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Biclustering Algorithms for Biological
Data Analysis: A Survey

Sara C. Madeira and Arlindo L. Oliveira

Abstract

A large number of clustering approaches have been proposed for the analysis of gene expression data obtained
from microarray experiments. However, the results of the application of standard clustering methods to genes are
limited. These limited results are imposed by the existence of a number of experimental conditions where the
activity of genes is uncorrelated. A similar limitation exists when clustering of conditions is performed.

For this reason, a number of algorithms that perform simultaneous clustering on the row and column dimensions
of the gene expression matrix has been proposed to date. This simultaneous clustering, usually designated by
biclustering, seeks to find sub-matrices, that is subgroups of genes and subgroups of columns, where the genes
exhibit highly correlated activities for every condition. This type of algorithms has also been proposed and used
in other fields, such as information retrieval and data mining.

In this comprehensive survey, we analyze a large number of existing approaches to biclustering, and classify
them in accordance with the type of biclusters they can find, the patterns of biclusters that are discovered, the
methods used to perform the search and the target applications.

Index Terms

Biclustering, simultaneous clustering, co-clustering, two-way clustering, subspace clustering, bi-dimensional
clustering, microarray data analysis, biological data analysis

. INTRODUCTION

D NA chips and other techniques measure the expression level of a large number of genes, perhaps al
genes of an organism, within a number of different experimental samples (conditions). The samples

may correspond to different time points or different environmental conditions. In other cases, the samples
may have come from different organs, from cancerous or healthy tissues, or even from different individuals.

Simply visualizing this kind of data, which is widely callegne expression datar simply expression

data is challenging and extracting biologically relevant knowledge is harder still [17].

Usually, gene expression data is arranged in a data matrix, where each gene corresponds to one rov
and each condition to one column. Each element of this matrix represents the expression level of a gene
under a specific condition, and is represented by a real number, which is usually the logarithm of the
relative abundance of the mRNA of the gene under the specific condition.

Gene expression matrices have been extensively analyzed in two dimensions: the gene dimension ant
the condition dimension. This correspond to the:

« Analysis of expression patterns of genes by comparing rows in the matrix.
« Analysis of expression patterns of samples by comparing columns in the matrix.

Common objectives pursued when analyzing gene expression data include:

1) Grouping of genes according to their expression under multiple conditions.
2) Classification of a new gene, given its expression and the expression of other genes, with known
classification.
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3) Grouping of conditions based on the expression of a number of genes.
4) Classification of a new sample, given the expression of the genes under that experimental condition.

Clustering techniques can be used to group either genes or conditions, and, therefore, to pursue directly
objectives 1 and 3, above, and, indirectly, objectives 2 and 4.

However, applying clustering algorithms to gene expression data runs into a significant difficulty. Many
activation patterns are common to a group of genes only under specific experimental conditions. In fact,
our general understanding of cellular processes leads us to expect subsets of genes to be co-regulate
and co-expressed only under certain experimental conditions, but to behave almost independently undel
other conditions. Discovering such local expression patterns may be the key to uncovering many genetic
pathways that are not apparent otherwise. It is therefore highly desirable to move beyond the clustering
paradigm, and to develop algorithmic approaches capable of discovering local patterns in microarray data
[2].

Clustering methods can be applied to either the rows or the columns of the data matrix, separately.
Biclustering methods, on the other hand, perform clustering in the two dimensions simultaneously. This
means that clustering methods derivglabal modelwhile biclustering algorithms producel@cal model
When clustering algorithms are used, each gene in a given gene cluster is defined using all the conditions.
Similarly, each condition in a condition cluster is characterized by the activity of all the genes. However,
each gene in a bicluster is selected using only a subset of the conditions and each condition in a bicluster is
selected using only a subset of the genes. The goal of biclustering techniques is thus to identify subgroups
of genes and subgroups of conditions, by performing simultaneous clustering of both rows and columns
of the gene expression matrix, instead of clustering these two dimensions separately.

We can then conclude that, unlike clustering algorithms, biclustering algorithms identify groups of
genes that show similar activity patterns under a specific subset of the experimental conditions. Therefore,
biclustering approaches are the key technique to use when one or more of the following situations applies:

1) Only a small set of the genes patrticipates in a cellular process of interest.

2) An interesting cellular process is active only in a subset of the conditions.

3) A single gene may participate in multiple pathways that may or not be co-active under all conditions.

For these reasons, biclustering algorithms should identify groups of genes and conditions, obeying the
following restrictions:

« A cluster of genes should be defined with respect to only a subset of the conditions.

« A cluster of conditions should be defined with respect to only a subset of the genes.

« The clusters should not be exclusive and/or exhaustive: a gene or condition should be able to belong
to more than one cluster or to no cluster at all and be grouped using a subset of conditions or genes,
respectively.

Additionally, robustness in biclustering algorithms is specially relevant because of two additional
characteristics of the systems under study. The first characteristic is the sheer complexity of gene regulation
processes, that require powerful analysis tools. The second characteristic is the level of noise in actual
gene expression experiments, that makes the use of intelligent statistical tools indispensable.

[I. DEFINITIONS AND PROBLEM FORMULATION

We will be working with ann by m matrix, where element;; will be, in general, a given real value.
In the case of gene expression matricgs,represents the expression level of geénender conditiony.
Table | illustrates the arrangement of a gene expression matrix.

A large fraction of applications of biclustering algorithms deal with gene expression matrices. However,
there are many other applications for biclustering. For this reason, we will consider the general case of a
data matrix,A, with set of rowsX and set of columng”, where the elements;; corresponds to a value
representing the relation between revand columnj.

Such a matrix4, with n rows andm columns, is defined by its set of row&] = {x,...,z,}, and
its set of columnsy = {y1, ..., ym }. We will use (X,Y) to denote the matrid. If / C X andJ C Y
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TABLE |
GENE EXPRESSIONDATA MATRIX

Condition 1 ... Conditiorj ... Conditionm
Gene 1 a1 aij Aim
Gene ...
Genei a;1 Qij QAim
Gene ...
Genen an1 Qnj Anm

are subsets of the rows and columns, respectivly, = (I, J) denotes the sub-matrid;; of A that
contains only the elements; belonging to the sub-matrix with set of rowsand set of columng.

Given the data matrixl a cluster of rowss a subset of rows that exhibit similar behavior across the set
of all columns. This means that a row clustér, = (1,Y) is a subset of rows defined over the set of all
columnsY, wherel = {iy,...,ix} is a subset of rows/(C X andk < n). A cluster of rows(/,Y") can
thus be defined as fa by m sub-matrix of the data matrid. Similarly, acluster of columnss a subset
of columns that exhibit similar behavior across the set of all rows. A cluster = (X, J) is a subset of
columns defined over the set of all rows, whereJ = {ji,...,js} is a subset of columns/(C Y and
s < m). A cluster of columng X, J) can then be defined as anby s sub-matrix of the data matrix.

A biclusteris a subset of rows that exhibit similar behavior across a subset of columns, and vice-versa.
The bicluster4;; = (I, J) is a subset of rows and a subset of columns whete{i,, ..., i} is a subset
of rows ({ C X andk <n), andJ = {ji, ..., js} is a subset of columns/(C Y ands < m). A bicluster
(I,J) can then be defined askaby s sub-matrix of the data matrix.

The specific problem addressed by biclustering algorithms can now be defined. Given a dataAnatrix,
we want to identify a set of bicluster8, = (I, J) such that each biclusteB,, satisfies some specific
characteristics of homogeneity. The exact characteristics of homogeneity that a bicluster must obey vary
from approach to approach, and will be studied in Section Il

A. Weighted Bipartite Graph and Data Matrices

An interesting connection between data matrices and graph theory can be established. A data matrix
can be viewed as weighted bipartite graphA graphG = (V, E), whereV is the set of vertices anfl
is the set of edges, is said to be bipartite if its vertices can be partitioned into twh sets” such that
every edge inE has exactly one end ih and the other inR: V = L|J R. The data matrix4d = (X,Y)
can be viewed as a weighted bipartite graph where eachmodée. corresponds to a row and each node
n; € R corresponds to a column. The edge between ngdmdn; has weighta;;, denoting the element
of the matrix in the intersection between rovand column; (and the strength of the activation level, in
the case of gene expression matrices).
This connection between matrices and graph theory leads to very interesting approaches to the analysi:
of expression data based on graph algorithms.

B. Problem Complexity

Although the complexity of the biclustering problem may depend on the exact problem formulation, and,
specifically, on the merit function used to evaluate the quality of a given bicluster, almost all interesting
variants of this problem are NP-complete.

In its simplest form the data matrid is a binary matrix, where every elememy; is either(O or 1.

When this is the case, a bicluster corresponds to a biclique in the corresponding bipartite graph. Finding a
maximum size bicluster is therefore equivalent to finding the maximum edge biclique in a bipartite graph,
a problem known to be NP-complete [20].
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More complex cases, where the actual numeric values in the maie taken into account to compute
the quality of a bicluster, have a complexity that is necessarily no lower than this one, since, in general,
they could also be used to solve the more restricted version of the problem, known to be NP-complete.
Given this, the large majority of the algorithms use heuristic approaches to identify biclusters, in many
cases preceded by a normalization step that is applied to the data matrix in order to make more evident
the patterns of interest. Some of them avoid heuristics but exhibit an exponential worst case runtime.

C. Dimensions of Analysis

Given the already extensive literature on biclustering algorithms, it is important to structure the analysis

to be presented. To achieve this, we classified the surveyed biclustering algorithms along four dimensions:

« The type of biclusters they can find. This is determined by the merit functions that define the type
of homogeneity that they seek in each bicluster. The analysis is presented in section Il

. The way multiple biclusters are treated and the bicluster structure produced. Some algorithms find
only one bicluster, others find non-overlapping biclusters, others, more general, extract multiple,
overlapping biclustes. This dimension is studied in Section IV.

« The specific algorithm used to identify each bicluster. Some proposals use greedy methods, while
others use more expensive global approaches or even exhaustive enumeration. This dimension is
studied in Section V.

. The domain of application of each algorithm. Biclustering applications range from a number of
microarray data analysis tasks to more exotic applications like recommendations systems, direct
marketing and elections analysis. Applications of biclustering algorithms with special emphasis on
biological data analysis are addressed in Section VII.

1. BICLUSTERTYPE

An interesting criteria to evaluate a biclustering algorithm concerns the identification of the type of
biclusters the algorithm is able to find. We identified four major classes of biclusters:

1) Biclusters with constant values.

2) Biclusters with constant values on rows or columns.

3) Biclusters with coherent values.

4) Biclusters with coherent evolutions.

The simplest biclustering algorithms identify subsets of rows and subsets of columns with constant
values. An example of a constant bicluster is presented in Fig. 1(a). These algorithms are studied in
Section 1lI-B.

Other biclustering approaches look for subsets of rows and subsets of columns with constant values on
the rows or on the columns of the data matrix. The bicluster presented in Fig. 1(b) is an example of a
bicluster with constant rows, while the bicluster depicted in Fig. 1(c) is an example of a bicluster with
constant columns. Section IlI-C studies algorithms that discover biclusters with constant values on rows
or columns.

More sophisticated biclustering approaches look for biclusters with coherent values on both rows and
columns. The biclusters in Fig. 1(d) and Fig. 1(e) are examples of this type of bicluster, where each row
and column can be obtained by adding a constant to each of the others or by multiplying each of the
others by a constant value. These algorithms are studied in Section IlI-D.

