continue
to be free riders, earning a per capita payoff a”/(s), while a maximal coali-
tion earns a per capita payoff anywhere in the interval [a(s), a’(s],
depending on how much of the cost of provision is borne by this coalition
in equilibrium.?

Recall that larger coalitions are more efficient than smaller coalitions.*
The characterization of best response equilibria in the last two paragraphs
now yields the conclusion that if 2 # { N}, then #(2) cannot be efficient.
To establish inefficiency, therefore, it will suffice to show that the grand
coalition will write no binding agreement.

23 Of course, these latter payoffs are not “independent” over the maximal coalitions. In each
equilibrium, the total cost of provision must be borne by the union of the maximal coalitions.

24 As seen above, this is true under the mild requirement that the efficient level of provision
of the public good is positive in the larger coalition.
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We will show that, given the utility functions and the technology, the
stability of the grand coalition depends crucially on the size of the
economy. We begin by proving that the stability of a coalition structure,
say £, is closely related to the stability of a coalition structure that consists
of 2 along with an arbitrary number of singleton coalitions. To do this we
need some additional notation.

We begin by abusing existing notation. In this section, we take %(Z2)
and B(2) to be the set of payoffs corresponding to an equilibrium strategy
profile of 2 (and not the strategy profiles themselves).

For any coalition structure 2 and any set of additional agents
K={ky, .. k,} who do not belong to a coalition in 2, we denote by 2*
the coalition structure consisting of all coalitions in £ and m singleton
coalitions containing the agents in K, i.e.,

PR= (P, Ak}, o LR

If 2 consists of a single coalition S, then use S* to denote the coalition
structure consisting of S and all members of K as singletons.

For z € #(2) we use zX to denote the feasible utility profile in 22X, where
zf =z, for all ie? and zf=a’(s) for all je K, where s is the size of a
maximal coalition in 2.

LEMMA 5.1.  Fix some coalition structure 2. Then

(1)  For any positive integer K, (2', z') blocks (2, z) with S as the
leading perpetrator if and only if (2'%, z'%) blocks (2, zX) with S as the
leading perpetrator.

(2) zeB(P) if and only if z*e B(PX).
(3) %(2)= if and only if B(P*)= 7.

Proof. We will proceed by induction. For 2 =2*, the lemma is tri-
vially true as there are no subpartitions to consider, and because z € f(2)
if and only if zX¥e B(2%). Consider, then, a coalition structure 2 and
suppose the lemma holds for all refinements of 2. We show that it holds
for 2.

Pick 2" with 2’ € Z(2), payoff vectors z, z' with ze f(#), and any
positive integer K.

Suppose, first, that (£, z') blocks (2, z). Fix a collection of perpetrators
and residuals. Form the coalition structures 2%, 2'% and payoff vectors z¥,
z'®. Assign the same collection of perpetrators and residuals. We will show
that (2'%, z'X) blocks (2%, zX). To do so, we must check conditions
(B.1)-(B.3).
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That (2'%, z'%) satisfies (B.1) follows right away from the induction
hypothesis applied to part [2] of the lemma, and the fact that (%', z')
satisfies (B.1). Next, note that for the leading perpetrator S, zs=z'& and
zg=z%, so that (B.2) is satisfied as well. To check (B.3), consider any re-
merging of perpetrators in 2'%, leading to the coalition structure 2%, The
corresponding re-merging of perpetrators in 2’ leads to 2, of course.
Because (2, z') blocks (2, z), #(#)= . By induction applied to part
[3] of the lemma, #(#%)= & as well.

Finally, we are to show that (B.3) holds for the re-merging. Since (Z’, z')
blocks (2, z), and #(2) = ¢, it follows that there exists £ € () such that
(2', ') blocks (2, £), with one of the original perpetrators as a leading
perpetrator in the move from 2 to #'. Then by the induction hypothesis
applied to part [ 1] of the lemma, (2%, z'X) blocks (£, £X), so that (B.3)
holds for #X.

The converse argument is very similar. Suppose that (2'%, z'*) blocks
(2%, zX). Fix a collection of perpetrators and residuals. Since all agents in
K are singletons, none of them can be perpetrators or residuals. We can,
therefore, assign the same collection of perpetrators and residuals in the
corresponding move from # to #2'. To show that (%', z') blocks (2, z), we
must check conditions (B.1)—(B.3). The arguments are very close to those
just described and we omit the details. This verifies part [ 1] of the lemma
for .

To verify [2], let ze %(2). Suppose that zX ¢ B(2X). It is certainly the
case that z¥e B(2%), so the previous sentence means that there exists
P Ke R(PX) and 2e B(2'F) such that (2%, %) blocks (2%, zX). Fix a
collection of perpetrators and residuals.

Let s be the size of a maximal coalition in 2'X. If s> 2, it must be the
case that

forall jeK,  2%=a/(s). (5.1)

J

But in this case, £ is of the form z’* for some z'. By part [1] of the lemma
(already proved), (2, z') must block (2, z), a contradiction.

If s=1, then there must exist ie # who is a residual. Further, in this
finest coalition structure, there exists a best response equilibrium in which
i bears the full cost of producing y(1) and all others are free riders. Clearly,
this must also be an equilibrium that can block (2%, zX). To see this, note
that the new allocation keeps all perpetrators just as well off, and that it
is a binding agreement (because 2'% = 2*). It follows trivially that all the
requirements for blocking are satisfied by the new best-response equi-
librium. With this adjustment made, however, £ can again be taken to be
of the form z'X, which leads to a contradiction as in the case of s> 2.
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Conversely, if zX e (%), then by a subset of the arguments above (for
the case s>2), we can show that ze #(#) (the details are omitted). This
establishes part [2] of the lemma.

To prove part [3], note first that if #(2*)=, then for no z is
zXe B(2*). By part [2], then, #(2)= . Conversely, suppose that
B(P) = & but that B(P*)# . Then there exists Ze B(2X). Moreover,
by part [2], Z cannot be of the form z* for some z. Because Z e f(2X), it
follows that 2% and therefore 2 are coalition structures of singletons. But
then, #(2) = f(#) # &, a contradiction. This completes the proof of part
[3] of the lemma. ||

Given any positive integer n, define a(n) to be the smallest integer such
that

oa(n)>n and a(a(n)) =a’(n).

Put another way, if a(n)>n'>n then in an economy with »n' agents any
agent who contributes at least the average cost, would prefer to be a free
rider in a coalition structure in which a maximal coalition has size n. Note
that a(n) is always well-defined (finite) for every n.*°

PROPOSITION 5.1.  Suppose that {N} is an equilibrium coalition structure.
Then for every coalition structure & that has a unique maximal coalition of
size n', with n<n' <o(n), B(2?)= .

Proof. Let #={S|, .. S,}, where S, is the unique maximal coalition,
with s, =n'. Consider any z € §(£) and denote by p any player in S, such
that z, <a(n'). Note that since a(n) >n' > n, player p would prefer to be a
free rider in a coalition structure with a maximal coalition of size at least
n. In other words,

z,<a(s;)<a’(A)  for any A=n. (5.2)

We will now use this fact to show that (£, z) can be blocked by such a
coalition structure.

