9, XBOSOFT
X4

Software Quality Improvement

Agile Test Plan

How to Construct an Agile Test Plan

XBOSoft White Paper — How to Construct an Agile Test Plan

www.xbosoft.com 2

Agile is changing not only the way
we develop software but the way
we work and do business.

Rather than a detailed plan that explains step by step what to do and who should do it, agile
sets forth a direction with a compass and ways to work with the compass (users and product

owners) so you get to where you need to go.

In traditional software development project life
cycles, test plans play a very important role. In
the initial phase of the project, the testing team
sits together and puts together a test strategy
while discussing the testing scope based on the
requirements specification to ensure that all
critical features mentioned in the specification
will be tested. They then discuss who tests what
and the timing of each test phase alongside
development. The output of this process is the
test plan.

A test plan document systematically describes the
testing approach, what to do and by who. The
team needs the test plan because they need to
understand test coverage, test method and test
responsibility. Who tests what and how are

results reported? This is not only about the role
assignment but may also include additional
responsibilities such as collecting and
maintaining data, setting up test environments
and use of tools. There are many references and
documents that tell you the components of a
software test plan. There is even an ISO standard
for a software test plan. However, in agile, and in
particular scrum, a formal test plan document is
not always necessary.

When transferring from a traditional
development workflow to agile, most teams will
encounter numerous problems. One of the most
common problems occurs when testing teams
implement traditional test workflows in an agile
project.

XBOSoft White Paper — How to Construct an Agile Test Plan www.xbosoft.com 3

Teams converting to agile have
challenges not only in adapting
processes and thinking
differently, but also behaving
differently.

After several sprints test coverage is not
adequate and consequently the team often finds
themselves struggling to catch up with the entire
testing process. The problem is that with ‘agile’,
people tend to interpret the principles of agile
literally. Let’s examine these in light of applying
them to an agile test plan:

1. Individuals and interactions over processes
and tools

2. Working software over comprehensive
documentation

3. Customer collaboration over contract
negotiation

4. Responding to change over following a plan

5. That is, while there is value in the items on
the right, we value the items on the left
more.

Now a step by step analysis:

1. Individuals and interactions are certainly
important. We want people to talk to each
other. We also want to recognize each

™ ; . person’s skills and capabilities. | don’t see
T anywhere in here that everyone should do

.) / hi .
Ag||e Isn t for everything, nor' does it say processes and
tools are not important. Just less valued
eve ryone. than individuals. If an individual quits, and
we have no processes and no

documentation, then maybe we may want
to rethink how we implement agile.

2. Working software could mean we want to
fix defects quickly so the software works,
but what does that mean? 1 hour, 1 day?

If it’s not working, be agile and adapt to

something that works for you.

XBOSoft White Paper — How to Construct an Agile Test Plan www.xbosoft.com 4

Most important, you need to be agile about being agile. Adapt to bumps
in the road and the context of your project and organization.

That’s up to us. Note that working software
is not equal to ‘perfect’ software, and that
working software leads to more of 3.
Customer collaboration. So, the point is, get
something working as soon as you can to
the customer so you can interact and get
feedback. Does it have to be perfect, or
even working completely? Maybe, maybe
not.

Customer collaboration is perhaps the
biggest difference compared to waterfall.
Working with the client on a frequent basis
using working software, combined with 4.
Responding to change, is critical if we want
to eventually build something they want. Is

contract negotiation not important? NO. We
still need a contract, but perhaps with
changed terms which provide more flexibility
yet require more trust on both sides.

4. Responding to change is key as well. If we
are following 3, we’ll discover a lot of
changes because the customer will change
their requirements. This will be facilitated by
‘working software’ so they can see what they
like and don’t like, often.

Traditional Waterfall Workflow

Let’s examine a conventional waterfall workflow as
shown in Figure 1.

Feature System ready Release candidate
Implementation for test ready
Complete 0 0
Design
Complete
Dev Time Line I
Test Activities Test Phase
Understand Unit-white box Integration, Acceptance
requirements, testing Feature & Validation
develop test strategy System '
and plan verification
\ 60% 1 40% |

Figure 1. Waterfall Workflow Timeline — Test Activities

XBOSoft White Paper — How to Construct an Agile Test Plan www.xbosoft.com 5

In agile, some waterfall activities
are reduced while some get
larger, expand, change, and
move to the left.

