

Project no. 034567

Grid4All
Specific Targeted Research Project (STREP)

Thematic Priority 2: Information Society Technologies

Deliverable D5.3 – Final
Proof of concept Implementation and Evaluation

Report
Due date of deliverable: 01 June 2009

Actual submission date: 27 July 2009

Start date of project: 1 June 2006 Duration: 37 months

Organisation name of lead contractor for this deliverable: FT

Contributors: Grid4All consortium

Editors: Ruby Krishnaswamy, Daniel Stern Release: 0.1

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services) X

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 2/60

Table of Contents
1. Executive Summary.................................. ... 3

2. Introduction 4

3. Qualitative Evaluation 7

3.1 Introduction ...7
3.2 Niche Distributed Component Management System ...7

3.2.1 Introduction ...7
3.2.2 Evaluation method ..7
3.2.3 Analysis of feedback ...9
3.2.4 Lessons learnt...14

3.3 Telex ...15
3.3.1 Introduction ...15
3.3.2 Evaluation method ..15
3.3.3 Analysis of feedback ...16
3.3.4 Lessons learnt...17

3.4 VOFS ..18
3.4.1 Introduction ...18
3.4.2 Evaluation method ..18
3.4.3 Analysis of feedback ...19
3.4.4 Lessons learnt...20

3.5 CFS...21
3.5.1 Introduction ...21
3.5.2 Evaluation method ..21
3.5.3 Analysis of feedback ...21
3.5.4 Lessons learnt...23

3.6 eMeeting ...23
3.6.1 Introduction ...23
3.6.2 Evaluation method ..24
3.6.3 Analysis of feedback ...24
3.6.4 Lessons learnt...25

3.7 Synthesis of the Qualitative Evaluation ..26

4. Quantitative Evaluation 27

4.1 Niche (a Distributed Component Management System, DCMS) ...27
4.2 Telex ...30
4.3 VOFS ..30
4.4 SIS ..31
4.5 MIS ...34
4.6 CAS – CA ...35

5. Conclusion... ... 37

Appendix 1: Niche Evaluation Questionnaires........ ... 38

Appendix 2: Telex Questionnaire.................... ... 57

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 3/60

1. Executive Summary

This document is part of a research project partially funded by the IST programme of the European
Commission as project number IST-FP6-034567. The WP5 plans and supervises integration and evaluation
tasks. While complete integration of all developed components with aim to produce a common software
platform that can be deployed to execute specific scenarios is out of scope, software components that are
developed within the project adhere to common vision of architecture for a democratic grid.

All Grid4all components adhere to a common vision and architecture; and Grid4All has been designed as a
set of software results which may be combined and aggregated so as to produce higher-level capabilities.
For example, proof-of-concept demonstration of access-control enforcement has been shown by integrating
VOFS with the services provided by the Grid4All security infrastructure. However within the project (and as
explained in revised DoW), all functionalities have not been combined to produce a common software
platform dedicated to a specific use case or pilot study (e.g. common eLearning platform).

Consequently, it has to be pointed out that although the title of this deliverable refers to a “final integrated
proof of concept implementation”, as explained in the revised DOW, we have focused on the most innovative
integrations.

 We have conducted two forms of evaluation of software modules produced within the project:

• qualitative: questionnaire-based evaluation; different stake-holders, end-users or developers external to
the project have used and exercised the software results; feedback was retrieved by requesting the
evaluators to fill questionnaires and also through informal discussions between experts and the
evaluators.

• quantitative: technical evaluations provide quantitative metrics of different software; for each software
result, quantitative evaluation has focused on the most meaningful metrics (in most cases performance).

This evaluation has been carried in accordance with the evaluation plans described within D5.4.

The results show that while ergonomic improvements and mature documentation are necessary in several
cases and in general software results are still mainly at stage of technology pre-view, overall the results
technically fulfill their initial objectives; and when comparis ons with existing solutions are possible,
Grid4All, in the context of the democratized grid, provides better functionality and/or improved
performance .

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 4/60

2. Introduction

The objective of WP5 is to evaluate the software modules produced within the project. The question central
to the evaluation is: “are the Grid4All results adequate to fit the stakeholder's objectives in the context of
democratised grids”?

Different types of stakeholders are implied within the targeted ecosystem:

• end-users (EU) are the very final users of the software platform; they create virtual organisations or
are members of VOs; they may play different roles such as users of applications or system
administrators;

• resource providers (RP) own resources and contribute their resources to virtual organisations that
are already formed; most resource providers are expected to be non-professional, but virtual
organisations may also allocate on-demand resources provided by professional operators.

• application and service developers (D) use programming interfaces and functionalities provided
by the Grid4All software platform to design and implement new applications or adapt existing
applications.

• platform operators (PO) exploit the produced software to offer platform services such as the
market place, identity management services, information services;

• service providers (SP) propose services to any end-user, e.g. e-learning, communication tools and
software, digital libraries, etc.

The evaluation is constituted of two parts:

• quantitative: a set of technical evaluations assessing the adequacy of specific use cases against a set of
requirements presented in D5.4. The inputs in form of user requirements as presented in D4.7 were used
to determine quantitative evaluation plan.

• qualitative: questionnaire based evaluation aimed at validating the project objectives and technical
solutions against needs of stakeholders. Feedback from evaluators aid the process of prioritizing future
work.

As an input to evaluation, WP5 assumes that individual software modules, providing functionality necessary
to realize the overall integrated capabilities, have already been tested. Functionally the software modules
have been documented either in their respective deliverables or through use cases in D5.4.