Consider the class of coalition structures /7* that are derived from £ in
the following way: (i) each coalition S; in 2 is “split” into a (possibly
singleton) coalition 7; and a (possibly empty) collection of singletons, (ii)
there is a maximal coalition of size at least n, (iii) { p} belongs to the coali-
tion structure. Call p the leading perpetrator and the coalitions of the form

2 For each n, the fact that g is increasing implies that y(m) > y(n) for some integer m (if
y(n)>0, m can be taken to be n+1). It follows that for all »’ >m and sufficiently large,
(a(n') = g(y(m))+1—(cy(m)/n') > g(y(n))+ 1. This proves that a(n) is always finite for each
positive integer n.
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T; residuals; this terminology will soon be reconciled with our earlier
definition. Thus an element of I7* is of the form {7{, .., TX"} where
T,< S, for all i, t,>n for some i, and p e K;.

Let #' € IT* be a coalition structure such that #(2') # & and for any re-
merging, in the move from 2 to 2', say 2, #(#)= . The existence of
such a 2’ follows from the fact that by Lemma 5.1 the coalition structure
consisting of any n players from S,, excepting p, and all other singletons
is stable.

Let ' ={T¥, .., T5"} and let />n be the size of a maximal coalition
in #'. Consider any z' € #(2') in which every perpetrator is a free rider,
ie, z; =d/(i) for all ie); K,.** We claim that (2, z') blocks (2, z). To
establish this claim, we must check the blocking conditions (B.1)—(B.3).

Choose the residuals T as described above, and let every other singleton
coalition be a perpetrator. Let p be the leading perpetrator. Condition
(B.1) is satisfied by construction of #'. From (5.2) it follows that (B.2) is
satisfied.

To check condition (B.3), we must re-merge other perpetrators with their
corresponding residuals.”’ In doing so, we obtain a new element of
IT*—call it 2. By the definition of 2, it follows that #(#)= &. To com-
plete the verification of (B.3) we must show that there exists £ € f(#) such
that (2, 2) is blocked by (2, z’) with a leading perpetrator from | K.

We shall prove this by induction on the number of perpetrators involved
in the remerging. Consider the remerging of a single perpetrator j.
Condition (B.3) will follow if we can show that:

there exists Z € f(#) such that 2,<z]. (5.3)

Case 1. If j is a member of some maximal coalition S in 2 (of size
i+ 1), then we can choose 2 to be an allocation achieved by letting S carry
out all the production, with each member of that coalition receiving equal
payoffsie., £,=a(i+1). Since a(f+ 1) <a(s,), (5.3) then follows from (5.2).

Case 2. 1If j is not a member of a maximal coalition in 2. It is easy to
see that if z € f(#), then any 2’ € f(#), where j is made to transfer his entire
endowment to some other member(s) in his coalition. In particular, we can
find 2ef(#?) such that £,=a’(i+1)—1<a(i+1)<a(s,)<a’(i). Since
z; =a’(7), this establishes (5.3).

Cases 1 and 2 complete the argument for a single perpetrator involved
in re-merging.

26 1f 2’ contains a nonsingleton coalition, this isn’t a requirement at all: all singleton coali-
tions will be free riders. Otherwise, 2’ is the coalition structure of singletons and every best
response allocation is a binding agreement, including the one described in the text.

27 1f there are no other perpetrators, then (B.3) is trivially satisfied.
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Now suppose inductively that whenever there are no more than m
perpetrators involved in the re-merging, (B.3) is satisfied. Consider the case
in which there are m + 1 perpetrators involved in the re-merging. Given the
induction hypothesis and the fact that Z(#)= (J for any re-merging from
Z', in order to prove that (B.3) is satisfied for this re-merging, it will suffice
to prove that condition (5.3) holds for some perpetrator ;.

Again, we distinguish between two cases. If some perpetrator j is a
member of a maximal coalition in 2, follow the argument above in Case 1.
If no perpetrator is a member of some maximal coalition in 2, then fix any
perpetrator j and follow the argument in Case 2. ||

Proposition 5.1 shows that if the number of agents is taken as a
parameter, then efficient outcomes are few and far between. The outcome
of free, unrestrained negotiation is not necessarily a Pareto optimal binding
agreement. An immediate implication of the proposition is the following:
suppose that in an economy with agent set N, there exists an efficient
binding agreement. Then for any economy with agent set N’ satisfying the
condition a(n) >n' > n, there exists no efficient binding agreement.

The significance of this observation derives from the fact that in many
cases, for every n, a(n) is considerably larger than n+ 1. This serves to
establish our claim that inefficiency is quite pervasive. We shall now
provide a simple example in which a(n) can be computed quite easily.

Suppose the utility functions are specified as

(x, ) x~|—f

and

cy=Jy.

Then it is easy to see that y(s) = 0.25s%, a(s) =1+ 0.25s and g(y(s)) =0.5s.
Thus, for any n, a(n) is the smallest integer greater than n satisfying:

1 +0.25x(n)=1+0.5n,

which implies that o(n)=2n. Proposition 5.1 therefore allows us to assert
that, in this particular example, if an efficient binding agreement exists for
an n agent economy then full cooperation will not obtain in all larger
economies which are less than twice as large as n. Moreover, by Proposi-
tion 5.1, for n' <2n, the grand coalition could break up into one coalition
with n agents bearing the full cost of producing y(n) and all other agents
free riding. Continuing with this example, efficient equilibrium agreements
exist for 1 and 2 agent economies, while the grand coalition in a 3 agent
economy breaks up into one coalition with two agents and another coali-
tion with the third agent. It can also be shown that the grand coalition is
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stable in the case of 4 agents. Again, Proposition 5.1 implies that full
cooperation will not arise in economies with 5, 6 or 7 agents. In fact, in this
example, efficiency obtains only for economies in which n=2" for some
non-negative integer y (see Proposition 5.2).

This observation is consonant with the general intuition provided at the
end of the Introduction. For the grand coalition to be viable, it must be
that a deviation triggers off a “long” chain of subsequent deviations, with
the final coalition structure fine enough to create a “large” degree of inef-
ficiency. In such a case the initial deviation will not occur, guaranteeing the
stability of the grand coalition. On the other hand, if the number of players
is such that an initial deviation comes to rest with a “large” producing
coalition, this will be enough to unsettle the grand coalition.

All of this is not present in the analysis so far. Proposition 5.1 embodies
a negative finding on efficiency, but at the same time fails to give us a com-
plete description of equilibrium outcomes. For instance, we cannot tell
from the proposition if the grand coalition indeed forms along the sequence
suggested by that proposition. Our next result provides an additional suf-
ficient condition under which efficiency emerges precisely along this
sequence. We will assume that for all n, a(n) < 2n. Notice that our previous
example satisfies this condition. So does any modification of that example
where the utility functions are u,(x;, y)=x,+ y°, with 0.5<d < 1.

