
1.4. A Case Study in Algorithm Analysis 29

1.4 A Case Study in Algorithm Analysis

Having presented the general framework for describing and analyzing algorithms,
we now present a case study in algorithm analysis to make thisdiscussion more
concrete. Specifically, we show how to use the big-Oh notation to analyze three
algorithms that solve the same problem but have different running times.

The problem we focus on is one that is reportedly often used asa job inter-
view question by major software and Internet companies—themaximum subarray
problem. In this problem, we are given an array of positive and negative integers
and asked to find the subarray whose elements have the largestsum. That is, given

A = [a1, a2, . . . , an],

find the indicesj andk that maximize the sum

sj,k = aj + aj+1 + · · ·+ ak =
k
∑

i=j

ai.

Or, to put it another way, if we useA[j : k] to denote the subarray ofA from indexj
to indexk, then the maximum subarray problem is to find the subarrayA[j : k] that
maximizes the sum of its values. In addition to being considered a good problem
for testing the thinking skills of prospective employees, the maximum subarray
problem also has applications in pattern analysis in digitized images. An example
of this problem is shown in Figure 1.13.

Figure 1.13: An instance of the maximum subarray problem. In this case, the max-
imum subarray isA[3 : 6], that is, the maximum sum iss3,6.



30 Chapter 1. Algorithm Analysis

1.4.1 A First Solution to the Maximum Subarray Problem

Our first algorithm for the maximum subarray problem, which we call Maxsub-
Slow, is shown in Algorithm 1.14. It computes the maximum of everypossible
subarray summation,sj,k, of A separately.

Algorithm MaxsubSlow(A):
Input: An n-element arrayA of numbers, indexed from1 to n.
Output: The subarray summation value such thatA[j] + · · ·+A[k]

is maximized.

for j ← 1 to n do
m← 0 // the maximum found so far
for k ← j to n do

s← 0 // the next partial sum we are computing
for i← j to k do

s← s+A[i]
if s > m then

m← s
return max

Algorithm 1.14: Algorithm MaxsubSlow.

It isn’t hard to see that theMaxsubSlow algorithm is correct. This algorithm
calculates the partial sum,sj,k, of every possible subarray, by adding up the values
in the subarray fromaj to ak. Moreover, for every such subarray sum, it compares
that sum to a running maximum and if the new value is greater than the old, it
updates that maximum to the new value. In the end, this will bemaximum subarray
sum.

Incidentally, both the calculating of subarray summationsand the computing
of the maximum so far are examples of theaccumulator design pattern, where
we incrementally accumulate values into a single variable to compute a sum or
maximum (or minimum). This is a pattern that is used in a lot ofalgorithms, but in
this case it is not being used in the most efficient way possible.

Analyzing the running time of theMaxsubSlow algorithm is easy. In particu-
lar, the outer loop, for indexj, will iteraten times, its inner loop, for indexk, will
iterate at mostn times, and the inner-most loop, for indexi, will iterate at mostn
times. Thus, the running time of theMaxsubSlow algorithm isO(n3). Unfortu-
nately, in spite of its use of the accumulator design pattern, giving theMaxsubSlow
algorithm as a solution to the maximum subarray problem would be a bad idea dur-
ing a job interview. This is a slow algorithm for the maximum subarray problem.



1.4. A Case Study in Algorithm Analysis 31

1.4.2 An Improved Maximum Subarray Algorithm

We can design an improved algorithm for the maximum subarrayproblem by ob-
serving that we are wasting a lot of time by recomputing all the subarray sum-
mations from scratch in the inner loop of theMaxsubSlow algorithm. There is
a much more efficient way to calculate these summations. The crucial insight is
to consider all theprefix sums, which are the sums of the firstt integers inA for
t = 1, 2, . . . , n. That is, consider each prefix sum,St, which is defined as

St = a1 + a2 + · · · + at =
t

∑

i=1

ai.

If we are given all such prefix sums, then we can compute any subarray summation,
sj,k, in constant time using the formula

sj,k = Sk − Sj−1,

where we use the notational convention thatS0 = 0. To see this, note that

Sk − Sj−1 =
k
∑

i=1

ai −
j−1
∑

i=1

ai

=
k
∑

i=j

ai = sj,k,

where we use the notational convention that
∑0

i=1 ai = 0. We can incorporate the
above observations into an improved algorithm for the maximum subarray problem,
calledMaxsubFaster, which we show in Algorithm 1.15.

Algorithm MaxsubFaster(A):
Input: An n-element arrayA of numbers, indexed from1 to n.
Output: The subarray summation value such thatA[j] + · · ·+A[k]

is maximized.

