
KVSaaS Master Test Plan
Version 0.8

Revision history

Date Version Description Author
Apr 18, 2014 0.8 Initial draft version created M. Usichenko

Table of Contents

Revision history

References and Abbreviations

Introduction

Governing Evaluation Mission

Target Test Items

Risk Issues (Test-related)

Overview of Planned Tests

Functional Testing

Usability Testing

Performance/Load Testing

Reliability Testing

Scalability Testing

Test Approach

Test Strategy

Test Levels

Test Cycles Structure

Test Tools and Automation

Configuration Management and Change Control

Test Coverage

Test Scenarios

Entry and Exit Criteria

Entry Criteria

Exit Criteria

Suspension Criteria and Resumption Requirements

Deliverables

Schedule

https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.gjdgxs
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.30j0zll
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.1fob9te
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.3znysh7
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.2et92p0
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.tyjcwt
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.3dy6vkm
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.1t3h5sf
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.2s8eyo1
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.17dp8vu
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.btlnhc8xra98
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.lnxbz9
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.35nkun2
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.1ksv4uv
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.z337ya
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.3j2qqm3
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.1y810tw
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.4i7ojhp
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.2xcytpi
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.1ci93xb
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.3whwml4
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.2bn6wsx
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.tu9vbmq86de9
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.qsh70q
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.3as4poj
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.prela4u0j2fo
http:/#_Toc348383334
http:/#_Toc348383334

1 References and Abbreviations

2 Introduction
This document represents Master Test Plan (MTP) for the Symantec MagnetoDB (SMDB) project.

This Plan created for the complete life-cycle of the project and is intended to:

● Provide a central artifact to govern the planning and control of the test effort. It defines the

general approach that will be employed to test the software and to evaluate the results of

that testing, and is the top-level plan that will be used by team leads and managers to govern

and direct the detailed testing work

● Provide visibility to stakeholders in the testing effort that adequate consideration has been

given to various aspects of governing the testing effort, and, where appropriate, to have

those stakeholders approve the plan.

3 Governing Evaluation Mission
Primary objectives of testing effort are to assure that the system:

● Meets the requirements, including the non-functional ones specified for SMDB and outlined

by the OpenStack community

● Satisfies the Use Cases / User Stories and community standards, maintains the quality of the

product.

The secondary objective is to:

● Identify and expose all issues and associated risks

● Communicate all known issues to the project team and the community, and ensure that all

issues are addressed in an appropriate matter before release. As an objective, this requires

careful and methodical testing of the system to ensure that all areas of the system are

scrutinized and, consequently, all the found issues (bugs) are dealt with appropriately.

4 Target Test Items
There are several major parts of the system to be tested. From the point of view of their

semi-independence and taking into account iteration- and phase-oriented design and development,

testing is to be divided into the appropriate several directions depending on the chosen ranking:

1. DDL and DML operations:

a. Save/retrieve an item using primary key

b. Lookup using dictionary of keys

c. Lookup using conditions

2. Manage Quotas

3. Auto-scale

4. Failover

5. Geo Affinity

6. Monitoring

7. Multi data center replication

In the following part of the document we:

A. Initially focus on CPE implementation part (Phases 1 to 3) as the major one for reaching the

target goal

B. Then proceed with OpenStack adoption as a final community-oriented part (Phase 4) – that

requires specific efforts to be described later in the appropriate sections.

The list of phases looks like:

1. CPE implementation:

a. Phase 1: MagnetoDB PoC

b. Phase 2: MagnetoDB Sandbox

c. Phase 3: MagnetoDB production/operations ready

2. OpenStack adoption:

a. Phase 4: Complete Community Requirements

In reality though, it means that both just mentioned processes (implementation and adoption)

should go in parallel to preserve progressive development flow and to keep tight integration with

OpenStack community.

As SMDB takes sufficient time for design and development, its validation is a subject for further

detalization during several iterations.

5 Risk Issues (Test-related)
Both User Stories set and the Requirements as well as the type of background DB itself are subjects to

changes. So, for each sprint a set of goals and User Stories is to be formed for the following design

and development of the specific part(s) of the system. In view of this, a number of visible initial risks

should be taken into consideration.

1. Lack of (or weak) synchronization between the customer and the community: difference

between customer needs and timing, and the community’s ones will lengthen the

development cycle

2. Gradual but essential extending of system functionality (as a result of point 1) may require

additional efforts for validation

3. Depending on the results of R&D tasks and various PoC activities, project scope, plan, amount

of tasks may considerably vary and get out of the initial limitations.

6 Overview of Planned Tests
The majority of testing will consist of functional and performance test activities. Except that, there
will be usability, reliability tests that are to be grouped into sets for running regularly or on demand
during the whole project development process. Ordinary (by default) tests runs will be performed by
the CI system on a QA environment.

Taking into account complexity of actions, variety of target configurations and other factors, it is
planned to maximize test automation approach. The final goal is to automate 70+% of all the
API-level functional tests to run them using an automated test framework based on MagnetoDB
client.