Define a sequence of positive integers ng, 1y, 1,, ... by the conditions:
ny=1, and recursively, having defined n,, n, ,, = a(n;).

PROPOSITION 5.2.  Suppose that for all n, «(n) <2n. Then B({N}) # & if
and only if n=n, for some k.

Proof. By Proposition 5.1, if Z({N})# & for some N of cardinality n,
then it must be the case that #B({N'})= for all N’ such that
a(n)>n'>n. It suffices, therefore, to prove that #Z({N}) is nonempty
whenever n =n, for some k. For k=0 this is trivially true. Suppose, induc-
tively, that Z({N'})# & when n' =n,, and consider a set of players N
such that n=n, . Let z be an equal-division best-response payoff alloca-
tion, ie., z;=a(n) for all i. We claim that z e Z({N}).

Suppose not. Then there exists (2, z') that blocks ({N}, z). For the
leading perpetrator to gain, given the construction of «(n), it must be the
case that the size of a maximal coalition in £’ is greater than n,. Since
n=ny; . <2n, this means that there is a unique maximal coalition in £’ of
size greater than n, and less than n,,, =a(n,). But then, by Proposition
5.1, such a coalition structure cannot admit a binding agreement, which
contradicts the supposition that (', z') blocks ({N}, z). |

Thus Proposition 5.2 provides a complete characterization of those
economies which can sustain efficient binding agreements. It should be
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noted, however, that the proposition does not fully describe equilibrium
coalition structures. Under a simplifying assumption, progress can be made
in this direction:

A. If 2 has more than one maximal coalition, permit only those best
response strategy vectors such that only one of these coalitions bears the
entire cost of production. That is, the payoff of a maximal coalition is
restricted to the two values {a(s), a’(s)}, and in any situation, assume that
one and only one coalition will receive the lower payoff.

ProrosITION 5.3.  Suppose assumption (A) is satisfied. Consider a coali-
tion structure P with at least one nonsingleton coalition in it. Then 2 is an
equilibrium coalition structure if and only if it has a unique maximal coalition
with cardinality equal to n, for some k.

Remark 5.2. Observe that Proposition 5.3 strengthens the conclusions
of Propositions 5.1 and 5.2, yielding in addition a complete description of
which coalition structures are immune to blocking. Proposition 5.3 also
implies that, in general, several agents will free ride in equilibrium. If
ze #B(2) and n,, is the size of the maximal coalition in 2, then z,=a”(n,)
for all i not belonging to the maximal coalition; i.e., all agents who are not
in the maximal coalition are free riders.

Proof of Proposition 5.3. We will proceed by induction on k. First we
establish the Proposition for k = 1; that is, for a coalition structure & with
maximal coalition(s) of size n, or less.

Step 1. Consider, first, the case in which the maximal coalition size in
2 is n', where 1 <n' <n,. If this maximal coalition is unique then the fact
that 4(2) = & follows directly from Proposition 5.1. If there is more than
one maximal coalition, then by Assumption A, only one of them carries out
production. With this known, the result follows again by directly applying
the proof of Proposition 5.1.

Step 2. Suppose maximal coalition(s) in £ have cardinality exactly n,.
We will prove that 4(2)# ¢ if and only if there is a unique maximal
coalition. Suppose £ does have a unique maximal coalition of size n,. Let
z%(2) denote the equal division, best response payoff,® ie., z(2),=a(n,)
for all / who belong to the maximal coalition and z°(2),=a’(n,) for all
other ;.

We claim that z¢(2) e #(2). Members of the maximal coalition each
receive a(n,)>a’(1), while members of other coalitions receive

28 We will henceforth use z¢(2) to denote the equal division, best response payoff for any
coalition structure Z that has unique maximal coalition.
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a’(ny)=a(n,). Thus z%(2),=a’(1) for all i e 2. By the argument in Step 1,
every deviation must culminate in 2*. The best that a deviator can hope
to achieve is, therefore, a’/(1). Since z¢(#) provides every agent no less
than this, z9(2) € #(2). Next, we prove that 4(Z) = (& if there are several
maximal coalitions of cardinality n,. Suppose there are exactly two such
maximal coalitions. Call them S, and S,. Consider some z € (£) where S,
bears all the cost of provision, so that its per capita payoff is a(n,). Now
construct 2’ by breaking S, into a leading (singleton) perpetrator who was
earning no more than the per capita payoff a(s) and a residual. By our
earlier argument, £’ is an equilibrium coalition structure, and z¢(Z')e
#(2'). The leading (and only) perpetrator must receive a”(n,) > a(n,). So
(2, z¢(2")) blocks (2, z), completing the proof.

Inductively, suppose that every coalition structure that contains no more
than m (and no less than two) maximal coalitions (each of size n,) has an
empty set of binding agreements. Moreover, suppose that for each such
coalition structure 2 with maximal coalitions of the form (S, .., S,)
(where 2 <r<m), there exists an allocation z € (2) which is blocked by
(2, z¢(2")), where 2’ is the coalition structure formed by creating one
perpetrator from each of S,,..,S,_,. Notice that this hypothesis is
satisfied for m =2.

Now consider 2 with m + 1 maximal coalitions, each of size n,. Call
them (S, ..., S;u1)-

Consider z € f(2) and suppose, without loss of generality, that S, bears
all the cost of provision, so that its per capita payoft is a(n,). Now construct
2" in the following way. Leaving S,,,, unchanged, break up S, .., S,,
by taking from each of them one perpetrator such that the (leading) per-
petrator from S, is a player j for whom z,<a(n,). The resulting structure
has a unique maximal coalition, S,,, ,, of size n,, so it is an equilibrium
structure. The leading perpetrator gains just as in the previous paragraph.
Finally, consider any re-merging of the other perpetrators. This leads to a
coalition structure # with r maximal coalitions of size n,, where 2 <r <m.
By the induction hypothesis, %(#)= &, and moreover, there is 2 e ()
such that (2, z9(2")) blocks (2, %). It also follows from the induction
hypothesis that the leading perpetrator of this block is one of the per-
petrators involved in the re-merging. This verifies all the blocking condi-
tions, so that the proof is complete in the case k= 1.

Now proceed inductively to establish the proposition for all n,. Suppose
that the proposition is true for all k=1, ..., K, for some K>1. Now con-
sider a coalition structure & with a maximal coalition S, of cardinality s.

First we study the case where ng<s<ng, . By Proposition 5.1 and the
additional argument using assumption (A), which we used in Step 1 of the
case in which k =1, it can again be shown that this coalition structure can-
not be stable.
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It remains to consider the case where s =n,_ ;. We claim that £ is stable
if and only if it contains a unique maximal coalition. The argument is the
same as the one we used in Step 2 of the case in which k=1.

This completes the proof of the proposition. ||

6. SYMMETRIC TU GAMES

In this section we consider a subclass of normal form games which we
call symmetric TU games. These are games in which all players are identi-
cal and within a coalition players can carry out interpersonal transfers of
utility without affecting the strategic environment for the other coalitions.