All Grid4all components adhere to the common vision and a common architecture. As a consequence
Grid4All has not been designed as a single software product, but as an aggregation of multiple software
results, each of them providing a desired functionality. These functional modules may be combined to
produce more capabilities. Within this project (and as explained in revised DoW), all functionalities have not
been combined to produce a common software platform dedicated to a specific use case or pilot study (e.g.
common eLearning platform). But we have shown in several scenarios how the functionalities can indeed be
combined. Most innovative and meaningful integrations have been done and demonstrated

We have grouped at chapter 3 the results of qualitative evaluations and at chapter 4 Erreur ! Source du
renvoi introuvable. the results of quantitative evaluations.

D5.4b had described the G4all modules and their principal "elementary" use cases. As a reference we recall
in table below the list and a short description of the modules.

Domain Modules & Services Functionality

Membership Manager Authenticate members
Maintain member info

Resource Manager

Discover resources
Allocate resources
Donate resources
Monitor resources

Deployment Manager Deploy application

VO Management : administrate
a VO, its members, its
resources

Reservation Manager Reserve resources
Inter -VO services :
allocate or offer leases for Market Information Service Query information

Subscribe

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 5/60

Domain Modules & Services Functionality

Market factory Select market
Deploy market

Currency and payment manager Transfer currency

Agreement Manager Settle agreement
Distribute agreement

Negotiator Interact with markets

Auction service Register
Treat asks/bids

Identity manager (VOMS) Sign-on and create a proxy certificate with
Policy Administration Point
Policy Repository
Policy Editor

Create/edit/store VO policies by VO admin

Policy Enforcement Point
Policy Decision Point
Policy Information Point

Access to a VO resource(s) protected with a
PEP(s)

Security :
manage security

PEP, PDP, PR, PIP, PAP Set/view ACL for a VO resource. e.g. VOFS
directory, by a application

Telex Create/read/write/delete collaborative documents
VOFS Manager Maintain a VO-wide workspace
VOFS User Agent Maintain VOFS membership
DFS File Server Serve user files

Collaborative & Federative
services : manage VO-wide file
systems; provide support for
collaborative editing of shared
documents VBS Storage Server Serve User storage

Scheduling Service Computes schedules
XtremWeb Server Manages distributed execution Execution Management
XtremWeb Worker Performs local computation

Overlay Services – DCMS DCMS Executing Self-* Component-Based Applications
Matching Service Information Services
Selection Service

Register service request/offers,

Application : support users to
perform tasks within a VO Application manager

Collaborative File Sharing
Collab. Netw Simulation
Shared Calendar
eMeeting
Gmovie

A selective set of integration have permitted the project to demonstrate key integrated capabilities here
below listed.

• Niche Distributed Component Management System uses the ADL-based deployment service for Fractal-
based applications. Initial deployment of distributed applications specified (easily) using the ADL. Self-
management requires writing code in Niche; deployment actions may reuse ADL scripts embedded
within application packages. On top of Niche two applications have been developed and evaluated:
YASS and YACS, illustrating, either for a file-system or for a computation task dispatcher, how
advantageous can be a component-based model of management as Niche.

� Within Grid4All, the compute nodes are expected to be drawn from the Internet. These may be
used to execute computational jobs or even provide collaborative services or file sharing
services. An important aspect is that such category of applications requires minimum manual
intervention when there are churn (voluntary or failures). With demonstrators such as YACS and
YASS, developed using Niche, we gain confidence that a large category of applications may
also be developed using Niche. Secondly a large category of applications (gMovie, CNSE, etc)
follow bag-of-task models. YACS is a service that can be used to execute and manage such
applications.

• Telex and VOFS mutually serve each other. While VOFS by itself provides a simple way for collaborating
peers to share their files/content, by itself it is not sufficient. Telex supports co-operative work by giving
consistency guarantees that programs may rely upon. Telex implementation uses a construct specifically
designed in VOFS.

� This integration is important for two reasons. On the one hand Telex relies on the multilog
abstraction provided by VOFS for its implementation and on the other hand through applications

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 6/60

such as CFS we show that coherency and consistency management could be moved to higher
layers. VOFS by itself does not handle consistency in sharing and is hence lightweight and
suitable in environments where disconnection is frequent. Telex adds this capability.

• Both the Fuse-based Linux version and the WebDav-VOFS use the Grid4All security infrastructure to
implement access control (authentication and authorization).

� The Grid4All security infrastructure, which by itself is not innovative, its XACML-based
implementation allows easy plugging of access control policies for VOFS. While clearly security
is pertinent to a large number of resources and services, it was essential to show that access-
control could be implemented even for peer-to-peer file sharing services such as VOFS.

• Shared Calendar and CFS (collaborative file service) both use Telex. CFS uses VOFS as well to share
files. The Sakura SC application allows any user to share her calendar, to create and invite users to
meetings, to modify times or to cancel propositions. In contrast to systems such as Doodle, Sakura
(using Telex) ensures consistency even when a user is engaged in different meetings. CFS is a
graphical application providing workspaces capabilities. Using Telex, centralized servers to manage
coherent workspace views are not required.

� SC and CFS are two important class of applications required in any collaboration. Through these
two applications we show how Telex may be used in applications that are executed in
collaboration environments where disconnections occur.

• gMovie demonstrator has shown how different Grid4All middleware and services may be used even for
legacy applications. It uses VOFS (to transfer input and output files), ADL-based deployment (to start
XtremWeb worker tasks), and the scheduling service to estimate worst-case completion time.

� This integration has permitted to understand how the different disparate set of services offered
by Grid4All could in fact be used to design and implement distributed legacy applications. This
shows that loose-coupling between functional modules is indeed an advantage since the usage
may be driven by the needs of the application.

