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Abstract
Partially Observable Markov Decision Processes have
been studied widely as a model for decision making un-
der uncertainty, and a number of methods have been de-
veloped to find the solutions for such processes. Such
studies often involve calculation of the value function
of a specific policy, given a model of the transition and
observation probabilities, and the reward. These mod-
els can be learned using labeled samples of on-policy
trajectories. However, when using empirical models,
some bias and variance terms are introduced into the
value function as a result of imperfect models. In this
paper, we propose a method for estimating the bias and
variance of the value function in terms of the statistics
of the empirical transition and observation model. Such
error terms can be used to meaningfully compare the
value of different policies. This is an important result
for sequential decision-making, since it will allow us to
provide more formal guarantees about the quality of the
policies we implement. To evaluate the precision of the
proposed method, we provide supporting experiments
on problems from the field of robotics and medical de-
cision making.

Introduction
It is common in the context of Markov Decision Processes
(MDPs) to calculate the value function of a specific pol-
icy, based on some transition and reward model. When the
model is not known a priori, one can compute an empiri-
cal model from some sample on-policy trajectories using a
basic frequentist approach and then use this model (along
with Bellman’s equation) to calculate the value function of
the target policy. Using imperfect models however will in-
troduce some error in the estimated value function. As a
general practice with learning methods, we might want to
know how good this estimate of the value function is, given
the error in the estimated models. This can be expressed in
terms of bias and variance of the calculated value function.

The variability of the value function may have two differ-
ent sources. One is the stochastic nature of MDPs (internal
variance), and the other is the error due to the use of the
imperfect empirical model instead of the true model (para-
metric variance). Internal variance and its reduction have
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been studied in several works (Greensmith, Bartlett, & Bax-
ter 2004). Here we are mostly interested in finding the latter.

Mannor et al. (2004) showed that when the empirical
model is reasonably close to the true model, we can use a
second order approximation to calculate these terms in the
value function of an MDP. In this paper we extend these
ideas to the context of Partially Observable Markov Deci-
sion Processes (POMDPs) and derive similar expressions for
the bias and variance terms.

This is an important result for the deployment of au-
tonomous decision-making systems in real-world domains
since it is well-known that POMDPs are a more realistic
model of decision-making than MDPs (because they allow
partial state observability). It is worth noting that approx-
imation methods for POMDPs have made large leaps in
recent years; and while these approaches consistently as-
sume a perfect model of the domain, in real-world applica-
tions, these models must often be estimated from data. The
method outlined in this paper can be used to assess when
we have gathered sufficient data to have a good estimate of
the value function. The method can also be used to assess
whether we can confidently select one policy over another.
Finally, the method can be used to define classes of equiva-
lent policies. These are useful considerations when develop-
ing expert systems, especially for critical applications such
as human-robot interaction and medical decision-making.

Background
In this section we define the model and notation that will be
used in the following sections.

Partially Observable Markov Decision Process
We consider finite-state, finite-action, discounted reward
POMDP (Sondik 1971; Cassandra, Kaelbling, & Littman
1994):

• S: finite set of states

• A: finite set of actions

• Z: finite set of observations

• Ra: |S| dimensional matrix of rewards when selecting
action a

• Ta: |S|×|S| dimensional matrix of transition probabilities
when selecting action a
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• Oa: |S| × |Z| dimensional matrix of observation proba-
bilities when selecting action a

• γ: discount factor
It is well known that the value function of the optimal pol-

icy of a POMDP in the finite horizon is a convex piecewise
linear function of the belief state (Sondik 1971). It is often
convenient to use a finite-horizon approximation in the infi-
nite horizon case. Thus, we work only with piecewise linear
value functions.

Finite State Controller and Value Function
Sondik (1971) points out that an optimal policy for a finite-
horizon POMDP can be represented as an acyclic finite-state
controller in which each of the machine states represents a
linear piece (or the corresponding alpha vector) in the piece-
wise linear value function. The state of the controller is
based on the observation history and the action of the agent
will only be based on the state of the controller. For deter-
ministic policies, each machine state i issues an action a(i)
and then the controller transitions to a new machine state
according to the received observation. This finite-state con-
troller is usually represented as a policy graph. An example
of a policy graph for a POMP dialog manager is shown in
Fig 2.

Cassandra, Kaelbling, & Littman (1994) state that
dynamic programming algorithms for infinite-horizon
POMDPs, such as value iteration, sometimes converge to
an optimal piecewise value function that is equivalent to
a cyclic finite-state controller. In the case that the opti-
mal value function is not piecewise linear, it is still possi-
ble to find an approximate or suboptimal finite-state con-
troller (Poupart & Boutilier 2003).