S0 ← 0 // the initial prefix sum
for i← 1 to n do

Si ← Si−1 +A[i]
for j ← 1 to n do

m← 0 // the maximum found so far
for k ← j to n do

if Sk − Sj−1 > m then
m← Sk − Sj−1

return max

Algorithm 1.15: Algorithm MaxsubFaster.



32 Chapter 1. Algorithm Analysis

Analyzing the MaxsubFaster Algorithm

The correctness of theMaxsubFaster algorithm follows along the same arguments
as for theMaxsubSlow algorithm, but it is much faster. In particular, the outer
loop, for indexj, will iterate n times, its inner loop, for indexk, will iterate at
mostn times, and the steps inside that loop will only takeO(1) time in each itera-
tion. Thus, the total running time of theMaxsubFaster algorithm isO(n2), which
improves the running time of theMaxsubSlow algorithm by a linear factor.

True story: a former student of one of the authors gave this very algorithm dur-
ing a job interview for a major software company, when asked about the maximum
subarray problem, correctly observing that this algorithmbeats the running time of
the naiveO(n3)-time algorithm by a linear factor. Sadly, this student did not get
a job offer, however, and one possible reason could have beenbecause there is an
even better solution to the maximum subarray problem, whichthe student didn’t
give.

1.4.3 A Linear-Time Maximum Subarray Algorithm
We can improve the running time for solving the maximum subarray further by
applying the intuition behind the prefix summations idea to the computation of
the maximum itself. That is, what if, instead of computing a partial sum,St, for
t = 1, 2, . . . , n, of the values of the subarray froma1 to at, we compute a “partial
maximum,”Mt, which is the maximum summation of a subarray ofA[1 : t] that
ends at indext?

Such a definition is an interesting idea, but it is not quite right, because it doesn’t
include the boundary case where we wouldn’t want any subarray that ends att, in
the event that all such subarrays sum up to a negative number.So, recalling our
notation of lettingsj,k denote the partial sum of the values inA[j : k], let us define

Mt = max{0, max
j≤t
{sj,t} }.

In other words,Mt is the maximum of0 and the maximumsj,k value where we
restrictk to equalt. This definition implies that ifMt > 0, then it is the summation
value for a maximum subarray that ends att, and ifMt = 0, then we can safely
ignore any subarray that ends att.

Note that if we know all theMt values, fort = 1, 2, . . . , n, then the solution to
the maximum subarray problem would simply be the maximum of all these values.
So let us consider how we could compute theseMt values.

The crucial observation is that, fort ≥ 2, if we have a maximum subarray that
ends att, and it has a positive sum, then it is eitherA[t : t] or it is made up of the
maximum subarray that ends att − 1 plusA[t]. If this were not the case, then we
could make an even bigger subarray by swapping out the one we chose to end at
t − 1 with the maximum one that ends att − 1, which would contradict the fact
that we have the maximum subarray that ends att. In addition, if taking the value



1.4. A Case Study in Algorithm Analysis 33

of maximum subarray that ends att− 1 and addingA[t] makes this sum no longer
be positive, thenMt = 0, for there is no subarray that ends att with a positive
summation. In other words, we can defineM0 = 0 as a boundary condition, and
use the following formula to computeMt, for t = 1, 2, . . . , n:

Mt = max{0, Mt−1 +A[t]}.

Therefore, we can solve the maximum subarray problem using the algorithm,
MaxsubFastest, shown in Algorithm 1.16.

Algorithm MaxsubFastest(A):
Input: An n-element arrayA of numbers, indexed from1 to n.
Output: The subarray summation value such thatA[j] + · · ·+A[k]

is maximized.

M0 ← 0 // the initial prefix maximum
for t← 1 to n do

Mt ← max{0, Mt−1 +A[t]}
m← 0 // the maximum found so far
for t← 1 to n do

m← max{m, Mt}
return m

Algorithm 1.16: Algorithm MaxsubFastest.

Analyzing the MaxsubFastest Algorithm

The MaxsubFastest algorithm consists of two loops, which each iterate exactly
n times and takeO(1) time in each iteration. Thus, the total running time of the
MaxsubFastest algorithm isO(n). Incidentally, in addition to using the accumu-
lator pattern, to calculate theMt andm variables based on previous values of these
variables, it also can be viewed as a simple application of the dynamic program-
ming technique, which we discuss in Chapter 13. Given all these positive aspects
of this algorithm, even though we can’t guarantee that a prospective employee will
get a job offer by describing theMaxsubFastest algorithm when asked about the
maximum subarray problem, we can at least guarantee that this is the way to nail
this question. Still, we are nonetheless leaving one small detail as an exercise (C-
1.1), which is to modify the description of theMaxsubFastest algorithm so that,
in addition to the value of the maximum subarray summation, it also outputs the
indicesj andk that identify the maximum subarrayA[j : k].