On each sprint, a number of newly introduced tests will be added complementing the areas of

functional, reliability, performance and other types of tests which are described below.

6.1 Functional Testing
Will be performed against the following features of MagnetoDB:

1. DDL and DML Operations: the most massive group of tests representing operations

performed by statements:

a. Managing Tables

b. Data reading/modifying

2. Data bulk load

3. Manage Quotas

4. Auto-scale

5. Failover

6. Geo Affinity

7. Monitoring

8. Multi data center replication

The appropriate tests cases will be designed and developed for both manual (on demand) and

automatic runs.

6.2 Usability Testing
TBD

6.3 Performance/Load Testing
Will be applied to all the performance-critical and throughput-dependable operations/functionality

such as:

● Indexing

● BatchRead and BatchWrite statements

● BulkRead and BulkWrite statements

● Massive data export and import processes

Additionally, there are specific operations and processes (see sprint backlogs) that are to be tested

for performance.

The same test approach is planned to be used for performance profiling when the project team will

be eliminating ineffective mechanisms and performance bottlenecks using various typical real-life

scenarios of system usage.

6.4 Reliability Testing
Is one of key parts of testing procedure and consists of the following steps:

1. Long-run tests under different typical workloads to confirm system’s stability

2. Heavy load and critical-mode tests to assure that the system automatically recovers after

various critical modes, fall-downs and then keeps functioning properly

See section Performance/Load Testing for the list of operations and functions to check:

● Lack of resources:

o RAM

o CPU performance

o HDD space

o Network throughput

● Connection breaks and timeouts

● Overall low performance

● Falling down, unresponsive state

● Failover/recovery

● Long-run

6.5 Scalability Testing
Is applied in both ways:

● Implicitly, when the system performs data export/import operations

● Explicitly, when checking SMDB performance in different configurations

The mentioned checks imply running tests that simulate different intensities of work loads

7 Test Approach
To accelerate the process of tests implementation, it was decided to:

● Apply an approach when each developer creates the automated test scenarios for the

functionality he works on during this iteration

● Test planning and design will be performed by a dedicated QA Lead

By executing manual and automated tests as soon as feature is ready, test engineer will provide

minimal “bugs detection time”. It means that we start to test feature without waiting when all of

them are done. It requires accurate planning of tests implementation based on feature

implementation plan. At the beginning of a sprint, QA Lead synchronizes a test plan with the Dev

team and prioritizes tests.

Tests are run as a part of CI system based on Jenkins. The appropriate job is performed on each

successful commit of code into the branch. Each test scenario run is logged, its result is accumulated

to be a part of Test Report document. After Test Report is ready, the results are analysed for fails and

mistakes to shape the overall status of testing and to perform the required changes into the source

code.

On reaching “Feature freeze” sprint milestone, QA engineers are able to run all the tests including

system-level and non-functional ones. “Code freeze” declares that making changes to the code is not

allowed and this code is ready for final testing and, in most cases, delivery to a customer.

7.1 Test Strategy
QA Lead is responsible for the test processes on the project including test management, monitoring,

control, reporting, consultancy, issues lifecycle, etc.

The overall strategy for functional tests is to run tests as soon as possible. It requires that:

● Test planning and design (on all levels) are performed by a dedicated professional QA Lead

● Functional test case design on component and integration levels should be ready (if possible)

by the time when the appropriate feature development is completed

● QA engineer (in our approach it is a dev engineer, the author of the feature) starts working on

creating the appropriate automated scenarios (using already existing conceptual or detailed

test case descriptions) right after completion with the feature implementation

● QA engineer stores all the created scenarios into the test repository dividing all the tests into

several folders (stable, in_progress, not_ready) to define voting status for each test according

to its current status. See the detailed description of this concept and its purpose in

“Organization of tests in CI” document.

● The created test sets are executed on each commit

This strategy works well for component and integration levels of testing. However, for other test

types (performance, reliability, supportability, etc) and for system level testing the strategy is

different.

First Sprints

As first several projects sprints are dedicated to design and development of basic functionality for

SMDB (see Target Test Items), the majority of tests to design, implementation and running will be of

functional type. In view of this, vast test automation of this functionality will provide us with a good

verification mechanism and then with a strong basis for regression testing.

Performance, load and other test types are applied only for PoC tasks and on a limited basis. The goal

is to increase the functional basis of the system.

Further Sprints

All the mentioned test types are applied (see Overview of Planned Tests and Test Levels). Regression
testing includes regular (but not for each SMDB build) running of Performance and Reliability tests.
The final goal is to prepare the system for functioning in production mode.

7.2 Test Levels
The testing for the SMDB project will undergo several levels of testing:

1. Unit

2. Component

3. Integration

4. System/Acceptance

which are divided in sets depending on characteristics of a specific phase/iteration and its goals. The

details of each level are addressed below.