Of course, there is no presumption that the equilibrium coalition struc-
tures of such games will be symmetric. Indeed, in general there are sym-
metric TU games with asymmetric equilibrium coalition structures, as our
analysis of a symmetric Cournot oligopoly will show.?* The objective of
this section, however, is to demonstrate that in a large class of symmetric
TU situations, the set of equilibrium structures of a game in this class is
identical to that obtained in an “artificial” game where each coalition is
constrained to choose only strategies that yield equal utility to all its mem-
bers. This represents an enormous computational simplification.

A game I'=(N, (X;, u;);cn 1s said to be a symmetric TU game if it
satisfies the following conditions:

(i) X;=X;foralli jeN, and for any xe X, ie N and a permutation
p:N—N, u(x)=u,;(x,), where x, is induced in the obvious way by the
permutation p.

(ii) Let £eX, and Se./. Then for each veR® such that
Sies ;=2 icsU;(X), there is xge€ X such that v,=u,;(xg, £_g) forall ie S,
and u,(xg, y_s)=u;(R5, y_g) forall y_seX_gand i¢S.

Condition (i) describes symmetry: each player has the same set of
available actions, and any permutation of an action vector leads to the
same permutation of the payoff vector corresponding to that action vector.
Condition (ii) formalizes transferability, stating that if some payoff vector
is feasible for a coalition, then so is any other payoff vector with the same
aggregate payoff to this coalition. Moreover, this can be achieved by
changing only actions taken by the coalition concerned, and that too in a
way that changes nothing for players external to the coalition.

For the class of symmetric TU games, we define the notion of binding
agreements just as we did before.

2 See Yi [36] for other applications of our solution concept to symmetric games.
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A symmetric TU game is a game with positive externalities if, whenever
Se?, P’ eR(P) and SeZ’, then: xe A(#') implies that there exists
yeRB(P) such that 3, su;(y) =D, su;(x), whenever #(#) is nonempty.

Thus, loosely speaking, symmetric TU games with positive externalities
have the property that every coalition S enjoys positive externalities from
the merger of coalitions other than S. It is important to emphasize that in
our definition, the term positive externalities does not necessarily relate to
the strategies of the other firms but to the act of their forming mergers. For
example, as we shall see in the next section, the simple Cournot oligopoly
defines a symmetric TU game with positive externalities, although the out-
puts/strategies of rival firms impose negative externalities on any given
firm. Note that the definition, as stated, does not use the primitives of the
model.*® But it turns out to be an easy requirement to check, as our
analysis of Cournot oligopolies later in this paper should make clear.
Indeed, a number of economic examples satisfy this requirement of positive
externalities, though it should be pointed out that other reasonable exam-
ples might not (see, e.g., Yi [36]).

We begin by showing that in a symmetric TU game with positive exter-
nalities equilibrium binding agreements can be characterized in a relatively
simple form. In particular, x ¢ 4(2) if there exists any refinement of 2 with
a binding agreement that yields a higher aggregate utility to some subcoali-
tion of 2.

ProrosiTiON 6.1.  Suppose I'=(N, (X;, u;)) is a symmetric TU game
with positive externalities. Suppose, moreover, that best respose allocations
exist for every coalition structure.®' Let x € B(P). Then x € B(P) if and only
if there does not exist (?', x') such that ?' € R(P) and x' € B(P'), with
Siesui(xX) > su;(x) for some Se ?', S¢ 2.

Proof. Suppose x e f(2) and there is no subcoalition that can get a
higher aggregate utility in any equilibrium binding agreement in any refine-
ment of #. Clearly then, there exists no (#’, x") which can satisfy condi-
tions (B.1) and (B.2) of blocking. This means that x € #(Z), and completes
the proof of the “if” part of the proposition.

To prove the converse, consider x € #(Z) and suppose, contrary to the
claim of the Proposition, that there exists (#’, x') such that 2’ e #(2),
X' eB(P) and Y, su,(x") > su;(x), for some S such that Se 2" and
S¢ 2. By condition (ii) of the definition of a symmetric TU game, we can

30 A stronger version of this assumption, based on the primitives is as follows. For 2, 2’
and S as in the above definition, for every xe f(#') and ye f(2), D icsui(y) =D su;(x).
This version of the assumption is satisfied by the Cournot oligopoly game analyzed in the
following Section.

31 See Proposition 2.2 for sufficient conditions.
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find a strategy vector X’s such that if we define £’ to be the strategy vector
(£, x"_s), then

us(X)>ug(x), (6.1)
with the additional proviso that
Xepf(?)and u_o(Xs, w_g)=u_g(xs, w_g) forall w_ge X 5. (6.2)

Now, either X' e #(Z') or X' ¢ #(2'). In the latter case, there exist
P"e R(P') and x" € B(P") such that (2", x") blocks (#’, £'). Fix a set of
perpetrators and residuals in this move, and let 7 be a leading perpetrator.
It must be the case that 7' S. To see this, note from (6.2) that £’ was con-
structed from x’ by changing none of the payoffs and incentives to coalitions
other than S in 2’. Moreover, x’' € #(#'). Consequently, if X' ¢ A(#’'), the
leading perpetrator 7 must be a subset of S.

It follows, using (6.1) and the claim above, that u,(x") > ur(X') > uy(x).
Also note that 2" € Z(2).

So in both cases, there exists a coalition structure 2 € Z(#), an alloca-
tion £, and a coalition Se€2 with S, such that (a) £e%(2), and
(b) ug(%)> us(x) A A

It will be convenient to require something more of S. Choose S to be the
smallest subset of S with the property that there exists 2 with (2, S)
satisfying all the requirements of the previous paragraph.

With (P, $) chosen in this way, consider, now, any coalition structure 2
such that Se 2, and such that 2e #(2) and 2 e #(2). We claim that if
AB(2) # I, then there exists an allocation w € (2) such that ug(w) = ug(X).

To prove this claim, observe first from the assumption of positive
externalities that if %(2)# (&, then there exists w' e %(2) such that
Siesu; (W)=Y su;(X). By part (ii) of the definition of a symmetric TU
game, it is possible to find a strategy vector w¢ such that if we define w to
be the strategy vector (wg, w'_¢), then

ug(w) Zug(X),
with the additional proviso that
wepf(2)and u_g(wg, y_g)=u_g(ws, y_g) forall y_seX_s.  (6.3)

Because of the construction (6.3), it follows that if w¢ %(2), it must be
blocked with some leading perpetrator Tc Sc S, using some binding
agreement w” in some refinement of 2 and therefore 2. Note also that
ur(w')y>ur(w)=ur(X)>uy(x). But then T contradicts the construction
of S as the smallest coalition with these properties.

This proves the claim.
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The claim allows us, therefore, to choose a coalition structure 2 such
that (a) Se 2, (b) there exists we #(2) with ug(w)>ug(x), and (c) all
other coalition structures 2’ such that 2' € #(#) and 2 e %(2’'), and such
that S 2', have no equilibrium binding agreements.

Our final claim is that (2, w) blocks (£, x). To prove this, choose any
set of perpetrators and residuals in the move from 2 to 2 such that $ is
the leading perpetrator. By construction, conditions (B.1) and (B.2) of the
blocking condition are satisfied. It remains to verify (B.3).

