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Introduction

Graphenes are 2-D graphite layers a few monoldyek.tThey comprise of hexagonal
layers of C atoms arranged in honey-comb latti¢e2 &xistence of graphene as a single
2-D layer is a cause of amazement for many thexaes as it has been believed for long
that single layers of 2-D structures of this kingheot exist, on account of being
thermodynamically unstable. They suggested that thermal fluctuations in low-
dimensional crystal lattices would give rise to etgent contributions and the
displacement of the atom will become comparablé wite atomic distances at finite
temperatures and the structure will be lost. Thesaa for the existence of these 2-D
layers of graphene is suggested to be some kingt@fwarping which increases the
elastic energy of the graphene but reduces thentieiuctuation energy and above a
certain temperature the total free energy can Inenmeed[1].
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Figl.1The first brillouin zone of the 2-Dimensional ghegme

Figl.2.The lattice structure of 2-D graphene wdtlandb primitive translation vectors ang t,, t;connect
the nearest C atoms.

On account of their 2-D lattice structure they éxhstrange quantum mechanical and
electronic properties. The low energy electronsgelto K and K’ points as shown in
Figl.1.) inside the graphene behave as relativistic pagichs is shown by their

conciliation with the Dirac equation for relativistparticles. It has been rendered
possible to imitate the quantum relativistic pheeamOnce the dispersion relation for
graphene is obtained it becomes simpler to seerigen of these unique properties of
graphene. Besides graphene exhibit strange quahRlhEffect explained in terms of

Berry’'s phase and which serves to give more insigtd the electronic structure of

graphene.



The dispersion relation for graphene is derivedhgishe nearest neighbor tight binding
model. The approach uses the Bloch type of wavetifum and the mutual interaction
between the nearest neighbors to arrive at thevitlg relation.

E,(K) = +yo\/1+ 4cos? cos@+ 40656%

From the equation one can see that E(K) = E(KD) Also near the K and K’ points, we
have.
E(Kr= E(K'+ k) =y(ke+ky)'"?

This linear relationship between E and k in theniig of the points K and K’ gives rise
to relativistic nature of charge carriers in thegion and decides the peculiar properties of
graphene. Further description of electron behaslose to these points is given by the
effective-mass equation or the k.p approximatiordehavhich furnishes the following
Dirac equation in the region given by [Kj&l where ais the lattice parameter andis

proportional to the strength of interaction betweaearest neighbors.

0 ke —iky
K+ iky 0

The project aims at investigating timeanventional electronic and structural properties
of 2-dimensional lattice graphene. The known proggrof graphene will be understood
and explored further taking references from thetexg literature through the simulation
procedures as well as through experiments.

2. Analysis of graphene wavefunction & dispersiorelation

In this section we present the result of simutatioof the band diagram and the
wavefunction of graphene 2-D lattice as a firspsi@wvards understanding its peculiar
electronic properties. The simulation for the samdirst performed for a 1-D lattice
suitably modified to 2-D rectangular lattice anértfor a hexagonal graphene lattice by
the applicable translation of unit lattice vectors.

2.1 2-D rectangular lattice

We begin with the analysis of 2-D periodic lattigeeying Bloch periodicity equation.
The wavefunctions as well as the periodic lattiogeptial is expanded as a 2-D Fourier
series P].

W)=Y o™
p.q

U(x)= z Us. o€
GGy

(2.1&82.2)



from which the corresponding coefficients of tleufter series can be found out to be

Us.e = 1J.ae“G*X“GWU (%, y)dxdy (2.3)
a 0
when we embed this solution in the Schrédinger egia
hZ
-Eﬂw(x, y)+U (X, Y} (x,y)=E(X.y) (2.4)

we obtain the following eigen value equation

2
G.

The eigen value solution of the resulting 3-D mxagguation directly yields the E-k
dispersion relationship as shownrFig2.1.1.The code for the same is providedii.
Once the linear coefficients c(i,j) are calculatiexhn the matrix equation by calculating
its eigen values, the wavefunctitfx,y) can be readily calculated by inserting irtte t
equation. The code for the same is provided.ih

W(x,y) = c(p,q)explgx+ipy ) (2.1.1)

p.q

Fig2.1.1 The x and the y axis plotting the k values Fig 2.1.2 showing plot of the wavefunctiok(k,x)
have been made dimensionless by multiplication as a function of x and y for a given valu&kothe
with a factor of a/pi. Along the edges one canaee lobes show the sinusoidal variation betwta®
parabolic E-k relationship as expected for a 2D lattice points.

rectangular lattice.

2.2 Graphene (Hexagonal lattice)

In this section the results for the 2D simulatiofisectangular lattice have been scaled to
a hexagonal lattice by transferring the axes inbids space of hexagonal lattice defined
by the unit lattice vectors, & a, and the vectors K& K in the reciprocal lattice space
as shown irFig2.2.1



H1=—aﬂ 2 I+ﬂ|:2}:a a3=a|:| 2 .-T+(]'|:|2_].
(2.2.1)
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Fig2.2. 1The unit cells of the crystal lattice are overlaith the first Brillouin zone of the reciprocal
lattice. Notice that the first Brillouin zone isaed and rotated by 80

Using the LCAO method, the wavefunction of a uaitite can be written as a linear
combination of atomic orbital8{4] belonging to the C atoms comprising the unit esl!
shown inFig2.2.2.

Ar —R) =cg(r —R) +cad{r —R») (2.2.3)

The wavefunction of the entire lattice will assumhe Bloch form according to the
following equation

|y >=%Zexp(kR)|§m> (2.2.4)



Fig2.2.2showing the component wave functions pbibitals corresponding to the A & B carbon atoms
comprising a unit cell. The nearest neighbors showR+a,R-a,R+&,R-& are considered in the
approximation

Next we consider the interaction of this unit ealih the lattice.
Hlg>=E|y> (2.2.5)

If we consider each orbital individually, we get
<@|H|y>=<a@lE >
<@|H|y><e|E >
1
<@|H |g>=—) explkR)X > 2.2.7
@lH |y JN; pkRX<@ H (2.2.7)

Here we make a tight binding approximation wheeeitfiluence of non-neighboring
atoms is overlooked.

(2.2.6)

IN<@|H |g>=explk Ok @ H x>+ expkas $¢n H gr-ar>

+explkaz)<@ |H |pr-a2>+ expfikar X1 H ¢r-21>+ expfkaz @1 H ¢h-a2>
..... (2.2.8)

After some simplification we arrive at the follovgrequations

c(a —E)+c2f(1+exptikai )+ expfikaz F (

. . (2.2.9)
C2(a —E)+cif(1+exptikai )+ expfikaz F (

wherea, B are overlap and hopping interaction respectivefjngd as



«=(o,|H|o,)
= (o, |H|¢
£ =(9:H|gn) for n=1, 2. (2.2.10)
The above equation can be put in matrix form as
a-E BL+explika )+ exptikaz ))(c1) 0
LA+ explik a )+ exptikaz )) a-E C2

2.2.1 Graphene band structure

By solving the above matrix for its eigen values Bik dispersion relationship for the
graphene is readily obtained. The matlab-codetfersame is id.3.

i - - i 5 ; o

1] 20 40 B0 80 100 e z ;
lkx*a,/pi ky*a/pi | 1 izl 1 L7 1
Fig2.2.1a.showing the linear E-k band relationship Fig2.2.1b.showing the contour plot of E-k
near the edges diagram.

Thus we can see for a given value of k, there wregossible energy values forming
conduction and valence band. The two bands touch ether at the K and K’ points
making graphene a zero band gap semiconductdnelproximity of K and K’ points the
E-k diagram is linear whose Hamiltonian can be nexias
_[hk]
E=——V,

2ir
where v is the Fermi energy of the electron which is af trder of 16 m/s. The E-k
relation for the charge carriers in an ordinarydwgstor is given by

h’k 2

2mm
The charge carriers in graphene thus mimic rekttosiparticles traveling at an effective
speed of light following the Dirac equation. The s®aof such carriers effectively
vanishes around the valley points and thus theyrggrily be called massless Dirac
particles.




2.3.1 Graphene wavefunction

From the matrix equation, obtained by applying tilgbnding approximation on
graphene unit lattice one can compute the lineafficeents ¢ and ¢ which describe the
ratio in which the porbital corresponding to A and B atom influence whavefunction.

Done inA.3.

Fig2.3.1a.shows a contour plot of the wavefFig2.3.1bcontour plot of the wavefunction due to sub-lat
-unction due to sub-lattice A in the kasp.  —tice B in the k space.

As shown in figure the individual wavefunetgof the sub-lattices A & B are conjugate
of each other and together they produce a unifowbability density function around the
corners of the hexagonal ring.

3. Analysis of graphene ribbons

So far the analysis has been done making approxingavalid for infinite lattices, but
the real solid-state devices that will be built ofigraphene will be finite-sized and the
electronic properties of the graphene will be miedifunder the influence of finite-size
effects. The finite size effects will be exhibitedthe quantized eigen states obtained
from solving the problem within the legitimate balany conditions. In this section we
will see the finite size effects of graphene t&ton its electronic properties. As a result
of finite size of lattice the continuum in condwctiband gives way to confined states.

An additional quantization condition is introducedthe wavefunction calculation and
the tight-binding approximation does not remainidzainiformly at all lattice points. It
has
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two distinct edges armchair and zig-zag differéatidby the arrangement of A & B type
of atoms as shown iRig3.1 The confinement along these edges results ieréift band
structures which we will be explained in the laections.

o A atom

abips Bezbiz

O B atom

Armchair edge

Fig3.1.The Zigzag edge comprises a single sublattice wipereas the armchair comprises both the sub-
lattice types.

One can see from thEig3.1. that the zigzag edge shown as dark circles in égur
alternate in only a particular type of lattice rata.e. to say that the wavefunction
component due to the sub-lattice B vanishes comilglet the zigzag edge. On the other
hand, in the armchair edge which is lying perpemldicto the zigzag edge alternates in A
and B type of atom. The boundary condition in tbaése thus will be satisfied by
assuming that the two sub-lattices of graphene hegeal weightings along the
terminating edge .