Given a finite-state controller for a policy, we can extract
the value function of the POMDP using a linear system of
equations. To extract the ith linear piece of the POMDP
value function, we calculate the value of each POMDP state
over that linear piece. For each machine state i (correspond-
ing to a linear piece), and each POMDP state s, the value of
s over the ith linear piece is:

vi(s) = r(s, a(i)) +

γ
∑
s′,z

Ta(i)(s, s′)Oa(i)(s′, z)vl(i,z)(s′),

where r(s, a) is the immediate reward and l(i, z) is the next
machine state from state i and given observation z (Hansen
1998). We can rewrite the above system of equations in ma-
trix form using the following definitions:
• K: finite set of machine states in the policy graph
• vk for k ∈ K: |S| dimensional vector of coefficients rep-

resenting a linear piece in the value function
• V : |S||K| dimensional vector, vertical concatenation of
vk’s representing the POMDP value function

• a(k) for k ∈ K: the action associated with machine state
k according to the fixed policy

• rk = Ra(k) for k ∈ K: |S| dimensional vector of coef-
ficients representing a linear piece in the piecewise linear
immediate reward function

• R: |S||K| dimensional vector, concatenation of rk’s

• T : |S||K| × |S||K| dimensional block diagonal matrix
of |K| × |K| blocks, with Ta(k) as the kth diagonal sub-
matrix

• O: |S||K|×|Z||S||K| dimensional block diagonal matrix
of |K|×|K| blocks. Each diagonal block is a |S|×|Z||S|
block diagonal sub-matrix of |S| × |S| sub-blocks. Each
sub-block is therefore a |Z| dimensional row vector. The
kth block, sth sub-block contains the sth row in theOa(k).

• Π: |Z||S||K|×|S||K| dimensional block matrix of |K|×
|K| blocks. Each block Πk1k2 is itself a |Z||S|×|S| block
diagonal sub-matrix of |S| × |S| sub-blocks. Each sub-
block is therefore a |Z| dimensional vector. For all s, the
zth component of the sth diagonal block of the (k1, k2)
sub-matrix, [(Πk1k2)s]z , is equal to 1 if k2 is the succeed-
ing index of the machine state when the machine state is
k1 and the observation is z, and 0 otherwise. This matrix
represents the transition function l(i, z) of the finite-state
controller which are the arcs in the policy graph.

We can write the system of equations representing the
value of a policy π in the following matrix form:

V π = R+ γTOΠπV. (1)
leading to:

V π = (I − γTOΠπ)−1R. (2)

The above equation can be used to calculate the value func-
tion of a given policy, if the models for T , O and R are
known. This equation is at the core of most policy itera-
tion algorithms for POMDPs (Hansen 1997; 1998), includ-
ing one of the most recent highly successful approximation
method (Ji et al. 2007). Thus having confidence intervals
over the calculated value function might be of great use in
such algorithms.

Model Error
Given a POMDP (as defined in the previous section), a fixed
policy and a set of labeled on-policy trajectories, one can
use a frequentist approach to calculate the models for T , O
and R. The assumption of having training data with known
labeled states is a strong assumption and in many POMDP
domains may not be plausible. However, it is still more prac-
tical than the assumption of having exact true models of T ,
O and R. In the case where EM-type algorithms are used
to label the data (Koenig & Simmons 1996), the derivation
of the estimates with the above assumption is not exactly
correct, but might still provide a useful guide to compare
competing policies.

Here we focus on the case in which the model for imme-
diate reward is known, while T and O are estimated from
data. The method can be further extended to the case where
rewards are also estimated from data.

If action a is used Na
i times in state si, from which there

were Na
ij transitions to sj , we can write down the empirical

transition probability from si to sj given action a as:

T̂a(i, j) =
Na
ij

Na
i

. (3)
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A similar method can be used with the observation model.
If there were Ma

i transitions to si after action a, and zj was
observed inMa

ij of them, the empirical model of observation
probabilities would be:

Ôa(i, j) =
Ma
ij

Ma
i

. (4)

From these empirical models we can create the T and O
models as defined in the previous section.