• A “Negotiator”, negotiation agent exercising the API of the Grid4All market place, implements the
Reservation Management API. Application Managers use the Reservation Management API to provision
resources on demand. Applications need not be concerned with market specific APIs or strategies; they
are neither concerned with low-level protocols by which remote nodes join the buyer's overlay (VO).

� Sophisticated implementations of negotiation agents are possible, but such implementations are
specific to the requirements of the scenario; the integration aimed at showing simplicity of usage
for applications.

• The Market Information Service (MIS) and Configurable Auction Server (CAS) are integrated, i.e. the
CAS uses the API of the MIS to publish market information. Both these components are deployed using
ADL-based deployment service.

� The MIS and CAS were conceived early in the project as two important tools to build distributed
market places. Their integration was necessary to assess that timely dissemination of market
signals, which is essential for survival, durability and trust, was correctly addressed. Wrapping
these modules as Fractal components rendered their integration relatively straightforward.

• Finally, two Grid4All tools, the Shared Calendar and VOFS enrich the Antares eMeeting legacy
application for synchronous collaboration. This application needed redesign to use these services.
Usage of VOFS benefits eMeeting users since they do not need to depend on central file services to
share meeting and other collaboration data.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 7/60

3. Qualitative Evaluation

3.1 Introduction

This chapter contains the report on the qualitative evaluation of selected Grid4all results. In particular this
qualitative evaluation illustrates how these results match the fundamental Grid4all objectives:

• an easy setup and use,

• a reduced management and administration complexity,

• an access to collaborative tools and applications,

• the execution of applications drawing on resources available on the Internet.

Every result is first shortly described, and then its qualitative evaluation method is detailed. Then the
feedback is analysed with a summary of the lessons learnt.

3.2 Niche1 Distributed Component Management System

3.2.1 Introduction

Niche is a Distributed Component Management System (DCMS), used to develop, deploy and execute self-
managing distributed component-based applications on a structured overlay network of computers. It
includes (1) a set of APIs for the development of self-managing distributed applications; (2) a run-time
execution environment for the deployment and execution of self-managing distributed applications developed
using Niche.

Niche is a general-purpose system that can be used to develop, deploy and provide robust and scalable self-
managing services with self-configuration, self-healing and self-tuning capabilities, on a network of
computers donated by end-users or/and service service/resource providers.

3.2.2 Evaluation method

As a development environment, Niche should meet the following major requirements:

− it should be easy to use;

− it should have a convenient, flexible and expressive API that provides programming concepts,
abstractions and functionality required for developing self-managing distributed applications;

− it should provide an easily managed development and execution platform (including installation,
deployment, and required documentation).

In order to qualitatively evaluate Niche as a development and execution environment based on the above
criteria, and to get feedback from Niche users, a development-based evaluation has been conducted at KTH
and SICS by the Niche development team and a number of students of the international Master program
“Software Engineering of Distributed Systems” (SEDS)2 at the School for Information and Communication
Technology (ICT) of KTH, Stockholm, Sweden. By development-based evaluation, we mean evaluation of a
development environment, such as Niche, by a number of evaluator-developers, who use the environment to
develop and prototype applications, for which this environment is intended to be used. Evaluation through
development allows evaluators to assess strengths and weaknesses of the environment and, in particular,
the API (abstraction level; the gap between the actual needs of a developer and the functionality that is
provided; missing functionality, etc.).

1 In previous Gird4All deliverables Niche is named DCMS (Distributed Component Management System)
2 Software Engineering of Distributed Systems http://www.kth.se/studies/master/programmes/ict/2.1730?l=en

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 8/60

The SEDS Master students, which participated in evaluation, were (are) at their final stage of studies, and
they have studied a number of advanced courses related to distributed computing. In order to prevent and
avoid a possibly biased evaluation, the students, who participated in evaluation, have been given the Niche
assessment questionnaire only after their Master theses have been examined and graded, and most of
evaluators have completed their studies at KTH.

Niche has been specially developed to facilitate writing of self-management code for large-scale distributed
applications where self-management (e.g. self-healing and self-configuration) takes place through one or
more feedback control loops. Therefore the major goal of development-based evaluation of Niche was to see
whether and to what extend the Niche programming model and corresponding API is pertinent for designing
self-managing applications; and how difficult or easy it is to develop and to code the management part of
applications using Niche. The second major goal of evaluation was to get feedback from developers-
evaluators that would allow the Niche development team to improve Niche API and execution platform.

The role of developers-evaluators was to develop a self-managing application using Niche and in this way to
text and evaluate it. Note that Niche was a completely new environment for all four evaluators when they
started their projects. Developers-evaluators have been given tasks to design and implement distributed
services with self-managing capabilities. One of the evaluators did not implement a service but rather
extended the Niche environment with a policy-based management mechanism using a policy engine. This
evaluator has used a self-managing distributed service developed using Niche, as a use case in his project.

Table 1 summarizes projects that have been performed using Niche at SICS, KTH and FT during the 2008-
2009 academic year. Developers of those projects have participated in evaluation of Niche through
evaluation questionnaires and open discussions.

Project (thesis) title Performed by Period and place; status Short description 3

YACS - "Yet Another
Computing Service"
Using DCMS,

Master thesis project

Atli Thor Hannesson,
SEDS Master student,

KTH

Nov 2008 – June 2009;
Performed at SICS,
Stockholm;
Co-supervised by KTH.

Completed.

YACS is a distributed computing,
or execution, service enabling the
use of shared and distributed
computational resources for user
programmed tasks, e.g. CPU
intensive and time consuming
movie transcoding. It shows self-
healing and self-configuration
capabilities to help it survive
failures and adapt to changes in
the environment, e.g. from
membership or load changes.