3.1Confinement along zigzag direction

Here we see the quantum mechanical treatment ofythghene monolayer confined
along the direction perpendicular to the zigzageedfye assume the coordinates axis to
be placed so that the the zigzag edge lies alang threction whereas the confinement is
along the x direction. Consider a nano-ribbon oigtd L cut along the zigzag edge of
graphene. Let the edge lying at x=0 comprise ontyd® of atoms and the edge along the

11



x = L comprises A type in our subsequent treatmd&iien the boundary condition
becomes}].
p(x=0)=¢@'a(x=0)=gs(x=L)=¢@'s(x=L)=0 (3.1.2)

The two functionsd and®’ correspond to the K and K’ points respectivelis stated
earlier the states at the K and K’ valley thouglalgatively the same, are nonetheless
inequivalent. The states differing in the locatwnK valleys are further subdivided by
the A and B sub-lattice types. The Dirac equatidrerently comprises of two orthogonal
states known as Dirac spinors. In the case of Dpaaticle graphene, these two spinors
are contributed by the A and B sub-lattices andlt@s the Dirac like Hamiltonian of the
single layer graphene. The rest of the tight-bigdapproximation will remain valid and
we arrive at the following quantization conditid@®onsideration confinement along the x-
axis, for each value ofykThe 4- component graphene Hamiltonian is giveneas/ed
before

o ketiky 0 0

_ kx—i ki 0 0 0
H= Y 3.1.2
yao 0 0 0 —ktiky ( )

0 o —keiky 0

The associated wavefunction will be a 4-componaerevector| ¢ ¢y wx w5 |

where the subscript stands for the sub-lattice amapt of the wavefunction around the
valley represented in the superscript. From the iHlanmn it is clear that there is no
interaction between the eigen-vector componentsnigahg to different valleys. For the
sake of simplification we therefore split the 4X4rkiltonian in two 2X2 eigen value
equations.

( 0 kx+ikyJ(¢/K] (w,f} ( 0 —kx+ikyj(¢/f] (wi}
yao| =¢ 7 =e
k-ik 0 gk wE “ke—iky 0 (g 7

We now solve the above Hamiltonian for the K vallew the treatment of the other will
be followed similarly. Solving the above Hamiltoniave obtain the following coupled
linear differential equations.

yao(ke+ik) W5 = W’

_ « . (3.1.3)
yao(ks«—iky)W, = e¥;

The equations can be decoupled easily to obtaipltme wave solutions along the x as
well as y direction. The new set of equation theisdmes

yPa%o(ke+iky) (k= k) WK = £2WX

o ORI (3.1.4)
yPaPo(ke—iky) (ke + k) WK = £2WK

12



The k« and theky operators are known to commute for this case yeglflk« ky ]=0.

[k ky]=v(—i/hij(—i/fzi]—(—i/hi](—i/hij (3.1.5)
0x oy ay ox
:(—1/7& ik j+(1/h o j:o
oxoy dyox

The result zero comes from the following properhatt holds for the continuous
functions.

9° 9°
0yox B oxay

Making use of the above fact, we can know solvweeguations as follows.
yPa® ok + ikok —ikoky + bk ) WS = £2WX
y2a® o ke — [ kky — k] + k) W = £2W8

yalo(kdu—i[ke k] +kk)Wh = £2WK

Making the substitution from above, this becomes

yPao(kdc + k) WK = £2WK

poadol g o) g g | 3 = 205

2 2
y;a: O(SX Y ijK SN

Similar equation will be obtained for the B sultite componeri’§ . Besides one can
directly see the linear Dirac E-k relation from #imve equation.

2
52:y;6:° (ké+k?), &= +yha°(k)

(3.1.6)
The above equation can be solved by the methodpairation of variables where we will

assume a solution of the form X(x).Y(y). Substitgtthis for W we get

yzazo(vazx , Xo¥

72 e dy? J:‘g X(X)Y(y)

13



Dividing the whole equation by X(x).Y(y) we obtain

197X 1X0N _ h%?
X ox* Y oy’ yla

We have a relation of the form f(x) + g(y) = cangt Or in other terms the equation can
be expressed as F(x)=G(y). Clearly the LHS and RHSndependent of each other as x
and y are independent variables. The solution tbereexists only for the case f(x) =
constant and g(y) = constant. The equation nowrbeso

h2e?

yzazo

X0%Y

*X _ 1
Y oy’

1
X 0x?

k(9)* , = k(y)? such thatk(x)? +k(y)? =

The solutions given by plane wave equations ofdh@ X (x) = Xoe ™"

Y(y) =Yoe *¥Y seem to fit the physical picture quite well. Fariafinite size lattice the

wavefunction is a sinusoidal function of the spegerdinates. The solution vector thus
becomes of the following form

WK = X oY ogKOOxk(Y
K' — —ik (x)x-ik(y)
l'IJA —XoYoe vy (317)

The remaining two components can be derived fraadtequations that we have
encountered before

yao(—kx—ik)) W, = ey
yao(k+ik) WK = gW¥’

For the case of finite sized lattices however, gigse wave solution is no more valid as
it clearly fails to satisfy the boundary conditio’®e will therefore look at the other
solutions of the above equations in X(x) and Y(g)the case, where the confinement is
made along the x-direction the Y(y) retains the s&f{"¥ behavior. Let's begin with
the most general solution of X(x).

X (X) = X2 0 4+ X .70 for ¢k (3.1.8)

Now apply the boundary conditions for the zigzaggesj which require that the
wavefunction for one sublattice vanishes complestllyoth the valleysr] i.e.

Wa (x=0)=¢\ (x=0)=¢5 x=L)=¢ (x=L)=0 (3.1.9)

14



Applying they ,(x=0) =0 && ¢s(x =L)=0 condition we get, the following bounds on
X1 and Xz.
X1+ X2=0

Now from ¢/5 we try to constructyy using the following linear differential equation.
yao(—k«—ik)) W =&WE which can be expanded into

0 0 K K
yaoi /h&H /ha—y)wA =Wy 3.0)1

K — H a H a ik (x)x —ik(X)x \ % ~-ik(y)
£PX —yao(llh&H/ha—y)(Xle + X 2K )5 g kO (3.1.11)

WE = yao(-ik(X) X180 +ik(x) X 27 —Kk(y) X £ —k(y) X g7 C0X)* g kO

W5 (x = L) = yao(—-ik(x) X € 0" +ik(x) X 27Ot —k(y) X Pt —k(y) X £ W) * eV =0
...... (3.1.12)

g 0t (=ik(x) —k(y)) X1 +e™ " (ik(x) - k(y)) X2=0 which yield the following relation
using X1+ X2=0

KO =K(Y) _ o
K9 +k(y) 1a3)

The above equation sums up the quantization cemdior the zigzag nano-ribbon of
graphene. The real solution of k(x) exists for sile values of k(y) which gives rise to
the k(y) vs. k(x) curve and from there the e vy) lkdfurve symmetric about the k(x)-k(y)
plane given as below
yzao2
n

(k0% +k(y)?) (3.1)14

The above plot has been obtained by finding thésrkéx) of the above equation for the
input values k(y). The different sets of roots héven be plotted to give the branched
structure of E-k diagram as shownkig.3.1.2. The code for the same is m5. The

corresponding wave functiong/ , &y .

£ =

* X oY o KMY

(wi J _ sin(k (x)x)

0% ) ™| £ {k(x) cost @)k (v ) sink &)
£ (3.1.15)

Here the value k(x) actually splits as k(x,n) tonfiovarious energy levels at the same
value of k(y). The index n represents the numberoales along the x-axis in the wave
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function solution. The wavefunction for the zigzzdge for the states closest to the zero
energy solution has been plottedrig.3.1.1.Plotted usinghe code irA.6.

el A — Sta o
02 04 06 08 12 14 16 18 2
A

Fig3.1.1 Probability density variation between the two  Fig3.1.2E-k(y) quantization resulting from
similar type of atoms along a zigzag edge superpose the confinement along the x-directid a
on the lattice structure zigzag edge.

3.2 Confinement along armchair direction

The other prominent edge type seen in the hexagstnatture of graphene is the
armchair edge in which the A and B sub-lattice at@fternate along the edge. The atoms
at the rightmost edge are at a distance of L+al fihe atoms at the leftmost edge. The
appropriate boundary conditions therefore die |

Y(x=0)=¢'(x=0)
W(x=L+ao/2) = (x=L+ao/ 2)gKK)+a02) (3.2.1)

which suggest equal mixing of the wavefunction loé two sub-lattices at the edges.
Applying the above boundary conditions, we obtaionf the previous Hamiltonian
equation

Y (x=0)=y; (x=0)

| (3p.2
Ws (x=0)=¢y (x=0)

The axis has again been adjusted such that thehammedge lies along the y-axis
whereas the confinement is along the x-direction.

Let us now begin with the following general solatias before.
X (X) = X2 + X 267 for ¢k

corresponding to which we already obtained

16



EWE = yao(-ik(X) X 1€ 0¥ +ik(x) X 27 —Kk(y) X £ —k(y) X £7HCX)* g kO

Similarly we assume a solution fgrx but with k(x) replaced by —k(x) as in the
Hamiltonian of the K’ valley.