The last type of biclustering approaches we analyzed addresses the problem of finding biclusters with
coherent evolutions. These approaches view the elements of the matrix as symbolic values, and try to
discover subsets of rows and subsets of columns with coherent behaviors regardless of the exact numeri
values in the data matrix. The co-evolution property can be observed on the entire bicluster, that is on
both rows and columns of the sub-matrix (see Fig. 1(f)), on the rows of the bicluster (see Fig. 1(g)), or
on the columns of the bicluster (see Fig. 1(h) and Fig. 1(i)). These approaches are addressed in Sectior
l-E.
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Fig. 1. Examples of Different Types of Biclusters

According to the specific properties of each problem, one or more of these different types of biclusters
are generally considered interesting. Moreover, a different type of merit function should be used to evaluate
the quality of the biclusters identified. The choice of the merit function is strongly related with the
characteristics of the biclusters each algorithm aims at finding.

The great majority of the algorithms we surveyed perform simultaneous clustering on both dimensions
of the data matrix in order to find biclusters of the previous four classes. However, we also analyzed
two-way clustering approaches that use one-way clustering to produce clusters on both dimensions of
the data matrix separately. These one-dimension results are then combined to produce subgroups of row:
and columns whose properties allow us to consider the final result as biclustering. When this is the case,
the quality of the bicluster is not directly evaluated. One-way clustering metrics are used to evaluate the
quality of the clustering performed on each of the two dimensions separately and are then combined,
in some way, to compute a measure of the quality of the resulting biclustering. The type of biclusters
produced by two-way clustering algorithms depends, then, on the distance or similarity measure used by
the one-way clustering algorithms. These algorithms will be considered in Sections I1I-B, 11I-C, 11I-D and
llI-E, depending on the type of bicluster defined by the distance or similarity measure used.

A. Notation

We will now introduce some notation used in the remaining of the section. Given the data matrix
A = (X,Y), with set of rowsX and set of columng”, a bicluster is a sub-matrix/,.J), where I
is a subset of the rows(, J is a subset of the columng and a;; is the value in the data matriX
corresponding to row and column;. We denote by:;; the mean of theéth row in the biclustera,; the
mean of thejth column in the bicluster and;; the mean of all elements in the bicluster. These values
are defined by:

a;j = f}” >jes ij (1)
arj = ﬁ dicl Q5 (2)
1

_ _ 1 _ 1
ALy = 1 Yieljes Gij = I >ier ig = ¥l > jeg arj (3
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B. Biclusters with Constant Values

When the goal of a biclustering algorithm is to find a constant bicluster or several constant biclusters, it
is natural to consider ways of reordering the rows and columns of the data matrix in order to group together
similar rows and similar columns, and discover subsets of rows and subsets of columns (biclusters) with
similar values. Since this approach only produces good results when it is performed on non-noisy data,
which does not correspond to the great majority of available data, more sophisticated approaches can be
used to pursue the goal of finding biclusters with constant values. When gene expression data is used
constant biclusters reveal subsets of genes with similar expression values within a subset of conditions.
The bicluster in Fig. 1(a) is an example of a bicluster with constant values.

A perfectconstant bicluster is a sub-matr{X, /), where all values within the bicluster are equal for
allie I and allj € J:

Q5 = [ (4)

Although these “ideal” biclusters can be found in some data matrices, in real data, constant biclusters
are usually masked by noise. This means that the valye®und in what can be considered a constant
bicluster are generally presented:as+ 1., wheren;,; is the noise associated with the real valuef a;;.

The merit function used to compute and evaluate constant biclusters is, in general, the variance or some
metric based on it.

Hartigan [13] introduced a partition based algorithm called direct clustering that became known as
Block Clustering This algorithm splits the original data matrix into a set of sub-matrices (biclusters). The
varianceis used to evaluate the quality of each bicluster.J):

VAR(I,J) = Yicr jes (a5 — ary)? (5)

According to this criterion, a perfect bicluster is a sub-matrix with variance equal to zero. Hence, every
single-row, single-column matrix/, J) in the data matrix, which corresponds to each elemgntis an
ideal bicluster sinc&” AR(I,.J) = 0. In order to avoid the partitioning of the data matrix into biclusters
with only one row and one column, Hartigan assumes that theré& dveclusters within the data matrix:
(I,J), for k € 1,..., K. The algorithm stops when the data matrix is partitioned iKtdiclusters. The
quality of the resulting biclustering is computed using the overall variance ofsthwclusters:

VAR(I, D)k = X0 Sierjes (aij — arg)? (6)

Although Hartigan’s goal was to find constant biclusters, he mentioned the possibility to change its
merit function in order to make it possible to find biclusters with constant rows, constant columns or
coherent values on both rows and columns. He suggested the use of a two-way analysis of the variance
within the bicluster, and a possible requirement that the bicluster be of low rank, suggesting the possibility
of an ANalysis Of VAriance between groups (ANOVA).

Tibshirani et al. [26] added a backward pruning method to the block splitting algorithm introduced by
Hartigan [13] and designed a permutation-based method to induce the optimal number of bicKisters,
The merit function used is however, still the variance and consequently it finds constant biclusters.

Another approach that aims at finding biclusters with constant values is the Double Conjugated Clus-
tering (DCC) introduced by Busygin et al. [4]. DCC is a two-way clustering approach to biclustering that
enables the use of any clustering algorithm within its framework. Busygin et al. use self organizing maps
(SOMs) and the angle metric (dot product) to compute the similarity between the rows and columns when
performing one-way clustering. By doing this, they also identify biclusters with constant values.
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C. Biclusters with Constant Values on Rows or Columns

There exists great practical interest in discovering biclusters that exhibit coherent variations on the rows
or on the columns of the data matrix. As such, many biclustering algorithms aim at finding biclusters
with constant values on the rows or the columns of the data matrix. The biclusters in Fig. 1(b) and
Fig. 1(c) are examples of biclusters with constant rows and constant columns, respectively. In the case
of gene expression data, a bicluster with constant values in the rows identifies a subset of genes with
similar expression values across a subset of conditions, allowing the expression levels to differ from gene
to gene. The same reasoning can be applied to identify a subset of conditions within which a subset of
genes present similar expression values assuming that the expression values may differ from condition to
condition.

A perfectbicluster with constant rows is a sub-mattik .J), where all the values within the bicluster
can be obtained using one of the following expressions:

Aij = p+ Q; (7)
Qij = b X O (8)

where is the typical value within the bicluster and is the adjustment for row € I. This adjustment
can be obtained either in an additive (7) or multiplicative way (8).

Similarly, a perfectbicluster with constant columns is a sub-matfix /), where all the values within
the bicluster can be obtained using one of the following expressions:

aij = p+ 5 (9)

where is the typical value within the bicluster angj is the adjustment for colump € J.

This class of biclusters cannot be found simply by computing the variance of the values within the
bicluster or by computing similarities between the rows and columns of the data matrix as we have seen
in Section 11-B.

The straightforward approach to identify non-constant biclusters is to normalize the rows or the columns
of the data matrix using the row mean and the column mean, respectively. By doing this, the biclusters
in Fig. 1(b) and Fig. 1(c), would both be transformed into the bicluster presented in Fig. 1(a), which is a
constant bicluster. This means that the row and column normalization allows the identification of biclusters
with constant values on the rows or on the columns of the data matrix, respectively, by transforming these
biclusters into constant biclusters before the biclustering algorithm is applied.

This approach was followed by Getz et al. [11], who introduced the Coupled Two-Way Clustering
(CTWC) algorithm. When CTWC is applied to gene expression data it aims at finding subsets of genes
and subsets of conditions, such that a single cellular process is the main contributor to the expression of
the gene subset over the condition subset. This two-way clustering algorithm repeatedly performs one-
way clustering on the rows and columns of the data matrix using stable clusters of rows as attributes for
column clustering and vice-versa. Any reasonable choice of clustering method and definition of stable
cluster can be used within the framework of CTWC. Getz et al. used a hierarchical clustering algorithm,
whose input is a similarity matrix between the rows computed according to the column set, and vice
versa. The Euclidean distance is used as similarity measure after a preprocessing step where each colum
of the data matrix is divided by its mean and each row is normalized such that its mean vanishes and
its norm is one. By doing this preprocessing step, they manage to transform the biclusters of the type
presented in Fig. 1(c) into biclusters of the type shown in Fig. 1(a), making it possible to discover a set
of biclusters with constant values on their columns.
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Califano et al. [5] aim at finding-valid ks-patterns. They define &valid ks-pattern as a subset of
rows, I, with sizek, and a subset of columng, with sizes, such that the maximum and minimum value
of each row in the chosen columns differ less tlhhamhis means that, for each roine I:

max (a;;) — min (a;;) < 0,Vj € J (11)

The number of columnss, is called the support of thes-pattern. Aj-valid ks-pattern is defined as
maximal if it cannot be extended intodavalid £’'s-pattern, withk’ > &, by adding rows to its row set,
and, similarly, it cannot be extended tojavalid ks’-pattern,s’ > s, by adding columns to its column
set. In particular, Califano et al. want to discover maximadalid gene expression patterns that are, in
fact, biclusters with constant values on rows, by identifying sets of genes with coherent expression values
across a subset of conditions. A statistically significance test is used to evaluate the quality of the patterns
discovered.

Sheng et al. [23] tackled the biclustering problem in the Bayesian framework, by presenting a strategy
based on a frequency model for the pattern of a bicluster and on Gibbs sampling for parameter estimation.
Their approach not only unveils sets of rows and columns, but also represents the pattern of a bicluster
as a probabilistic model described by the posterior frequency of every discretized value discovered under
each column of the bicluster. They use multinomial distributions to model the data under every column in
a bicluster, and assume that the multinomial distributions for different columns in a bicluster are mutually
independent. Sheng et al. assumed a row-column orientation of the data matrix and ask that the values
within the bicluster are consistent across the rows of the bicluster for each of the selected columns,
although these values may differ for each column. By doing this they allow the identification of biclusters
with constant values on the columns of the data matrix. However, the same approach can be followed using
the column-row orientation of the data matrix leading to the identification of biclusters with constant rows.

Segal et al. [21] [22] introduced a probabilistic model, which is based on the probabilistic relational
models (PRMs). These models extend Bayesian networks to a relational setting with multiple independent
objects such as genes and conditions. By using this approach Segal et al. also manage to discover a s
of biclusters with constant values on their columns.

D. Biclusters with Coherent Values

An overall improvement over the methods considered in the previous section, which presented biclusters
with constant values either on rows or columns, is to consider biclusters with coherent values on both
rows and columns. In the case of gene expression data, we can be interested in identifying more complex
biclusters where a subset of genes and a subset of conditions have coherent values on both rows an
columns. The biclusters in Fig. 1(d) and Fig. 1(e) are examples of this type of biclusters.

This class of biclusters cannot be found simply by considering that the values within the bicluster are
given by additive or multiplicative models that consider an adjustment for either the rows or the columns,
as it was described in (7), (8), (9) and (10). More sophisticated approaches perform an analysis of variance
between groups and use a particular form of co-variance between both rows and columns in the bicluster
to evaluate the quality of the resulting bicluster or set of biclusters.

Following the same reasoning of Section IlI-C, the biclustering algorithms that look for biclusters with
coherent values can be viewed as based omaduitive model When an additive model is used within
the biclustering framework, perfectbicluster with coherent value§/, J), is defined as a subset of rows
and a subset of columns, whose valugsare predicted using the following expression:

5 = p+ oy + ﬂj (12)

wherey. is the typical value within the biclustes, is the adjustment for row e I andg; is the adjustment
for columnj € J. The bicluster in Fig. 1(d) is an example of a bicluster with coherent values on both
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rows and columns, whose values can be described using an additive model. The biclusters in Fig. 1(b) and
Fig. 1(c) can be considered special cases of this general additive model where the coherence of values
can be observed on the rows and on the columns of the bicluster, respectively. This means that (7) and
(9) are special cases of the model represented by (12) when0 and 3; = 0, respectively.