Consider, first, the re-merging of a single perpetrator T with its residual R.
By construction of 2, this leads to a coalition structure 2' “between” 2
and 2, which has no binding agreement. Consider any y e f(2'), and the
coalition T"u R. Using condition (ii) of a symmetric TU game, construct
another allocation y' € f(2') such that u;(w)>u,(y"). But then it follows
that (2, w) blocks (2, '), using the perpetrator 7 as the leading (and
unique) perpetrator.

Inductively, consider some re-merging 2’ of 2 (that excludes the leading
perpetrator S), and suppose that for all re-mergings 2” “between” 2 and
2', the blocking condition (B.3) has already been verified. Again, by the
construction of 2, it must be the case that #(2')=J. Let T be any per-
petrator involved in the remerging and let W be the coalition in which T
lies after re-merging. Consider any y € f(2'). Using condition (ii) of a sym-
metric TU game, construct another allocation y’' € f(2') (by changing only
the strategy vector on W) such that u,(w)>u,()"). But then it follows
that (2, w) blocks (2', »'), using the perpetrator 7T as the leading per-
petrator. To see this, assign perpetrators and residuals in the move from 2’
to 2, by simply using the same perpetrators involved in the re-merging,
and by dubbing T as the leading perpetrator. Conditions (B.1) and (B.2)
are met right away. To check (B.3), simply use the induction hypothesis at
the beginning of this paragraph. Thus the proof of the final claim is com-
plete: (2, w) blocks (2, x).

But this contradicts the supposition that x € Z(2), and we are done. |]

We are now going to introduce a solution concept with each coalition
restricted to equally divide its worth under any structure. Becuase we do not
really make this assumption as a behavioral description in this model, the
concept is an artificial one: its use will lie in the fact that it is easy to use
in examples and yields exactly the equilibrium coalition structures of the
original model. On the other hand, a model where equal division is
assumed may be of independent conceptual interest. It is then of some
value to know that there is a correspondence between such a model and
the unrestricted case, as we shall see.

Some additional definitions will help the exposition. Let £ be a coalition
structure, and S e 2. An S-equal allocation for # is x € X such that for all
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i, je S, u;(x)=u;(x). An equal allocation (for 2) is an allocation that is
S-equal for 2, for all Se€ 2. Now define

f(2)={xeX|x is an equal allocation and
A4S € 2 and an S-equal allocation
(ys» X_s) such that ug(ys, x_g) > ug(x)}.

Thus £.(2) puts together only those equal allocations that satisfy the best
response property with respect to a restricted class of deviations: each
coalition S is permitted only equal division among its members. Recall that
S(2) denotes the set of strategies satisfying the (unrestricted) best response
property with respect to 2.

We now proceed to define a restricted notion of equal binding
agreements. This is different in two ways from the original definition. First,
as already mentioned, coalitions are restricted to equal division. Second,
the notion of blocking is rudimentary and very easy to check.

Proceed recursively. For 2*, the coalition structure of singletons, all
allocations in f,(2*) (which is trivially the same as f(£*)) are equal
binding agreements. Now suppose that for all refinements of some coalition
structure 2, equal binding agreements have been defined.

Let x,ef.(2) be an equal allocation satisfying the (modified) best-
response property, and let ' € Z(#). Say that (2, x.) e-blocks (2, x,) if

(E.1) X! is an equal binding agreement for #'.

(E.2) For some coalition Se2’, which is a strict subset of some
coalition in 2, ugy(x)) > ug(x,).

To complete the recursion, say that an equal allocation x, € () is an
equal binding agreement, written x,e€ 4 ,(2), if it is not e-blocked.

The conditions (E.1)—(E.2) have been described to facilitate direct com-
parison with (B.1)-(B.2) in the original definition of blocking. The main
simplification (apart from using equal allocations) is that we require no
analogue to (B.3). This makes the present set of conditions much easier to
check than (B.1)-(B.3).

To state our main results, it will be useful to introduce a particular class
of equal allocations that we may associate with any allocation. For xe X
and 2 e I1, we define e(Z2, x) to be the set of equal allocations that give the
same aggregate utility to each coalition in # as x does, and such that
the options of each individual coalition remain unchanged. Formally,
yee(2, x) if:

(I) y is an equal allocation,
(2) Yiesui(x)=3,;csu;(y) for all Se 2,
(3) us(zs, y_s)=ug(zg, x_g) for all zg e X5 and Se 2.
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It follows from the definition of a symmetric TU game that for all Z e Il
and xe X, e(2, x) is nonempty.>>

ProrosiTION 6.2.  Suppose I'=(N, (X;, u;)) is a symmetric TU game.
Then

(a) pA2)=P(2);
(b) If xe f(2), then ye [(P) for all y€e(P, x).

Proof. (a) Suppose the claim is false, ie., suppose there exists
x € f.(2) such that x ¢ f(2). Then there exist Se€ # and ys € X such that
ug(ys, x_g)>ug(x). Since x is an equal allocation, it follows that

Lies ui|(sy|s’ Y5 u(x)  forall ies. (6.4)
From the definition of a symmetric TU game it follows that there exists an
S-equal allocation (zg, x _g)such that >, qu,(zg, X _5) = icst;( Vs, X _g).
Since (zg, x_g) is an S-equal allocation, (6.4) implies that ug(zg, x _¢)>
ug(x), which contradicts the supposition that x € f,(2).

(b) Suppose the claim is false. Then there exists xef(#) and
yee(?, x) such that y¢ f,(2). Since y¢ (), there exists Se 2 and
an S-equal allocation (zg, y_g) such that ug(zg, y_g)>ug(y). Since
yee(?, x), it follows that ug(zg, y_g)=ugs(zg, x_g) (part (3) of the
definition of e(2, x)).

Thus,

us(zg, X_g)>ug(y).

Of course,

Y u(y) =) u(x),

ieS ieS

which implies that there exists wge Xg such that >, cu;(wg, x_g)=
Siesui(zg, x _g) and ug(wg, x _g) > ug(x), which contradicts x € f(2). ||

We may now state the main result of this section.

32 Here is the outline of a proof. Let 22 =(S', .., S™). Replace x4 by yg to obtain the
Sl-equal allocation (g1, x_ 1), satisfying (ii) of the definition of a symmetric TU game. That
condition implies, in particular, that for every S'#S!, and every wge Xgi, ug(ygs, Wi,
X _[s'usi) =Usi(Wgi, X_g). Now start with the allocation (yg, x ) and proceed to S2,
obtaining in exactly the same way the allocation (ygi, ys2, X_[s1,s27)- In this recursive
manner, we arrive at the allocation y. Clearly y € e(2, x), as desired.
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PropoSITION 6.3. Suppose I'=(N, (X;, u;)) is a symmetric TU game
with positive externalities. Suppose, moreover, that best response allocations
exist for every coalition structure. Then

(@) B(P)<=B(P);
(b) If xe B(P), then x, € B(P) for all x, € e(?, x).