X(X) = X 18 K00x 4 ¥ L@k for wi (3.2.3)

corresponding to which we will obtain for the B fathce

WL = pao(ik(X) X &% —ik(x) X 8% —k(y) X XXX —Kk(y) X g*C0x)* gk (3.2.4)

Applying the boundary conditions we now obtairtérms of equating’y =&¥f ,we
obtain the following condition

(=k() +ik(y)) X1+ (k(x) +ik(y)) X2= (=k(x) +ik(y)) X1= (k(x) +ik(y)) X 2 (3.2.5)

which implies X2 =0 implying the following wavefunction vectors

K ik (x)x
(wi\] = xj{e—ik(x)x]
s e (3.2.6)

Now if we apply the %' boundary condition at x=L we obtain the discretsaof k(x)
as shown

l//.§ (x=L+ao/2) =¢//BK'(x: L + a0/ 2)g (KK )(L+a0/2)

(3.2.7)
2ik (x)(L+a0/2) _ 4 (K-K )(L+a0/2)
€ =€ (3.2.8)
which gives us
k(x,m)=— L 27
L+ao/2 3ao (3.2.9)

So here we see unlike zigzag edge there is no depea of k(x) on k(y). On the other
hand we see that the value k(x)=0 will be achiewvatly for cases where L, the
confinement length along the x-axis is of the jgaittr form

L =—(3n 1) ao
2 (3.2.10)
Depending upon this width, the ribbon might be laBnog or conducting. In general for a
length L=(3n +1) the armchair nano-ribbon is corohgcand insulator otherwise. The
energy also varies discontinuously with the nabben width. The electronic properties
of armchair nano-ribbons depend strongly on thadtlwas shown by the E-k
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relationship for two distinct values of L as shownFig.3.2.1&Fig.3.2.2. The matlab
codes for the same areAn7 andA.8.

Fig3.2.1For a different length L a non-metallic Fig.3.2.2A metallic behavior through a Dirac point
behavior is seen for confinement along an arm is seen for an arm chair of a given edge.
-chair edge.

One sees that between the x-axis points x=0 andyirg along the confined edge, there
is a propagation constant dhdK as can be seen from the eqn 3.2.1. Note that we ha
assumed ribbon to be extending infinitely alongytreis with armchair configuration on
the edge. In an armchair nano-ribbon, the intemgixaf the two valley states result in a
certain oscillation of wavefunction with period asdd toAK given by J1/A as can be
seen in simulation results ifrig.3.2.2 Plotted in Fig.3.2.3, Fig.3.2.4are two
wavefunctions with different values of Length Ltbé& nano-ribbon.

1 15

09t i
08|
07}
o6l i

os5f i

=B
L
-B

04 i

05F
03

02

01F

0 o A o e e S A 0 . . . . ! i ! . .
0 5 10 15 20 25 30 35 45 50 0 5 10 15 20 25 30 35 40 45 50
x/a x/a

Fig.3.2.3¥g congruent ta¥, is plotted for a length Fig3.2.4The wavefunction shows fluctuation in
L=25a. In this case the E-k diagram shows the pase  accordance with the period expectethior

of Dirac points which implies no effect of confinent valley mixing that were introduced teeh

and the wavefunction is non-fluctuating. the boundary conditions.

4. Application of perpendicular magnetic field

In this section we consider, how the behavior c& tiraphene changes under the
influence of a perpendicularly applied magnetitdfién the presence of a magnetic field,
the free pi- electrons of graphene start execudigclotron motion perpendicular to the
direction of applied field. For our case we applyoastant magnetic field along the z
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direction which will consequently result in the plane cyclotron motion of electrons.
The B filed can be translated to the magnetic rgudtential A p-11].

Bz=0OXA 4.1)
resulting in the in-plane and componerts Ay of A. The effect of these components in
the Hamiltonian of the graphene can be includethbiting thePeirels substitution.

Beginning from the Maxwell’'s equation= —%?—Dga along with the equation of

motion of a charged particle in the magnetic fi€ld- (¢ +v* B) one arrives at the above
substitution. For our case , we assume the y-cosrmgonf the magnetic vector potential

to be 0 which leaves us with the following expreador A(y).

Ay=B*X (4.3)

Making the substitution mentioned above we arrivih@se augmented expressions for
px and py.

Kx= —|7’-li
0X
.. 0
Ky =—-1h— +eBx
0X (4.4)

These expressions will be substituted in the pressidamiltonian to arrive at the
graphene Hamiltonian in the presence of magnetid.fiThe rest of the treatment will
also follow the same.

0 KxtKy 0 0
H :Eo Kx—iKy o 0 0
0 0 0 —KxtHlKy
0 0 —Kx—IKy 0 (45)

Note however that unlike in the previous case wijiere k| =0, the produc(7s 7)

does not commutes to zero in this case. The salafithe equations therefore will not
follow the same course.

[kx Ky]= (—i /h%)(—i /ha%—eij—(—i /ha%—eij(—i /h%]
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:(—1/71 9’ ]{1/1@ 92 J+i_(a(eBx)]_ieBX(ij
oxay dyox ) h\  ox h \0X
LIEAR LG
h \ 0X ho R\ O0Xx

_ieB
h (4.6)

On the contrary one can by doing another simplistibstitution sees that the new
Hamiltonian is in agreement with the Hamiltoniartlodé simple harmonic oscillator. Lets
define the new operators as follové. [

a’ = (Kx—i/(y)

—ﬁ‘—

a =—(Kx+i/(y)

)

(4.7)

where | is defined aB:@. The wavefunction equations fgry , 5 derived earlier
c

can now be written making use of the notation dsvs

2y”a’o .,
aa'Ws = 2Pk

| 2

2y°a’o
y|2_2 a‘aWy = &°W§

(4.8)
and similar equations for K’ points. Besides, weéthe following linear equations.
a'wh =g W§ —a Wl =g Wy
awf =¢ W& —a'Py =g W

4.9)
for the K and the K’ valleys respectively. Now wenk out the analogy of this system
with the Hamiltonian of the harmonic oscillator plem. The Harmonic oscillator
Hamiltonian is given by the following equation

H = ha)(aa+ —Ej
2 (4.10)

where the operators are such that
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a=a(Bx+ip)
a” = a(Bx-i p) (4.11)

We first seek to find the similarity between theemgiors defined as above for the
Harmonic oscillator problem, with the similar opera defined for our magnetic field
problem. For the case above we calculate the coatiantproduct of the constituent

operators x and p.
[x p} = —ix/h(ijﬂ /h(ixj
0x 0x

= —ix/h(ijﬂ /h(i+ xj
0x 0x

h (412
On the other side, the commutation product of tragmonent operators of the a, a(+)
operators defined for our problem is

[Kx Ky]:$
i.e. to say [ x Ky]ZCO[;( Y}

(4.13)
Hence we see that the a, a(+) operators occumitigei eigen value equation of harmonic
oscillator problem and graphene in magnetic fieldbfem are rather similar in
construction The observation made above quite gtinens our proposition that the two
problems bear semblance with each other. In trenrent that follows we try to solve
the problem at hand by making use of the knowntswla of the harmonic oscillator
problem.

Now let’s quickly go through various aspects of ll@monic oscillator solution. The
eigen value equation is given by

HY = hatn+ 2 )
2 (4.14)

which can be expanded asxaa" )y +hTw = nhwy +h_2a)¢ﬂ which simplifies to the

following result @a" ),,¢ = ny where the subscript HO stands for the a,a(+) opera
in simple harmonic oscillator problem. We can noakeuse of this result for solving

2y°a

2
our equationl—z0 aa'Ws =W . The effect of the operator composition a,a(H) wi

be similar as in the case of HO problem thus rendehe following solution.
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2y%ao’ .
Huy = ”lzf (aa" )y

Huy :(Zn;liaozjw

(4.15)

(4.16)
The RHS however for our case is not the energynergdue rather it is a square of it
giving a square root dependence of energy on tres e

(anllzaoz j‘//” = £%Yn
(4.17)
En= i\/% y a0
| 4.18)

The solution that we have derived above is the hardvel solution12-14 applicable

to the systems subjected to a magnetic field. idex n stands for the nth Landau level.
The corresponding functiongn are the nth harmonic oscillator functions. One saa
from the solution that it has a degeneracy of two dach index n. These two states
physically correspond to the particle and the tstdde The lowest Landau level (n=0)
however does not possess any degeneracy. It isptiuigerty which lead to the
observation of a novel type of Quantum Hall Effecgraphend12]. For these levels,
the particle-hole conjugate of the wavefunctiorestaemselves.

The above solution is fayy . The rest of the three components can be deriyedaking
use of the coupled equations.

a'wh =g W§

(4.19)
Now, we make use of another result from the harmasicillator problem. The a(+)
operator defined in the problem actually acts aaramhilation operator i.e. to say it takes
a particle in nth state to the (n-1) the state.

AW =i (4.20)
which tells us tha@"W} =cW} . From which one can assigH; the following
solution.

AW =cwl,,

23)

The other components can be assigned a similatiGolas follows.
K|~ | ~m,yHO
Ve ) (€ (4.22)

22



There is one thing however that we have overlookethe above treatment. In the
corresponding treatment of the a,a(+) operatorsttier two problems we make the
following transformation.

x5 px
PO p (4.23)

Corresponding to this transformation, there is angfation of the axis along the x-
direction which can be incorporated in our solutiyrmaking the following substitution.

X - X—ki? 24)

Along the y axis, there is no component of the ne#ignfield vector A and the y
component of the total wave-function retains itngl wave nature of the forgf”.

4.1 Confinement in the presence of magnetic fiel&igzag edge)

Now we confine our system along one of the axis@gh that the zigzag edge lies along
the infinite axis(y). We assume x to be varyingireX/2 to X/2. We can apply the same
boundary conditions that were there in the graphés®on in the absence of magnetic
field which will alter our present wavefunctiond.[

The wavefunctions that we have derived above arenlde polynomials (solution of the
Harmonic oscillator) which include a term of therfo

_rx

Y(x)ae ? (4.25)

which implies that these functions are peaked atow®. Following from which we can
see that the wavefunctions in our case i.e.

WACS N

$ix-klfae 2 (4)26

are peaked around the zeros ®f-(k*) . Consequently we obtain the following
condition

-L/2<x-kl<L/2
which can be further generalized to
—L/2<(K+k)I*?<L/2

thus a bound arises on the values of k(y) whiatersded by the x-extension of the
sample. The boundary condition has become forctss

Yg (x=0)=0
W (x=0)=0
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and similarly for the other edge. But our solutidlesived in the previous section have a
non-vanishing component at x=0. To fix this thing we add a small perturbation
function to our obtained solutions. Redefine thginal functions as follows

wnen (x) =4, (x— ki) * w(x) 4.27)

Such that the function w(xp0 as x>0 and the function stays close to unity at higher
values of x. A good choice of such a function cdugd

x)=(1-e™) (4.28)
with vanishing value at x=0 and a relatively slogpdndence on x at points away from

the x=0 boundary. This function carefully incorpesaour physical situation. Thus we
have

Wren(X)are 21— ) (4.29)
which under certain approximation becomes
[/jnew(x)ae—(x—(kyml /2l (4.30)

Corresponding to the change in the wavefunctioerethwill be a perturbation term in the
Hamiltonian which will likewise effect the E-k behar [6] in the proximity of the edge
as shown irFig4.1.1& Fig4.1.2.The corresponding matlab codes aréia andA.9
respectively.

