
A Statistical Framework for
Streaming Graph Analysis

James Fairbanks David Ediger Rob McColl David A. Bader Eric Gilbert
Georgia Institute of Technology

Atlanta, GA, USA

Abstract—In this paper we propose a new methodology for
gaining insight into the temporal aspects of social networks. In
order to develop higher-level, large-scale data analysis methods
for classification, prediction, and anomaly detection, a solid
foundation of analytical techniques is required. We present a
novel approach to the analysis of these networks that leverages
time series and statistical techniques to quantitatively describe the
temporal nature of a social network. We report on the application
of our approach toward a real data set and successfully visualize
high-level changes to the network as well as discover outlying
vertices.

The real-time prediction of new connections given the previous
connections in a graph is a notoriously difficult task. The
proposed technique avoids this difficulty by modeling statistics
computed from the graph over time. Vertex statistics summarize
topological information as real numbers, which allows us to lever-
age the existing fields of computational statistics and machine
learning. This creates a modular approach to analysis in which
methods can be developed that are agnostic to the metrics and
algorithms used to process the graph.

We demonstrate these techniques using a collection of Twitter
posts related to Hurricane Sandy. We study the temporal nature
of betweenness centrality and clustering coefficients while pro-
ducing multiple visualizations of a social network dataset with
1.2 million edges. We successfully detect vertices whose triangle-
forming behavior is anomalous.

I. INTRODUCTION

Social networks such as Twitter and Facebook represent a
large portion of information transfer on the Internet today.
Each time a new post is made, we gain a small amount
of new information about the dynamics and structure of the
network of human interaction. New posts reveal connections
between entities and possibly new social circles or topics of
discussion. Social media is a large and dynamic service; at its
peak, Twitter recorded over 13,000 Tweets per second [1] and
revealed recently that the service receives over 400 million
Tweets per day on average [2].

Social media events – such as two users exchanging private
messages, one user broadcasting a message to many others, or
users forming and breaking interpersonal connections – can be
represented as a graph in which people are vertices and edges
connect two people representing the event between them. The
nature of the edge can vary depending on application, but one
common approach for Twitter uses edges to connect people in
which one person “mentions” the other in a post. Edges can be
directed or undirected; in this paper we analyze tweets using
an undirected graph. The edge is marked with a timestamp that

represents the time at which the post occurred. The format of
a Twitter post makes this information accessible.

In the massive streaming data analytics model [3], we view
the graph of social media events as an un-ending stream of new
edge updates. For a given interval of time, we have the static
graph, which represents the previous state of the network,
and a sequence of edge updates that represent the new events
that have taken place since the previous state was recorded.
An update can take the form of an insertion representing a
new edge, a change to the weight of an existing edge, or a
deletion removing an existing edge. Because of the nature of
Twitter, we do not use deletions, and the edge weights count
the number of times that one user has mentioned the other.

Previous approaches have leveraged traditional, static graph
analysis algorithms to compute an initial metric on the graph
and then a final metric on the graph after all updates. The
underlying assumption is that the time window is large and
the network changes substantially so that the entire metric
must be recomputed. In the massive streaming data analytics
model, algorithms react to much smaller changes on smaller
time-scales.

Given a graph with billions of edges, inserting 100,000 new
edges has a small impact on the overall graph. An efficient
streaming algorithm recomputes metrics on only the regions
of the graph that have experienced change. This approach
has shown large speed-ups for clustering coefficients and
connected components on scale-free networks [3], [4].

Despite an algorithmic approach to streaming data, we lack
statistical methods to reason about the dynamic changes taking
place inside the network. These methods are necessary to
perform reliable anomaly detection in an on-line manner. In
this paper, we propose analyzing the values of graph metrics
in order to understand the dynamic properties of the graph.
This allows us to leverage existing techniques from statistics
and data mining for analyzing time series.

A. Related Work

Previous research has shown that Twitter posts reflect valu-
able information about the real world. Human events, such
as breaking stories, pandemics, and crises, affect worldwide
information flow on Twitter. Trending topics and sentiment
analysis can yield valuable insight into the global heartbeat.