In particular, the set of equilibrium coalition structures is unchanged by
restricting attention to equal division.

Proof.  We will prove this proposition by (backward) induction on the
cardinality of coalition structures. For the coalition structure of singletons
the result obviously holds, because for this coalition structure all Nash
equilibria are equal allocations. Suppose, then, that the result is true for all
coalition structures with at least m+ 1 coalitions in them, for some
1 <m< N—1. Consider some 2 with m coalitions in it.

We first claim that if x,e€ %.(2), then x,e 4(2) as well. Obviously,
x, € f.(?) and so, by Proposition 6.2, x, € f(Z). So, if x, ¢ B(P) there
must exist Z' € Z(2) and x' € #(#') such that (#’, x") blocks (2, x,). Pick
a set of perpetrators and residuals, and let S be the leading perpetrator. Now
pick some allocation x/, € e(#’, x). By the induction hypothesis, x|, € #,(%').
Moreover, because ug(x') > ug(x,), it follows that ug(x,)> ug(x,) as well.
But this means that (£, x!) satisfies (E.1) and (E.2) in relation to (2, x,),
and so e-blocks (£, x,), a contradiction.

Next, we prove the converse: if x € #(Z), then for all x, € e(2, x),
x,€ A,(2). Observe from Proposition 6.2 that x, € f,(Z). Thus, if x, ¢ %,(2),
there exists (', x,) which e-blocks (2, x,). Of course, x,, € 4,(#') which,

by the induction hypothesis, means that
x, e B(P). (6.5)

Let S be a coalition in 2’ satisfying (E.2) of the e-blocking condition.
Let Ve 2 be the coalition from which S defected. By symmetry, we can
assume without loss of generality that S consists of |S| of the least well-off
members of V under the strategy vector x. Certainly,

2 ui(xe) > ) uy(x).

ieS ieS
But then, given (6.5), we can appeal to Proposition 6.1 and obtain a con-
tradiction to the supposition that xe 4(2). |

We reiterate that this result may be of interest at two levels. At one level,
we may think of equal division as a simple computational device which, by
this proposition, gives rise to exactly the same set of coalition structures.



68 RAY AND VOHRA

At another level, the behavioral assumption of equal division may be of
interest in itself. In that case, the proposition tells us that this assumption
buys us no more (and no less) when we describe equilibrium coalition
structures.

As an independent consequence of Proposition 6.1, we can provide suf-
ficient conditions under which every equilibrium binding agreement for the
grand coalition belongs to C?(N)—the f-core. Recall that

C’(N)={xe X | 4SS N such that for every z_ge X _

there exists yg€ X and ug(ys, z_g) > us(x)}.

PropoSITION 6.4. Suppose I'=(N, (X;, u;)) is a symmetric TU game
with positive externalities. Suppose, moreover, that best response allocations
exist for every coalition structure. Then #({N})< C’(N).

Remark 6.1. Since the f-core is a subset of the a-core, this also implies
that, under the assumptions of Proposition 6.4, Z({N}) is contained in the
a-core.

Proof of Proposition 6.4. Suppose xe Z({N}) but x is not in the
fS-core. Then there exists a coalition S such that

for every z_ge X _ ¢ there exists ys€ Xgsuch that
us(ys, 2_s)) > ug(x). (6.6)

Now consider the coalition structure 2’ ={{i},, s {S}}. Let £eB(2).
From (6.6) and the definition of a symmetric TU game, we know that
Siesu(X)>>;csu;(x). We can, therefore, construct x’ such that

x' e f(2") and ug(x")>ug(x). (6.7)

Since x € Z({N}), it follows from Proposition 6.1 that x'¢ #(2'). Thus,
there exists (2", x") that blocks (2, x"). Of course, given the construction
of #’, it must be the case that all possible perpetrators in such a blocking
belong to S. Thus, there exists S” =S such that $”"e2” and ug.(x")>
Uug(x") > ug.(x). Since x" € #(#"), we can now appeal to Proposition 6.1
to obtain a contradiction to xe ZB({N}). |

We end this section by showing that Propositions 6.1 and 6.3 rely cru-
cially on the game being one with positive externalities. We construct an
example of a symmetric TU game without positive externalities in which
the set of equilibrium coalition structures do not coincide with those
obtained by restricting attention to equal division.
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As a first step in defining this game consider the following normal form.
There are three players each having three strategies. Player 1 chooses rows,
player 2 chooses columns and player 3 chooses matrices.

T2a T2p T2¢
T1a | 20,20,20 | 0,0,0 | 0,220
T3a Tz | 0,00 4,4,10 | 16, 5, 25
T | 22,0,0 | 5 16,25 | 18, 18,0
T2a T2p T2
ze | 0,0,0 | 10,4, 4 | 25,5, 16
I3y Tip 4, 10, 4 0, 0, 0 0, 0, 0
Tie | 5,25,16 { 0,0,0 0,0,0
Z2a Z2p T2¢
z1e | 0,0,22 ] 25,16,5 ] 0,18, 18
T3 zw | 16,255 | 0,0,0 0,0,0
z1c | 18,0,18 | 0,0,0 | 15, 15, 15

Now define a normal form game in which player i’s strategy set is

Xi={x, Xp, X} XA,

where A is the unit simplex in R® The interpretation is that a player can
choose either x,, x, or x,. and a distribution of his/her gross payoff among
all the players. Let s; denote the share that 7 allocates to j. Let #;(.) denote

the payoff functions corresponding to the matrices. The actual payoff to
player i is then specified as:

u,((x;, 5;)) = Z i Aj(x)'

The three matrices indicate the payoffs when s, =1 for all i, i.e., when all
transfers are 0. For example, u;((x;, s;)) =20 for all i if x,=a for all i and
s; =1 for all i. It is straightforward to check that this defines a symmetric TU
game. Moreover it is easy to see that if (x, s) e f(2), then for any for any
SeZandieS, s;=0forall j¢S. In particular, there are no transfers in any
Nash equilibrium. The unique Nash equilibrium of this game is x,=x,,
and s;=1 for all i. The corresponding payoffs are (15, 15, 15). The aggre-
gate payoff to a best response of the grand coalition is 60, involving all
players choosing x;= x,,. For the coalition structure 2 = ({1, 2}, {3}), if
(x, s) € B(2), then x is either (x,,, X2, X3.) OF (X1, X24, X3.). The aggregate
payoffs to the two coalitions are 41 and 5 respectively. Corresponding to the
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best response strategies, therefore, we have the following aggregate payoffs
in the three kinds of coalition structures:

u(N)=60, o({i,j}, {k})=(41,5), ({1}, {2}, {3})=(15,15,15). (6.8)

Now it should be obvious that the game is not one with positive exter-
nalities.

Consider the case in which each coalition divides the aggregate payoff
equally among its members. A two player coalition can assure each
member a payoff of 20.5. No e-blocking of this allocation is possible. But
this also implies that the grand coalition cannot contain any equal binding
agreement. On the other hand, it can be shown that the grand coalition
does contain some (unrestricted) binding agreement.