Energy E/E()
9y EEQ)

2
14

] 13 2 21 N 15 15 17 T
tum piy)L Momentum py)'L

Fig4.1.1Spectrum for the K valley, the n=0 Landau Fig4.1.2Spectrum for the K’ valley, the zeroth
Level becomes a dipersionless mode near the edge. Landau level gives rise to two brancbiegis

-persing edge states.

Let us now define a new Hamiltonian H(edge) clas¢he edges which will operate on
the wavefunction composed above to yield new eigdues .

4.2 Confinement in the presence of magnetic field\{mchair edge)

Now we study the confinement along the armchdie Terminating edge of the armchair
nano-ribbon comprise of alternating A, B atoms. ¢tethe wave function should have an
equal contribution from both the sub-lattices a #rmchair edges which extend along
the y-axis of our nano-ribbon. The boundary caadits already stated before is

24



Ya(x=0)=¢ (x=0)
Yg (x=0)=¢g (x=0) @p.1

Now we have to alter our obtained wavefunctionsasdo include the effect of above
boundary conditions. If we revert back to our ceapbquations

yao(ke+ik) W5 = e®’
we see that the effect of the above boundary cimdis to add this constraint on the
linear derivates of the A-sublattice components.

(4.2.3)

oW . 0w
0x oy

K
aLPB +kyl'|J§ =O'LP§
X

:a'LIJﬁ

K —
—6WB(§X—O) +kW5 (x=0)=aW (x=0)
Similar analysis following from the second coupégplation yields

WK oWk
-——+i—==a¥,
0x oy

K
—aLPB + kyl'ng =0’LP§
X

K" —
S 00 (x=0) = (x=0

(4.2.4)

Now, noting the fact thaky (K)= ky (K") (from the Hamiltonian it is quite evident), we
can arrive at the following condition.

_0WE (x=0) _ oW (x=0)
0X 0X (4.2.5)

Now, we will deal with the situation by combininiget two functions above in a single

function as follows
£ = 00 () + B(=Xpt (=) (4.2.6)
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where 6(x) is the step function, 1 for x>0, -1 for x<@®].] Now we look at the
dependence af{“ on various parameters and the same dependendeewiliflected in
&(x) after making some adjustments.
Yo7 — i) (T + i) WE = £°W5
y2ato(r; +i(7maty — 1y + 1) Wy = £ Wy

2
yzazo(%ﬂ[m 7] + (K, —eBx)j‘Pg = 2Py (4.2.7)
X

0x>

Then substitute for B in terms of to obtain

2
;/Zazt)£‘3——e|3,/f'z+(|<y —eBx)Zijg =e*Wy

9’ 2 242 | K &
—-1/1"+ (k, = x/I Yo =—_
(6x2 & )j = = s

We obtain the counterpart of this equationddf . Now we look at our equation &€x)
which becomes

WK (4.2.8)

_[¢s(®) x>0
E(X) _(%K,(_X) X<0J (4.2.9)
which now can be substituted i (x) , 5 (=x) to give the following equation ig(x)
O ek X N2 F )= (%) (4.2.10)
ox* Y y*a’o o

We can make the functiofi(x) obey the Schrodinger equation if we define a paént

function U(x) as follows.
2

U(x):%(Ox|/|2_ky2)_1/I2+|£29(-x)j (4.2.11)
The corresponding Schrodinger equation will be
(—%w (x)]w(x)=e'2w(x) (4.2.12)

This double well potential as depicted in the ptérfunction U(x) is as shown in
Fig.4.2.1(A.11). There will actually be a hybridization corresporglito each of the
Landau level, there will be a state correspondmthe left well as well as the right well.
The particles lying in the left well which is minired at a higher energy than the right
well have higher energy eigen values for the Larldaels. As a result of the above

26



equation a perturbation term is added in the Ham#in around the edge states resulting
in the E-k diagram shown irig.4.2.2(A.12).

= —

hoor 15\ /

9 ; ‘_\“ ,/
%, jf ,

b%Q ' 4 Ub\

%“wa o

c:%h ; 7 / \

T%Q(% f;’Y 17:/ s

Fig4.2.1split potential function U(x) for an armchair  Fig4.2.2the armchair boundary condition enha-
Edge. -nces the K, K’ splitting in two edge modes.

3. Bilayer graphene

In this section we add an extra dimension to owlyesis of graphene. We add another
layer to the existing hexagonal plane. The two fgyeill try to align themselves with
respect to each other in a lattice such as to nmeirtheir potential energy in a closed
packed arrangement. The hexagonal layer of spheresa tendency to align themselves
in a closed packed ABAB type arrangement wherediabf one layer fits in between
the three B type atoms from the other layer as showig.5.1Thus the bilayer graphene
exhibits an ABAB type hexagonal close packing betwthe two layers.

Addition of another layer to graphene, gives risenewer interactions in the model
resulting from the inter-plane interactions. Instlainalysis we are going to refer to the
unit cell atoms as A and B for one of the layer Aricand B” for the 2" layer. Also in
the hexagonal packing arrangement we assume thatdhs in the % layer lie above
the A atoms in first layer as shown kig.5.1thus forming the A-B” dimer state. Such a
dimer state results from some specific inter-mdecunteractions between the two
species. In the case of graphene the dimer stateniirmed experimentally by a fair
estimate of the binding distance between the twamat obtained using a planar
functional model22]. In addition to the in-plane interaction A-B wave A”-B”, A-B”,
B-A” new interacting species in our modég-18§.
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A”B
— "dimer

Fig5.1bilayer structure where A,B are the atoms in theelolayer and A”,B” are the atoms in the upper
layer.

The A”-B” interaction refers to the interactioretween the A & B type of atoms in the
2" layer quite analogous to the A-B type interactiorthe bottom layer. Note that the
fact that the A & B type of atoms are inequivalenstill preserved in the bilayer system
as the unit cell construction still comprises obtatoms from a layer both of which bear
an individual influence on the wavefunction at anty point. Now we analyze each of
these interactions individually. The A-B interactis similar as in our previous analysis
given by the following Hamiltonian.

0 K« +iky
Ha-s=v .
kx_lky 0

wherev stands for the strength of the interaction A-B enproportional taray which in
turn depends on t, the hopping parameter betweeA thnd B atoms. Another A-B type
interaction A”-B” in the different plane will baimilar. Next we consider the interaction
between B-A”. Note that this interaction is difégt from the A-B” interaction since the
latter is a direct dimer state coupling betweentii® atoms, one located right on the top
of the other. The former interaction on the othandis an indirect interaction taking
place between the layer of atoms following the samatial arrangement as the A-B
atoms but separated by a larger range.

rB"—A:FB—A+(_iB"__iA)

(5.1)

(5.2)
so that the equivaleng a rs.o becomes for this case
(5.3)

where c is the separation between the two layer$h& the unit vectors @and acan be
modified as
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~ \/5 o 3 o A \/Z)’ A 3 o
=-——ax+—=a,Y, =—a Xxt+—a,
a > a, 2a0 y a 5 & > y
The set of reciprocal lattice vectors can thendigegated as follows
~ _ 277. \/é A 1 A
K=—| —%5 %3V
a, 3 3
- 2n(~3: 1
K, =—| XY
al 3 3
We see that the k-space is contracted as a rdsie dengthening of the vectog. arhis

inter-plane interaction therefore is only a wealkem of the intra-plane interaction A-B.
Hence the resulting Hamiltonian is given by

0 ke +iky
Ha-s=Vs i
kx_lky O

where the constants is a measure of the strength of the interactidwéen the two
atoms s/v <<1).

(5.4)

Next we consider the direct inter-plane interactiesulting from the dimer state— A.
The interactions in this configuration can be espeel by the following Hamiltonian.

B"- A= [_ 0 Elylj (55)

where the constant is a measure of the coupling existing in the distate andf: is

just a symbol to account for later sign adjustmenkss interaction is certainly stronger
than the indirect interaction mentioned above. Nowe, can pull together all these
interactions to come up with a total Hamiltoniane Will disregard all other possible
interactions.

0 wver 0 v
va®m 0 v 0 = pct+ipy

0 vr 0 é&y| = m=pip (5.6)
vt 0 =&y O

The corresponding eigen value matrix of the abowanitonian comprise of the
wavefunction vectofys e ¢s- 5] describing the amplitude of electron waves on
these coupled nearby sites.

Another thing that has not yet been taken intooant is the possible potential
difference between the two layers. This differemaght result due to some intrinsic
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property or due to the system being subjected texé@rnal electric field. We therefore
include a term +u/2 for the top layer and —u/2the bottom layer in our interaction.