Evaluation of
Approaches to Policy-
based Management in a
Self-Managing
Distributed System,

Master thesis project

Lin Bao,

SEDS Master student,

KTH

Oct 2008 – June 2009;
Performed at SICS,
Stockholm;
Co-supervised by KTH.

Completed.

Integration of a generic policy
based framework into Niche
platform and demonstrate it with
YASS (Yet Another Storage
Service) control loop self-healing
and self-configuration.

A Self-Managing Large-
Scale File Storage With
Replication

Internship, Master thesis
project

Catalin Stefan,
SEDS Master student

KTH

Jan 2008 – June 2009;

Performed at FT, Paris;

Co-supervised by KTH.

The project is completed;
the final presentation and
examination at KTH is
appointed on Aug 2009.

The application is an autonomic
distributed storage system with
adaptive replication, which aims to
adjust the replication of stored
data in order to provide some
quality of service guarantees to
the user. The system implements
autonomic management to adjust
to a dynamic environment.

File transfer in YASS,
Yet Another Execution
Service; and the Hello
World example

Leif Lindbäck,

Assistant Professor,

KTH

Spring 2009.

Performed at KTH.

Completed.

Implementing file transfer in
YASS; Niche exploration, Hello
World example

3 As given by evaluators in their filled questionnaires.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 9/60

A project aimed to
complete YASS

Table 1. Projects in which Niche was used and evaluated

The developers-evaluators have been given Niche software (including sample applications), documentation
(including the Niche Programming Guide and javadoc API documentation). Each developer has been given a
short introductory tutorial on Niche (installation, deployment and API). During the project work, the Niche
development team at KTH and SICS also provided on-demand support, help and consultations. The Niche
team was trying as soon as possible to address users’ requests regarding missing functionalities in Niche,
required to complete the given task.

In order to get users’ feedback and assessment of Niche, we have developed a Niche evaluation
questionnaire to be answered by the developers-evaluators (see Appendix 1). The Niche team has also
organized open discussions with each evaluator. By means of the questionnaire we intended to assess
developers’ interest in Niche as well as get suggestions on improvement, in particular, on features
developers would expect in future versions. Based on analysis of the feedback and suggestions, we have
improved and will further improve Niche (both API and execution environment) in order to meet expectations
of future users. Suggested improvements are presented below.

3.2.3 Analysis of feedback

Four developer-evaluators, after they have finished their projects and got their grades (in the case of
students), have been asked to fill the Niche evaluation questionnaire to assess Niche and provide their
feedback. For copies of the answered questionnaire see Appendix 1: Niche Evaluation Questionnaires.

The following table summarizes answers to some most essential questions of the evaluation questionnaire.
The table does not include suggestions on additional features to be provided in Niche and free-text
comments. We have called evaluators with symbolic names in the table. Note that evaluators have different
experience of work in industry as software developers.

1. Evaluator
(level of experience
in software
development)

Evaluator A

(several years
experience in industry
(at Sun Microsystems)
and academia)

Evaluator B
(4 years of work
experience in industry
as SW developer)

Evaluator C
(some work
experience in industry
as SW develop)

Evaluator D
(no much work
experience as SW
develop in industry)

2. Application File transfer in YASS
(Yet Another Storage
Service); Niche
exploration

YACS (Yet Another
Compute Service)

Policy-based
management
framework for Niche

File storage with
replication

Initial development
stage of application

Pre-developed Specification Idea Idea

Management
concerns of
application

Fault-tolerance Configuration; Fault
tolerance

Configuration; Fault
tolerance

Fault-tolerance;
optimization

Self-managing
properties of
application to
develop

Self-healing Self-configuration;
self-healing

Self-configuration;
self-healing

Self-configuration;
self-healing; self-
optimization

Expected number
and type of nodes to
execute application

- PCs of ordinary users;
number is unknown

at least two nodes hundreds

Approximate size of
application (in lines
of code)

- 14299 lines (including
javadoc comments)

800 lines for XACML
implementation, 600
lines for SPL
implementation

About 10000 lines, of
which 30% functional
code.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 10/60

3. Main motivation
for using Niche as a
development
environment

To extend an existing
application with self-
management
capabilities; To
evaluate DCMS as a
development
environment

To develop a self-
managing application
from scratch; To
evaluate DCMS as a
development
environment

To integrate a generic
policy based
framework into Niche,
make the self-
managing behavior
under the government
of policies.

To develop a self-
managing application
from scratch; To
evaluate DCMS as a
development
environment

4. Ease of learn

Was documentation
sufficient to learn
Niche?

Partially Almost Partially Partially

Time to understand
and run the YASS
example

3 days 5 days 1 week 1 week

In overall, how easy
or difficult it was to
get acquainted with
Niche?

Acceptable Acceptable.
Conceptually, I feel
DCMS is easy to
understand.

Acceptable Difficult

5. Usability and
Complexity

Time it took to install
and configure Niche

3 days A few days, closer to 1
week

1 week 1 week

Time it took to code
and test a first
prototype of
application

3 days 2-3 days 1 week A month

Suggested additional
features to be
provided in Niche

 Component un-
deployment API;
Synchronous
communication API
between MEs; other
suggestions (see
answers in Appendix
1)

With subscription, I
want Niche to provide
one-to-all and one-to-
any binding, if the
subscriber is a group.

Enhanced group API;
Control over the
placement of
(management)
components (For full
list of suggestions, see
answers in Appendix
1)

Did you find the
Niche programming
model pertinent for
designing self-
managing
applications?

 The Niche model
enabled self-
management

The Niche model
enabled self-
management

The Niche model
enabled self-
management

Did Niche help you
to design a modular
application, with
good separation of
concerns?