A number of crises and large-scale events have been exten-
sively studied through the observation of Tweets. Hashtags,
which are user-created metadata embedded in a Tweet, have

been studied from the perspective of topics and sentiment.
Hashtag half-life was determined to be typically less than
24 hours during the London riots of 2011 [5]. The analysis
of Twitter behavior following a 2010 earthquake in Chile
revealed differing propagation of rumors and news stories [6].
Researchers in Japan used Twitter to detect earthquakes with
high probability [7]. Twitter can be used to track the prevalence
of influenza on a regional level in real time [8]. Betweenness
centrality analysis applied to the H1N1 outbreak and historic
Atlanta flooding in 2009 revealed highly influential tweeters
in addition to commercial and government media outlets [9].

Many attempts at quantifying influence have been made.
Indegree, retweets, and mentions are first-order measures, but
popular users with high indegree do not necessarily generate
retweets or mentions [10] These first-order metrics are tradi-
tional database queries that do not take into account topologi-
cal information. PageRank and a low effective diameter reveal
that retweets diffuse quickly in the network and reach many
users in a small number of hops [11]. Users tweeting URLs
that were judged to elicit positive feelings were more likely
to spread in the network, although predictions of which URL
will lead to increased diffusion were unreliable [12].

B. Graph Kernels and Statistics

We define a graph kernel as an algorithm that builds a data
structure or index on a graph.1 We define a vertex statistic as a
function from the vertex set to the real numbers that depends
on the edge set and any information contained by the edges, i.e.
edge weight. Specifically, a vertex statistic should not depend
on the vertex labels in the data structure that the graph is
stored in. For example, a connected components algorithm
is a graph kernel because it creates a mapping from the
vertex set to the component labels. The function that assigns
each vertex the size of its connected component is a vertex
statistic. Graph kernels can be used as subroutines for the
efficient computation of graph statistics. Any efficient parallel
implementation of a vertex statistic will depend on efficient
parallel graph kernels. Another example of a kernel/statistic
pair is breadth-first search (BFS) and the eccentricity of a
vertex, which is the maximum distance of v to any vertex in
the connected component of v. The eccentricity of v can be
computed by taking the height of the BFS tree rooted at v.

Vertex statistics are mathematically useful ways to summa-
rize the topological information contained in the edge set. Each
statistic compresses the information in the graph; however by
compressing it differently, an ensemble of statistics can extract
higher-level features and properties from the graph.

One implication of this framework for graph analysis is that
the computation of these vertex statistics will produce a large
amount of derived data from the graph. The data for each
statistic can be stored as an |V | × |T | array, which is indexed
by vertex set V and time steps T = t1, t2, . . . , tT . These dense
matrices are amenable to parallel processing using techniques
from high performance linear algebra. Once we have created

1This is distinct from a kernel function that compares the similarity of two
graphs.

these dense matrices of statistics, we can apply large scale data
analysis techniques in order to gain insight from the graph
in motion. These statistics can also be visualized over time,
which is a challenge for graphs with more than thousands of
vertices. These statistics can give an analyst a dynamic picture
of the changes in the graph without showing the overwhelming
amount of topological information directly.

Section II takes a stream of Twitter posts (“Tweets”) from
the time surrounding the landfall of Hurricane Sandy, a tropical
storm that hit the Northern Atlantic coast of the United
States, and forms a temporal social network. We compute
graph metrics, including betweenness centrality, in a streaming
manner for each batch of new edges arising in the network. A
traditional network analysis finds that betweenness centrality
selects news media and politicians as influential during an
emergency. This corroborates the prior work regarding the
historic Atlanta floods [9]. We show that the logarithm of be-
tweenness centrality follows an exponential distribution for the
more central vertices in the network. We show that the deriva-
tive of logarithm of betweenness centrality is also statistically
well-behaved. This informs our streaming statistical analyses,
and we quantify a linear relationship in statistic values over
time. Section III studies the changes in the network using
derivative analysis and the correlation of statistic with its past
values. Section IV uses triangle counts and local clustering
coefficients to find rare vertices by combining topological and
temporal information. Multivariate techniques are used to look
for anomalous behavior in the network. A related approach is
taken in [13] using non-negative matrix factorization; however,
we separate the graph computation from the statistical learning
computation.