+

u/2 vsm 0 /4
vearr -ul2 vm 0
0 wvm ul2 é&p
Vit 0 -“éyr —ul2 5.7)

H =

Having obtained the above Hamiltonian we now tryfibal the energy eigen values of
this system. One approach is to straight forwaditygonalize the above matrix to obtain
its eigen values. A matlab method was invoked {#mjalculate the same. The equation
was solved numerically to obtain tlers. k plot as shown iRig.5.1. The eigen values of

the above matrix comes out to be

12 1/2

4422 2.+ 2,,4 4,4
VoIT "I VT T8
L oo W oo oy VTR - A A
£= 3 v nn+—2+|/3v Yy x2 4 2

EYW AT T+ Vv TV oy

....(5.8)
which can be simplified by making the following stikutions

& =1¢=¢
[77 7T+] =mr -mmr=0
T = p+p; = p’

P = ot

= ot Tt

=p’p*=p* (5.9)
let T= pcosp+ip sinp then  77°=pcos()ip sin(®@ similarly
77 = pcos(3 )+ip sin(@ which implies

T +m =2pcos(Pp) (5.10)

The equation above thus becomes

4.4 2,272 2
2 Y2 2u2+V3p _vpé
52:1 2V2p2+uE+V3 24 242 p 2 5

2 Eyvip?+ 2 %yipicos(P)

4 4,4
4 +|/3p4+—:1 +

which can be further simplified to
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1/2
£2 :V2p2+UT:+i2V2+%i{V2p2(u2+y2+V3pz)+ (V§p2;y12)2 F oW ?le 3003(@%
From the above equation we see that the energgpisritient on the phage(in the
momentum space) of the particle in addition tortfagnitude of its momentum. The E-p
diagram would therefore not be symmetric in the raptmm space rather it will exhibit n
nodes along the tangential direction. The value béing decided by the no. of maximas
of cos(3p) between 0 and 2pi. There are 3 such maximas wegLat 0, 2pi/3,4pi/3. The
picture can be seen kig.5.2(A1.14) showing zeros at certain values of the phasken t
p space.

Also note that there are two value of energy eesponding to the momentum vector p.
One of these values (+ve sign) is higher than theroAnd corresponding to these two
values will be their negative counterparts that addo the total of four eigen values as
shown inFig5.1(A1.13)This higher value results from the interactionngkplace in

B”-A dimer state (strong overhead interaction) ellbw energy bands on the other hand
will correspond to the —ve sign and correspondbéonveaker interactions. Here we

Eft
o
|

mometumkx  momen tum ky

Fig5.1 E-k band showing the 4-level degeneracy. Fig5.2 contour plot of the E-k diagram shown on
the left showing asymmeatryhe tangent-
-ial direction.

approximate the dispersion relation close in theémergy regime making use of the
following.... va<<v so that the terms includings and its higher powers can be
neglected. Also the energy range is chosen suthh&gs > u (inter-layer potential).

Under these approximations we have
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22 1/2
PR

4
2.2 2.2 12
sl
Al % Vi (5.12)
- 12 2
:ﬁ {44/ p +1} -1
4l %

which yields the following low energy dispersiotaten

. yl 4V2p2 }1/2_J
g =+ | ——+1 1
ZH n (5.13)

Now, if we look at the energy spectrum derived abfor the (-ve) branch, we can infer
in the high momentum regime approximates to a fineterpolation between E & p
which translates to a quadratic spectrum at lovedwes of p. For large values of p, this

becomes E-= iﬂ(ﬂJ =tvp

2\ n (5.14)

and for smaller values this becomes
g_ZiE(zvzpzj :inpz
. (5.15)

From this equation we can calculate the effectiassrof for electrons following this
equation (close to Fermi energy) from the defimitio

o€
Met = p/—
0
P (5.16)
The effective mass then comes out to be
1/2
% _,unl {4'/2'02 +1} LA
p 22| ¥ Vi
) 1/2 2
:1{4'/ p +1} 2?p
n e (5.17)

We know that for a 2-D gas the density N (of fcbarge carrier) is related to the phase
space area as. Consider a two dimensional p-spétexes pand g. We want to
calculate the number of allowable modes for a gexalue of momentum p. That is we
want to calculate the number of modes lying withirectangle of sizg and R.
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2

N=— P
Area/node (5.18)

The value Area/node can be found out by makingofisiee following quantization
condition for confined modes as follows:

k=2 =2 ak=Z, A==
Lx Ly Lx y (519)
correspondingly  Apx= hLﬂ, Apy :}?——”, from which the area of a solution in the p
X y
space can be calculated as
s
FAY =
PApy LxLy
(5.20)
s
ApApy =
PxApy A
2 2 2
N = P = 5 P , N' :E = E
Apdpy B A A W (5.21)
so that the m(eff) becomes
de. {4v2nh2N }‘”Z 22p
=+ +1
op A Y
- p
et = 2,42 vz, 0
{4|/ 7N +1} 2p
4 Vi
2 2
- ylz 4y mh°N 41
v v (5.22)

Thus, unlike the case of Dirac fermions in singlgekr graphene, the electrons in bilayer
have a non-zero effective mass resulting from ¢tlwednergy interlayer interaction. This
is one of the marked difference between single laitayer graphene. We see that the
mass is directly proportional to the free-carriearge density inside the sample. As the
doping concentration N increases, the resultaeteife mass increases for values nearer
to the center of Brillouin zone (low-energy values)

For the time being, we will take the interlayer fiotential to be zero as it will lie along

the diagonal and will not alter our solution. Wen st it to non-zero at a later stage in
case it is required. Also we neglect the indirat¢raction {3 ) taking place between
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these two atoms as its magnitude is very small esetpto the rest of the interactiops
anav.

Now, we will try to model the Hamiltonian applicabfor low-energy electrons which

allows us to deal with the bilayer graphene inltdve-energy regime. For this purpose we
will need to extract out the terms correspondinghi low-energy interactions. That is,
we concentrate on the interaction between A”-Bnaoby trying to project the 4X4

matrix to a 2X2 inter-dependency matrix betweersé¢hvo electron wave functions i.e.
we want to find a 2X2 matrix H’' such that it copesds to the solution of following

equations:

A

a IB (A)'wA'FIABl//B":fl//A

n

y o WA + 31//8-- =&We (5.23)

H'=

where we know that the diagonal terms corresponthng-A and B-B index is zero
since the potential of both the layers has beerosatll. To achieve this goal we can
directly expand the full 4X4 Hamiltonian H into folinear equations and bring it in the
format desired as stated above. But this will natleea cumbersome process, so we will
make use of a more sophisticated technique of Grefmctions for solving our
equations. Consider a differential equation offthven

La(x) = f(x)
(5.24)
where L is some linear operator, f is a known fiorcand g is the function to be solved.
The green function G are defined for any lineagrafor L as follows

LG(X,8)=90(x—5)
(5.25)
where (X — Xo) is the Dirac delta function. Making use of the abwe can now rewrite
our equation as

LG(X) f (s) = 3(x-9) f (s)

[ Lo f()ds=] o(x-9)f()ds= f (x) =Lg(x) (5.26)

now since the operator L is linear and is a fumctd x only, it can be brought out of the
integral to yield the following result:

909 =[ GO f(s)ds

(5.27)
which allows us to calculate the function g(x) @mhs of the obtained function G(x). In
our case all the elements of the Hamiltonian matrexlinear operators. Hence the Green
function methodology is applicable. However we anterested only in the Green
function in the low-energy region, we divide thestgym into 4-sub parts, corresponding
to different interactions. LeHuirefer to the top-left block corresponding to thevdo
energy inter-plane interaction in the complete Hamian H derived above. Similarly
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extract outH12,H 21,H 22 and write down the above Hamiltonian in block matotation

such that
Hi Ha
H =
Ha: H2

The corresponding Greens function G constructed as

(5.28)

G= Gu G2 ’ G= Q‘l—é’)_l
G2z Gz (5.29)

is derived from the Hamiltonian H itself in a manm&o that the block {3 can
independently represent the interaction between dbecerned wave functions as
depicted in the total Hamiltonian;f22]. This is achieved by including the effect bét
remaining terms on the subject wave functions entdrms of G itself. We try to obtain
the solution for the block z The method is as follows: (from definition)

G- (Hu-¢)™ H1 B
Ha (Hz2-g)™

_ it H )
Ha: G'22°

_ 1 G2 -Ha
C Gu'Gz'—HiH 20 ~H1z Gar’

(5.30)
so that we obtain
-1
Gu=—r7 (_3122
G',G —HaH12
=G'u(l-G'uH1G"'2H 2)*
(5.31)
From above, by taking the matrix inverse, we @&t to be
Gu'=(1-G'uH 165"2H 2)G ' 1i
(5.32)

Now we try to eliminateG ' from the above equation by substituting back imgeof
Hii( G'u' =Hu—¢)
Gu'=G'1ur'—G'1ui'G"1H 165" 2H 2
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Guw+e=Hu-H1G'2H 2
(5.33)

Now we expandsz2=(H 22— &)™ under the above mentioned assumptions on wand

For the low energy band analysis we neglect powéns greater than equal to 2. The
obtained result is then substituted in the equatioitten above to obtain the Greens
function Gi. A matlab procedure was written to perform thevasmentioned matrix
manipulations which yielded the following matrix 1G11.

0 _%(V2ﬂ+2 ’Ezyl2+4v2p2)
11—

—%(1/2722 {2;/12+4|/2p2) 0 (5.34)

The matrix obtained above is the solution matrixaé’ talked about earlier. The diagonal
elements corresponding to the potential energy tmzero as expected whereas the off-
diagonal terms representing the interaction betweand B bear an influence of both
the inter-plane direct dimer interaction as welltlas in-plane A-B interaction. We thus
have H’ in the desired form

I

y O

Further simplification can be done by substituting as derived in equation 5.22 for the
constant term in the above matrix to obtain

__1(0 m

We have thus arrived at a compact Hamiltonian whagbtures the properties of particles
lying in the low energy band. Note, however that tiotion of the sub-lattice in this
system has now changed to the atom A from the Idawer and the atom B” from the
2" layer as opposed to A & B in the same layer insihgle layer case.

On the other hand if we consider the +ve sign endbtained E-k in the eq. we get an
equation in E and p which is rather cumbersom@aé& bt. We don’t concern ourselves
with the high-energy bands corresponding to thestge in this report.