Very Very Very Very

How difficult or easy
it was to code the
application as a set
of distributed
components?

Easy Very easy Acceptable Easy

How difficult or easy
it was to develop and
to code the
management part of
the application?

 Easy Acceptable Difficult

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 11/60

Do you find the
complexity of the
framework justified?

It is partially justified It is partially justified. I
feel the bindings are
too complex.

Yes, it is justified Yes, it is justified

In overall, how easy
or difficult it was to
implement
application using
Niche? (very difficult,
difficult, acceptable,
easy, very easy)

Acceptable Easy Acceptable Acceptable

6. Performance,
scalability,
interoperability, and
stability

Performance issues No Yes, component
deployment
occasionally block for
a long, but
configurable, amount
of time.

No No

Scalability issues Sorry, I do not know Sorry, I do not know Sorry, I do not know Haven't fully tested yet

Interoperability
issues

No Yes; instability when
running in cross-OS
setting.

Yes; Synchronized
operation

Yes; an external
application to interact
with DCMS
components

Stability of Niche
implementation

Excellent Fair Sorry, I do not know Excellent

7. Satisfaction

Will you use Niche
again?

Yes Yes, If un-deployment
is added I could
imagine trying it out for
a fault-tolerant and
adaptation capable
data-center
infrastructure project
that I’m headed for.

No. I finished my
thesis work.

Yes; I would probably
consider the possibility
of using dcms as an
infrastructure for an
application that
requires autonomic
management.

Will you recommend
Niche to other
developers?

Yes Yes Yes Yes

In overall, how you
would you rate your
experience with
Niche?

Rather good Good Good Rather good

In overall, according to answers, the assessment of Niche as a development and execution environment by
four developers-evaluators is rather positive, even though Niche requires some efforts to study
documentation, to install Niche environment, and to study the provided examples of self-managing
applications. Three out of four developers-evaluators have answered that, in their opinion, it was acceptably
difficult (i.e. neither difficult nor easy) to implement applications using Niche; whereas one developer (who
has developed Yet Another Computing Service) has answered that it was rather easy to code his application
using Niche. Some evaluators have given critical comments on API, mostly, on the group API, that must be
(and has already been) addressed by the Niche development team. Below we analyze evaluators’ feedback
along different evaluation criteria. For each category of criteria, we summarize the feedback and present (a)
our analysis of the feedback (b) possible directions of future work.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 12/60

Ease of Learning; Documentation and Examples
Three of four evaluators have answered that, in overall, it was acceptably difficult (i.e. neither difficult nor
easy) to get acquainted with Niche using provided documentation and examples. One evaluator (with less
work experience) found it difficult to get acquainted with Niche by studying its documentation and examples.

Analysis. Like for many distributed environments and platforms, e.g. Java EE, the Niche “learning
curve” is rather flat in the beginning, i.e. Niche is difficult to learn. However, according to opinions of
developer-evaluators, after the initial difficulty of learning (including efforts to install, deploy, and
study examples), Niche is relatively easy to use and to program with, and it offers a set of rather
clear programming abstractions and the corresponding API to develop self-managing applications.

All developers-evaluators have answered that the Niche documentation (at the time of evaluation) is partially
(almost) sufficient to learn Niche.

Analysis. Niche documentation needs to be further improved, elaborated and clarified. Based on
some suggestions from developers-evaluators regarding documentation and questions on some
features of Niche (e.g. on group API), the Niche team has revised the initial version of the Niche
Programmer’s Guide, and, in addition, has developed the Niche Quick Start Guide in order to
facilitate and speedup the initial phase of getting acquainted with Niche. Both guides are available at
http://niche.sics.se.

None of the evaluators has tested the Hello World example, because the version of the example, which was
available at the time of evaluation, illustrates development of only the functional part of a component-based
application, whereas the management part is missing. All evaluators have studied and tested the YASS (Yet
Another Storage Service) example, even though it was more complex than the Hello World example.

Analysis. All evaluators-developers have found the YASS example useful and helpful for getting
acquainted with Niche; and have used YASS as a sample application when developing their own
applications. It took from 3 days up to 1 week for developers to understand and successfully run the
YASS example. The Niche team has found this time reasonable for this rather complex example.
In June 2009, the Niche team has revised the Hello World example by adding a management part
(to illustrate self-healing) in order to make the example more illustrative but relatively simple.

Conclusion . In overall, for the level of research prototype, Niche documentation and provided examples are
of an acceptable quality. It is a matter of polishing documentation to further improve its quality when moving
Niche from research prototype to a product.

Usability and Complexity; Ease of Us e

Three out of four developer-evaluators, who participated in Niche evaluation, have answered that, in overall,
it was acceptably difficult (i.e. neither difficult nor easy) to implement applications using Niche. One
evaluator, who has developed Yet Another Computing Service (YACS), answered that it was easy for him to
implement the service using Niche. It took from 3 days to 1 week for evaluators to install and configure Niche
(including configuration and testing of the YASS example). All evaluators have requested some help from the
Niche development team to properly configure Niche, and have indicated that installation and configuration
of Niche, specifically in the Eclipse development environment, requires some efforts.

Analysis. The Niche development team must improve the Niche installation and configuration
procedure in order to facilitate it. It might be reasonable to offer Niche distribution packages with a
re-configured (and pre-build) Eclipse project or a NetBeans project.

It took different time for developers-evaluators to code and test first prototypes of their applications: from a
few days (YACS) to one month (Distributed Storage with Replication). Difficulty of development of the
management part of applications using Niche has been assessed as “easy” (YACS), “acceptable” (policy-
based management in YASS) and “difficult” (Distributed Storage with Replication) by three evaluators.