II. GLOBAL VIEWS OF THE DATA

While it is straightforward to generate large, synthetic
social networks for exploring the scalability and performance
characteristics of new algorithms and implementations, there is
no substitute for studying data observed in the real world. For
the experiments presented in this work, we study real social
network data. Specifically, we assembled a corpus around a
single event maximizing the likelihood of on-topic interaction
and interesting structural features. At the time, there was great
concern about the rapid development of Hurricane Sandy.
Weather prediction gave more than one week of advanced
notice and enabled us to build a tool chain to observe and
monitor information regarding the storm on a social network
from before the hurricane made landfall through the first weeks
of the recovery effort.

In order to focus our capture around the hurricane, we
selected a set of hashtags (user-created metadata identifying a
particular topic embedded within an individual Twitter post)
that we identified as relevant to the hurricane. These were
#hurricanesandy, #zonea, #frankenstorm, #eastcoast, #hurri-
cane, and #sandy. Zone A is the evacuation zone of New York
City most vulnerable to flooding.

We used a third party Twitter client to combine our hashtags
into a single stream containing a Java Script Object Notation

2

(JSON) representation of the Tweets along with any media
and geolocation data contained in the Tweets. Starting from
the day before the storm made landfall, we processed nearly
1.4 million public Twitter posts into an edge list. This edge
list also includes cases where a user "retweeted" or reposted
another user’s post, because retweets mention the author of the
original Tweet similar to a citation. The dataset included over
1,238,109 mentions from 662,575 unique users. We construct
a graph from this file in which each username is represented
as a vertex. The file contains a set of tuples containing two
usernames which are used to create the edges in the graph. The
temporal ordering of the mentions was maintained through the
processing tool chain resulting in a temporal stream of mention
events encoded as graph edges.

The edge stream is divided into batches of 10,000 edge
insertions. As each batch is applied to the graph, we compute
the betweenness centrality, local clustering coefficient, number
of closed triangles, and degree for each vertex in the graph.
Each algorithm (statistic) produces a vector of length |V |
that is stored for analysis. The computation after each batch
considers all edges in the graph up to the current time. As the
graph grows, the memory will eventually become exhausted,
requiring edges to be deleted before new edge insertions can
take place. We do not yet consider this scenario, but propose
a framework by which we can analyze the graph in motion at
a given moment in time. 2

A. Betweenness Centrality
Centrality metrics on static graphs provide an algorithmic

way to measure the relative importance of a vertex with respect
to information flow through the graph. Higher centrality values
generally indicate greater importance or influence. Between-
ness centrality [14] is a specific metric that is based on the
fraction of shortest paths on which each vertex lies. The
computational cost of calculating exact betweenness central-
ity can be prohibitive; however, approximating betweenness
centrality is tractable and produces relatively accurate values
for the highest centrality vertices [9], [15]. It is known that
betweenness centrality follows a heavy tail distribution. In
order to account for the heavy tail, we examine the logarithm
of the betweenness centrality score for each vertex. This is
analogous to measuring earthquakes on the Richter magnitude
scale. Since many vertices have zero or near zero betweenness
centrality we add one before taking the logarithm and discard
vertices with zero centrality.

For this data set at time 98 we find that the right half
of the distribution of logarithm of betweenness centrality
is exponential with location 5.715 and λ = 1.205 Since
betweenness centrality estimates are more accurate for the
high centrality vertices [16], we focus our analysis on the
vertices whose centrality is larger than the median. The cumu-
lative distribution function (CDF) is 1− exp [−λx]. Figure 1
shows both the empirical CDF and the modeled CDF for the
log(betweenness centrality). It is apparent in the figure that

2See http://www.stingergraph.com/ for code and data

Fig. 1. The cumulative distribution function for logarithm of betweenness
centrality empirical (solid) and exponential best fit (dashed)

Fig. 2. Traces of betweenness centrality value for selected vertices over time.

the exponential distribution is a good fit for the right tail. We
can use the CDF to assign a probability to each vertex, and
these probabilities can be consumed by an ensemble method
for a prediction task. This will allow traditional machine
learning and statistical techniques to be combined with high
performance graph algorithms while, maintaining the ability
to reason in a theoretically sound way.