5.1 Magnetic field applied to a bilayer

Now we apply a perpendicular magnetic field to ltlayer graphene. The conventions
are similar as in previous analysis. As earlierfitst step will be to do the Peierls
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substitution in the p(y) operator giving to includBx/c component. The eigen value
equation for this case becomes

7Y, = —2meey, TT=T5+i 78y T = Px
’ N . _ (5.1.1)
Y, = —2mes ==y 7Ty = py +€Bx
Decoupling the above equations we obtain
7" Y, = 4, €
2 lpB rndf lﬂA (512)
T TTY, = 4mG £,
Now let us look at the following simplification
T = (T + i 71y) (7 — 1 7Ty
:nf"‘nf_i[ﬂx 7Ty] (513)
eBh (5.1.4)
=77 + ;7-5 -==
n
similarly, 77 7r= 17 + nﬁ —e—: so that we can make the following substitution
T IT= T +2%B (5.1.5)

in 72,

2t = ot

”(+ Zij ,
= mr-== |
7

PR 2eB +
=T gr _77777'

(5.1.6)

Now if we represent the operator compositim’ by Hemp, we have our equation in the
following form.

|: HtempHtemp —% Htempi|wA = 4m§ﬁ EzlﬂA (517)

The solution of the operatordis already derived in the previous section so ere
will directly use the following result.

Hterp(//n(X) = nh&)l//n(X) (5.1.8)
wheren(x) is the nth Hermite polynomial. We will see that golution for the above

equation once again is similar to the Harmonicltzgor solution. So that if we apply
Yn(x) as an eigen function to the above Hamiltonian ete g
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|:Hterrtherrp —2% Hterrpi|[//n = Hteﬁp(nha)(//n) —2$ nhWn
= nzhzwzz//n—z%B NAWWn (5.1.9)

Note that, we have earlier defined the equivaleas the cyclotron frequency of the

motion of charged particle in a magnetic fietd = 2eB /#* for our situation . So the
simplification becomes

|:HtermHterrp—2#eB Hterrpi|[//n = n(n—l)hza)lzwn (5110)

From above we can derive the Landau level energgtagm of the electrons in a bilayer
graphene in the presence of a magnetic field.

a4 €2 =n(n-r’w*?

=+ /n(n-Dhrax (5.1.11)

These levels have been plotted as showirigb.1.1(A1.15) As is evident from the
above relation the Landau energy level (resultinghie presence of magnetic field) in
this case exhibit four-fold degeneracy for valuenofreater than 2. The corresponding
wavefunctions will be Hermite polynomials. If we woapply a magnetic field
perpendicular to the bilayer plane, it will resuit producing a potential difference
between the two layers. Adding the (u/2 term) bagkthe Hamiltonian, one can
immediately see it will result in shifting the eggreigen values by a factor proportional
to u as shown ifig5.1.2.(A1.16)

Fig5.1.1showing E as a function of B for different Fig5.1.2 The reduction in gap b/w the electron and

energy levels. Note that as B increases the gap b/w the hole state (+/-) reducing as thengjite of the

the nth and the (n-1)th energy level increases. applied electric field increases.f&iént color
corresponalslifferent values of electric field E.
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4. Summary

To conclude we summarize the various results thae tbeen obtained. As a first step,
the conical dispersion relation of graphene sinayer was established. This dispersion
relation governs the unordinary electronic progsrof graphene indicating the presence
of low energy massless Dirac fermions near the aley. The dispersion relation was
then recalculated to include the effects of confiaat of the lattice on its properties.
Two-type of edge structures exist in graphene tegufrom its asymmetric unit vectors.
The confinements effects for the zigzag edge showadquantization in the band
structure. A rather peculiar feature was obsereedhe case of arm-chair edge where the
conducting properties of the layer were found teeha crisp dependence on the length L
along the confined direction. Next we moved onde the magnetic field effects on the
graphene E-k characteristics for the infinite a8l w® the confined lattice. The magnetic
field resulted in the Landau level quantizationhwé square root dependence of nth
energy level on the integer n. In the presenceigdag edge these states dispersed
towards slightly higher energies near the edgeshvtiffered from the case of armchair
edge where the dispersing edge states acquiregemei@cy of two near the edges.

Finally we studied the bilayer graphene system wihewe find out more intriguing
properties including a peculiar Landau level chemazation and thé! dependence in the
dispersion relation. We derived an effective tworeinsional Hamiltonian to describe the
system at low energies as well. Further investgetican be done on the same for tilted
magnetic field where the concern would be to stilndyeffect of the in-plane component
of the magnetic field. Besides the effects of tvanse electric field on the energy
spectrum can be done for both the single layer els ag bilayer. Next stage could be
device modeling out of the graphene layers requiram analysis of graphene dot
structures which would entail the electrostatic eptial confinement of graphene
electrons.
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II. Experimental

1. Introduction

The determination and characterization of structsira critical step in most solid-state
research. Diffraction techniques using x-rays, rogg or electron beam are widely
employed to gain valuable information about materé the atomic level. In this section
we discuss the experimental aspects of graphemergspect to its synthesis from HOPG
(Highly ordered pyrolitic graphite).The project @mat investigating and modeling the
novel electronic properties of graphene and itdhsgis from HOPG . In this part the
TEM (Transmission Electron Microscopy) images adasled HOPG layers have been
discussed in detail. A sample of HOPG was prephyetthe process mentioned below. A
sample of HOPG was prepared by the process medtiogiew:

1.1 Sample preparation

The 5mm X 5mm HOPG sample was cleaved with the béladhesive tapes and the
obtained crystallites were dissolved in approxirtyafenl ethanol solution. A perforated
Cu substrate was then immersed in this solutioe. Sdiution was then sonicated to get
deposition of HOPG flakes on the Cu substrate. y&raf size 2mm X 2mm was then
deposited on to a carbonized Cu wafer to providehfe metallic contacts. The C coating
was provided to act as an adhesive.

1.2 HRTEM imaging of the sample

The prepared HOPG sample on a Cu substrate wagimaing a HRTEM microscope.
High Resolution Transmission Electron MicroscopyRFHEM) is an imaging mode of the
transmission electron microscope (TEM) that alldles imaging of the crystallographic
structure of a sample at an atomic scale. As ombdseconventional microscopy,
HRTEM does not use amplitudes, i.e. absorptionhgy dample, for image formation.
Instead, contrast arises from the interferencéenmage plane of the electron wave with
itself. Due to our inability to record the phasetloése waves, we generally measure the
amplitude resulting from this interference, howetter phase of the electron wave still
carries the information about the sample and géeereontrast in the image, thus the
name phase-contrast microscopy. Each imaging efeatteracts independently with the
sample. Above the sample, the wave of an electanrnbe approximated as a plane wave
incident on the sample surface. As it penetratessttmple, it is attracted by the positive
atomic potentials of the atom cores, and channklagathe atom columns of the
crystallographic lattice. At the same time, thesrattion between the electron wave in
different atom columns leads to Bragg diffractidhe physics of electron scattering and
electron microscope image formation are sufficientlell known to allow accurate
simulation of electron microscope images.
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1.3 Analysis of TEM images of HOPG

The following images were obtained using HRTEM aip the sample of size 2mm X
2mm prepared on a Cu wafer.

Figl.3 a)Scale 200nm 'Fig1.3 b)Scale 200nm

Low magnification TEM images showing the surfacephology of the prepared HOPG
sample. The bending of the layers of graphene slvagt be seen at the edgéke layers
are creased with many folds, pleats and wrinkles.tHe central part there is a
homogeneous region without any feature at all. Tiight be quite close to monolayer
graphene as is evident from some of the electréfradiion images showing a single
periodicity[22-23.

Figl.4 a)scale 50 nm Figl.4 b)scale 5 nm

The images shown in Fig.2 were obtained at a highsolution by zooming in on the
edges seen in the images showrkig.1.3 In Figl.4 a) layers can be seen sliding over
the bottom most layer. The layered structure at édge can be seen much more
prominently in the image shown Kigl.4 b)which is taken at a much smaller scale of 5
nm, quite comparable with the graphene hexagottaldadimension of 2.5 A
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Figl.5 a) scale 5 nm Figl.5 b) scale 5nm
Fig 1.5 shows unfiltered image of the surface seen aake saf 5 nm. Although a high
frequency noise blurs the raw image, some kindatticke structure can be recognized in
both images. The above images were then processexpplying auto-correlation on
them. Auto-correlation is precisely the cross-datren of a signal with itself. It is useful
for finding repeating patterns in an image, sucdetermining the presence of a periodic
signal which has been buried under noise, or ifleng the missing fundamental

frequency in an image implied by its harmonic fregeies The auto-correlated images
were then Fourier transformed to look for the pdigities present in the imagEig 1.5a)
and Fig.1.5b) shows the auto-correlated and the FFT of the almages. A lattice
periodicity of 2.52 R and 1.17 A are seen. The former corresponds to one of thiedat
parameters of the hexagonal C-C lattice.

Figl.5a)Auto-correlation of image shown in Figl.4 Figl.5b)Fast Fourier Transform of the image
Auto-correlation enhances the periodic feature shown in the left giving a blurred freqency
-es by ignoring the noise in the image. spectrum

The following images were obtained by zooming intle@ area marked in blue circle in
Figl.19.0bserving carefully the first micrograph kg 1.6a) one can notice different
domain boundaries in the polycrystalline structi8eme of these domains show a very
precise periodic structure.
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Figl.6a)(scale 5nm) micgrph of the surface Figl.6b) Auto-correlation on the part of the image
showing different periodic and aperiodic domains.1.6a) encircled in blue.

gHlL.6¢) showing the FFT of the image obtained in€@b)

Examination ofFig.1.6c) reveals 6 major spatial frequencies. These caorespo the
following lattice parameters.

Point # Lattice parameter
(hm)

0.061567

0.04932

0.059434

0.317965

1.04723

0.260146

OO WINEF

Following FFT images were obtained by zooming irddferent part of the images.
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Eiga) FFT at different crystallite domains

The corresponding lattice parameters come out tdl8®, .127, 1.04, 1.04 nm for the
shown images. The higher value lattice parameteghtmesult from lattice imperfections
like the stacking faults in HOPG or possibly duedaodom arrangement of layers. The
periodicities of .26 nm and .135 nm are quite comratbng with weak higher order
peaks. The periodicities reflected in the two botimost figures appear with almost
same intensity in all the images. This is an intiicaof monolayer graphene since for a
2-D layer the obtained diffraction would be zerdex hence there would not be much
alteration of the diffraction pattern for differantidence angle. This is not the case for a
normal 3-D crystal where higher orders interfereghweach other and the diffraction
pattern varies with the angle of incidence. Theeeixpent could be further modified to
plot the intensity variation of the diffraction patn with the tilt-angle. If a nominal TEM
variation pattern is obtained, it would be a clgignature of the single layer graphene.