Analysis . Of course, the development time (and opinion on the ease of development) depends on
complexity of an application to be developed, in particular, on complexity of application-specific self-
management objectives and control/optimization algorithms for self-management. In developers’
opinions (expressed in answers to the questionnaire and during discussions), and in the opinion of
the Niche team, the complexity of the Niche environment is justified. The Niche team has found that
the amount of time it took evaluators to develop their first working prototypes is reasonable and
matches the complexity of the applications and the different development skills of developers-
evaluators.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 13/60

Three out of four developers-evaluators has given very interesting and useful suggestions on additional
features that should/could be provided in the Niche API, e.g. component un-deployment, synchronous (in
addition to existing asynchronous) communication between management elements, more flexible group
binding. See answers to the valuation questionnaire in Appendix 1 for detailed suggestions.

Analysis . In opinion of the Niche development team, many of the evaluators’ suggestions are
reasonable. Some of the suggestions, e.g. the one on the interaction between management
elements and on the group API, have been already implemented by the Niche development team.
Other suggestions are subject for our future work.

Conclusion . In overall, for the level of research prototype, Niche, as a development platform is of an
acceptable quality with respect to its usability, i.e. ease of use and convenient API. The complexity of the
Niche environment is justified. In overall, evaluation results show that Niche provides the functionality
needed to build a self-managing distributed application, and this functionality was used by evaluators-
developers. In order to further facilitate development of self-managing applications using Niche, and to move
Niche from the level of research prototype to the level of a product, the Niche development team should
extend the Niche API with additional features suggested by evaluators. Note that some of the suggestions
have been already implemented. In order to move Niche to the level of a product, the Niche team should
also improve the Niche installation and configuration procedure, polish documentation, and (optionally)
provide some supporting development tools, such as a tool to generate Java-skeletons based on ADL-
descriptions that would reduce the risk of name errors for the same interface being described in multiple
files. This is a subject for out future work.

Performance, Scalability and Interoperability Issue s
None of the developers-evaluators, but one, has given their opinion of Niche performance or performance of
their own applications.

Analysis . This is because, in our opinion, almost all projects were aiming at providing self-healing
and self-configuration capabilities using distributed managers rather than a centralized (single)
manager that might become a potential performance bottleneck, but performance evaluation was not
their immediate concern. Also, management logic that were implemented were rather simple and
aimed to meet management objectives in the best-effort way rather than to meet fixed service-level
objectives set in SLAs that might require fast control loops (i.e. efficient monitoring and actuation,
and fast controllers). Nevertheless, all evaluators (students) have done (or have participated in)
performance evaluation of their systems on Grid5000 and PlanetLab testbeds. In particular, a
number of evaluation experiments have been performed in order to quantitatively evaluate Niche
end-user experience based on YASS (Yet Another Storage Service) and YACS (Yet Another
Computing Service). Results of evaluation are presented in Section 4.2 of this document.

Some developers have indicated the overhead involved in initial deployment and that component
deployment occasionally blocks for a long, but configurable, amount of time. This might cause performance
penalty in performance-demanding applications.

Analysis . Performance optimization of Niche requires more performance experiments and profiling
in order to find (potential) performance bottlenecks. The Niche development team has made some
efforts on performance optimization of Niche during the period of the projects. The Niche team
understands the comments about the overhead involved in initial deployment, which partially is an
effect of the less-than-desirable integration between the ADL-deployment (i.e. deployment performed
based on the ADL description of application architecture) and the programmatic deployment (i.e.
deployment performed programmatically in management code). For instance it is still not possible to
deploy management elements through the ADL-based deployment. Future work which addresses
this is integration with OZ-based deployment tools developed at INRIA Sardes. The occasional
blocking during deployment, mentioned by one of the evaluators, has been already addressed by the
Niche team.

Three out of four evaluators have indicated different interoperability issues, namely, some difficulties in
running Niche across different OSes (Windows, Linux); and the need for interaction of an external application
with Niche components.

Analysis . We believe that cross-platform issue between Linux and Windows is an artifact of the
specific communication package which was used at the time of evaluation. Some recent tests

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 14/60

(running YACS across Linux and Windows) does not expose this issue any more. Support for
interoperability of Niche components with external applications is on the list of our future work.

Conclusion. In overall, for the level of research prototype, Niche performs and scales rather well, and does
not have interoperability problems so far. In order to go from a research prototype to a product, Niche
needs performance and memory optimization in order to identify and remove performance bottlenecks and to
track down and correct memory leakage.

Satisfaction and Overall Rating
According to answered questionnaires, three out of four developers-evaluators are willing to use Niche again
in their future development work. One of the evaluators intends to try using Niche “for a fault-tolerant and
adaptation capable data-center infrastructure project” that he is headed for. All four developers-evaluators
will recommend Niche to other developers; and all four developers-evaluators rate, in overall, their
experience (satisfaction) with Niche as (rather) good.

Critical Comments and Suggestions on Improvement an d Addition Features
Three out of four developers-evaluators has given very interesting and useful free-text comments on
difficulties that they have faced when developing their applications using Niche, and suggestions on
improvement and additional features that should/could be provided in Niche API.

Analysis. Most of comments (see Appendix 1) were about the group API, including group binding,
monitoring and actuation. All evaluators have indicated that the component group abstraction (and
corresponding API) is very useful, and it facilitates development of both functional and management
parts. However, the group API should be improved in order to be more flexible. Most of the
comments have been already addressed by the Niche team, e.g. the group creation API using group
templates is now documented; bindings that time-out on communication errors are now supported;
bindings with return values are working; occasional blocking during deployment is avoided; the
comment about the need for return values from multiple receivers can be solved after the
introduction of actuators; inconvenience in monitoring of group creation events has been recently
solved.

