1.4. A Case Study in Algorithm Analysis 29

1.4 A Case Study in Algorithm Analysis

Having presented the general framework for describing anadyaing algorithms,
we now present a case study in algorithm analysis to makedib@zission more
concrete. Specifically, we show how to use the big-Oh nataiioanalyze three
algorithms that solve the same problem but have differemiing times.

The problem we focus on is one that is reportedly often used jad inter-
view question by major software and Internet companies—#thgimum subarray
problem In this problem, we are given an array of positive and negattegers
and asked to find the subarray whose elements have the latgastThat is, given

A=la, ag, ..., ay),
find the indicegi andk that maximize the sum

k
sj,k:aj+aj+1+---+ak:z:ai.
i=j

Or, to put it another way, if we usé|; : k| to denote the subarray ef from index;
to indexk, then the maximum subarray problem is to find the suba#gy: k| that
maximizes the sum of its values. In addition to being conside good problem
for testing the thinking skills of prospective employedse tmaximum subarray
problem also has applications in pattern analysis in digitiimages. An example
of this problem is shown in Figure 1.13.

sum = 13 (the maximum)
A

\

0 — -
1 2 7 8 9 10 1"
2
=
“ U J { J
|

6

sum =1 Ll sum = -1

8

A-=[-2, -4, 3, 1, 5 6, -7, -2, 4 -3, 2]

Figure1.13: An instance of the maximum subarray problem. In this casenthx-
imum subarray isA[3 : 6], that is, the maximum sum s ¢.

Chapter 1. Algorithm Analysis

1.4.1 A First Solution to the Maximum Subarray Problem

Ouir first algorithm for the maximum subarray problem, which gall Maxsub-
Slow, is shown in Algorithm 1.14. It computes the maximum of evpogsible
subarray summatiors,; ., of A separately.

Algorithm MaxsubSlow(A):
Input: An n-element arrayd of numbers, indexed frorh to n.
Output: The subarray summation value such tHaf] + - - - + A[k]
is maximized.

for j «+ 1tondo
m <+ 0 //the maximum found so far
for k + jtondo
s+ 0 [/l the next partial sum we are computing
for i + jtok do
s 4 s+ Ali
if s > mthen
m < S
return max

Algorithm 1.14: Algorithm MaxsubSlow.

It isn’t hard to see that thBlaxsubSlow algorithm is correct. This algorithm
calculates the partial sur; ;, of every possible subarray, by adding up the values
in the subarray frona; to a;,. Moreover, for every such subarray sum, it compares
that sum to a running maximum and if the new value is greatan the old, it
updates that maximum to the new value. In the end, this withBgimum subarray
sum.

Incidentally, both the calculating of subarray summatians the computing
of the maximum so far are examples of thecumulator design pattern, where
we incrementally accumulate values into a single variabledmpute a sum or
maximum (or minimum). This is a pattern that is used in a lalgbrithms, but in
this case it is not being used in the most efficient way possibl

Analyzing the running time of th®axsubSlow algorithm is easy. In particu-
lar, the outer loop, for indey, will iterate n times, its inner loop, for index;, will
iterate at mosh times, and the inner-most loop, for indéexwill iterate at most
times. Thus, the running time of tidaxsubSlow algorithm isO(n?). Unfortu-
nately, in spite of its use of the accumulator design pattgiuing theMaxsubSlow
algorithm as a solution to the maximum subarray problem @bela bad idea dur-
ing a job interview. This is a slow algorithm for the maximuabarray problem.

1.4. A Case Study in Algorithm Analysis 31

1.4.2 An Improved Maximum Subarray Algorithm

We can design an improved algorithm for the maximum subgpraplem by ob-
serving that we are wasting a lot of time by recomputing adl fubarray sum-
mations from scratch in the inner loop of thaxsubSlow algorithm. There is
a much more efficient way to calculate these summations. Tu®at insight is
to consider all therefix sums which are the sums of the firstintegers inA for
t=1,2,...,n. Thatis, consider each prefix sus, which is defined as

t
St=a1+a2+---+at:Za,-.
=1

If we are given all such prefix sums, then we can compute argreajpsummation,
sj.k» In constant time using the formula

Sjk = Sk — Sj-1,

where we use the notational convention tBgt= 0. To see this, note that
k Jj—1
Sk - Sj_l = Zai - Zai
i=1 =1
k
= Z Qj = Sjk,
i=j

where we use the notational convention thift ; a; = 0. We can incorporate the
above observations into an improved algorithm for the maxmsubarray problem,
calledMaxsubFaster, which we show in Algorithm 1.15.

Algorithm MaxsubFaster(A):
Input: An n-element arrayd of numbers, indexed frorh to n.
Output: The subarray summation value such tHaf] + - - - + A[k]
IS maximized.