III. TEMPORAL ANALYSIS

A. Observing a Sample of Vertices

In Figure 2, we trace the value of betweenness centrality
for a selection of vertices over time. Each series in this figure
is analogous to a seismograph, depicting the fluctuations in
centrality over time for a particular vertex. In the sociological
literature, this corresponds to a longitudinal study. It is clear
that there is a significant amount of activity for each vertex.
Such a longitudinal study of vertices can be performed for any
metric that can be devised for graphs.

B. Analysis of derivatives

Tracking the derivatives of a statistic can provide insight
into changes that are occurring in a graph in real time. We

3

Fig. 3. The derivative of the logarithm of betweenness centrality values for
selected vertices.

define the (discrete) derivative of a vertex statistic for a
vertex v at time t using the following equation where b(t)
is the number of edges inserted during batch t. Note that the
derivative of a vertex statistic is also a vertex statistic.

df

dt
(v, t) =

f(v, t+ 1)− f(v, t− 1)

b(t) + b(t− 1)

When concerned about maximizing the number of edge
updates that can be processed per second, fixing a large batch
size is appropriate. However when attempting to minimize the
latency between an edge update and the corresponding update
to vertex statistics, the batch size might vary to compensate
for fluctuations in activity on the network. Dividing by the
number of edges per batch accounts for these fluctuations.
For numerical or visualization purposes one can scale the
derivative by a constant.

For example, Figure 3 shows the derivative of logarithm of
betweenness centrality. These traces indicate that changes in
the betweenness centrality of a vertex are larger and more
volatile at the beginning of the observation and decrease
in magnitude over time. The reason for taking logs before
differentiation is that it effectively normalizes the derivative
by the value for that vertex.

Because the temporal and topological information in the
graph is summarized using real numbers, we can apply tech-
niques that have been developed for studying measurements
of scientific systems to graphs. This includes modeling the
sequences of measurements for prediction. We can then use
robust statistics to determine when a vertex differs significantly
from the prediction produced by the model. Here we can apply
techniques from traditional time series analysis to detect when
the time series for a vertex has changed dramatically from its
previous state. This might indicate that the underlying behavior
of the vertex has also changed. Others have been able to
directly detect changes in a time series using streaming density
estimation [17]. This method makes weak assumptions about
the data and thus could be useful in practice. If the time series
of a vertex has a change point, then the vertex can be flagged

as interesting for this time step and processed by an analyst
or more sophisticated model.

One can model the time series for each vertex as a stochastic
process with a set of parameters for each vertex. These
stochastic processes could be used to predict future values of
the time series. These predictions would allow an advertiser to
strategize about the future of the network. Modeling vertices
in this fashion would also allow detection of when vertices
deviate from their normal behavior.

The data can be examined in a cross sectional fashion by
examining the distribution of the derivatives at a fixed point in
time. By grouping the vertices by the sign of their derivatives
and counting, we can see that more vertices decrease in
centrality than increase in a given round.

Since the derivative of a vertex statistic is another vertex
statistic, these derivatives can be analyzed in a similar fashion.
By estimating the distribution of df

dt for any statistic we can
convert the temporal information encoded in the graph into
a probability for each vertex. These probabilities can then
be used as part of an ensemble method to detect anomalous
vertices. Modeling these differences in aggregate allows for the
detection of vertices that deviate from the behavior of typical
vertices. When f is a measure of influence such as centrality,
these extreme vertices are in the process of “going viral”, since
their influence is growing rapidly.

C. Correlation

If we are to predict statistic values into the future based
on current and past history, then we must identify a pattern
in the temporal relationship that can be exploited. For any
statistic, we can look at the Pearson correlation between the
values at time t and time t + k for various values of k
and quantify the strength of a linear relationship. This is not
a method to predict statistic values into the future. Instead
this quantifies the success of linear regression. In order to
demonstrate that this technique is agnostic to the statistic
that has been measured on the graph, we proceed using the
local clustering coefficient metric [18]. Local Clustering of
a vertex v is the number of triangles centered at v divided
by degree(v)(degree(v) − 1). The clustering coefficient is a
measure of how tightly knit the vertices are in the graph.