Niche has been also used by a group of two students in a course project in the “Network Programming with
Java” course at KTH. The students have developed the functional part – only – of a component-based
distributed application. It took them about one week to develop a working prototype of the application. The
students have been helped to install and deploy the Niche environment. The students’ feedback was not
documented in the form of a questionnaire, but the Niche development team have had a discussion with the
students and have got their feedback and suggestions mostly related to the component group API of Niche.
Students’ critics and suggestions were taken into account when improving the group API. In overall, the
students’ opinion about Niche was rather positive; however they have not tried developing a management
part of their application and could not access development of self-management code and give any critics,
comments and suggestions on that.

3.2.4 Lessons learnt

A middleware, such as Niche, clearly reduces burden from an application developer, because it enables and
supports self-management by leveraging self-organizing properties of structured P2P overlays and by
providing useful overlay services such as deployment, DHT (can be used for different indexes) and name-
based communication. However, it comes at a cost of self-management overhead, in particular, the cost of
monitoring and replication of management; though this cost is necessary for the democratic grid (or cloud)
that operates on a dynamic environment and requires self-management.

In order to better deal with dynamic environments, such as community grids, management functions should
be distributed among several cooperative autonomic managers that coordinate their activities to achieve
management objectives. Multiple managers are needed for scalability, robustness, and performance and
they are also useful for reflecting separation of concerns. Design steps in developing the management part
of a self-managing application include spatial and functional partitioning of management, assignment of

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 15/60

management tasks to autonomic managers, and co-ordination of multiple autonomic managers. The design
space for multiple management components is large; indirect stigmergy-based interactions, hierarchical
management, direct interactions. Co-ordination could use shared management elements. Further study is
required. As concerns robustness, replication of management elements is a well known methodology.

Future Work
A major concern that arises is ease of programming of management logic. Research should hence focus on
high-level programming abstractions, language support and tools that facilitate development of self-
managing applications. As has been reported within D6.7, we have already started to address this aspect.

There is the issue of coupled control loops, which we did not study. In our scenario multiple managers are
directly or indirectly (via stigmergy) interacting with each other and it is not always clear how to avoid
undesirable behavior such as rapid or large oscillations which not only can cause the system to behave non-
optimally but also increase management overhead. We found, as mentioned above, that it is desirable to
decentralize management as much as possible, but this probably aggravates the problems with coupled
control loops. Every application (or service) programmer should not need to handle co-ordination of multiple
managers (where each manager may be responsible for a specific behavior). Future work should address
design of coordination protocols that could be directly used or specialized.

Although some overhead of monitoring for self-management is unavoidable, there are opportunities for
research on efficient monitoring and information gathering/aggregating infrastructures to reduce this
overhead. While performance is not perhaps the dominant concern of 'democratic grid' users, we believe that
this should be a focus point since monitoring infrastructure itself executes on volatile resources.

Replication of management elements is a general way to achieve robustness of self-management,
especially, self-healing. In fact, most evaluators assumed that management programs will be robust. They
did not build-in protection from failure of management logic. Even though we have developed and validated a
solution (including distributed algorithms) for replication of management elements in Niche, it is reasonable
to continue research on efficient management replication mechanisms.

3.3 Telex

3.3.1 Introduction

The Telex middleware facilitates the design of peer-to-peer collaborative applications. It takes care of
complex application-independent aspects, such as replication, conflict repair, and ensuring eventual
commitment. Telex allows an application to access a local replica of data/information without synchronizing
with peer sites. The application makes progress, executing uncommitted operations, even while peers are
disconnected.

The qualitative evaluation of Telex is performed by means of a questionnaire, filled by collaborative
application developers, which contains 35 questions divided into 5 main sections: Ease of learning,
Complexity, Features, Control and Satisfaction. The developer is requested to answer the questions in the
context of the application she/he has developed. Most sections include an overall qualitative evaluation in
the range of 1 (bad) to 5 (good).

3.3.2 Evaluation method

The application developer is provided with the Telex library and the related documentation. (These are
publicly available at Telex's web site: http://telex2.gforge.inria.fr). The developer can get support from the
Telex development team by e-mail. After he has developed the application, the developer fills the
questionnaire. The questionnaire begins with a brief description of the application, its development stage and

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 16/60

an evaluation of its size. It proceeds with the evaluation of the developer's familiarity with collaborative
middleware/platform and how he got to know Telex. This will help put subsequent answers into perspective.

The Ease of learning section assesses how easy/difficult it is to learn Telex. Each learning resource is
evaluated: documentation, code samples, support from the development team, and need for a tutorial
session.

The Complexity section evaluates the complexity of developing an application atop Telex. The complexity is
assessed through various quantitative metrics: the percentage of the application's code dedicated to
interfacing with Telex, the time it took to design, code and test above Telex. The developer is also asked to
rate the complexity of expressing the application's logic using the Action-Constraint Framework and the
complexity of Telex's API.

The Features section examines to which extent Telex fulfils the application's requirements. It first determines
whether Telex is missing some important features and whether those features are provided by an alternate
middleware. Then it proceeds by listing which of Telex's main features the application actually uses, as some
applications might use only a small subset of them. To assess Telex's novelty and usefulness, the developer
is asked whether an alternate middleware provides the same combination of features and what is the benefit
of using Telex, i.e. what application-level features Telex has enabled. As an indication of ACF's
expressiveness, the section also determines which ACF constraints the application actually uses.

The Control section assesses the degree to which the developer feels in control of Telex operation. The
middleware might do too much or too little of its own. This will help refine the API, either by splitting high-
level methods into low-level ones, or by providing advanced methods. The section also examines whether
the standardization of Telex's API or Telex's interoperability with external software is an issue in the context
of the application being developed.