Unit testing will be performed by the developers during implementation of functionality.
Component, Integration, and System testing is responsibility of the QA team (dev engineers
performing test-related tasks).

Below is the generalized sequence of test actions performed on each iteration.

Unit Testing will be done by the developers and will be approved by the development team leader.

Proof of unit testing (test case list, sample output, data printouts, defect information) must be

https://www.google.com/url?q=https%3A%2F%2Fwiki.openstack.org%2Fwiki%2FMagnetoDB%2FQA%2FOrganization_of_tests_in_CI&sa=D&sntz=1&usg=AFQjCNFjdMAGIP-VnccF4wiCL6Wx2IrN7A
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.2et92p0
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.3dy6vkm
https://docs.google.com/a/mirantis.com/document/d/sZVd59PvJWWwlZ4U1Pi8K2w/headless/print#heading=h.z337ya

provided by a developer to the team leader before unit testing will be accepted and passed on to the

test person. All unit test information will also be provided to the test person.

Integration and System Testing will be performed by the QA team. Build wiil undergo Integration and

System testing only after all critical defects, found on the unit test level, were corrected. A build may

have some major defects as long as they do not impede testing of the program (i.e. there is a work

around for the error).

Acceptance Testing will be performed by either actual end users with the assistance of the test

manager and development team leader or the project QA team (as a part of internal SDP). The

acceptance test will be done as the next step after completion of the Integration and System testing.

Build will enter into Acceptance testing phase after all critical and major defects have been

corrected. A build may have one major defect as long as it does not impede testing of the program

(i.e. there is a work around for the error). Prior to final completion of acceptance testing all open

critical and major defects MUST be corrected and verified.

7.3 Test Cycles Structure
On each sprint, contractor’s team delivers a specified set of features described in the sprint

scope/backlog.

A sample of sprint-long schedule for QA activities looks like:

1. Tests planning and design

2. Implementation of test scripts and tools. Manual (if applicable) testing of new features

3. Manual and automated regressions test runs for smoke, validation and regression testing

4. Demo preparation

In the same time, during one sprint, there will be several test cycles. Each new SMDB build should

sequentially pass (completely or partly) the following cycle of testing:

1. Unit automated tests

2. Automated smoke tests

3. Manual and automated integration (feature validation) tests

4. Automated regression tests

Unit tests are managed and exclusively supported by Dev Team. They verify code integrity and run

continuously as a part of build process. Smoke tests are intended to identify broken build before

functional integration tests will start. Integration and regression tests are to verify existing and new

functionality.

Each test cycle has its own goal (depending on the situation) like:

● Check that the functionality was implemented and passes positive flows

● Find as many defects as possible

● Verify that all major and medium level defects fixed successfully

● Confirm readiness of the product features to demo

● etc

7.4 Test Tools and Automation
Continuous integration (CI) server is based on Jenkins managed by the development team. It

performs several tasks:

1. Creating target builds on commit
2. Running Unit tests
3. Deploying the applications on a lab
4. Executing Component/Integration/System tests
5. Test reporting

Dev team actively introduces automation into validation process. By implementing autotests in

parallel with feature completion time, the team sufficiently reduces validation time. However, this

approach requires additional efforts from Dev team, such as wide usage of mocks, providing

interfaces to new functionality, announcing changes made into existing ones (if needed), etc.

Automation tests include functional, performance/load, reliability, other tests. According to the

chosen automation strategy, continuous execution is used to gain maximum benefits.

7.5 Configuration Management and Change Control
<environments> and flow

7.6 Test Coverage
Dev team should keep unit test coverage at reasonable level (see Exit Criteria).

Coverage of integration tests is calculated by building Traceability Matrix (see Test_Cases document

on the wiki)

Test 1 Test 2

Requirement 1

+

Requirement 2 + +

Traceability matrix is stored in version control system and kept up to date by the QA team.
All requirements should be covered by integration tests.

7.7 Test Scenarios
Test scenarios for validation process are specific steps of executing and evaluating the expected
results. Test scenarios and test cases need to be up to date during all the project lifetime. Therefore
it should be stored in a version control system or repository.

8 Entry and Exit Criteria

8.1 Entry Criteria
1. Source code of a component/subsystem/system is ready for testing

2. There is a specific environment for performing tests, validations

3. Other test resources are available

4. Requirements (User Stories, Use Cases) are clear, complete, and non-controversial

8.2 Exit Criteria
1. All critical and major bugs were fixed

2. Performance of Deployment procedure is sufficient
3. Coverage of unit tests is 70+ %
4. Coverage of automated integration tests is 70+ %

8.3 Suspension Criteria and Resumption Requirements
Testing process may be suspended in following cases:

1. Test resources (test labs, build environment, client stations) are or become unavailable
2. Amount of bugs found exceed the reasonable limit. Test process becomes ineffective.

9 Deliverables
1. System’s source code

2. Documentation

3. etc

10 Schedule
See sprints schedule in the appropriate project wiki section