To see this we begin by observing that if 2= ({i, j}, {k}), then there
exists (x, s) € #(2). And any such (x, s) must satisfy

w; =15, w;=215, wu,+u;=41, and u,=>5. (6.9)

This observation is simply based on (6.8). Construct (x, s)e f({N}) such
that u= (5.5, 27, 27.5). From (6.8), this can be done. Now, we claim that
(x, 5 € BUNY).

Suppose (2', x') blocks (Z({N}), (x, s)). If the leading perpetrator is a
singleton, {k}, then 2’ cannot be 2* because there does exist a binding
agreement in the intermediate coalition structure. Thus 2’ = ({k}, {i, j}).
But then, by (6.9), u,(x')=5<u,(x, s) which means that (B.2) of the
blocking condition is not satisfied. The only other possibility is that the
leading perpetrator is a two-player coalition {i, j} and 2’ = ({i, j}, {k}).
By (6.9), u,(x")>15, u;(x")>15 and u,(x") +u,;(x") =41. But this means
that either u,(x") <27 or u;(x") <27. Since at least one of these players was
receiving a payoff of at least 27 under the strategy profile (x s), we get a
contradiction to (B.2) of the blocking condition. Thus (x, s) € Z({ N} ), and
this completes the proof that { N} does admit a binding agreement.

This example also shows that Proposition 6.1 depends on the game being
one with positive externalities. As we have see, there exists an equilibrium
binding agreement for the grand coalition yielding the payoff profile (5.5,
27, 27.5). Yet there exists x' € Z(2*), the Nash equilibrium, which yields a
higher payoff to player 1.

7. A COURNOT OLIGOPOLY

The purpose of this section is to illustrate the nature of equilibrium
binding agreements through another relatively simple but important
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economic example. We will see that despite the simplicity of the model, the
structure of equilibrium binding agreements can be fairly complex.

Consider a Cournot oligopoly. Assume a linear demand curve for a
homogeneous product, and suppose there are n identical firms with con-
stant average cost of production. It should be obvious that the only coali-
tion structure that yields a Pareto optimal allocation is the grand coalition.
Moreover, the grand coalition can ensure each player a higher payoff
relative to the Cournot—Nash payoff. Thus, if binding agreements can be
written, and if the only alternative to the grand coalition is Nash behavior,
then it is clear that an equilibrium binding agreement will emerge in the
grand coalition. However, Nash behavior is not the only alternative to the
grand coalition if the number of firms exceeds 2. So it will be of particular
interest to see if the grand coalition emerges as an equilibrium coalition
under these conditions. Somewhat surprisingly, we find that this is not
necessarily the case.

These are also the cases in which our theory yields a very different out-
come from that predicted by the naive behavioral assumptions underlying
either the f-core or the a-core. In the simple Cournot game with a linear
demand curve, the f-core and the a-core both consist of all individually
rational, Pareto optimal payoffs (since no coalition can do better if the
complement produces enough to drive profits to zero). In other words,
these theories always predict the formation of the grand coalition in
Cournot oligopoly.

To be more specific, let the demand curve given by p =a — by, where p
is the price and y is the aggregate demand. Denote the total cost function
of firm i by cx;, where c¢ is a positive constant and Xx; refers to firm i’s out-
put. Let 2 ={S"', .., §”"} be a coalition structure and s’ denote the number
of firms in coalition S’. Now, assuming that each coalition divides its profit
equally, it is easy to see that if xef(Z#), then the profit of a firm in
coalition S is

(a—c)?

=S bmt 1)

1
i Si
This, coupled with the characterization result in Proposition 6.3, leads to
considerable simplification in computing equilibria.

Salant, Switzer, and Reynolds [ 30] analyzed the best response equilibria
of this model to show that if some firms merge while the others remain as
singletons, this does not necessarily imply that the average profit of the
merged firms is higher than the Nash profit.>* In the language of this paper,

33 Since the average monopoly profit is higher than the Nash profit, this phenomenon must
relate to the merger of some strict subset of N.
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they show, in particular, that if x € §(2), where 2 = S* and s < 0.8n, then
the average profit of coalition S is lower than the Nash profit. While they
do not formalize a complete model of coalition formation, this result does
turn out to be useful in Bloch’s analysis of coalition formation [5] in the
Cournot model. As we shall see, it can also be useful in characterizing equi-
librium binding agreements.

It is easy to check that this model of Cournot oligopoly defines a sym-
metric TU game with positive externalities. By Proposition 6.3, the equi-
librium coalition structures of this game can be computed by restricting
attention only to those allocations that provide equal payoff to all
members of each coalition, and using only the e-blocking conditions
(E.1)-(E.2).

Observe that the only coalition structure that is efficient is the grand
coalition. This follows from the fact that the aggregate utility in a coalition
structure with m coalitions (with m>1) is simply m(a— c¢)*/b(m +1)%,
whereas in the grand coalition it is 1 (a—c)?/b. The latter expression is
larger than the former. Efficiency can, therefore, be checked simply by
analyzing the stability of the grand coalition assuming equal division.

We begin with two simple observations regarding equilibrium coalition
structures. First, the coarsest equilibrium structures cannot be too “fine.”
Second, if the grand coalition is not an equilibrium structure, then any
coalition structure that blocks it must be asymmetric. These insights are
quite general and go beyond the particular example studied here.

ProrosiTioN 7.1. (i) For each n=2, there exists at least one equi-
librium coalition structure with no more than 2 \/1;— 1 coalitions in it.
(i1)  The grand coalition cannot be blocked by a coalition structure that
contains coalitions of equal size.

Proof. (i) Fix n, the number of firms. Suppose that the grand coali-
tion is an equilibrium coalition structure. In that case we are done. If not,
there exists a coalition 7" with ¢ firms in it and an equilibrium coalition
structure with m coalitions in it (one of which is T'), such that

1 (a—c¢) >(a—c)2
t b((m+1)>"  4bn

Rearranging this expression, and using the fact that 1<, we see that
m<2./n—1, which completes the proof.

(i1)) In a coalition structure with coalitions of equal size, all coalitions
receive the same aggregate profit. Assuming equal division, a potential
leading perpetrator can, therefore, gain by deviating from the grand coali-
tion if and only if the aggregate payoff to all firms increases. As we have
already seen, this is impossible. |
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The first part of the proposition provides an upper bound on the number
of coalitions in at least one equilibrium structure. It states that there can-
not be “too much” competition. If the grand coalition does not have an
equilibrium binding agreement, then it means that there must be some
intermediate sized coalition structure which is stable, destroying the grand
coalition. Thus the grand coalition survives if there exist “large” zones of
instability in intermediate coalition structures. As pointed out in the intro-
duction and again in Section 5, this suggests a cyclical pattern (in the
number of players) in the viability of the grand coalition. We explore this
in what follows. The second part of the proposition shows that the grand
coalition must be stable if the only other equilibrium coalition structures
are symmetric. Thus, all cases of inefficiency imply the existence of at least
one asymmetric equilibrium coalition structure despite the obvious sym-
metry of the game itself.