As our training data has a finite number of samples, and
therefore these empirical models are likely to be imperfect,
containing error terms T̃ and Õ. We therefore have:

T̂ = T + T̃ , Ô = O + Õ. (5)

As we used a simple frequentist approach to calculate the
empirical models, we can assume independence of errors in
the following manner: Different rows in T̂a and Ôa are in-
dependent from each other, and each row is drawn from a
multinomial distribution. Considering statistical properties
of the multinomial distribution, we know that the expected
errors are zero and independent:

E[T̃ ] = E[Õ] = E[T̃ Õ] = 0. (6)

We can write the covariance of the i’th row of T̂a (denoted
T̂

(i)
a ) as:

cov(T (i)
a ) =

1
Na
i

(
diag(T̂ (i)

a )− (T̂ (i)
a )T T̂ (i)

a

)
, (7)

where diag(T̂ (i)
a ) is a diagonal matrix with T̂ (i)

a along the
diagonal. Similarly for Ô(i)

a we have:

cov(O(i)
a ) =

1
Ma
i

(
diag(Ô(i)

a )− (Ô(i)
a )T Ô(i)

a

)
. (8)

Using the above derivations and the definition of T and O
matrices from the previous section, it is straight-forward to
calculate the four dimensional covariance matrices of T̃ and
Õ in terms of cov(T (i)

a ) and cov(O(i)
a ). With T̃ and Õ being

zero mean variables, the covariance matrices will be:
cov(T (i, j), T (k, l)) = E[T̃ (i, j)T̃ (k, l)], (9)

cov(O(i, j), O(k, l)) = E[Õ(i, j)Õ(k, l)]. (10)

These terms capture the variance in the empirical models.
The interesting question that arises is how these errors in the
empirical models impact our estimate of the value function.

Calculation of Bias and Variance

If we use the empirical models instead of the true models to
calculate the value of a given policy π, we will have:

V̂ π = (I − γT̂ ÔΠπ)−1R, (11)
To simplify the notation, we will drop the π superscript in
the later derivations. The above expression can be rewritten
as:

V̂ = (I − γ(T + T̃ )(O + Õ)Π)−1R. (12)

Now using Taylor expansion and matrix manipulation (Man-
nor et al. 2007), we can re-write the above expression as:

V̂ =
∞∑
k=0

γkfk(T̃ , Õ)R, (13)

where
X = (I − γTOΠ)−1, (14)

fk(T̃ , Õ) = (X(T̃OΠ + TÕΠ + T̃ ÕΠ))kX. (15)

We will use the above derivation to approximate the ex-
pectation of the calculated value function:

E[V̂ ] = E[
∞∑
k=0

γkfk(T̃ , Õ)R]. (16)

Because the exact expression of the above equation cannot
be further simplified, we consider a second order approxi-
mation instead. The expectation of the value function then
becomes:

E[V̂ ] = XR+ γE[f1]R+ γ2
E[f2]R. (17)

As Õ and T̃ are zero mean and independent, E[f1(T̃ , Õ)]
will be 0. By substitutingX , the above expression becomes:

E[V̂ ] = V + γ2
E[f2(T̃ , Õ)]R, (18)

which shows that the calculated value function is expected
to have some non-zero bias term.

Using a similar approximation, we can write down the
second moment of value function as:
E[V̂ V̂ T ] = V V T + γ2(E[f1RRT fT1 ]) (19)

+γ2(E[f0RRT fT2 ]) + γ2(E[f2RRT fT0 ]).
The covariance matrix will therefore be:

E[V̂ V̂ T ]−E[V̂ ]E[V̂ ]T = γ2(E[f1RRT fT1 ]). (20)
Substituting f1 with the definition we get:

cov(V̂ ) = γ2XE[T̃OΠV V TΠTOT T̃T ]XT .

+γ2XTE[ÕΠV V TΠT ÕT ]TTXT (21)

We will approximately calculate the above expression
by substituting the true models with our empirical models
(which is a standard classical approach).

We also require the following lemma:

Lemma 1. Let Q be an n× n dimensional matrix:

Q = AXAT , (22)
where A is an n×m matrix of zero mean random variables
and X is a constant matrix of m ×m dimensions. The ijth
entry of E[Q] is equal to:

E[
∑
k,l

AikXklA
T
lj ] =

∑
k,l

XklE[AikAjl]

=
∑
k,l

Xklcov(Aik, Ajl), (23)

which is only dependent on four dimensional covariance of
the matrix A.

By applying Lemma 1 to Eqn 21, we can calculate the
covariance of the calculated value function using the covari-
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ance of T̃ and Õ defined in the previous section.
In summary, we propose a second order approximation to

estimate the expected error in the value function, in terms
of the expected error in the empirical models. Using sim-
ilar calculations, we can also calculate the bias as defined
by Eqn 18 (the derivation will appear in a longer version of
this paper; in most cases this term is much smaller than the
variance).

Experiment and Results
The purpose of this section is two-fold. First, we wish to
evaluate the approximations used when deriving our esti-
mate of the variance in the value function. Second we wish
to illustrate how the method can be used to compare differ-
ent policies for a given task.

