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Abstract—In this talk I will present data-driven algo-
rithms for dense subgraph discovery [11], [16], and commu-
nity detection [18] respectively. The proposed algorithms
leverage graph motifs to attack the large near-clique
detection problem, and community detection respectively.
In my talk, I will focus on triangles within graphs, but our
techniques extend to other motifs as well. The intuition, that
has been suggested but not formalized similarly in previous
works, is that triangles are a better signature of community
than edges. For both problems, we provide theoretical
results, we design efficient algorithms, and then show the
effectiveness of our methods to multiple applications in
machine learning and graph mining.

I. INTRODUCTION

Our work is motivated by the following high-level
question: can we design data-driven algorithms that
exploit input to successfully attack computationally chal-
lenging, including NP-hard, problems? In this talk, we
will focus on effectively leveraging higher-level graph
structures, known as motifs, for dense subgraph and
community detection in graph structures. Network mo-
tifs are basic interaction patterns that recur throughout
networks, much more often than in random networks.
We focus here on triangle subgraphs, which have often
been suggested as being stronger signals of community
structure than edges alone. For example, social networks
tend to be abundant in triangles, since typically friends of
friends tend to become friends themselves [19]. Triangles
are also important motifs in brain networks [14]. In
other networks, such as gene regulation networks, feed-
forward loops and bi-fans are known to be significant
patterns of interconnection [10], but our techniques ex-
tend to other such motifs as well.

II. DENSE SUBGRAPH DISCOVERY

Numerous high-impact applications rely on dense
subgraph discovery [6], including anomaly detection
and security, community detection in social networks,
and the Web graph, detection of protein complexes in
protein interaction networks, and extraction of highly
correlated entities from a relevance graph. The latter
type of graphs is used to encode pairwise similarities
among entities, e.g., timeseries, and is ubiquitous in data
science applications. Two major formulations for dense
subgraph discovery are the maximum clique problem and
the densest subgraph problem (DSP). The former is a
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Fig. 1. (a) Finding large near-cliques [16] (b) Anomaly detection in
PATENTS CITATION network [11].

notoriously hard problem, whereas the latter is poly-time
solvable and lies at the core of large-scale data mining.
The DSP maximizes the average degree 2e(S)

|S| over all
possible subgraphs S ⊆ V , where V is the vertex set of
the graph. Here, e(S) is the number of edges induced
by the vertex set S. Variants of the densest subgraph
problem suitable for directed graphs exist as well [7],
[5].

My work introduced the k-clique densest subgraph
problem [16], a significant advance in routines with
rigorous theoretical guarantees for scalable extraction
of large near-cliques from networks [17]. The k-clique
densest subgraph problem maximizes the average num-
ber of induced k-cliques over all possible subgraphs.
The original intuition behind designing this family of
objectives, which contain DSP as the special case k = 2,
is that triangles are a better signature for community
participation compared to edges. Figure 1(a) shows what
we observe on a large social network with roughly
19 000 vertices and 200 000 edges and is representative
of what we observe on real-world networks. As k grows,
the size of the optimal sets S∗k drops and the edge density
fe(S

∗
k) = e(S∗k)/

(|S∗
k |
2

)
grows. Notice the sudden change

from k = 2 to k = 3 and that for k = 5 we are able
to find a large near-clique on 62 nodes. The dots are
scaled according to fe. The same behavior is observed
across social networks, autonomous systems, blog and
Web graphs [11], [16]. An interesting open question is
whether we can use stochastic graph models to explain
the behavior observed in Figure 1(a).
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Fig. 2. Number of connected components versus size after reweighing
each edge with triangle counts for (a) Amazon, and (b) DBLP. The
original graphs consist of a single connected component.

III. COMMUNITY DETECTION

Our main contribution is a natural and simple for-
mal framework based on generalizing conductance and
related notions such as graph expansion, based on
reweighting edges according to the number of triangles
that contain the edge. Despite the intuition that triangles
or other structures may be important for clustering and
related graph problems [3], [8], there appears to be a
gap in terms of useful formalizations of this idea. It is
worth noting that independently from our work, a similar
contribution to ours appears in Science [4].

Contributions. Our contributions are summarized as
follows:

• We formalize intuitions and heuristics in prior work
by studying triangle conductance, a variation of
graph conductance based on triangles. Our defini-
tions generalize to other motifs, but here we focus
on triangles. Compared to prior work [3], we relate
the notion of triangle conductance to appropriate
random walks on the graph and to a generalization
of graph expansion based on triangles instead of
edges. When at node u we choose a triangle that u
participates in uniformly at random and then choose
an endpoint of that triangle, other than u, uniformly
at random. We differentiate our new concepts by for
example showing that an expander graph [1] is not
necessarily a triangle expander and vice versa.

• We provide approximation algorithms for a gener-
alization of the well-studied sparsest cut problem,
where the goal now is to minimize the number of
triangles cut by a partition. Our triangle spectral
algorithm, which reweights edges by triangle counts
[13] and then runs a spectral clustering algorithm
[2], [12] is very practical and performs very well on
real data. Also, we study our reweighting algorithm
in the planted partition model, where we provide
tight theoretical guarantees on its ability to recover
the true graph partition with high probability

• We apply our methods to various machine learn-
ing tasks, including classification, regression, and

clustering. We show that adding triangle weights to
k-nearest neighbor graphs typically boosts the per-
formance significantly. We also apply our methods
to detecting communities. Using publicly available
datasets where groundtruth is available, we verify
the effectiveness of our framework, and show it
takes orders of magnitude less time and obtains
similar performance to Markov clustering (MCL).

Surprisingly, in many real-world networks we find
the simple step of reweighting by triangle counts im-
mediately disconnects the graph into numerous non-
trivial connected components, that we refer as triangle
components. Figure 2 shows the distribution of triangle
components for the AMAZON, and DBLP networks.
Our findings are representative across a wide variety of
networks we have experimented with: there exists one
giant triangle component and then a large number of
triangle components with up to few hundreds of nodes.
Note that trivially all degree one nodes in the original
graph become isolated components.

These findings agree with the “jellyfish” or “octopus”
model [15], according to which most networks have a
giant “core” with a large number of relatively small
“whiskers” dangling around. Furthermore, our findings
agree with the findings of [9] that claim that communities
have size up to roughly 100 nodes. Our findings show
additionally to [9] that no triangles are split between
whiskers and the rest of the graph. We generalize this
idea for our clustering results and experiments.
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