We can leverage linear regression to find vertices that are
significant. Once we have computed the statistic at two distinct
time-steps, the line of best fit can be used to determine what
a typical change was due to the edges that were inserted.
The distance from each vertex to that best-fit surface could
be used as a score for each vertex. The vertices with large
scores could then be processed as anomalous. The correlation
function ρf (t, t+k) is a measure of how well a linear surface
fits the data.

Let ρf (t, t + k) denote the correlation between f(v) mea-
sured at time t and f(v) measured at time t+k. For this graph,
ρf (t, t+ k) is increasing in t and decreasing in k. There is a
linear decay in the Pearson correlation coefficient as the gap
size k increases.

We define relative impact of a set of insertions as the number

4

Fig. 4. Pearson correlation of local clustering coefficient values for inter-
batch gaps of 10 (top) and a line of best fit.

of edge changes in the set divided by the average size of
the graph during the insertions. By fixing the batch size to
a constant b, and the initial graph size to 0, we obtain the
following equations for the relative impact of the batch at time
t after a gap of k batches.

RI(t, k) =
2bk

NEt +NEt+k
=

k

t+ k/2
=

(
t

k
+

1

2

)−1

Considering these equations enables reasoning about the corre-
lation of a statistic over time because relative impact measures
the magnitude of the changes to the graph. For a fixed gap k,
as t grows the relative impact of k batches converges to 0.
For a fixed time t, as the gap k grows, the relative impact
of those batches grows. If we assume that the correlation
between a statistic at time t and time t + k depends on
RI(t, k) then we expect ρf (t, t + k) to increase as t grows
and decrease as k grows. Figure 4 shows the correlation in
clustering coefficient for the graph under consideration. The
curves shown are ρf (t, t+ k) where the series labels indicate
t and the horizontal axis indicates the time of the second
measurement which is t + k. The dashed lines are the best
linear fits for each series. Since moving to the right decreases
the correlation and moving to increasing series increases the
correlation, the model is validated.

Another way to analyze a streaming graph using these
statistics, is to look at the derivative. We can measure the
overall activity of a graph according to a statistic such as
clustering coefficient by counting the number of vertices that
change their value in each direction. For clustering coefficient
this is shown in Figure 5. One observation is that more
vertices have increasing clustering coefficient than decreasing
clustering coefficient. We also learn that only a small fraction
of vertices change in either direction. Monitoring these time
series could alert an analyst or alarm system that there is
an uptick in clustering activity in the graph. The increase in
the number of vertices with increasing clustering coefficient
around batch 70 could correspond to communities forming
around a set of vertices which all increase their clustering
coefficient.

Fig. 5. Counting vertices by sign of their derivative at each time step.

IV. MULTIVARIATE METHODS FOR OUTLIER DETECTION

Because anomaly detection is a vague problem, we focus on
outlier detection, which is a more well-defined problem. The
outliers of a data set are the points that appear in the lowest
density region of the data set.

One method for finding outliers is to assume that the data
are multivariate Gaussian and use a robust estimate of mean
and covariance [19] – a method known as the elliptic envelope.
This is appropriate when the data is distributed with light tails
and one mode. The one class support vector machine (SVM)
can be used to estimate the density of an irregular distribution
from a sample. By finding the regions with low density, we
can use an SVM to detect outliers [20].

We seek a method to apply these multivariate statistical
methods to our temporal graph data. Because we have been
computing the triangle counts and local clustering coefficient
for each vertex in an on-line fashion, each vertex has a time
series. This time series can be summarized by computing
moments.

We extract the mean and variance of the original local
clustering coefficient series. In order to capture temporal infor-
mation, we use the derivative of the local clustering coefficient
and extract the mean and variance. Summary statistics for
the derivatives are taken over non zero entries because most
vertices have no change in local clustering coefficient at each
time step. These summary statistics are used as features that
represent each vertex. This is an embedding of the vertices into
a real vector space that captures both topological information
and the temporal changes to the network. This embedding can
be used for any data mining task. Here we use outlier detection
to illustrate the usefulness of this embedding.