Let I7 denote the set of equilibrium coalition structures. Consider a
coalition structure 2= {S', .., S”}. By Proposition 6.3, P ¢ 1T if there
exists a coalition T (a subset of S’ for some i) which belongs to an equi-
librium coalition structure 2e€ #(Z) in which the average payoff to T
exceeds that to S’. Letting ¢ denote the number of firms in 7" and m’ denote
the number of coalitions in 2, this average payoff is (a —c)?/th(m’ + 1)
Since this must exceed the original average payoff, it follows that

(m?+1)2<s'(m+1)> (7.1)

Of course, 2 ¢ I even if there exists a singleton leading perpetrator who
can block 2. Now consider (7.1) in the special case where 2= 2%, the
coalition structure of singleton coalitions. Assume without loss of
generality, that 2 is arranged such that s/>s/*! for all 1<j<m—1.
Then (7.1) is satisfied in this special case if

s'm+1)2>(n+1)> (7.2)

In other words, 2 ¢ I1 if a single firm can do better at the Nash equi-
librium, i.e., if (7.2) is satisfied.

We can now use these conditions, along with the results of Section 6, to
identify equilibrium coalition structures. Consider the following steps.

Step 1. Discard all coalitions structures for which (7.2) holds. Note
that the Salant, Switzer, and Reynolds [ 30] result can be quite useful here;
it implies discarding all coalition structures of the form S* where the size
of S is less than 80% of n. Let IT' be the set of coalition structures
that remain.** Certainly, I7' will contain {N} and 2*. And in looking for

3 Notice that if I7' contains only symmetric coalition structures, then by Proposition 7.1
(ii) we can immediately conclude that N is stable.
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equilibria we can now restrict attention to IT', the set of all the coalition
structures such that no coalition could gain by inducing the finest partition 2*.

Step 2. In this step we will partition I7' in a certain manner. Let
P={2ell"| R P)nII'=P*}.

These are those coalition structures of /7' in which coalitions can induce
only the finest partition. Since no subcoalition can gain by doing so, it
follows that I7% e I1.

Step 3. Having obtained 72, define IT° as the set of coalition structures
2 satisfying the following:

(i) 2ell"\(II* L Z*),

(ii) there does not exist Se 2, T<S and 2’ €II? such that Te %'
and the average utility of coalition 7 is higher in 2’ than in 2.

The calculation in (ii) above is based on (7.1). Since I1* € IT, according to
Proposition 6.3, any coalition structure satisfying (i) but not (ii) cannot be
in I7. Now define

IP={2ell’|\A(P)nII°=J}.

Clearly, 11> < IT.

This recursive procedure defines a way of computing I7°. Since the
number of coalition structures is finite, there exists i such that 77! = .
In that case,

H=2*uIl*y ... UIT.

We shall now illustrate this process for the Cournot oligopoly for n
ranging from 2 to 9. We find that n=2, 3, 4, and 9 the coarsest stable par-
tition is the grand coalition but for n =35, 6, 7 and 8 it is not. This suggests
a recurring pattern of efficiency just as in Section 5. A general verification
of this pattern remains an open question.

n=2. In this case both coalition structures are stable and the coarsest
one is the grand coalition.

n=3. There are three kinds of coalition structures to consider. If
there are two coalitions, one with 2 firms then it is easy to see that (7.2)
holds so this is not stable. Thus 2* and { N} are the only ones which are
stable.
Henceforth we shall find it more convenient to represent the process
through a table. Coalition structures which survive step 1 are denoted by
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a dot in the column which indicates I7'. The next column indicates a
blocking structure, if any. The last column indicates those coalition
structures that belong to /1.

n=4.
(n+1)2=125
st | s?| 8| st | si(m+1)? | ! | deviations if any
P 4 4x4<25 | o o
P31 3x9>25 Iz
PPl 2] 2 2x9<25 | o .
PIl2]1]1 2x 16 > 25 1 P*
P11 1 25 o o
(n+1)2 =36
st 2|8 s?]|s°] si(m+1)? | O | deviations if any | II
Pl s 5x4<36 | e LP°
PPl 41 4x9=236 | o Iz
P332 3x9<36 | o 1 P°
P31 11 3x 16 > 36
Pola2l2l1 2x16<36| .
PSl2l1[1]1 2% 25> 36
P 111|111 36 ° .

In this case /1> = 2°. As the column I7 indicates, all the other partitions
in 17" (except for 2*) are unstable. In particular, 2° is not stable because
1 firm in the three-firm coalition can induce 2° and gain (the comparison
here is between 3 x9 and 16). The same is true of #! and 22

For n=6, 7, and 8 also it can be shown that the grand coalition does
not correspond to an equilibrium structure. We shall consider the case
where n =9, and show that the grand coalition is an equilibrium structure.

In this example 2?7 is the only element of /7°. Moreover,

H3:{gl, @8, 919}.

In all other elements of I7'\(/1?> U 2*), there is a leading perpetrator that
gets a higher payoff in 2?7. Since there exist no refinements of #® and 2"
that belong to I7°, it follows that

= {2*, 2"},

3 Typically, this is a single player from the largest coalition. The only exceptions are 2’
and 2'5 — in these cases there is a two-player leading perpetrator from the largest coalition
that can block.
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Clearly, then I7T*=2". 1t is also easy to see that no coalition can gain by
moving from 2! to IT°. Thus IT* = 2" and

n={2", 75, 2", P77, p*}.

Thus { N} remains an equilibrium coalition structure.

n=09.
(n+1)? = 100
st1s? (s s |8 |s0|s"[s®]s%] s{(m+1)2 | | deviations if any

PT 19 9%x4<100 | e .

P28 |1 8x9<100 | o 1 P¥

P72 Tx9<100 | e 1 P7

P71 7 x 16 > 100

P56 |3 6x9<100 | o | [P¥or | P

PPlel2]1 6x16<100| o L P

Prlel1]1]1 6 x 25 > 100

PEl5 |4 5x9<100 | o .

PPis5]3 (1 5% 16 <100 | o 1 P¥

PO 5 22 5x16 <100 | o | P¥

PITs 2711 5 x 25 > 100

PRI s l1[1]1]1 5 x 36 > 100

PBET4al4a1 4%x16 <100 o 1 P¥

PTT 41312 4x16 <100 » Iz

PEI 4T3[ 1]1 4x25=100] o 1P

P61 4221 4x25=100] o 1P

P 4al21]1]1 4 x 36 > 100

PElI4l1 1111 4 x 49 > 100

POl 333 3x16<100 | o s

P33 2]1 3x25<100] o Tz

P33 {1]1]1 3 x 36 > 100

P2l31212]2 3x25<100 | o 1 PT

PEl3l2i21]1 3 x 36 > 100

PRI 32111111 3 x 49 > 100

PET 3111111 3 x 64 > 100

PEiaola2|2]2]1 2%x36<100 | 1P

Pl al221]1]1 2%x49<100 | » .
PE T2 2 11111 2 x 64 > 100

PET2T1 1111 |1]Y 2% 81> 100 j

P11 1111|111 100 o | .
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