As shown in Figure 1, test activities can be generally
categorized into four groups, along with four key milestones
on the timeline.

The Four Activity Groups include:

I. Understand requirements, develop test strategy and
test plan — preparation work for the QA team, figuring
out what is important and how to get the job done.

II. Unit-White Box Testing — static analysis, code reviews
and code tested by developers.

lll. Integration, Feature and System verification — testing
all features, and interactions within and outside the
software.

Aglle doesn’t mean IV. Acceptance validation — end user scenarios and
. acceptance criteria.
no documentation.

Four key milestones include:

It means I. Design complete — architects and designers are done.
. 1. Features implementation complete — programmers are
documentation for a finished.
lll. System ready for test — testers begin actual testing.
p U rpOse . IV. Release candidate is ready - most critical bugs are fixed.

Using a traditional testing workflow, verification starts at
Milestone Il (System Ready for Test). Even if unit tests are
excluded, the test execution time is usually about 40% of the

ate

win entire development process. Because the timeline is much
Testin .
—— Q longer, let’s say a 6-month project, there may be 10 weeks
P ‘“:'\‘\.";“\‘m\ dedicated to testing at the end of the project (40%).
iV ional
e (RAMEWORY w;\:;“‘:““:
Agile Workflow
keg‘es_s'\n\\ W
el o {esting But with agile, the time line is shortened to the length of the

iteration (depending on the particular agile implementation,
some companies use 1 week, while others use 2 months) and
milestones change as shown in Figure 2.

XBOSoft White Paper — How to Construct an Agile Test Plan

www.xbosoft.com 6

In agile, step by step processes can get blurry. Be flexible. Go where you are
wanted and needed, all with the goal of quality.

Feature

Implementation
Complete

Design
Complete

™~

Dev Time Line

Test Activities

System ready

Release candidate

for test ready

™

Stories and Feature verification

Understand requirements, write

HESEEEEIES white box testing
Integration ‘ System verification
Acceptance Validation '
l 75% 1 25% |

Figure 2. Agile Workflow

One of the agile principles is that shorter is
better. The reason for this is to have small pieces
of working software to show the customer, get
feedback, and change requirements if necessary
earlier rather than later. But because of this, the
system candidate is ready relatively late at about
75% (of a short iteration) as developers are
supposedly doing more checking of their own
code and due to using many Cl tools that
integrate and make sure the code is working as it
is checked in. Therefore generating the feeling
that we can use up more time in the cycle for
development. Because of this, software testers
must be involved a lot earlier in the process. Even
if they write test cases and conduct small tests
(involving an incomplete user story) before
feature implementation ends, the actual test

execution usually starts about 75% of the sprint
time spent (rather than 60% as in a traditional
workflow). Consequently there is insufficient
time to execute complete regression, even if
there are very well designed test cases.

Therefore in an agile test plan, feature
verifications should start as early as possible,
immediately from the end of design. About 60%
of sprint time is spent from the end of Milestone
| to Milestone Il. During this period the
stories/features verification and integration tests
should be completed. According to our project
experience, after Milestone Ill, only 20% to 25%
of sprint time can be allocated to system
regression tests and acceptance tests for release
candidates.

XBOSoft White Paper — How to Construct an Agile Test Plan

www.xbosoft.com 7

Rather than thinking “oh, they’ve changed their minds again”,
“Being” agile means welcoming changing requirements.

o e 2255 [

o

1) syntax and Semantics

2 Regional Business % Local Laws and
Process ¥ Correctness Regulations

() Text Filters

Hotkeys
D:
) Printer Paper Standarts ©Y D3¢ &

Agile Test Plan Components and Considerations

In contrast to a traditional waterfall test plan, an agile test plan is more time
box oriented and related to the timing of the development iteration. Basically,
in ‘agile’ fashion, we do what is needed within a framework and divide our
plan into these areas of consideration:

1. Requirements and design phase:

This phase is similar to the traditional test workflow. Major tasks consist of
understanding the features and user stories but for only that iteration, defining
the test strategy, defining the scope of tests and broadly estimating how much
time should be spent. But there are some differences:

I. Defining test drivers or test interfaces becomes more important in this
phase. This is because in most cases, Ul is not ready and the tests have
to be executed through these interfaces.