The idealized image of graphite surface is shawfig1.8 Green lattice corresponds to
the top layer (A) and light green to next layer .(Bfacking sequence of HOPG is
ABABAB,with periodicity of 1.42A (C-C bond, blue tpor the periodicity of the top
layer alone. There is every third atom missingtred primary cell is again hexagonal
(red), but periodicity now 2.46A.

Figl.8. Gutaite lattice structure
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Summary & Future Work

An attempt has been made to fabricate grapheneCun surface. HRTEM imaging had
been used to analyze the obtained layers. Whiléainecues, hinting towards the
presence of hexagonal lattice have been seen,nurate evidence which signatures the
presence of single graphene layer has been obtairtezl work can be extended to
theoretically simulate the electron diffraction afsingle hexagonal layer which can be
then be compared with the experimentally obtaidedten micrograph. The simulation
will need to take into account the realistic aspeaft the process including substrate
interference, electron beam energy range, corrmggibn graphene surface to make the
simulated patterns comparable with the HRTEM imagdée obtained results might also
find use in similar ultra-thin, transparent subtstsa
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Appendix ( Matlab codes)
A. 1 (bl och wave)

a=2,

b=1,

nx=10;

ny=10;

n1l=10;

A=[];

me[]

for k=1:ny

for i=1:nx

for j=4:nl-4
m(((i-1)*10+), ((k-1)*10+))= 1 ;

end

end

end

for i = 1:nx*nl-4

for j= 1l:ny*nl-4
Ax (i) =i ;
Ay(j)=js

end

end

mesh( Ax, Ay, m
u=[1;

for i=1:nx
for k=1:ny
sun¥o;
for j=1:nl
for 1=1:n1
sumesum + exp(conpl ex(0, -i*2*pi/a*j/nl*a-
k*2*pi /b*1 /n1*b))*m(j,l)*1/ nl*a*1/ nl*b;
end
end
u(i, k)=sum (a*b);
end
end

ki x=2;

ki y=2;

m=9. 109* 10" (- 31);

h=1. 05457266* 10~( - 34) ;
Ye=h"2* (ki *2*pi/a)"2/ (2*m
e=1;
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for j=1:nx
tex=h*h/(2*m * (ki x*2*pi/a-j*2*pi/a)"2 ;
W (],])=tex;
for |=1:ny
tey=h*h/(2*m * (ki y*2*pi/a-1*2*pi / b)"2
X(j,!)=tey+tex;

for k=j+1:nx
X(j, 1, kK)y=u(k-j,1);
end

for k=j+1:ny
x(i,,k)=u(k-j,1);
end

end

for i=1:n-1
b(1,i)=x(i,n);
end

for i=1:n-1
for j=1:n-1
c(i,j)=x(i,j);
end
end

an=c/ b;
sm=0;
n2=20;
for i=1:n2
smeO;
for j=1:n-1
sm= sm+ an(j,1)*exp(conplex((i/n*a)*(ki-j)*2*pi/a));
end
sm= sm- exp(conplex((i/n*a)*(ki-n)));
si(i)=sm
end

for i=1:n2
d(i)=i/n2*a
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end

scatter(d, real (si))
hol d on
plot(d, real (si))

A. 2 (wavefunction)
Sanme as above take eigen vector instead of eigen value
A. 3 (graphene e-k)

ans=[]*[];
a=1,

v=1;

n1=20;
emax=10;

em n=1,

del =(emax-em n)/ nl
gde=[];
gdk=[];
gde(1)= em n;
nk=20;

for k=2:nl1
gde( k) =gde(k-1) + del ;
end

for x=1:nk
gk(x) =pi *(x-1)/ (a*nk);
end

for x=1:nk
t he=gk(x) *al 2;
for k = 1:nl
e=gde(Kk);
v=1;
si=[];
dsi=[];
n=10;
si (n)=1;
dsi (n)=0;

for i=1:n-1
si (i+n)=si (i+n-1)+a/(2*n)*dsi (i+n-1);
dsi (i +n) =dsi (i +n-1)-a/(2*n)*(e-v)*si (i +n-1);



si(n-i)=si(-i+n+l)-a/(2*n)*dsi(-i+n+l);
dsi (n-i)=dsi(-i+n+1)+a/ (2*n)*(e-v)*si(-i+tn+l);
end

si1=[];
dsi 1=[];
a=1,
n=10;
si 1( n) =0;
dsi 1(n) =1;
for i=1:n-1
si 1(i +n)=si 1(i +n-1) +a/ (2*n)*dsi 1(i +n-1);
dsi 1(i +n)=dsi 1(i +n-1)-a/(2*n)*(e-v)*si 1(i+n-1);

sil(n-i)=sil(-i+n+l)-a/(2*n)*dsi 1(-i+n+l);

dsi 1(n-i)=dsi 1(-i+n+l)+a/(2*n)*(e-v)*si1(-i+n+l);

end

sum=0;

for i=1:2*n-1
sumrsumt(si (i )"2*al (2*n));

end

for i=1:2*n-1

si(i)=si(i)/sqgrt(sum;
end

sune0;
for i=1:2*n-1

sum = sumt((si1(i))*(sidl(i))*al(2*n));
end

for i=1:2*n-1
si1(i)=sil(i)/sqrt(sum;
end

for i=1:19

A(i) =i
end

c2= si(1)*dsi1(1);
cl= si1(1)*dsi(1);

ans(x, k)=cl*(cos(the)”2)+ c2*(sin(the)"2);
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end

end
for i=1:nk
ge(i)=gde(1);
b=ans(i, 1);
for j=1:nl
i f(abs(ans(i,j))<b)
ge(i)=gde(j);
b=ans(i,j);
end
end

ge(nk+i)=ge(i);
gk(nk+i)=-gk(i);
end

scatter(gk, ge); cl ose all
clear all;

a=2;

n=10;

n1=10;

A=[ ]

ne[];

for i=1:n
for j=4:nl-4
m((i-1)*10+j)= 1 ;
end
end

for i = 1:n*nl-4
A(i)=i/(n*nl-4)*a
end

%l ot (A, M
o9hol d on

u=[];a=2;
b=1;
nx=10;
ny=10;
nl1=10;
A=l
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me[];

for k=1:ny
for i=1:nx
for j=4:nl-4
m(((i-1)*10+j), ((k-1)*10+j))= 1 ;

end

end

end

for i = 1: nx*nl-4

for j= 1l:ny*nl-4
Ax(i)=i;
Ay(j)=js

end

end

mesh(Ax, Ay, m

u=[];

for i=1:nx
for k=1:ny
sum=0;
for j=1:nl
for 1=1:nl
sunmrsum + exp(conpl ex(0, -i *2*pi/a*j/ nl*a-
k*2*pi/b*1 /n1*b))*m(j,|)*1/ nl*a*1/ nl*b;
end
end
u(i, k)=sunm (a*b);
end
end

ki x=2;

kiy=2;

m=9. 109* 107 (- 31) ;

h=1. 05457266* 10~( - 34) ;
Y%e=h"2* (ki *2*pi/a)"2/ (2*m
e=1;

i =1;

ct =0;

for j=1:nx

tex=h*h/ (2*m) * (ki x* 2*pi / a- | *2*pi / a) A2

W (j,])=tex;
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for |=1:ny
tey=h*h/(2*m * (ki y*2*pi/a-1*2*pi / b)"2
X(j,1)=tey+tex;

for k=j+1:nx
X(j, 1, kK)y=u(k-j,1);
end

for k=j+1:ny
x(i,,k)=u(k-j,1);
end

end

for i=1:n-1
b(1,i)=x(i,n);
end

for i=1:n-1
for j=1:n-1
c(i,j)=x(i,j);
end
end

an=c/ b;
sMeO;
n2=20;
for i=1:n2
sm=O;
for j=1:n-1
sm= sm+ an(j,1)*exp(conplex((i/n*a)*(ki-j)*2*pi/a));
end
sm= sm- exp(conmplex((i/n*a)*(ki-n)));
si(i)=sm
end

for i=1:n2
d(i)=i/n2*a
end

scatter(d, real (si))
hol d on
plot(d,real (si))

54



for i=1:n
sum=0;
for j=1: nl
sumrsum + exp(conpl ex(0, -i *2*pi/a*j/nl*a))*nm(j)*1/ nl*a;
end
u(i)=sum a
end

ki =5;

m=9. 109* 107 (- 31) ;

h=1. 05457266* 10"( - 34) ;
Y%e=h"2*(ki*2*pi/a)"2/ (2*m
%e=1

i =1;

ct =0;

for j=1:n
te=h*h/(2*m * (ki *2*pi/a-j*2*pi/a)"2 ;
cx=te;
ct =ct +1;
x(j,])=cx;
for k=j+1:n
cx=u(k-j);
x(]j, k) =cx;
ct =ct +1,
end
end

[V,D] = eigs(x);
e=D(3);

sSmeO;
n2=100;
for i=1:n2+1
smeO;
for j=1:n
sm= sm+ V(20+j)*exp(conpl ex(0, (((i-1)/n2*a)*(ki-
j)*2*pila)));
end
si(i)=sm
end

for i=1:n2+1
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d(i)=(i-1)/n2*a;
end

scatter(d,real (si))

hol d on

plot(d, real (si))

A. 4 (graphene wavefuncti on)

cl ear all
ab=1;

I
—
[S—

O S 0DO QT

L
I
=

for i=1:n
for j=1:n
aa(i)=i;
bb(j)=j ;
a(c)=i/n*3*pi-3*pi/ 2;
b(c)=j/n*3*pi-3/2*pi;

d(c)=sqrt(1l+4*cos(a(c)/2)*cos(sqrt(3)*b(c)/2)+4*cos(a(c)/?2)
*cos(a(c)/2));

e(c)=-d(c);

cc(i,j)=d(c);

t 1=1+exp(conpl ex(0, -
a(c)*ab*1.732)) +texp(conpl ex(0, a(c) *ab*1. 732/ 2-b(c) *1. 5*ab) ) ;

t 2=1+exp(conpl ex(0, a(c) *ab*1. 732) ) +exp(conpl ex(O, -
a(c)*ab*1. 732/ 2+b(c)*1. 5*ab));

m=[al -d(c), be*t1;be*t2,al-d(c)];