Once these features are extracted, the vertices can be
displayed in a scatter plot matrix. This shows the distribution
of the data for each pair of features. These scatter plots
reveal that the data is not drawn from a unimodal distribution.
Because the robust estimator of covariance requires a unimodal
distribution this eliminates the elliptic envelope method for
outlier detection.

Using a single class support vector machine with the Gaus-

5

sian Radial Basis Kernel, we are able to estimate the support
of the data distribution. The ν parameter of the SVM selects
a fraction of the data to label as outliers. Because the SVM is
sensitive to scaling of the data, we whiten the data so that is
has zero mean and unit standard deviation. By grouping the
data into inliers and outliers, we see that the two distributions
are distinct in feature space.

Figure 6 shows a scatter matrix with the inlying vertices in
blue and the outliers in red. We can see that in any pair of
dimensions some outliers are mixed with inliers. This indicates
that the SVM is using all of the dimensions when forming
a decision boundary. The diagonal plots show normalized
histograms in each dimension with inliers in blue and outliers
in red. These histograms show that the distribution of the
inliers differs significantly from the distribution of the outliers.
This indicates that the SVM is capturing a population that is
distinct from the majority population.

V. CONCLUSION AND FUTURE WORK

Social media events are an insight into events occurring
in the real world. Processing data in a streaming, or on-line,
manner adds value to the insight. The goal of this research is
to quickly provide actionable intelligence from the stream of
graph edges. Modeling the graph directly using standard ma-
chine learning techniques is difficult because of the enormous
size, volume, and rate of the incoming data. Rather, we embed
the graph in a Real vector space by computing multiple graph
algorithms that each capture a different aspect of the network
topology. Then we can apply computational statistics and
machine learning in order to extract insight. Our contribution
is a framework for connecting machine learning techniques
with graphs arising from massive social networks using high
performance graph algorithms that combines topological and
temporal information.

We studied a collection of Tweets observed during Hur-
ricane Sandy. A preliminary study of the entire corpus of
Tweets revealed that betweenness centrality isolated local
news and government agencies. A parametric analysis revealed
an exponential distribution for logarithmic of betweenness
centrality for vertices greater than the median.

Taking discrete derivatives of the values over time encodes
temporal graph information in an efficient manner. We exposed
an opportunity to model individual vertices. From the deriva-
tives, we determined that the distribution of positive changes
differs from negative changes for betweenness centrality and
clustering coefficients. We reveal that relatively few vertices
change their values for any given batch of edge insertions.

We defined the relative impact of a batch of edge updates on
a graph and postulated that this will measure the relationship
between a vertex statistic and its future values. This analysis
predicted two trends in correlation of local clustering coef-
ficient, and we observed these trends in the Twitter corpus.
This suggests that it is possible to develop predictive models
for vertex statistics.

Detecting anomalous activity in a network is a key capa-
bility for streaming graph analysis. Two approaches include

labeling events or actors as anomalous; we focus on labeling
actors in a statistically rigorous manner. One difficulty is
giving a precise definition of anomalous behavior. We use
vertex statistics (and their derivatives) to define vertex be-
havior, and then use outlier detection in the traditional way
to detect vertices whose behavior differs significantly from
the majority. We demonstrate this approach on a Twitter
corpus by using a one class support vector machine where the
behavior of interest is formation of triangles. This approach
finds a partition of the vertices such that the inliers are tightly
clustered and the outliers are diffuse.

ACKNOWLEDGMENTS

This work was supported in part by the Pacific Northwest
National Lab (PNNL) Center for Adaptive Supercomputing
Software for MultiThreaded Architectures (CASS-MT) and by
DARPA-BAA-11-64.

REFERENCES

[1] Twitter, “#Goal,” April 2012, http://blog.uk.twitter.com/
2012/04/goal.html.

[2] ——, “Celebrating #Twitter7,” March 2013, http://blog.
twitter.com/2013/03/celebrating-twitter7.html.