So < 0/l the initial prefix sum
for i < 1tondo

SZ' — Si—l + A[Z]
for j «+ 1tondo

m <« 0 //the maximum found so far

for k + jtondo

if S, — Sj_l > m then
m <+ Sp — Sj_l

return max

Algorithm 1.15: Algorithm MaxsubFaster.

32

Chapter 1. Algorithm Analysis

Analyzing the MaxsubFaster Algorithm

The correctness of thdaxsubFaster algorithm follows along the same arguments
as for theMaxsubSlow algorithm, but it is much faster. In particular, the outer
loop, for indexj, will iterate n times, its inner loop, for index, will iterate at
mostn times, and the steps inside that loop will only takél) time in each itera-
tion. Thus, the total running time of thdaxsubFaster algorithm isO(n?), which
improves the running time of thdaxsubSlow algorithm by a linear factor.

True story: a former student of one of the authors gave thig algorithm dur-
ing a job interview for a major software company, when asksabiithe maximum
subarray problem, correctly observing that this algorit@ats the running time of
the naiveO(n?)-time algorithm by a linear factor. Sadly, this student dat get
a job offer, however, and one possible reason could have leesuse there is an
even better solution to the maximum subarray problem, wkhehstudent didn’t
give.

1.4.3 A Linear-Time Maximum Subarray Algorithm

We can improve the running time for solving the maximum stdbarfurther by
applying the intuition behind the prefix summations ideahe tomputation of
the maximum itself. That is, what if, instead of computingaatial sum,S;, for
t=1,2,...,n, of the values of the subarray from to a;, we compute a “partial
maximum,” M, which is the maximum summation of a subarray4f : ¢] that
ends at index?

Such a definition is an interesting idea, but it is not quigétj because it doesn'’t
include the boundary case where we wouldn’t want any supainat ends at, in
the event that all such subarrays sum up to a negative nundmerrecalling our
notation of lettings; ;, denote the partial sum of the valuesAfy : k], let us define

M; = max{0, rjngg{{sﬁ} }.

In other words,); is the maximum of) and the maximuns; ;. value where we
restrictk to equalt. This definition implies that if\/; > 0, then it is the summation
value for a maximum subarray that endstaénd if M; = 0, then we can safely
ignore any subarray that endstat

Note that if we know all thé\/; values, fort = 1,2, ... n, then the solution to
the maximum subarray problem would simply be the maximunlldhase values.
So let us consider how we could compute thégevalues.

The crucial observation is that, for> 2, if we have a maximum subarray that
ends at, and it has a positive sum, then it is eithéft : ¢] or it is made up of the
maximum subarray that endstat- 1 plus A[t]. If this were not the case, then we
could make an even bigger subarray by swapping out the onéhesedo end at
t — 1 with the maximum one that ends @t- 1, which would contradict the fact
that we have the maximum subarray that ends &b addition, if taking the value

1.4. A Case Study in Algorithm Analysis 33

of maximum subarray that endstat 1 and addingA[¢t] makes this sum no longer
be positive, then\/; = 0, for there is no subarray that endstatith a positive
summation. In other words, we can defihy = 0 as a boundary condition, and
use the following formula to computkl;, fort = 1,2,...,n:

M; = max{0, M;_, + At]}.

Therefore, we can solve the maximum subarray problem usie@lgorithm,
MaxsubFastest, shown in Algorithm 1.16.

Algorithm MaxsubFastest(A):
Input: An n-element arrayd of numbers, indexed frorh to n.
Output: The subarray summation value such tHaf] + - - - + A[k]
is maximized.

My < 0 [/l the initial prefix maximum
for t + 1tondo

M, < max{0, M;_; + Alt]}
m <+ 0 //the maximum found so far
for t + 1tondo

m < max{m, M;}
return m

Algorithm 1.16: Algorithm MaxsubFastest.

Analyzing the MaxsubFastest Algorithm

The MaxsubFastest algorithm consists of two loops, which each iterate exactly
n times and take) (1) time in each iteration. Thus, the total running time of the
MaxsubFastest algorithm isO(n). Incidentally, in addition to using the accumu-
lator pattern, to calculate thel/; andm variables based on previous values of these
variables, it also can be viewed as a simple application @tlyimamic program-
ming technique, which we discuss in Chapter 13. Given all thesitipe aspects

of this algorithm, even though we can't guarantee that ag&ciive employee will
get a job offer by describing thlaxsubFastest algorithm when asked about the
maximum subarray problem, we can at least guarantee tlsaistkihe way to nail
this question. Still, we are nonetheless leaving one sneddlidas an exercise (C-
1.1), which is to modify the description of thdaxsubFastest algorithm so that,

in addition to the value of the maximum subarray summatibalsio outputs the
indices;j andk that identify the maximum subarray[;j : k|.