[k, h] =ei gs(m);

cl(c)=k(1);

c2(c)=k(2);

si(i,j)=1cl(c)*1 + c2(c)*2;

c=c+1;

end

end

nmesh( aa, bb, si)
%ol d on
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% scatter3(a,b,d, 1)
%ol d on
%scatter3(a, b, e, 1)

A5 (E-ky for zigzag edge)

clear all

cl ose all
a0=pi ;

n=100;

| =14*1. 732* a0;

for j=1:5
for i=1:n
ky(i)=-2*pi/a0+4*i/n*pi/ a0;
f=@x) ky(i)-x./tan(14*1. 732*x. *1)

kx(i,j)=fsolve(f,j/5);

el(i,j)=sqrt(kx(i,j)"2+ky(i)"2);
e2(i,j)=-sqgrt(kx(i,j)r2+ky(i)"2);
end

end

for j=1:5
for i=1:n
kx(i)=kx(100*(j-1)+i);
eel(i)=el(100*(j-1)+i);
ee2(i)=e2(100*(j-1)+i);
k(i)=sqgrt(kx(i)"*2+ky(i)"2);
end
pl ot (k, eel)
hol d on
pl ot (k, ee2)
hol d on
pl ot (-k, eel)
hol d on
pl ot (- k, ee2)
hol d on

end

A 6
zi gzag wave

A 7(E-k arnthair)
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clear all;
cl ose all;
n=100;
n1=50;
for j=1:5

end

f or

end

for k=1:nl
ky(n+k)=1. 8+k/ n1*. 3;
el(n+k)=5*(ky(n+k)-ky(n))~"2+el(n);
e2(n+k) =-5*(ky(n+k) -ky(n))~2-el(n);
if(j==1)
ell( n+k) =5*(ky(n+k)-ky(n))~2+el(n);
e22(n+k) =-5*(ky(n+k)-ky(n))"2-el(n);
el se
ell( n+k)=el(n)+4*(ky(n+k)-1.82)"2-.0004,
e22(n+k) =-(el(n)+4*(ky(n+k)-1.82)"2-.0004);
end

end

for k=1:nl

ky(n+nl+k) =ky(1)-k/nl*.3;
el(n+nl+k) =5*(ky(n+k)-ky(n))"2+el(n);
e2(n+nl+k) =-5* (ky(n+k)-ky(n))”"2-el(n);
i f(j==1)
ell( n+nl+k) =5*(ky(n+k)-ky(n))~"2+el(n);
e22( n+nl+k) =-5*(ky(n+k)-ky(n))"2-el(n);
el se
ell(n+nl+k) =el(n)+4*(ky(n+k)-1.82)"2-.0004;
e22(n+nl+k) =-(el(n)+4*(ky(n+k)-1.82)"2-.0004);
end

end

scatter(ky, el)

hol d on

scatter(ky, e2)

hol d on

scatter(ky, ell)

hol d on

scatter(ky, e22)

hol d on

i =1:n
Ky(i)=.9+.9%i/n;
el(i)=sqrt(j-1);
e2(i)=-sqrt(j-1);
ell(i)=sqrt(j-1);
e22(i)=-sqrt(j-1);
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A 8(Arnthair edge 2)
Sanme as above, change L as nentioned in the text.
A.9 (zigzag edge in a magnetic field)

clear all

cl ose all

a=1.5;

n=100;

| =1;

b=50;

n1=0;

for i=1:n

k(i)= (2*(n-nl-i))/n*a;

end

for i=1:n
%i (i)=((exp(k(i)-5))*(8*(k(i)-b)"3-12*(k(i)-b)));
si(i)=1/k(i)*exp(k(i))~2*(k(i)"2-4);

end
for i=1:n

si 1(i)=si(n+l1l-i)+200;
end

pl ot (k, si 1/ 900)
hol d on
scatter(k, si 1/900)

A. 10 (arnthair edge in nmagnetic field)

clear all;
cl ose all;
n=100;
n1=50;
for j=1:5
for i=1:n
Ky(i)=.9+.9%i/n;
el(i)=sqrt(j-1);
e2(i)=-sqrt(j-1);
ell(i)=sqrt(j-1);
e22(i)=-sqrt(j-1);
end

for k=1:nl
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end

end

kKy(n+k)=1. 8+k/ nl1*. 3;

el(n+k) =5*(ky(n+k)-ky(n))”"2+el(n);

e2(n+k) =-5*(ky(n+k)-ky(n))"*2-el(n);

i f(j==1)
ell(n+k)=5*(ky(n+k)-ky(n))~*2+el(n);
e22(n+k) =-5*(ky(n+k)-ky(n))"2-el(n);

el se
ell(n+k)=el(n)+4*(ky(n+k)-1.82)"2-.0004,;
e22(n+k)=-(el(n)+4*(ky(n+k)-1.82)"2-.0004);
end

for k=1:n1l

end

ky(n+nl+k) =ky(1)-k/nl*.3;

el(n+nl+k) =5*(ky(n+k)-ky(n))”"2+el(n);
e2(n+nl+k) =-5*(ky(n+k)-ky(n))"2-el(n);

i f(j==1)

ell( n+nl+k) =5*(ky(n+k)-ky(n))~"2+el(n);

e22( n+nl+k) =-5*(ky(n+k)-ky(n))"2-el(n);

el se

ell(n+nl+k) =el(n)+4*(ky(n+k)-1.82)"2-.0004;

e22(n+nl+k) =-(el(n)+4*(ky(n+k)-1.82)"2-.0004);

end

scatter(ky, el)
hol d on
scatter(ky, e2)
hol d on
scatter(ky, ell)
hol d on
scatter(ky, e22)
hol d on

A 11 (two well potential)
cl ose all

clear all

for i=1:100
x(1)=-1+i/100;
y(i)=.1+(x(i)+.5)"2;

end

%scatter(x,y)
for i=1:100
x(100+i ) =i /100;

y(100+i ) =-. 1+(x(100+i)-.5)"2;
end
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scatter(x,y)

A. 12 (arnthair edge in magnetic field E-k)

clear all;
cl ose all;

n=100;
n1=50;

for j=1:

f or

end

for k=1:nl
Ky(n+k) =1. 8+k/ n1*. 3;
el(n+k)=5*(ky(n+k)-ky(n))~"2+el(n);
e2(n+k) =-5*(ky(n+k) -ky(n))"2-el(n);
i f(j==1)
ell( n+k) =5*(ky(n+k)-ky(n))"2+el(n);
e22(n+k) =-5*(ky(n+k)-ky(n))”"2-el(n);
el se
ell(n+k)=el(n)+4*(ky(n+k)-1.82)"2-.0004,;
e22(n+k) =-(el(n)+4*(ky(n+k)-1.82)"2-.0004);
end

end

for k=1:nl

Ky(n+nl+k) =ky(1)-k/nl*.3;
el(n+nl+k) =5*(ky(n+k)-ky(n))"2+el(n);
e2(n+nl+k) =-5*(ky(n+k)-ky(n))”"2-el(n);
i f(j==1)
ell( n+nl+k) =5*(ky(n+k)-ky(n))~"2+el(n);
e22(n+nl+k) =-5*(ky(n+k)-ky(n))"2-el(n);
el se
ell(n+nl+k)=el(n)+4*(ky(n+k)-1.82)"2-.0004;
e22(n+nl+k) =-(el(n)+4*(ky(n+k)-1.82)"2-.0004);
end

end

scatter(ky, el)

hol d on

scatter(ky, e2)

hol d on

5

i =1:n
kKy(i)=.9+. 9% /n;
el(i)=sqrt(j-1);
e2(i)=-sqrt(j-1);
ell(i)=sqrt(j-1);
e22(i)=-sqrt(j-1);

scatter(ky, ell)
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end

hol d
scat
hol d

on
ter(ky, e22)
on

A 13 (E-k bilayer)

u =.

v=8

2;

v3=. 1*v;

Si =
yl=
n=1

f or

end

f or

end

_1’
. 39;
00;

i =1
kx (
ky(

i =1
for
k
k

: 100
i ) =-pi +i / n*2*pi ;
i )=-pi+i/n*2*pi;

: 100

j =1: 100
i =conpl ex(kx(i),ky(j));
ki =conpl ex(kx(i),-ky(j));

mat =[u/ 2 v3*ki O v*kki; v3*kki
-u/2 si*yl; v*ki 0 si*yl u/2 ];

e
e
end

n=ei gs(mat) ;
(i,j)=abs(en(1));

sur f (kx, ky, e)

hol

d on

Y%surf (kx, ky, -e)
shading interp

A 14

Sanme as above (contour plot)

A 15

clear all
cl ose all
for j=4:4

f or

end

i =1: 50
b(i)=(i-1)/50*6;
e(i)=2*sqrt(j*j-j)*sqrt(b(i));

-u/ 2 v*Ki

0; 0 v*kki
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scatter (b, e)
hol d on
scatter (b, -e)
hol d on
pl ot (b, e)

hol d on

pl ot (b, -e)
hol d on

end

j =3;
for i = 1:50
e(i)=2*sqrt(j*j-j)*sart(b(i));
end
u=0;
t enp=e- u;
e=30+t enp;
el=30-t enp;
scatter (b, e)
hol d on
scatter(b, el)
hol d on
pl ot (b, e)
hol d on
pl ot (b, el)
hol d on

j =2;
for i = 1:50
e(i)=2*sqrt(j*j-j)*sqrt(b(i));
end
u=0;
t enp=e- u;
e=50+t enp;
el=50-t enp;
scatter(b, e)
hol d on
scatter(b, el)
hol d on
pl ot (b, e)
hol d on
pl ot (b, el)
hol d on

A 16

Sanme as above with paraneters changed as nmentioned in text.
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