POMDP dialog manager
We begin by evaluating the method on synthetic data from
a human-robot dialog task. The use of POMDP-based
dialog managers is well-established (Doshi & Roy 2007;
Williams & Young 2006). However, it is often not easy to
get training data in human-robot interaction domains. With
small training sets, error terms tend to be important. Esti-
mates of the error variance will therefore be helpful to eval-
uate and compare policies.

Here we focus on a small simulated problem which re-
quires evaluating dialog policies for the purpose of acquiring
motion goals from the user. We presume a human operator is
instructing an assistive robot to move to one of two locations
(e.g. bedroom or bathroom). While the human intent (i.e.
the state) is one of these goals, the observation received by
the robot (presumably through a speech recognizer) might
be incorrect. The robot has the option to ask again to en-
sure the goal was understood correctly. Note however that
the human may change his/her intent (the state) with a small
probability. Fig 1 shows a model of the described situation.

In the generative model (used to provide the training
data), we assume the probability of a wrong observation
is 0.15 and the human might change goals with probabil-
ity 0.05. If the robot acts as requested, it gets a reward of
10; otherwise it gets a −40 penalty. There is a small penalty
of −1 when asking for clarification. We assume γ = 0.95.

Fig 2 shows a policy graph for the described POMDP di-
alog manager. This policy graph corresponds to the policy
where the robot keeps asking the human until it receives an
observation twice more than the other one.

We ran the following experiment: given the fixed policy
of Fig 2 and a fixed number n, we draw on-policy labeled

start

goto bedroom

goto bathroom

end

Figure 1: Example of a dialog POMDP - Dashed lines refer
to taking action “ask”

goto x

ask

x/y

ask

x

y
x

asky
x

goto y

y
x/y

Figure 2: Policy graph for the POMDP dialog manager

trajectories that on the whole contain n transitions. We use
these to calculate the empirical models (Eqns 3 and 4), and
use Eqn 2 to calculate the value function. Then we use
Eqn 21 to calculate the covariance and standard deviation of
the value function at the initial belief point (b0 = [0.5; 0.5]).

Let V (b0) be the expected value at the initial belief state
b0, and let α = [α1;α2] be the vector of coefficients describ-
ing the corresponding linear piece in the piecewise linear
value function. We have V (b0) = E[α · b] = (α1 + α2)/2
and thus the variance of V (b0) can be calculated as:

var(V (b0)) =
var(α1) + var(α1) + 2cov(α1, α2)

4
. (24)

Fixing the size of the training set, we run the above ex-
periment 1000 times. In each time, we calculate the empir-
ical value of the initial belief state (V̂ (b0)), and estimate its
variance using Eqn 24. We then calculate the percentage of
cases in which the estimated value (V̂ (b0)) lies within 1 and
2 estimated standard deviations of the true value (V (b0)).
Assuming that the error between the calculated and true
value has a Gaussian distribution (this was confirmed by
plotting the histogram of error terms), these values should be
68% and 95% respectively. Fig 3 confirms that the variance
estimation we propose satisfies this criteria. The result holds
for a variety of sample set sizes (from n=1000 to n=5000).

To investigate how these variance estimates can be useful
to compare competing policies, we calculate the variance of
the value function for two other policies on this dialog prob-
lem (we presume these dialog policies are provided by an
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Figure 3: Percentage of the cases in which V̂ (b0) lies within
1 (+) and 2 (×) approximately calculated standard devia-
tions from V (b0) - the dialog problem
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Figure 4: 1 standard deviation interval for the calculated
value of the initial belief state for different policies on the
dialog problem

expert, though they could be acquired from a policy iteration
algorithm such as Ji et al. (2007)). One policy is to ask for
the goal only once, and then act according to that single ob-
servation. The other policy is to keep asking until the robot
observes one of the goals three times more than the other
one, and then act accordingly. Fig 4 shows the 1 standard
deviation interval for the calculated value of the initial be-
lief state as a function of the number of samples, for each of
our three policies (including the one shown in Fig 2). Given
larger sample sizes, the policy in Fig 2 becomes a clear fa-
vorite, whereas the other two are not significantly different
from each other. This illustrates how our estimates can be
used practically to assess the difference between policies us-
ing more information than simply their expected value (as is
usually standard in the POMDP literature).

Medical Domain
We now evaluate the accuracy of our approximation in a
medical decision-making task involving real data. The data
was collected as part of a large (4000+ patients) multi-step
randomized clinical trial, designed to investigate the com-
parative effectiveness of different treatments provided se-
quentially for patients suffering from depression (Fava et
al. 2003). The POMDP framework offers a powerful model
for optimizing treatment strategies from such data. However
given the sensitive nature of the application, as well as the
cost involved in collecting such data, estimates of the poten-
tial error are highly useful.