Other biclustering approaches assume that biclusters with coherent values can be modeled using &
multiplicative modelo predict the values;; within the bicluster:

aij = @' x a; X 3 (13)

These approaches are effectively equivalent to the additive model in (12), wheiog 1/, a; = o
and3; = . In this model each element; in the data matrix is seen as the product between the typical
value within the bicluster,/, the adjustment for row, «, and the adjustment for columy ;. The
bicluster in Fig. 1(e) is an example of a bicluster with coherent values on both rows and columns, whose
values can be described using a multiplicative model. Furthermore, the biclusters in Fig. 1(b) and Fig.
1(c) can also be considered special cases of this multiplicative model, since (8) and (10) are special case:
of (13) whena; = 0 and 3 = 0, respectively.

Several biclustering algorithms attempt to discover biclusters with coherent values assuming either
additive or multiplicative models.

Cheng and Church [6] defined a bicluster as a subset of rows and a subset of columns with a high
similarity score. The similarity score introduced and calledan squared residudgd, was used as a
measure of the coherence of the rows and columns in the bicluster. Given the dataAnat(iX,Y") a
bicluster was defined as a uniform sub-matfix./) having a low mean squared residue score. A sub-
matrix (I, J) is considered a-bicluster if H(I, J) < ¢ for someé > 0. In particular, they aim at finding
large and maximal biclusters with scores below a certain threshold

In a perfectd-bicluster each row/column or both rows and columns exhibits an absolutely consistent
bias ¢ = 0). The biclusters in Fig. 1(b), Fig. 1(c) and Fig. 1(d) are examples of this kind of perfect
biclusters. This means that the values in each row or column can be generated by shifting the values of
other rows or columns by a common offset. When this is the case) and each element;; can be
uniquely defined by its row mean,;, its column meang;;, and the bicluster mean, ;. The difference
ar; — ary is the relative bias held by the columnwith respect to the other columns in thebicluster.

The same reasoning applied to the rows leads to the definition that, in a peldettister, the value of
an elementg,;, is given by a row-constant plus a column-constant plus a constant value:

Qi; = iy + ap; — agrg (14)

Note that this corresponds to considering the additive model in (12) and using;;, o; = a;; — ayy
andﬂj =aj; —ayj.

Unfortunately, due to noise in datébiclusters may not always be perfect. The concepesiduewas
thus introduced to quantify the difference between the actual value of an elemeantd its expected
value predicted from the corresponding row mean, column mean and bicluster mean.

The residue of an element; in the bicluster(/, .J) was defined as follows:

r(ai;) = aij —ai; —arj +ary (15)

Assuming the possible existence of residue, the value;;oin a non-perfect bicluster is then defined
as:
aij = r(aij) + aiy +ar; — ary (16)

where the value of the residue is an indicator of the coherence of a value relatively to the remaining values
in the bicluster given the biases of the relevant rows and the relevant columns. The lower the residue, the
stronger the coherence.
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In order to assess the overall quality ofdicluster, Cheng and Church defined timean squared
residue H, of a bicluster(7, /) as the sum of the squared residues. The mean squared residue score is
given by: ,

H(I J) |]HJ| diel e T(aw) (17)

Using this merit function makes it possible to find biclusters with coherent values across both rows and
columns since a scorf (I, J) = 0 indicates that the values in the data matrix fluctuate in unison. This
includes, as a particular case, biclusters with constant values, which were addressed in Section III-B.

The mean squared residue score defined by Cheng and Church assumes there are no missing value
in the data matrix. To guarantee this precondition, they replace the missing values by random numbers,
during a preprocessing phase.

Yang et al. [29] [30] generalized the definition ofjebicluster to cope with missing values and avoid
the interference caused by the random fillins used by Cheng and Church. They defibéduster as a
subset of rows and a subset of columns exhibiting coherent values on the specified (non-missing) values
of the rows and columns considered. The FLOC (FLexible Overlapped biClustering) algorithm introduced
an occupancythreshold 9, and defined a- bicluster of¢ occupancy as a sub-matri{, /), where for

| > 1, and for eachyj € J, | > 4. |Ji| and|I}| are the number of specified elements
on row i and columnj, respectively. Thevolumeof the §- blcluster vrs, was defined as the number of
specified values ofi;;. Note that the definition of Cheng and Church is a special case of this definition
whend = 1.

The termbasewas used to represent the bias of a row or column withdrbécluster (7, J). The base
of a row i, the base of a colump and the base of thé-bicluster (I, J) are the mean of all specified
values in rowi, in column; and in the bicluste(/, J), respectively. This allows us to redefing, a;;,
ary andr(a;;) andH (1, J), in (1), (2), (3) and (15), respectively, so that their calculus does not take into
account missing values:

1
a;j = 7] Zje(]{ Q5 (18)
1
arj = [ Lier; @i (19)
1
ary = 55 Lierl,je; Gij (20)

r(ai;) = { a;; —a;; —ar; +ary , if a;; is specified (21)

0 , otherwise
Yang et al. also considered that the coherence of a bicluster can be computed using the mean residu

of all (specified) values. Moreover, they considered that this mean can be either arithmetic, geometric, or
square mean. The arithmetic mean was used in [29]:

H(I,J) = 5 Sier jeu Ir(aij)] (22)

The square mean was used in [30] and redefines Cheng and Church’s score, which was defined in (17)
as follows:

H(I,J) = 5= Yier jes r(ay)” (23)

Wang el al. [28] also assumed the additive model in (12) and seek to diség@lusters. Given a
sub-matrix (7, .J) of A, they consider each x 2 sub-matrixA/ = (I,,4,, J;,;,) defined by each pair of
rowsi;,is € I and each pair of columng, j» € J. The pscore(M)is computed as follows:

pscore(M) = |(ai,j, — @iyjy) — (Qigjy — Qinjy)] (24)
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They consider that the sub-matr{X, /) is a J-pCluster if for any2 x 2 sub-matrix M C (I,.J),
pscore(M) < §. They aim at findingy-pClusters (pattern clusters), which are in fact biclusters with
coherent values. An example of a perfégaCluster modeled using an additive model is the one presented
in Fig. 1(d). However, if the values;; in the data matrix are transformed using = log(a;;) this approach
can also identify biclusters defined by the multiplicative model in (13). An example of a péspgdiuster
modeled using a multiplicative model is the one presented in Fig. 1(e).

Kluger et al. [16] also addressed the problem of identifying biclusters with coherent values and looked
for checkerboard structures in the data matrix by integrating biclustering of rows and columns with
normalization of the data matrix. They assumed that after a particular normalization, which was designed
to accentuate biclusters if they exist, the contribution of a bicluster is given by a multiplicative model
as defined in (13). Moreover, they use gene expression data and see each valube data matrix as
the product of the background expression level of gentbe tendency of geneto be expressed in all
conditions and the tendency of all genes to be expressed in conditionorder to access the quality
of a biclustering, Kluger et al. tested the results against a null hypothesis of no structure in the data matrix.

Tang et al. [25] introduced the Interrelated Two-Way Clustering (ITWC) algorithm that combines the
results of one-way clustering on both dimensions of the data matrix in order to produce biclusters. After
normalizing the rows of the data matrix, they compute the vector-angle cosine value between each row
and a pre-defined stable pattern to test whether the row values vary much among the columns and remove
the ones with little variation. After that they use a correlation coefficient as similarity measure to measure
the strength of the linear relationship between two rows or two columns, to perform two-way clustering.
As this similarity measure depends only on the pattern and not on the absolute magnitude of the spatial
vector, it also permits the identification of biclusters with coherent values represented by the multiplicative
model in (13).

The previous biclustering approaches are based either on additive or multiplicative models, which
evaluate separately the contribution of each bicluster without taking into consideration the interactions
between biclusters. In particular, they do not explicitly take into account that the value of a given element,
a;j, in the data matrix can be seen as a sum of the contributions of the different biclusters to whom the
row i and the columry belong.

Lazzeroni and Owen [17] addressed this limitation by introducing the plaid model where the value of
an element in the data matrix is viewed as a sum of terms called layers. In the plaid model the data matrix
is described as a linear function of variables (layers) corresponding to its biclusters.

The plaid model is defined as follows:

aij = o Oijnpinkijn (25)

where K is the number of layers (biclusters) and the valuedgf specifies the contribution of each
biclusterk specified byp;, and ;. The termsp;, andx;;, are binary values that represent, respectively,
the membership of row and columnj in biclusterk.

Lazzeroni and Owen [17] want to obtain a plaid model, which describes the interactions between the
several biclusters on the data matrix and minimizes the following merit function:

Ly S (ai — O — SE Ourpinrisn)” (26)

where the ternd;;, considers the possible existence of a single bicluster that covers the whole matrix and
that explains away some variability that is not particular to any specific bicluster.

The plaid model described in (25) can be seen as a generalization of the additive model presented in
(12). We will call this model thegeneral additive modelFor every element;; it represents a sum of
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additive models each representing the contribution of the biclyster), to the value ofu;; in casei € [
andj € J.

The notationd;;;, makes this model powerful enough to identify different types of biclusters by using
0;;x to represent eitheuy, (. + ok, (i + Bk OF i+ i+ Bji. IN its simplest form, that is whef);, = w4,
the plaid model identifies a set &f constant biclusters (see (4) in Section IlI-B). When, = 1, + iy,
the plaid model identifies a set of biclusters with constant rows (see (7) in Section 11I-C). Similarly,
whend,;, = i, + B;; biclusters with constant columns are found (see (9) in Section IlI-C). Finally, when
;i = 1 + i, + B the plaid model identifies biclusters with coherent values across a set of rows and
columns by assuming the additive model in (12) for every bicluster whom the rowi and the column
j belong.

Fig. 2(a) to Fig. 2(d) show examples of different types of overlapping biclusters described by a general
additive model where the values in the data matrix are seen as a sum of the contributions of the different
biclusters they belong to.

10101010 10101000 10 20 30 40 10 20 50 00

10101010 20 20 20 20 10 20 30 40 20306010

10 10|30 30)20 20 30 30|80 80|50 50 10 20{80 10|70 80 40 50|90 50|50 00

10 10)30 30|20 20 40 40)10 10|60 6.0 10 20]80 10|70 80 50 60)11 70|60 10
20 20 20 20 70 7070 70 5060 70 80 40 50 80 30
20 20 20 20 80 80 30 80 5060 70 80 50 60 90 40

(a) Constant Biclusters (b) Constant Rows (c) Constant Columns (d) Coherent Values

Fig. 2. Overlapping Biclusters with General Additive Model

Segal et al. [21] [22] also assumed the additive model in (12), the existence of a set of biclusters in the
data matrix and that the value of an element in the data matrix is a sum of terms called processes (see
(25)). However, they assumed that the row contribution is the same for each bicluster and considered that
each column belongs to every bicluster. This meansdhat 0, for every row: in (12), 6,x = 1. + Bjk
andk;, = 1, for all columnsy and all biclusters; in (25). This was in fact the reason why this approach
was classified as producing biclusters with constant columns and addressed in Section IlI-C. Furthermore,
they introduced an extra degree of freedom by considering that each value in the data matrix is generated
by a Gaussian distribution with a varianeg that depends (only) on the bicluster indéx,As such, they
want to minimize the following expression:

GO )2
25:1( ijk 2901._%k‘plk) (27)
aij = Yioy Giji (28)

wherea;;;, is the sum of the predicted value for the elemeptin each biclustek, which is computed
using (25) with the above restrictions. This change allows one to consider as less important variations in
the biclusters that are known to exhibit a higher degree of variability.