Il. Since additional time is spent on test driver design, test case design will
require less time. It is common to find that test cases in agile are more
of a loose guide.

This phase will spend 10% - 15% of sprint time.

When requirements change, Agile workflows gives you the ability to adapt to
these changes — so you can't have a huge rigid test plan. Agile testing needs to
be as agile as the requirements themselves. Testing needs to follow features
implemented in that iteration regardless of the plan.

2. Stories/Features verification phase:

In this phase, test execution should start for stories or features even if not
completely functional. The tests activities in this phase may include:
I. Investigation on the features
Il. Static review of the code
lll. Gray box tests using drivers or interfaces to test the features
IV. Black box test of features with the existing Ul
V. Cross-story tests among features — as nightly builds are done, features
and stories will begin to work together so scenarios which involve more
than one, sometimes 2 and 3 user stories need to be tested.
VI. Integration tests
The main purpose of this phase is to make sure all the new features work well
within themselves and with other components. Some minor verification can be

XBOSoft White Paper — How to Construct an Agile Test Plan

www.xbosoft.com 8

Be flexible, cooperative and collaborative. Those are big words that
sound good, but old habits are sometimes hard to break. You may not
even be aware of your own ‘non-agile’ behaviors and habits. Be open.

postponed to Milestones 3 or 4, but the level of
confidence in the new features should be built
within this phase.

A lot of defects should be found during this
period. Some will be fixed immediately and need
to be validated in the next daily build. Others will
be postponed into next milestone or next release.

This phase will take about 50% - 60% of sprint
time.

When implementing Agile Testing, keep your
feedback loop short. If you find a defect, talk
about it immediately with developers. If you need
clarification regarding requirements, talk to the
Product Owner. Then adapt your test plan and
testing accordingly right away.

3. System verification phase:

When most features are implemented, the
system will be integrated for testing. As
mentioned above, you may only have 20% left
before you have to deliver ‘working’ software at
this point. Additionally you need to reserve some
time for phase 4 when a release candidate is
ready to perform smoke tests.

The main purpose of this phase is to ensure the
new feature set and all the latest changes do not
destroy or disrupt the system in any way. This
also includes ensuring that the previous set of
features function as they should with the system.

In addition to this, you need to plan time for
defect validation. This means there will be no
spare resources to conduct any more feature
tests. All the rest of the resources and time
available should be placed into regression testing.

“Just because in Agile, everyone takes ownership
at driving towards a high quality product doesn't
mean everyone does everything! Everyone is
tasked at doing what they're best at, but they're
always cognizant of what needs to be done
outside their own role.”

4. Acceptance phase:

Once regression (usually targeted and not
complete) is finished, the product is nearly ready
to be released. Most bugs are fixed during the
regression tests, the system becomes stable and
a release candidate is built. Running a smoke test
before the release is necessary to ensure all the
changes made will not break the system and
confirm that all critical bugs are fixed.

If possible, some resources can be allocated to
exploratory testing for the newly developed
features within this sprint.

5. Feedback, retrospective and change:

Some teams just breeze through the
retrospective and aren’t honest about what they
think or feel. Its not supposed to be a bashing
session but if you don’t do it 100% in, then
you’re losing one of the key aspects of agile.
With respect to the test plan, at each
retrospective, the following iteration’s plan
should be adapted in terms of resource and time
allocation. For instance, if developers are saying
that unit testing is falling behind, then QA may
need to work directly side by side and match
requirements to unit tests. Or, if a certain
feature, function or wuser story has more
problems than it should, QA needs to shift focus
with the goal of ‘working software’.

XBOSoft White Paper — How to Construct an Agile Test Plan

www.xbosoft.com 9

For agile, many think velocity is the goal. Think quality first, and you’ll get
velocity. Think velocity first, and you’ll get velocity.