[3] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader, “Massive
streaming data analytics: A case study with clustering
coefficients,” in 4th Workshop on Multithreaded Architec-
tures and Applications (MTAAP), Atlanta, Georgia, Apr.
2010.

[4] D. Ediger, E. J. Riedy, D. A. Bader, and H. Meyerhenke,
“Tracking structure of streaming social networks,” in 5th
Workshop on Multithreaded Architectures and Applica-
tions (MTAAP), May 2011.

[5] K. Glasgow and C. Fink, “Hashtag lifespan and so-
cial networks during the london riots,” in Social Com-
puting, Behavioral-Cultural Modeling and Prediction,
ser. Lecture Notes in Computer Science, A. Greenberg,
W. Kennedy, and N. Bos, Eds. Springer Berlin Heidel-
berg, 2013, vol. 7812, pp. 311–320.

[6] M. Mendoza, B. Poblete, and C. Castillo, “Twitter under
crisis: can we trust what we rt?” in Proceedings of the
First Workshop on Social Media Analytics, ser. SOMA
’10. New York, NY, USA: ACM, 2010, pp. 71–79.

[7] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake
shakes twitter users: real-time event detection by social
sensors,” in Proceedings of the 19th international con-
ference on World wide web, ser. WWW ’10. New York,
NY, USA: ACM, 2010, pp. 851–860.

[8] A. Signorini, A. M. Segre, and P. M. Polgreen, “The
use of twitter to track levels of disease activity and
public concern in the u.s. during the influenza a h1n1
pandemic,” PLoS ONE, vol. 6, no. 5, p. e19467, 05 2011.

[9] D. Ediger, K. Jiang, J. Riedy, D. A. Bader, C. Corley,
R. Farber, and W. N. Reynolds, “Massive social network
analysis: Mining twitter for social good,” Parallel Pro-
cessing, International Conference on, pp. 583–593, 2010.

[10] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gum-
madi, “Measuring user influence in twitter: The million

6

Fig. 6. Scatter plot matrix showing the outliers (red) and normal data (blue)

follower fallacy,” in in ICWSM Š10: Proceedings of
international AAAI Conference on Weblogs and Social,
2010.

[11] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter,
a social network or a news media?” in 19th World-Wide
Web (WWW) Conference, Raleigh, North Carolina, Apr.
2010.

[12] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J.
Watts, “Everyone’s an influencer: quantifying influence
on twitter,” in Proceedings of the fourth ACM interna-
tional conference on Web search and data mining, ser.
WSDM ’11. New York, NY, USA: ACM, 2011, pp.
65–74.

[13] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson,
“Modeling dynamic behavior in large evolving graphs,”
in WSDM, 2013, pp. 667–676.

[14] L. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41,
1977.

[15] D. Bader, S. Kintali, K. Madduri, and M. Mihail, “Ap-
proximating betweenness centrality,” in Proc. 5th Work-
shop on Algorithms and Models for the Web-Graph
(WAW2007), ser. Lecture Notes in Computer Science,
vol. 4863. San Diego, CA: Springer-Verlag, December
2007, pp. 134–137.

[16] R. Geisberger, P. Sanderst, and D. Schultest, “Better
approximation of betweenness centrality,” in Proceed-
ings of the Tenth Workshop on Algorithm Engineering
and Experiments and the Fifth Workshop on Analytic
Algorithmics and Combinatorics, vol. 129. Society for
Industrial & Applied, 2008, p. 90.

[17] Y. Kawahara and M. Sugiyama, “Change-point detection
in time-series data by direct density-ratio estimation,” in
Proceedings of 2009 SIAM international conference on
data mining (SDM2009), 2009, pp. 389–400.

[18] S. Wasserman and K. Faust, Social Network Analysis:
Methods and Applications. Cambridge University Press,
1994.

[19] P. J. Rousseeuw and K. V. Driessen, “A fast algorithm for
the minimum covariance determinant estimator,” Techno-
metrics, vol. 41, no. 3, pp. 212–223, 1999.

[20] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola,
and R. C. Williamson, “Estimating the support of a high-
dimensional distribution,” Neural Comput., vol. 13, no. 7,
pp. 1443–1471, Jul. 2001.

7