Following this reasoning, an obvious extension to (26) that has not been, to our knowledge, used by
any published approach, is to assume that rows and columns, which represent, respectively, genes an
conditions, in the case of gene expression data, can also exhibit different degrees of variability, that should
be considered as having different weights. The most general form of the expression to be minimized is,

therefore: . ,
3 ij—0ijo—) Bijkpick;
?:1 ;n:l (a - L Ly kﬂjk) (29)

2(‘71'2J+‘7§j+‘7%ﬂ

whereo?;, o7, ando?; are the row variance, the column variance and the bicluster variance, respectively.
This allows one to consider as less important variations in the rows, the columns and also the biclusters,
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that are know to exhibit a higher degree of variability.

Other possibility that has not been, to our knowledge, used by any published approach, is to consider
that the value of a given elementi,;, in the data matrix is given by the product of the contributions of
the different biclusters to whom the roinand the columry belong, instead of a sum of contributions as
it is considered by the plaid model. In this approach, which we will gatieral multiplicative modethe
value of each element;; in the data matrix is given by the following expression:

ai; = Ti—o Oijkpinkiin (30)

Similarly to the plaid model that sees a bicluster as a sum of layers (biclusters), (30) describes the value
a;; in the data matrix as a product of layers. The notatignis now used to represent either, i X ay,
i X Bik OF g Xy X B Hence, in its general casi,,, is now given by the multiplicative model in (13)
instead of being defined by the additive model in (12), as the plaid model was. Fig. 3(a) to Fig. 3(d) show
examples of different types of overlapping biclusters described by a general multiplicative model where the
values in the data matrix are seen as a product of the contributions of the different biclusters they belong to.

Conceptually, it is also possible to combine the general multiplicative model in (30)witlgiven by
the additive model in (12). Such a combination would consider an additive model for each bicluster, but a
multiplicative model for the combination of the contributions given by the several biclusters. Similarly, it
is also possible to combine the general additive model in (25) éyjthgiven by the multiplicative model
in (13). This corresponds to considering that each bicluster is generated using a multiplicative model,
but the combination of biclusters is performed using an additive model. These combinations, however,
are less likely to be useful than the general additive model ((12) and (25)) and the general multiplicative
model ((13) and (30)).

10 10 1010 10 10 1000 10 20 30 40 10R210H 051

10101010 20 20 20 20 10 20 30 40 20 40 10 30

10 1.0)2.0 20]20 20 30 30015 15|50 50 10 20f15 24|70 80 40 80J20 12|05 15

10 10420 20]20 20 40 40|24 24|60 6.0 10 20f15 24|70 80 30 60|30 18|10 30
20 20 20 20 70707070 50 60 70 80 40 80 20 60
20 20 20 20 80 80 80 80 5060 70 80 306015 45

(a) Constant Biclusters (b) Constant Rows (c) Constant Columns (d) Coherent Values

Fig. 3. Overlapping Biclusters with General Multiplicative Model

The previous biclustering algorithms used either an additive or multiplicative model to produce biclusters
with coherent values and can for this reason be put in the same framework. In these bicluster models, a
background value is used together with the row and column effects to predict the values within the bicluster
and find bicluster that satisfy a certain coherence criterion regarding their values. The last approaches we
analyzed consider that the value of a given element in the data matrix can be seen as a sum of the
contributions of the different biclusters to whom its rows and columns belong, while the other consider
the contribution of a bicluster at a time. We also looked at the possibility to consider the values in the data
matrix as a product of the contributions of several biclusters. Nevertheless, all the previously surveyed
biclustering algorithms try to discover sets of biclusters by analyzing directly the valuas the data
matrix A.

E. Biclusters with Coherent Evolutions

In the previous section we revised several biclustering algorithms that aimed at discovering biclusters
with coherent values. Other biclustering algorithms address the problem of finding coherent evolutions
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across the rows and/or columns of the data matrix regardless of their exact values. In the case of gene
expression data, we may be interested in looking for evidence that a subset of genes is up-regulated ot
down-regulated across a subset of conditions without taking into account their actual expression values in
the data matrix. The co-evolution property can be observed on both rows and columns of the biclusters,
as it is shown in Fig. 1(f), on the rows of the bicluster or on its columns. The biclusters presented in Fig.
1(h) and Fig. 1(i) are examples of biclusters with coherent evolutions on the columns, while Fig. 1(g)
shows a bicluster with co-evolution on the rows.

Ben-Dor et al. [2] defined a bicluster as an order-preserving sub-matrix (OPSM). According to their
definition, a bicluster is a group of rows whose values induce a linear order across a subset of the columns.
Their work focus on the relative order of the columns in the bicluster rather than on the uniformity of
the actual values in the data matrix as the plaid model [17] did. More specifically, they want to identify
large OPSMs. A sub-matrix is order-preserving if there is a permutation of its columns under which the
sequence of values in every row is strictly increasing. The bicluster presented in Fig. 1(i) is an example of
an OPSM, where,;; < a2 < a;3 < a;1, and represents a bicluster with coherent evolution on its columns.
Furthermore, Ben-Dor et al. defined a complete model as the(gair), where J is a set of columns
andrn = (ji, jo, ---, Js) IS @ linear ordering of the columns ih They say that a row supportd, ) if the
s corresponding values, ordered according to the permutatiare monotonically increasing.

Although the straightforward approach to the OPSM problem would be to find a maximum support
complete model, that is, a set of columns with a linear order supported by a maximum number of
rows, Ben-Dor et al. aimed at finding a complete model with highest statistically significant support. The
statistical significance of a given OPSM is thus computed using an upper-bound on the probability that
a random data matrix of size-by-m will contain a complete model of size with & or more rows
supporting it. In the case of gene expression data such a sub-matrix is determined by a subset of gene:
and a subset of conditions, such that, within the set of conditions, the expression levels of all genes have
the same linear ordering. As such, Ben-Dor et al. addressed the identification and statistical assessmen
of co-expressed patterns for large sets of genes. They also considered that, in many cases, data contair
more than one such pattern.

Following the same idea, Liu and Wang [18] defined a bicluster as an OP-Cluster (Order Preserving
Cluster). Their goal is also to discover biclusters with coherent evolutions on the columns. Hence, the
bicluster presented in Fig. 1(i) is an example of an OPSM and also of an OP-Cluster.

Murali and Kasif [19] aimed at finding conserved gene expression motifs (xMOTIFs). They defined an
XMOTIF as a subset of genes (rows) that is simultaneously conserved across a subset of the conditions
(columns). The expression level of a gene is conserved across a subset of conditions if the gene is in
the same state in each of the conditions in this subset. They consider that a gene state is a range o
expression values and assume that there are a fixed given, number of states. These states can simply t
up-regulated and down-regulated, when only two states are considered. An example of a perfect bicluster
in this approach is the one presented in Fig. 1(g), wit&ries the symbol representing the preserved state
of the row (gene).

Murali and Kasif assumed that data may contain several xMOTIFs (biclusters) and aimed at finding the
largest xXMOTIF: the bicluster that contains the maximum number of conserved rows. The merit function
used to evaluated the quality of a given bicluster is thus the size of the subset of rows that belong to it.
Together with this conservation condition, an xMOTIF must also satisfy size and maximality properties:
the number of columns must be in at leastfraction of all the columns in the data matrix, and for
every row not belonging to the xXMOTIF the row must be conserved onlygrfraction of the columns in
it. Note that this approach is similar to the one followed by Ben-Dor et al. [2]. Ben-Dor et al. considered
that rows (genes) have only two states (up-regulated and down-regulated) and looked for a group of rows
whose states induce some linear order across a subset of the columns (conditions). This means that th
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expression level of the genes in the bicluster increased or decreased from condition to condition. Murali
and Kasif [19] consider that rows (genes) can have a given number of states and look for a group of
columns (conditions) within which a subset of the rows is in the same state.

Tanay et al. [24] defined a bicluster as a subset of genes (rows) that jointly respond across a subset of
conditions (columns). A gene is considered to respond to a certain condition if its expression level changes
significantly at that condition with respect to its normal level. Before SAMBA (Statistical-Algorithmic
Method for Bicluster Analysis) is applied, the expression data matrix is modeled as a bipartite graph
whose two parts correspond to conditions (columns) and genes (rows), respectively, with one edge for
each significant expression change. SAMBAS goal is to discover biclusters (sub-graphs) with an overall
coherent evolution. In order to do that it is assumed that all the genes in a given bicluster are up-regulated
in the subset of conditions that form the bicluster and the goal is then to find the largest biclusters with
this co-evolution property. As such, SAMBA does not try to find any kind of coherence on the valyes,
in the bicluster. It assumes that regardless of its true valyds either O or 1, wheré is up-regulation
and 0 is down-regulation. A large bicluster is thus one with a maximum number of genes (rows) whose
value a;; is expected to be 1 (up-regulation). The bicluster presented in Fig. 1(f) is an example of the
type of bicluster SAMBA produces, if we say that is the symbol that represents a coherent overall
up-regulation evolution. The merit function used to evaluate the quality of a computed bicluster using
SAMBA is the weight of the sub-graph that models it. Its statistical significance is evaluated by computing
the probability of finding at random a bicluster with at least its weight. Given that the weight of a sub-
graph is defined as the sum of the weights of gene-condition (row-column) pairs in it including edges and
non-edges, the goal is thus to assign weights to the vertex pairs of the bipartite sub-graph so that heavy
sub-graphs correspond to significant biclusters.

V. BICLUSTER STRUCTURE

Biclustering algorithms assume one of the following situations: either there isomybiclusterin the
data matrix (see Fig. 4(a)), or the data matrix contdinbiclusters where K is the number of biclusters
we expect to identify and is usually definegbriori. While most algorithms assume the existence of
several biclusters in the data matrix [13] [6] [11] [5] [17] [21] [25] [29] [4] [24] [30] [16] [23] [22] [18],
others only aim at finding one bicluster. In fact, even though these algorithms can possibly find more than
one bicluster, the target bicluster is usually the one considered the best according to some criterion [2] [19].

When the biclustering algorithm assumes the existence of several biclusters in the data matrix, the
following bicluster structures can be obtained (see Fig. 4(b) to Fig. 4(i)):

1) Exclusive row and column biclusters (rectangular diagonal blocks after row and column reorder).

2) Non-Overlapping biclusters with checkerboard structure.

3) Exclusive-rows biclusters.

4) Exclusive-columns biclusters.

5) Non-Overlapping biclusters with tree structure.

6) Non-Overlapping non-exclusive biclusters.

7) Overlapping biclusters with hierarchical structure.

8) Arbitrarily positioned overlapping biclusters.

A natural starting point to achieve the goal of identifying several biclusters in a data rasito form
a color image of it with each element colored according to the valug;oft is natural then to consider
ways of reordering the rows and columns in order to group together similar rows and similar columns,
thus forming an image with blocks of similar colors. These blocks are subsets of rows and subsets of
columns with similar expression values, hence, biclusters. An ideal reordering of the data matrix would
produce an image with some numbkirof rectangular blocks on the diagonal (see Fig. 4(b)). Each block
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column biclusters ture biclusters biclusters
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Fig. 4. Bicluster Structure

would be nearly uniformly colored, and the part of the image outside of these diagonal blocks would
be of a neutral background color. This ideal corresponds to the existengerofitually exclusive and
exhaustive clusters of rows, and a correspondiigvay partitioning of the columns, that ig exclusive

row and column biclusters. In this biclustering structure, every row in the row-lloslexpressed within,

and only within, those columns in condition-bloék That is, every row and every column in the data
matrix belongs exclusively to one of th€ biclusters considered (see Fig. 4(b)). Although this can be the
first approach to extract relevant knowledge from gene expression data, it has long been recognized that
such an ideal reordering, which would lead to such a bicluster structure, will seldom exist in real data
[17].