6. Technical Debt:

Many don’t plan for technical debt. The fact is, if
you drive faster, you open yourself to more risk
and crashing. Agile, with a focus on velocity, can
also crash if you don’t plan for quality. Addressing
technical debt should be part of the plan. What
often works best is periodically dedicating an
iteration to removing debt. This comes in the
form of documenting code, correcting
requirements that were coded differently, but the
documentation is lagging, fixing automation
scripts, refactoring, optimizing database tables,
etc...

7. Sliding and staggering:

Shifting regression to % a cycle later can also
relieve the regression burden without much loss
in velocity. Most teams operate a hybrid form of
agile while still holding to agile principles
centered around velocity, quality and working
software delivered incrementally so that rapid
feedback can be given and change direction-add-
subtract requirements and features if necessary.
As mentioned, the rapid pace of iterations and
continuous integration often leads to limited time
for regression towards the end of the iteration.
To handle this, many teams stagger the
regression testing and just deliver one week late.
You are still getting working software at the pre-
determined interval, just not right after it is
coded, but % an iteration later. Since iterations
are so short, it's certainly nothing to be ashamed
of when compared with a waterfall process
whereby working software would wait until the
very end.

8. Time Estimate:

When everyone sits down and does the plan
together, you estimate the amount of work
needed to do each task and sub-task and assign
tasks to individuals. This is a critical component
of agile. On one hand, you don’t want a plan, on
the other hand, here you have a task and a
timeline, and a person assigned! The difference
is that this is an iteration plan rather than a
project plan. These estimates are critical to the
success of the project and the iteration. Its
important for people estimate real hours and log
real hours rather than pipe dreams.

From a QA point of view, testers need to speak
up and include testing effort into the plan. Too
often its overlooked and just added on with a
rough percentage or unit allocation without real
thought into the complexity of the features that
are being tested.

Remember that one of the principles of agile is
sustainability. If you are consistently
underestimating the work and then working
overtime, this is not sustainable. Thus have
measurements for estimation and schedule
adherence accuracy.

Conclusion

As we've discussed, traditional/waterfall projects
usually dictate the need for a detailed test plan
document because they want to set up a very
clear view of the testing scope, method and
responsibilities at the beginning of a project. In
an Agile workflow the process is incremental
with test planning scheduled with each
development iteration. With each iteration
(usually called Sprint in Scrum), planning helps

XBOSoft White Paper — How to Construct an Agile Test Plan

teams decide the test scope and methodology
while adapting to the current development
situation. Some iterations may be dedicated to
fixing defects and doing rework — refactoring, just
because there is a need. On the other hand, there
may be a change in a major feature or
requirement, so everyone must focus on that and
get it working correctly, so perhaps there is little
time for any regression and the development ends
90% into the cycle. So, there is no sense in planning
several months of testing when all you need to do
is test 2 weeks at a time. On the other hand, we
need to be agile about agile. Just because we start
out with 2 week iterations, or 1 week iterations,
doesn’t mean we have to stick to that or we’re not
‘agile’. Agile means ‘short’ iterations and there is
no hard rule.

Therefore, the necessity to create formal test plan
documents at the beginning of the project is
minimized, and the testing adapts to the given
situation for the current iteration, with growing
importance in that quality is the responsibility of
everyone in the team. Developers pay attention to
quality via writing good code with unit tests, while

www.xbosoft.com 10

product managers focus on writing clear user
stories that people can understand, and QA ties
it all together by testing each user story and
developing cross stories for larger systems. With
everyone focused on quality, that doesn’t mean
that everyone does everything. You don’t see
any sports teams where everyone does
everything? They each have specialties that they
are experts at, and that benefits the whole
team.

Also, remember, plans need to be documented
to the extent that its useful. Some think that
agile means zero documentation but you still
need a record of assets and progress. Otherwise,
when you do maintenance or have changes in
team players, the knowledge walks out the
door.

Lastly, remember that quality is the goal, not
speed. If you go for quality, you’ll get speed by
reducing tons of rework. But it doesn’t work the
other way around. That being said, you need to
remove all obstacles to quality.

9, XBOSOFT

Software Quality Improvement

¢

XBOSoft Inc.

3333 Bowers Ave. #130

Santa Clara, CA 95054
www.xbosoft.com
services@xbosoft.com +1408-980-7120