The dataset provided includes a large number of mea-
sured outcomes, which will be the focus of future investiga-
tions. For the current experiment, we focus on a numerical
score called the Quick Inventory of Depressive Symptoma-
tology (QIDS), which roughly indicates the level of depres-
sion. This score was collected throughout the study in two
different ways: a self-report version (QIDS-SR) was col-
lected using an automated phone system; a clinical version
(QIDS-C) was also collected by a qualified clinician. For
the purposes of our experiment, we presume the QIDS-C
score completely describes the patient’s state, and the QIDS-
SR score is a noisy observation of the state. To make the

MedA

l

MedB

      m

MedC

hl

m h

l

m

h

Figure 5: The policy graph for the STAR*D problem

problem tractable with small training data, we discretize the
score (which usually ranges from 0 to 27) uniformly accord-
ing to quantiles into 2 states and 3 observations. The dataset
includes information about 4 steps of treatments. We focus
on policies which only differ in terms of treatment options
in the second step of the sequence (other treatment steps are
held constant). There are seven treatment options at that
step. A reward of 1 is given if the patient achieves remis-
sion (at any step); a reward of 0 is given otherwise.

Although this a relatively small POMDP domain, it is
nonetheless an interesting validation for our estimate, since
it uses real data, and highlights the type of problem where
these estimates are particularly crucial.

We focus on estimating the variance in the value esti-
mate for the policy shown in Fig 5. This policy includes
only three treatments: medication A is given to patients with
low QIDS-SR scores, medication B is given to patients with
medium QIDS-SR scores, and medication C is given to pa-
tients with high QIDS-SR scores. Since we do not know the
exact value of this policy (over an infinitely large data set),
we use a bootstrapping estimate. This means we take all the
samples in our dataset which are consistent with this policy,
and presume that they define the true model and true value
function. Now to investigate the accuracy of our variance es-
timate, we subsample this data set, estimate the correspond-
ing parameters, and calculate the value function using Eqn 2.

To summarize the value function into a single value (de-
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Figure 6: Percentage of cases in which V̂ (B) lies within 1
(+) and 2 (×) approximately calculated standard deviations
from V (B) - the STAR*D problem
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Figure 7: 2 standard deviation interval for the calculated
value of the summarized belief state for different policies
on the STAR*D problem

noted by V (B)), we simply take the average over the 3 lin-
ear pieces in the value function. The variance of V̂ (B) will
therefore be the average of the elements of the covariance
matrix we calculated for the value function. To check the
quality of the estimates, we calculate the percentage of cases
in which the calculated value lies within 1 and 2 standard
deviations from the true value. If the error term in the value
function has a normal distribution these percentages should
again be 68 and 95. Fig 6 shows the mentioned percentages
as a function of the number of samples. Here again, the vari-
ance estimates are close to what is observed empirically.

Finally, we conducted an experiment to compare policies
with different choice of medications in the policy graph of
Fig 5. During the STAR*D experiment, patients mostly pre-
ferred not to use a certain treatment (CT:Cognitive Ther-
apy). To study the effect of this preference, we compared
two policies only one of which uses CT. As shown in Fig 7,
the CT-based policy has a slightly better expected value and
much higher variation. Using the result of this analysis, one
might prefer the non CT-based policy for two reasons: Even
with high empirical values, we have small evidence to sup-
port the CT-based policy. Moreover, CT is not preferred by
most patients. Such method can be applied in similar cases
for comparison between an empirically optimal policy and
medically preferred ones.

Discussion
Most of the literature on sequential decision-making focuses
strictly on the problem of making the best possible decision.
This paper argues that it is sometimes important to take into
account the error in our value function, when comparing al-
ternative policies. In particular, we show that when we use
imperfect empirical models generated from sample data (in-
stead of the true model), some bias and variance terms are in-
troduced in the value function of a POMDP. We also present
a method to approximately calculate these errors in terms of
the statistics of the empirical models.

Such information can be highly valuable when comparing
different action selection strategies. During policy search,
for instance, one could make use of these error terms to

search for policies that have high expected value and low
expected variance. Furthermore, in some domains (includ-
ing human-robot interaction and medical treatment design),
where there is an extensive tradition of using hand-crafted
policies to select actions, the method we present would be
useful to compare hand-crafted policies with the best policy
selected by an automated planning method.

The method we presented can be further extended to work
in cases where the reward model is also unknown and is ap-
proximated by sampling. However, the derived equations
are more cumbersome as we need to take into account the
potential correlations between reward and transition models.
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