Facing this fact, the next natural step is to consider that rows and columns may belong to more than
one bicluster, and assume a checkerboard structure in the data matrix (see Fig. 4(c)). By doing this we
allow the existence of{ non-overlapping and non-exclusive biclusters where each row in the data matrix
belongs to exactly< biclusters. The same applies to columns. Kluger et al. [16] assumed this structure
on cancer data. The Double Conjugated Clustering (DCC) approach introduced by Busygin et al. [4] also
makes it possible to identify this biclustering structure. However, DCC tends to produce the structure in
Fig. 4(b).

Other biclustering approaches assume that rows can only belong to one bicluster, while columns, which
correspond to conditions in the case of gene expression data, can belong to several biclusters. This
structure, which is presented in Fig. 4(d), assumes exclusive-rows biclusters and was used by Sheng e
al. [23] and Tang et al. [25]. However, these approaches can also produce exclusive-columns biclusters
when the algorithm is used using the opposite orientation of the data matrix. This means that the columns
of the data matrix can only belong to one bicluster while the rows can belong to one or more biclusters
(see Fig. 4(e)).

The structures presented in Fig. 4(b) to Fig. 4(e) assume that the biclusters are exhaustive, that is, every
row and every column in the data matrix belongs at least to one bicluster. However, we can consider
non-exhaustive variations of these structures that make it possible that some rows and columns do not
belong to any bicluster. Other exhaustive bicluster structures, include the tree structure considered by
Hartigan [13] and Tibshirani et al. [26] and that is depicted in Fig. 4(f), and the structure in Fig. 4(g). A
non-exhaustive variation of the structure presented in Fig. 4(g) was assumed by Wang et al. [28]. None
of these structures allow overlapping, that is, none of these structures makes it possible that a particular
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pair (row,column) belongs to more than one bicluster.

The previous bicluster structures are restrictive in many ways. On one hand, some of them assume
that, for visualization purposes, all the identified biclusters should be observed directly on the data matrix
and displayed as a contiguous representation after performing a common reordering of their rows and
columns. On the other hand, others assume that the biclusters are exhaustive that is, every row and ever
column in the data matrix belongs to at least one bicluster. However, it is more likely that, in real data,
some rows or columns do not belong to any bicluster at all and that the biclusters overlap in some places.
It is, however possible to enable these two properties without relaxing the visualization property if the
hierarchical structure proposed by Hartigan is assumed. This structure, depicted in Fig. 4(h), requires that
either the biclusters are disjoint or one includes the other. Two specializations of this structure, are the tree
structure presented in Fig. 4(f), where the biclusters form a tree, and the checkerboard structure depictec
in Fig. 4(c), where the biclusters, the row clusters and the column clusters are all trees.

A more general bicluster structure permits the existenc& qfossibly overlapping biclusters without
taking into account their direct observation in the data matrix with a common reordering of its rows and
columns. Furthermore, these non-exclusive biclusters can also be non-exhaustive, which means that som
rows or columns may not belong to any bicluster. Several biclustering algorithms [6] [17] [11] [5] [25]
[21] [24] [2] [19] [22] [18] allow this more general structure, which is presented in Fig. 4(i).

The plaid model [17], defined in (25), can be used to describe most of these different biclusters
structures. The restriction that every row and every column are in exactly one bicluster correspond to
the conditionsy_;. pix = 1, for all ¢, and)_, x;; = 1 for all j. To allow overlapping it is necessary that
>k pik > 2, for somei, and)", x;; > 2, for some;. Similarly, allowing that some rows or columns do
not belong to any bicluster corresponds to the restrictiope;, = 0, for somes, and ", x,, = 0, for
somej. This means that without any of these constrains, the plaid model represents the data matrix as a
sum of possibly overlapping biclusters as presented in Fig. 4(i).

V. ALGORITHMS

Biclustering algorithms may have two different objectives: to identify one or to identify a given number
of biclusters. Some approaches attempt to iderdifig bicluster at a timeCheng and Church [6] and
Sheng et al. [23], for instance, identify a bicluster at a time, mask it with random numbers, and repeat the
procedure in order to eventually find other biclusters. Lazzeroni and Owen [17] also attempt to discover
one bicluster at a time in an iterative process where a plaid model is obtained. Ben-Dor et al. [2] also
identify one bicluster at a time.

Other biclustering approaches discowmre set of biclusters at a timddartigan [13] identifies two
biclusters at the time by splicing each existing bicluster into two pieces at each iteration. CTWC [11]
performs two-way clustering on the row and column dimensions of the data matrix separately. It uses a
hierarchical clustering algorithm that generates stable clusters of rows and columns, at each iteration, and
consequently discovers a set of biclusters at a time. A similar procedure is followed by ITWC [25].

We also analyzed algorithms that perfosmmultaneous bicluster identificatipmhich means that the
biclusters are discovered all at the same time. FLOC [29], [30] follows this approach. It first generates a set
of initial biclusters by adding each row/column to each one of them with independent probability and then
iteratively improves the quality of the biclusters. Muraly and Kasif [19] also identify several XMOTIFs
(biclusters) simultaneously, although they only report the one that is considered the best according to
the size and maximality criteria used. Tanay et al. [24] use SAMBA to performs simultaneous bicluster
identification using exhaustive bicluster enumeration, but restricting the number of rows the biclusters
may have. Liu and Yand [18] and Yang et al. [28] also used exhaustive bicluster enumeration to perform
simultaneous biclustering identification. The approaches followed by Busygin et al. [4], Kluget et al. [16]
and Califano et al. [5] also discover all the biclusters at the same time.
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Given the complexity of the problem, a number of different heuristic approaches has been used to
address this problem. They can be divided into five classes, studied in the following five subsections:

1) Iterative Row and Column Clustering Combination.
2) Divide and Conquer.

3) Greedy lterative Search.

4) Exhaustive Bicluster Enumeration.

5) Distribution Parameter Identification.

The straightforward way to perform bicluster identification is to apply clustering algorithms to the rows
and columns of the data matrix, separately, and then to combine the results using some sort of iterative
procedure to combine the two cluster arrangements. Several algorithms uger#tige row and column
clustering combinationdea, and are described in Section V-A.

Other approaches useda&ide-and-conqueapproach: they break the problem into several subproblems
that are similar to the original problem but smaller in size, solve the problems recursively, and then
combine these solutions to create a solution to the original problem [7]. These biclustering approaches
are described in Section V-B.

A large number of methods, studied in section V-C, perform some forgnesdy iterative searchlrhey
always make a locally optimal choice in the hope that this choice will lead to a globally good solution
[7].

Some authors propose methods that perfeshaustive bicluster enumeratioA number of methods
have been used to speed up exhaustive search, in some cases assuming restrictions on the size of tt
biclusters that should be listed. These algorithms are revised in Section V-D.

The last type of approach we identified perfordistribution parameter identificatiormhese approaches
assume that the biclusters are generated using a given statistical model and try to identify the distribution
parameters that fit, in the best way, the available data, by minimizing a certain criterion through an iterative
approach. Section V-E describes these approaches.

A. lterative Row and Column Clustering Combination

The conceptually simpler way to perform biclustering using existing techniques is to apply standard
clustering methods on the column and row dimensions of the data matrix, and then combine the results
to obtain biclusters. A number of authors have proposed methods based on this idea.

The Coupled Two-Way Clustering (CTWC) [11] seeks to identify couples of relatively small subsets
of features {;) and objects ©,), where bothF; and O, can be either rows or columns, such that when
only the features irF; are used to cluster the corresponding objégtsstable and significant partitions
emerge. It uses a heuristic to avoid brute-force enumeration of all possible combinations: only subsets of
rows or columns that are identified as stable clusters in previous clustering iterations are candidates for
the next iteration.

CTWC begins with only one pair of rows and columns, where each pair is the set containing all rows
and the set that contains all columns, respectively. A hierarchical clustering algorithm is applied on each
set generating stable clusters of rows and columns, and consequently a set of biclusters at a time. A
tunable parametef’ controls the resolution of the performed clustering. The clustering staffs-at)
with a single cluster that contains all the rows and columnsZ’/Ascreases, phase transitions take place,
and this cluster breaks into several sub-clusters. Clusters keep breaking'up asther increased, until
at high enough values d&f each row and column forms its own cluster. The control paranieterused
to provide a measure for the stability of any particular cluster by the range of vAliileat which the
cluster remains unchanged. A stable cluster is expected to survive throughout a\lBrgene which
constitutes a significant fraction of the range it takes the data to break into single point clusters.
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During its execution, CTWC dynamically maintains two lists of stable clusters (one for row clusters and
one for column clusters) and a list of pairs of row and column subsets. At each iteration, one row subset
and one column subset are coupled and clustered mutually as objects and features. Newly generated stab
clusters are added to the row and column lists and a pointer that identifies the parent pair is recorded
to indicate where this cluster came from. The iteration continues until no new clusters that satisfy some
criteria such as stability and critical size are found.

The Interrelated Two-Way Clustering (ITWC) [25] is an iterative biclustering algorithm based on a
combination of the results obtained by clustering performed on each of the two dimensions of the data
matrix separately. Within each iteration of ITWC there are five main steps.

In the first step, clustering is performed in the row dimension of the data matrix. The task in this step
is to clustern; rows into K groups, denoted a&,: = 1,..., K, each of which is an exclusive subset
of the set of all rowsX. The clustering technique used can be any method that receives the number of
clusters. Tang et al. used K-means. In the second step, clustering is performed in the column dimension
of the data matrix. Based on each grolypi = 1, ..., k, the columns are independently clustered into two
clusters, represented by, and J; ;.

Assume, for simplicity, that the rows have been clustered into two graypsnd /. The third step
combines the clustering results from the previous steps by dividing the columns into four gfQups,

i =1,...,4, that correspond to the possible combinations of the column clugtgrand J, ., = {a, b}.

The fourth step of ITWC aims at finding heterogeneous p@its C,), s,t = 1, ..., 4. Heterogeneous
pair are groups of columns that do not share row attributes used for clustering. The result of this step is
a set of highly disjoint biclusters, defined by the set of column&.jmandC; and the rows used to define
the corresponding clusters. Finally, ITWC sorts the rows of the matrix in descending order of the cosine
distance between each row and a row representative of each bicluster (obtained by considering the value
1 in each entry for columns i’y and C;, respectively). The first one third of rows is kept. By doing
this they obtain a reduced row sequeri¢dor each heterogeneous group. In order to select the row set
I’ that should be chosen for the next iteration of the algorithm they use cross-validation. After this final
step the number of rows are reduced framto n, and the above five steps can be repeated using the
no selected rows until the termination conditions of the algorithm are satisfied.

The Double Conjugated Clustering (DCC) [4] performs clustering in the rows and columns dimen-
sions/spaces of the data matrix using self-organizing maps (SOM) and the angle-metric as similarity
measure. The algorithm starts by assigning every node in one space, (either a row or a column) to a
particular node of the second space, which is called conjugated node. The clustering is then performed
in two spaces. The first one is called the feature space, havaignensions representing the rows of the
data matrix. In the second space, called the sample space, the roles of the features and samples have be
exchanged. This space hasdimensions, corresponding to the columns of the data matrix, and is used
to perform clustering on the features which are now the rows of the data matrix.

To convert a node of one space to the other space, DCC makes use of the angle between the node an
each of the patterns. More precisely, ttlle conjugate entry is the dot product between the node vector
and theith pattern vector of the projected space when both the vectors are normalized to unit length.
Formally, they introduce the matrices; and X,, which corresponds to the original data matixafter
its columns and rows have been, respectively, normalized to unit length. The synchronization between
feature and sample spaces is forced by alternating clustering in both spaces. The projected clustering
results of one space are used to correct the positions of the corresponding nodes of the other space. |
the node update steps are small enough, both processes will converge to a state defined by a compromis
between the two clusterings. Since the feature and sample spaces maximize sample and feature similarity
respectively, such a solution is desirable.

DCC works iteratively by performing a clustering cycle and then transforming each node to the conjugate
space where the next training cycle takes place. This process is repeated until the number of moved
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samples/features falls below a certain threshold in both spaces. DCC returns two results: one in feature
space and one in sample space, each being the conjugate of the other. Since every sample cluster in th
feature space corresponds to a feature in the sample space, DCC derives a group of rows for every grou
of columns, hence, a set of biclusters.

B. Divide-and-Conquer

Divide and conquer algorithms have the significant advantage of being potentially very fast. However,
they have the very significant drawback of being likely to miss good biclusters that may be split before
they can be identified.

Block clustering was the first divide-and-conquer approach to perform biclustering. Block clustering
is a top down, row and column clustering of the data matrix. The basic algorithm for forward block
splitting was due to Hartigan [13] who called it direct clustering (see Section I11-B). The block clustering
algorithm begins with the entire data in one block (bicluster). At each iteration it finds the row or column
that produces the largest reduction in the total “within block” variance by splicing a given block into
two pieces. In order to find the best split into two groups the rows and columns of the data matrix are
sorted by row and column mean, respectively. The splitting continues until a given nutmbéblocks
is obtained or the overall variance within the blocks reaches a certain threshold.

Since the estimation of the optimal number of splicings is difficult, Duffy and Quiroz [10] suggested the
use of permutation tests to determine when a given block split is not significant. Following this direction,
Tibshirani et al. [26] added a backward pruning method to the block splitting algorithm introduced by
Hartigan [13] and designed a permutation-based method to induce the optimal number of bicKisters,
called Gap Statistics. In their approach the splitting continues until a large number of blocks are obtained.
Some blocks are then recombined until the optimal number of blocks is reached. This approach is similar
to the one followed in decision tree algorithms, where the tree is grown until a given depth and a pruning
criterion is used at the end.

C. Greedy lterative Search

Greedy iterative search methods are based on the idea of creating biclusters by adding or removing
rows/columns from them, using a criterion that maximizestieal gain. They may make wrong decisions
and loose good biclusters, but they have the potential to be very fast.

Cheng and Church [6] were the first to apply biclustering to gene expression data. Given a data matrix
A and a maximum acceptable mean squared residue score (seé (27))the goal is to find-biclusters,
that is, subsets of rows and subsets of colunihs/), with a score no larger thah (see Section IlI-D).
In order to achieve this goal, Cheng and Church proposed several greedy row/column removal/addition
algorithms that are then combined in an overall approach that makes it possible to find a given number
K of §-biclusters. The single node deletion method iteratively removes the row or column that gives the
maximum decrease aff. The multiple node deletion method follows the same idea. However, in each
iteration, it deletes all rows and columns with row/column residue superior to a given threshold. Finally,
the node addition method adds rows and columns that do not increase the actual score of the bicluster.
In order to find a given numbe¥y, of biclusters, greedy node deletion is performed first and is then
followed by greedy node addition. The algorithm discovers one bicluster at a time. At each &f the
iterations, the algorithms starts with an initial bicluster that contains all rows and columns. This means
that the algorithm starts with the entire matrixand stops when no action decreasé®r whenH < .
The discovered bicluster is then reported, and masked with random numbers, so that no recognizable
structures remain. The process is repeated uitibiclusters are found. Although masking previously
generated biclusters might suggest that it is not possible to find overlapping biclusters, this is in fact
possible, since the node addition step is performed using the original values in the data matrix and not
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the random ones introduced during the masking process. However, the discovery of highly overlapping
biclusters is not likely, since elements of already identified biclusters have been masked by random noise.

The FLOC (FLexible Overlapped biClustering) algorithm [29], [30] addresses this limitation (see Section
[1I-D). It is based on the bicluster definition used by Cheng and Church but performs simultaneous bicluster
identification. It is also robust agains missing values, which are handled by taking into account the bicluster
volume (number of non-missing elements) when computing the score (see (23)). This means that missing
values are not used when computing the row mean, the column mean and the bicluster mean needed t«
compute the score (see (18), (19) and (20)). FLOC avoids the introduction of random interference and
discoversK possibly overlapping biclusters simultaneously.

FLOC has two phases. In the first phaséjnitial biclusters are generated by adding each row/column
to each one of them with independent probabitityf he second phase is an iterative process that improves
the quality of these biclusters. During each iteration, each row and each column is examined to determine
the best action that can be taken towards reducing the overall mean score residue. An action is uniquely
defined at any stage with respect to a row/column and a bicluster. It represents the change of membershi
of a row/column with respect to a specific bicluster: a row/column can be added to the bicluster, if it is
not yet included in it, or it can be removed if it already belongs to it. Since ther&declusters, there
are K potential actions for each row/column. Among thdseactions, the one that has the maximum
gain is identified and executed. The gain of an action is defined as a function of the relative reduction
of the bicluster residue and the relative enlargement of the bicluster volume. At each iteration, the set of
selected actions is performed according to a random weighted order that assigns higher probabilities of
execution to the actions with higher gains. The optimization process stops when the potential actions do
not improve the overall quality of the biclustering.

Ben-Dor et al. [2] addressed the identification of large order-preserving submatrices (OPSMs) with
maximum statistical significance (see Section IlI-E). In order to do that they assume a probabilistic model
of the data matrix where there is a biclustér.J) determined by a set of rows a set of columns/ and
a linear ordering of the columns ii. Within each row of(/, .J) the order of the elements is consistent
with the linear ordering of/. They define a complete model as the p@airm) where J is a set of
columns andr = (j1, jo, ..., js) iS @ linear ordering of the columns iA. A row supports(J, 7) if the s
corresponding values, ordered according to the permutati@re monotonically increasing.

Since an exhaustive algorithm that tries all possible complete models is not feasible, the idea is to grow
partial models iteratively until they become complete models. A partial model of ¢ader specifies, in
order, the indices of the “smallest” elements< j4, ..., j, > and the indices of thé “largest” elements
< Js—(b-1), - Js > Of a complete mode{J, 7) and its sizes.

The OPSM algorithm focus on the columns at the extremes of the ordering when defining partial
models, assuming that these columns are more useful in identifying the target rows, that is, the rows that
support the assumed linear order. The algorithm starts by evaluating &)l partial models and keeping
the best/ of them. It then expands them 1@, 1) models and keeps the besof them. After that it
expands them td@2,2) models,(3,2) models and so on until it gets([s/2], [s/2]) models, which are
complete models. It then outputs the best one.

Murali and Kasif [19] introduced a biclustering algorithm that aims at finding xMOTIFs. An xXMOTIF
is a bicluster with coherent evolutions on its rows (see Section IlI-E). The data is discretized to a set of
symbols by using a list of statistical significant intervals, for each row (gene, in the case of expression
data), representing the states in which the gene is expressed within the set of conditions (columns).

To determine an xMOTIF it is necessary to compute the set of conserved fptire states that these
rows are in, and the set of column;, that match the motif. Given the set of conserved ralyshe states
of the conserved rows, and one columthat matches a given motif, it is easy to compute the remaining
conditions inJ simply by checking, for each colums, if the rows in/ are in the same state inand
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¢. Columnc is called a*seed” from which the entire motif can be computed. If one knows a condition
¢ that matches the largest XMOTIF in the data matrix, the goal of the algorithm is thus to compute the
rows that belong to this largest xMOTIF and the states they are in.

In order to pursue the goal of finding the largest xXMOTIF, Murali and Kasif defids@iminating set
as a set of conditions), with the following two properties: (i) for every columsl in D and for every
row in the largest motif, there is one state such that the row is in that state in coluamts’; and (ii)
for every rowr that is not in the largest motif, there exists a colusthim D such that row- is not in the
same state in columnsand . The key property of a discriminating set is that given the seed column
¢ and such a seb, it is possible to compute the largest XMOTIF by including exactly those row-states
that satisfy these properties and exactly those columns that agree witlall these row-states.

The xMOTIF algorithm works by assuming that, for each row, there are a set of intervals corresponding
to gene states, which are computed in the first step of the algorithm. This corresponds to a step of
discretization of the continuous data to a set of discrete symbols. The algorithm then proceeds by selecting
n, columns uniformly at random from the set of all columns. These columns act as seeds. Having done this,
for each previously selected seegthe algorithm selects,; sets of columns uniformly at random from
the set of all columns. These sets hayelements each and serve as candidates for the discriminating set,
D. For each pair (seed, discriminating set) the corresponding XMOTIF is computed as explained above.
The computed motif is discarded if less than @ifraction of the columns match it. After all the seeds
have been used to produce xMOTIFs, the largest xMOTIF, that is, the one that contains the largest number
of rows, is returned.

Califano et al. [5] introduced an algorithm that addresses the problem of fineuadjd %s-patterns
(see Section IlI-D). Their goal is to find groups of rows that exhibit coherent values in a subset of the
columns but do not have any coherence of values in any of the remaining columns. After preprocessing the
data, they use a pattern discovery algorithm to discover sets of rows and columns candidate to become
statistically significant biclusters (other candidates generated by the pattern discovery are discarded).
Finally, an optimal set of patterns is chosen among the statistically significant ones using a greedy set
covering algorithm that adds rows and columns to the existing patterns so that they become maximal
patterns (see Section IlI-D).

The pattern discovery algorithm used considers that each column of the data matrix is a string and
discovers patterns in these strings by allowing all possible string alignments. A density constraint is used
to limit the impact of random matches occurring over large distances on the strings and the strings are
pre-aligned before the algorithm is used. The algorithm starts with a single pattern with no rows, all
the columns, and an offset of zero for each column. The values in each column are then sorted and
all subsets of continuous values that argalid (see Section IlI-D) are selected. Non-maximal subsets
that are completely contained within another subset are removed. Each subset is considered a potentia
super-patterns of a maximal pattern. All possible maximal combinations of these super-pattern are then
created iteratively. As a result, all patterns that exists in the data matrix are generated hierarchically by
pattern combination.

D. Exhaustive Bicluster Enumeration

Exhaustive bicluster enumeration methods are based on the idea that the best biclusters can only be
identified using an exhaustive enumeration of all possible biclusters existent in the data matrix. These
algorithms certainly find the best biclusters, if they exist, but have a very serious drawback. Due to their
high complexity, they can only be executed by assuming restrictions on the size of the biclusters.

Tanay et al. [24] introduced SAMBA (Statistical-Algorithmic Method for Bicluster Analysis), a bi-
clustering algorithm that performs simultaneous bicluster identification by using exhaustive enumeration.
SAMBA avoids an exponential runtime by restricting the number of rows the biclusters may exhibit. They
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use the graph formalism described in Section II-A, and define as their objective the identification of a
maximum weight sub-graph, assuming that the weight of a sub-graph will correspond to its statistical
significance.

Discovering the most significant biclusters in the data matrix under this weighting schemes is equivalent
to the selection of the heaviest sub-graphs in the model bipartite graph. SAMBA assumes that row vertices
haved-bounded degree. This corresponds to a restriction on the size of the discovered biclusters since the
number of rows cannot exceed this value. In the case of gene expression data this restriction is justified
by the fact that genes that very frequently exhibit high expression levels are generally not interesting.

The first phase of the SAMBA algorithm normalizes the data, defining a gene as up-regulated or down-
regulated if its standardized expression level (with méand variancel), is, respectively, above 1 or
below -1. In the second phase the algorithm finds Ehdneaviest bicliques in the graph. This is done
by looking at a pre-computed table with the weights of the bicliques intersecting every given column
(condition) or row (gene) and choosing thé best bicliques. In order to improve the performance of
this procedure, rows (genes) with degree exceedirage ignored and the hashing for each row (gene)
is performed only on subsets of its neighbors whose size is in a given range. In a postprocessing phase
SAMBA performs greedy addition or removal of vertices to perform a local improvement on the biclusters
and filter the similar ones. Two biclusters are considered similar if their vertex sets (subset of rows and
subset of columns), differ only slightly. The intersection between two biclusters is defined as the number
of shared columns times the number of shared rows.

Wang et al. [28] also proposed an algorithm that performs exhaustive bicluster enumeration, subject
to a restriction that they should posses a minimum number of rows and a minimum number of columns.
To speed up the process and avoid the repetition of computations, they use a suffix tree to efficiently
enumerate the possible combinations of row and column sets that represent valid biclusters.

The algorithm starts by deriving a set of candid&taximum Dimension Se{®DS) for each pair of
rows and for each pair of columns. Anm,y) row-pair MDS is a set of columns that defines a maximum
width bicluster that includes rows andy. A similar definition holds for a column-pair MDS. The set
of candidate MDS is computed using an efficient method that generates all possible MDS for each row
pair and for each column pair. This is done in linear time by ordering the columns in increasing order of
the differences between row elements (in the case of the row-pair MDS), and performing a left to right
scanning of these ordered array of columns. The set of candidate MDSs is then pruned using properties
that relate row-pair MDSs with column-pair MDSs.

The suffix tree [12] is built by assuming a given, arbitrary, lexicographic order on the columns. A node
in the tree is associated with a set of columfisgiven by the path from the root, and a set of rows,

A post-order traversal of this tree generates all possible biclusters using the following method: for each
node, containing set of rom® and set of columng’, add the objects i) to nodes in the tree whose
column setl” € T and|T’| = |T| — 1. Since the nodes that correspondltoare necessarily higher in the
suffix tree, the post-order traversal of this tree will generate all the existing biclusters in the matrix. The
number of biclusters and, therefore, the execution time, can be exponential on the number of columns in
the matrix, however.

Liu and Wang [18] also proposed an exhaustive bicluster enumeration algorithm. Since they are looking
for order-preserving biclusters with a minimum number of rows and a minimum number of columns, the
input data to their algorithm is a set of rows with symbols that represent the ordering of the values between
these rows. A given row may then be representecaddyc and another one bgbdc Their objective of
finding all biclusters that, after column reordering, represent coherent evolutions of the symbols in the
matrix is achieved by using a pattern discovery algorithm heavily inspired in sequential pattern mining
algorithms [14].

The structure they use to perform efficient enumeration of all common patterns in the rows uses an
OPC-tree. An OPC tree is a modified prefix tree, where a path from the root represents a sequence of
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symbols.

In the starting tree, constructed using all symbol sequences present in the rows, leaves are labelec
with the matrix rows that correspond to the sequence of tree nodes that leads to that leaf. This tree is
then iteratively modified by applying the following procedure to each nodé the tree, starting at the
root: for each childn, of noden, insert suffixes of sub-trees of. in the child of n that has a label
that matches the symbol that is in the root of the sub-tree. This procedure, complemented by appropriate
pruning operations performed when there is not enough quorum to reach the target minimum bicluster
dimension, generates all possible order preserving biclusters.

E. Distribution Parameter Identification

Distribution parameter identification biclustering approaches assume a given statistical model and try
to identify the distribution parameters used to generate the data by minimizing a certain criterion through
an iterative approach.

Lazzeroni and Owen [17] want to obtain a plaid model that minimizes the merit function defined in
(26). Assuming thaty — 1 layers (biclusters) have already been identified, they selecithebicluster
that minimizes the sum of squared errais, The residual from the firsk’ — 1 biclusters,Z;;, and(Q are
computed as follows:

Q= % 1 ?1:1 (Zij — ez‘jKPiK/in)Z (31)
Zij = ajj — Oijo — St Oijipirkjk (32)

() is minimized through an iterative approach where thg values, thep;x values and thes,x
values are updated in turn. By doing this one bicluster is discovered at a time. The iteration process is
quite similar to the Expectation-Maximization (EM) algorithm. Lagrange Multipliers are used to estimate
the parameters and improve the objective function along one direction at a time until a (possibly local)
minimum is reached.

Let ), p) and x(*) denote all thed;;, the p;x and thek;x values at iteratiors. The algorithm to
find one layer works as follows: after selecting initial parametétsand ), S full update iterations are
performed. At each of the = 1, ..., S iterations, the bicluster paramete&s are determined using*~"
and x©~Y; the row membership®) are determined using® and ~*~; and the column membership
k) are determined using'® and p¢*~Y. At intermediate stages, the values®fx describe a “fuzzy”
membership function in which, andx;x are not necessarily 0 or 1.

To update thef;;x values givenp;x and r;x the expression in (31) is minimized subject to the
restrictions that every row and column has zero mean. The same reasoning is applied to estimate the
remaining parameters. Furthermore, given a set<ofayers, thef,;;, values can be re-estimated, by
cycling throughk =1, ..., K in turn.

Segal et al. [21] [22] attempt to estimate the activity of each column (condition) in each process
(bicluster) by minimizing the expression in (27). This is performed in an iterative process where the
model parameters used to generate each bicluster are updated all at the same time. The EM algorithm i
use to estimate the parameters.

Sheng et al. [23] introduced a biclustering approach based on Gibbs sampling. The row-column (gene-
condition) orientation of the data matrix is assumed although the algorithm could also be applied on the
column-row (condition-gene) orientation. They use multinomial distributions to model the data for every
column in a bicluster, and assume that the multinomial distributions for different columns in a bicluster are
mutually independent. Gibbs sampling is used to estimate the parameters of the multinomial distributions
used to model the data.
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The algorithm to find one bicluster in the row-column orientation of the data matrix works as follows:
the initialization step, randomly assigns row labels and condition labels the value 1 or 0, where 1 means
that the row/column belongs to the bicluster and 0 means they do not belong. In the second step of the
algorithm, the goal is to fix the labels of the columns. In order to do that, for everyirow- 1,...,n,
the labels for all the other rows are fixed while the Bernoulli distribution for the givenirgvweomputed.

A label is then assigned to rowfrom the computed distribution. Similarly, the goal of step three of
the algorithm is to fix the labels of the columns. In order to do that, for every colymn=1,...,m,

the labels for all the other columns are fixed while the Bernoulli distribution for the given colursn
computed. A label is then assigned to colugnfrom the computed distribution. The parameters for both
row and column distributions are estimated using Gibbs sampling. The algorithm iteratively goes back to
the second step during a predefined number of iterations.

In order to detect multiple biclusters, Sheng et al. mask the rows that belong to the previously found
bicluster by setting the row labels of the found bicluster permanently to zero. This means that this approach
discovers one bicluster at a time. Moreover, the rows retrieved for previous biclusters are no longer selected
as candidate rows for any future bicluster, while the background model will still be calculated over all
possible columns in the whole data matrix including the positions of the masked rows or columns. Note that
this choice does allow the unmasked dimension of the bicluster to be selected multiple times. Furthermore,
in the case of row-column orientation, a column can be relevant to multiple biclusters. In this way, the
algorithm is iterated on the data matrix until no bicluster can be found for the unmasked part of the data
matrix.

Kluger et al. [16] used a spectral approach to biclustering by assuming that the data matrix contains a
checkerboard structure after normalization. Supposing there are ways to normalize the originaldmatrix
and the resulting matrix igl’, the idea is to solve the eigenvalue problgi A’z = \22 and examine the
eigenvectors:. If the constants in an eigenvector can be sorted to produce a step-like structure, the column
clusters can be identified accordingly. The row clusters are found similarlysfreatisfyingA’ A"y = \2y.

More precisely, Kluger et al. show that the checkerboard pattern in a maigxeflected in the constant
structures of the pair of eigenvectorsandy that solved the coupled eigenvalue probleh A’z = A%z

and AT A’y = \?y, wherex andy have a common eigenvalue. The algorithm depends critically on the
normalization procedure used to transform the matrix. Kluger et al. proposed three normalization methods.

The first normalization method (independent re-scaling of rows and columns) assumes the non-normalizet
matrix is obtained by multiplying each roiby a scalar; and each columrn by a scalar;, thenr;, /r;,
= mean of rowi; / mean of rowi, = a;,;/a;,; (See (13)). Assuming thak is a diagonal matrix with
entriesr; at the diagonal and C is a diagonal matrix defined similarly, then the eigen problem can be
formulated by rescaling the data matriA:= R~/2AC~1/2.

The second method (bi-stochastization) works by repeating the independent scaling of rows and columns
until stability is reached. The final matrix has all rows sum to a constant and all columns sum to a different
constant.

The third method (log-interactions) assumes that if the original rows/columns differ by multiplicative
constants, then after taking their logarithm, they differ by additive constants (see (12) and (13)). Moreover,
each row and column is expected to have zero mean. This can be achieved by transforming each entry
as follows:a;j = a;j; — ar; — a;y + ary. Note thata;j is the residue of the each element of the data
matrix A as it was defined in (15).

VI. OVERALL COMPARISON OF THEBICLUSTERING ALGORITHMS

Table Il presents a summary of the different biclustering algorithms in accordance with the different
dimensions of analysis considered. The second column classifies the algorithms according to the type of
biclusters they aim at finding (see Section IIl). Column three lists the biclustering approaches according to
the bicluster structure they can produce. The notation used is the one in Fig. IV in Section IV. The last two
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columns summarize Section V by classifying the different algorithms according to the way they discover
the biclusters and the approach they use to achieve their goal. The notation used is the following: iterative
row and column clustering combination (Clust-Comb), divide-and-conquer (Div-Conq), greedy iterative
search (Greedy), exhaustive bicluster enumeration (Exh-Enum) and distribution parameter identification
(Dist-Based).

TABLE 1l
OVERALL COMPARISON OF THEBICLUSTERING ALGORITHMS

Type Structure Discovery Approach
Block Clustering[13] Constant 4(f) One Set at a Timg Div-and-Conq
d-biclusters|[6] Coherent Values 4(i) One at a Time Greedy
FLOC [29], [30] Coherent Values 4(i) Simultaneous Greedy
pClusters[28] Coherent Values 4(9) Simultaneous Exh-Enum
Plaid Models[17] Coherent Values 4(i) One at a Time Dist-Ident
PRMs[21], [22] Coherent Values 4(i) Simultaneous Dist-ldent
CTWCJ[11] Constant Columns 4(i) One Set at a Timg Clust-Comb
ITWC [25] Coherent Values | 4(d)/4(e) | One Set at a Timg Clust-Comb
DCC [4] Constant 4(b)/4(c) Simultaneous Clust-Comb
o-Patterns|[5] Constant Rows 4(i) Simultaneous Greedy
Spectral[16] Coherent Values 4(c) Simultaneous Greedy
Gibbs[23] Constant Columns| 4(d)/4(e) One at a Time Dist-ldent
OPSMs[2] Coherent Evolution| 4(a)/4(i) One at a Time Greedy
SAMBA[24] Coherent Evolution 4(i) Simultaneous Exh-Enum
XMOTIFs[19] Coherent Evolution| 4(a)/4(i) Simultaneous Greedy
OP-Clusters[18] Coherent Evolution 4(i) Simultaneous Exh-Enum

VII.

B ICLUSTERING APPLICATIONS

Biclustering can be applied whenever the data to analyze has the form of a real-valuedAnatniere
the set of values,; represent the relation between its romand its columng. An example of this kind
of data are the gene expression matrices. Moreover, it can be applied when the data can be modeled a
a weighted bipartite graph as we explained in Section II-A. Furthermore, biclustering can be used when
the goal is to identify sub-matrices described by a subset of rows and a subset of columns with certain
coherence properties.

Large datasets of clinical samples are an ideal target for biclustering [24]. As such, many applications of
biclustering are performed using gene expression data obtained using microarray technologies that allow
the measurement of the expression level of thousands of genes in target experimental conditions. In this
application domain, we can use biclusters to associate genes with specific clinical classes or for classifying
samples, among other possible interesting applications. The applications of biclustering to biological data
analysis are discussed in Section VII-A.

However, and even though most recent applications of biclustering are in biological data analysis, there
exist many other possible applications in very different application domains. Examples of these application
areas are: information retrieval and text mining; collaborative filtering, recommendation systems, and target
marketing; database research and data mining; and even analysis of electoral data. Some non-biologica
applications of biclustering are presented in Section VII-B.

A. Biological Applications

Cheng and Church [6] applied biclustering to two gene expression data matrices, specifically to the
Yeast Saccharomyces Cerevisiae cell cycle expression data with 2884 genes and 17 conditions and the



INESC-ID TECHNICAL REPORT 1/2004, JANUARY 2004 27

human B-cells expression data with 4026 genes and 96 conditions. Yang et al. [29], [30] also used these
two datasets. Wang et al. [28] and Liu and Wang [18] also used the Yeast data.

Lazzeroni et al. [17] also used biclustering to identify biclusters in Yeast gene expression data: the rows
of the data matrix represented 2467 genes and the columns were time points within each of 10 experimental
conditions. Furthermore, experiments one to three examined the mitotic cell cycle; experiments four to
six tracked different strains of Yeast during sporulation; experiments seven to nine tracked expression
following exposure to different types of shocks and experiment ten studied the diauxic shift.

Segal et al. [21], [22] used two gene expression data matrices. They first analyzed the Yeast stress
data, which characterizes the expression patterns of yeast genes under different experimental condition:
by selecting 954 genes with significant changes in gene expression and the full set of 92 conditions. Their
model identifies groupings based on similarities of gene expression, the presence of known transcription
factor binding sites within the gene promoters and functional annotation of genes. They identify expected
gene clusters, that display similar gene expression patterns and are known to function in the same
metabolic processes. They also discover new groupings of genes based on both expression levels an
transcription factor binding sites. Secondly, they used the Yeast Compendium data, which observed the
genomic expression programs triggered by specific gene mutations. The goal of these experiments is tc
assign hypothetical functions to uncharacterized genes by their deletion to known expression programs.
They selected 528 genes and 207 conditions, focusing on genes and mutations that had some functione
annotations in the MIPS database.

Getz et al. [11] applied biclustering to two gene expression data matrices containing cancer data.
The first data matrix was constituted by 72 samples collected from acute Leukemia patients at the time
of diagnosis using RNA prepared from the bone marrow mononuclear cells of 6817 human genes: 47
cases were diagnosed as ALL (Acute Lymphoblastic Leukemia) and the other 25 as AML (Acute Myeloid
Leukemia). They identified a possible diagnosis to leukemia by identifying different responses to treatment,
and the groups of genes to be used as the appropriate probe. Busygin et al. [4] and Kluger et al. [16] also
used these Leukemia data. The second gene expression matrix used by Getz et al. contained 40 colo
tumor samples and 22 normal colon samples and 6500 human genes from which they choosed the 200(
of greatest minimal expression over the samples. Muraly and Kasif [19] also used these two datasets.

Sheng et al. [23] also used leukemia expression data. The data matrix was this time constituted by 72
samples collected from acute Leukemia patients which were now classified into three types of Leukemia:
28 cases were diagnosed as ALL (Acute Lymphoblastic Leukemia), 24 as AML (Acute Myeloid Leukemia)
and the remaining 20 as MLL (Mixed-Linkage Leukemia). The expression level of 12600 human genes
was available.

Tang et al. [25] applied ITWC to a gene expression matrix with 4132 genes and 48 samples of Multiple
Sclerosis patients and Ben-Dor et al. [2] used a breast tumor dataset with gene expression data from 322¢
genes under 22 experimental conditions.

Tanay et al. [24] used SAMBA to perform functional annotation in Yeast data using an expression matrix
with 6200 genes and 515 experimental conditions. They also applied biclustering to human cancer data.
The Lymphoma dataset they used is characterized by well defined expression patterns differentiating three
types of lymphoma: Chronic Lymphocytic Leucemia (CLL), Diffuse Large B-Cell Lymphoma (DLBCL)
and Follicular Lymphoma (FL).

Kluger et al. [16] also used the Lymphoma expression data used by Tanay et al. but also applied
biclustering to two extra gene expression matrices: a breast tumor dataset and a central nervous systen
embryonal tumor dataset.

All the previous applications of biclustering analyzed biological data from gene expression matrices
obtained from microarray experiments. However, biclustering can also reveal to be interesting to analyze
other kind of biological data. For example, Liu and Wang used a dataset with drug activity data: a matrix
with 10000 rows and 30 columns where each row corresponds to a chemical compound and each column
represents a descriptor/feature of the compound. The values in the data matrix ranged from 0 to 1000.
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B. Other Applications

Biclustering techniques can be used in collaborative filtering to identify subgroups of customers with
similar preferences or behaviors towards a subset of products with the goal of performing target marketing
or use the information provided by the biclusters in recommendation systems. Recommendation systems
and target marketing are important applications in the E-commerce area. In these applications the goal is
thus to identify sets of customers with similar behavior so that we can predict the customers’ interest and
make proper recommendations.

Yang et al. [29], [30] used the MovielLens dataset collected by the GroupLens Research Project at the
University of Minnesota. This dataset consists of a data matrix where the rows represent 943 customers
and the columns represent 1682 movies. The valyesn the data matrix are integers from 1 to 10
representing the rate that customeassigned to the movig. Since a customer only rated less than 10%
of the movies on average, the data matrix is only partially filled with 100000 ratings. Wang et al. [28]
also used the MovieLens data.

Hoffman and Puzicha [15] also applied biclustering to collaborative filtering using the EachMovie
dataset, which consisted of data collected on the Internet with almost three million preference votes on
a 0-5 scales. Ungar and Foster [27] also used a movie dataset where the;yalas 1 if the person
watched the movié, and 0 otherwise. Both Hoffman and Puzicha [15] and Ungar and Foster [27] used
biclustering approaches similar to the one presented by Sheng et al. [23]. While Ungar and Foster used
the Expectation-Maximization (EM) algorithm, Hoffman and Puzicha used Gibbs sampling.

In information retrieval and text mining, biclustering can be applied to identify subgroups of documents
with similar properties relatively to subgroups of attributes, such as words or images. These information
can be very important in query and indexing in the domain of search engines.

Dhillon [8] used biclustering to perform simultaneous clustering of documents and words by considering
a word-by-document matrixl where the rows correspond to words, the columns to documents, and a
non-zero element;; indicates the presence of woidn document;: a;; = o;; x log(n/n;), whereo;;
is the number of occurrences of woidin documentj, n is the number of documents and is the
number of documents (rows) that contain the wordhis type of matrix is calleihcidence matrixn this
context and the term co-clustering is generally used instead of biclustering. Both document clustering and
word clustering are well studied problems in the are of information retrieval and text mining. However,
most existing algorithms cluster documents and words separately and not simultaneously. One one hand
given a collection of unlabeled documents, document clustering can help in organizing the collection
thereby facilitating future navigation and search. On the other hand, words may be clustered on the
basis of the documents where they co-occur. Clusters of words have been used in applications such as th:
automatic construction of statistical thesaurus, the enhancement of queries and the automatic classificatior
of documents. Dhillon wanted to identify subsets of words and subsets of documents strongly related to
each other by modeling the data matrix as a bipartite graph as Tanay et al. [24] did and using a spectral
approach similar to the one used by Kluger et al. [16]. He used three document collections: Medline (1033
medical abstracts), Cranfield (1400 aeronautical systems abstracts) and Cisi (1460 information retrieval
abstracts). Other biclustering application with this kind of data matrices was presented by Dhillon et al.
[9] and Berkhin and Becher [3].

Biclustering can also be used to perform dimensionality reduction in databases with tables with thou-
sands of records (rows) with hundreds of fields (columns). This application of biclustering is what the
database community calls automatic subspace clustering of high dimensional data, which is extremely
relevant in data mining applications. This problem is addressed by Agrawal et al. [1].

More exotic applications of biclustering use data matrices with electoral data and try to identify biclusters
to discover subgroups of rows with the same political ideas and electoral behaviors among a subset of
the attributes considered.
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Hartigan [13] applied biclustering to two data sets: voting data consisting of the percentage of Repub-
lican vote for the President of the United States, in the southern states, over the years 1900-1968; anc
voting data consisting of the UN votes in 1969-1970. In the first case, the data matrix consisted of a
set of rows representing states and a set of columns represented years. Eaah;vedpeesented the
percentage of votes of statén yearj. The goal was to detect clusters of rows, that is, groups of states
that vote similarly, and clusters of columns, that is, years for which the votes are similar. A bicluster
in this case is a subset of states with similar votes in a subset of years. In the case of the second date
matrix, the rows represented countries and the columns propositions about discussed issues. The goal wa
to identify clusters of countries with similar interests or political systems, and clusters of propositions,
identifying series of propositions about the same underlying issues. A bicluster is this time a subset of
countries with similar votes within a subset of discussed prepositions.

We can also think of many other applications of biclustering using other datasets. Lazzeroni et al.
[17] applied biclustering to nutritional data and to a foreign exchange example. The nutritional data
consisted of a data matrix with 961 rows representing different foods and a set of columns representing
the following food attributes: grams of fat, calories of food energy, grams of carbohydrate, grams of
protein, milligrams of cholesterol, grams of saturated fat, and the weight of the food item in grams. The
goal was to identify subsets of foods with similar properties on a subset of the attributes considered. The
foreign exchange data matrix consisted of monthly foreign exchange: the rows in the data matrix were
18 currencies corresponding to 18 countries and the columns in the data matrix represented 277 months
from January 1977 to January 2000. The valugdn the data matrix correspond to the number of units
of currency: that one US dollar purchased in monthThe goal was to identify subsets of currencies
(rows) where the US dollar had similar behavior within a subset of months (columns).

VIIl. CONCLUSIONS

We have presented a comprehensive survey of the models, methods and applications developed in the
field of biclustering algorithms. The list of applications presented is by no means exhaustive, and an
all-inclusive list of potential applications would be prohibitively long.

From the list of models and approaches analyzed in Sections Il to VI, it is our opinion that the scientific
community has already available a large plethora of models and algorithms to choose from. In particular,
the general additive and the general multiplicative frameworks are rich enough to appropriately model
very complex interactive processes.

The list of available algorithms is also very extense, and many combinations of ideas can be adapted
to obtain new algorithms that are potentially more effective in particular applications. We believe that the
systematic organization presented in this work can be used by the interested researcher as a good startin
point to learn and apply some of the many techniques proposed in the last few years, and some of the
older ones.

The list of biclustering applications presented, long as it is already, represents, on our view, only a small
fraction of the potential applications of this type of techniques. Many other domains of applications in
biological data analysis, gene network identification, data mining, text mining and collaborative filtering
remain to be explored.

Many interesting directions for future research have been uncovered by this review work. The tuning
and validation of biclustering methods by comparison with known biological data is certainly one of the
most important open issues. Other interesting area is the application of robust biclustering techniques to
new and existing application domains. Many issues in biclustering algorithm design also remain open
and should be addressed by the scientific community. From these open issues, we select the analysis ©
the statistical significance of biclusters as one of the most important ones, since the extraction of a large
number of biclusters in real data may lead to results that are difficult to interpret.
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