Finally, the Satisfaction section evaluates the developer's overall experience with Telex. He is asked whether
the performance of Telex is sufficient for the application, and whether he has enough confidence in Telex to
develop other applications, release-quality applications and to recommend Telex to other people. Finally, the
developer is asked to list items that should be improved in future releases of Telex.

Three applications have been developed atop Telex as part of the Grid4All project: the Shared Calendar
application, the STMBench7 benchmark and the Collaborative File Sharing application. Only one application
was developed by evaluators external to Grid4All. It is a collaborative ontology editor, developed at the
University of the Aegean by Giorgos Santipantakis, as part of his master thesis project under the direction of
George Vouros.

We report next on this experience, on the basis of the returned questionnaire. Most answers are
straightforward and need no further clarification. Some, however, need to be interpreted with the help of
Giorgos Santipantakis' master thesis and the support we gave him.

3.3.3 Analysis of feedback

The collaborative ontology editor is a good target for the Telex middleware: users share a semantically-rich
data structure (the ontology), which users need to update either on-line or off-line. The editor is a small-to-
medium sized application (6 man-month, ~5000 lines of code in total). G. Santipantakis is using a
collaborative middleware/platform for the first time.

Ease of learning
Overall rate is 4/5, 5 standing for “very easy”.

The documentation is poor: it only consists of two papers on Telex, as the tutorial on Telex is not completed
yet. Examples of application code (e.g. the Telex shell) are somewhat too complex to help. The support that
the Telex team provided partly mitigates this. A tutorial session on Telex is needed .

Complexity
Overall rate is 4/5, 5 standing for “very easy”.

The percentage of code dedicated to interfacing with Telex is 13%. This seems rather low, perhaps because
GUI code is taken into account. Question b will be rephrased so as to consider core application code only.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 17/60

The time needed to develop above Telex represents 50% of the design phases, 22% of the coding phase
and 50% of the testing phases. Theses figures are in line with those reported for the Shared Calendar
application. They seem reasonable considering the benefits of using Telex.

We note that although designing with Telex requires a significant effort, the complexity of translating
application logic to actions and constraints is rated 4/5, 5 standing for very easy. Similarly, although testing
with Telex takes a significant amount of time – most probably because this involves distributed test – the
developer feels that Telex's functions and Telex's API are not unnecessarily complex .

Features
Overall rate is 5/5, 5 standing for “Telex's features are essential”. However, the question should be
rephrased so as to include missing features, e.g. “Telex features are essential and complete”.

Telex lacks two important features as far as the collaborative ontology editor is concerned: (i) Telex should
be able to roll-back on decisions (ii) It should provide the sequence of schedules that leads to a given sate.
Indeed, in the current version of Telex, making a decision implies commitment and garbage collection. These
aspects should be de-coupled for users to tentatively agree on a common state and then drop it later on if
not satisfactory. This would give way to distributed evaluation of what-if scenarios.

The ontology editor mainly uses Telex for disconnected operation, conflict detection and resolution, and
reconciliation of document replicas. The developer observes that (i) no alternate middleware/platform
provides this combination of features, (ii) these features are essential to the application in that they greatly
ease collaborative work: users can update the ontology any time any place without coordination, Telex (and
the application) will maintain the ontology's consistency.

The ontology editor only uses antagonism and causality relations. It does not use atomicity or any
elementary constraint. From Giorgos Santipantakis's thesis, we know that the constraints defined so far (not-
after, enables, non-commuting) cover all the editor's needs. A specific question will be added to the
questionnaire, however, to address this topic.

Control
Overall, Telex's functionality seems satisfying : the middleware does not do too much or too little of its
own. It is suggested that Telex's API should be standardized, or an effort to standardize it should be
undertaken. The questionnaire, however, does not ask any reason for this and consequently none is given.
This should be added in the next version of the questionnaire. Telex's interoperability (application language,
log format, etc.) is rated 4/5, 5 standing for excellent. Standardization and interoperability does not seem
to be an issue for the ontology editor .

Satisfaction
Overall rate is 4/5, 5 standing for “very satisfying”.

The developer has enough confidence in Telex to use it again for new applications and to recommend it to
other people. Telex, however, cannot be used as is for release-quality applications as some bugs need to be
fixed. Also, the ability to roll back on decisions taken is essential for the ontology editor. Finally, it is
suggested that future releases of Telex be improved by providing more documentation a nd tutorial as
well as demonstration applications.

3.3.4 Lessons learnt

Evaluation process
As pointed in sub-section 3.3.3, the questionnaire needs to be improved in order to get more accurate
feedback in the future (e.g. ACF's completeness, actual need for standardization, etc.). A new version of the
questionnaire will be released to that end.

The questionnaire will be posted to Telex's web site and application developers will be encouraged to fill it so
that we get more feedback. This will complement the feature request and technical support trackers already
provided by Gforge.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 18/60

The Telex middleware
Overall, Telex meets its primary goal: it facilitates the development of collaborative applications by taking
care of complex tasks such as replication, conflict detection and resolution, and eventual consistency. The
middleware is fairly easy to learn and use, from both conceptual (Action-Constraint Framework) and
implementation (Telex's API) perspectives.

However, Telex is not a release-quality product yet. Its documentation lacks a tutorial, streamlined
application samples and more demo applications. These will be provided in next releases of Telex: INRIA
Regal is about to hire a development engineer to maintain and disseminate Telex after the Grid4All project's
end.

More important, Telex lacks an important feature for collaboration. While Telex allows each user to select a
particular solution to a conflict, it does provide support for users to agree on a tentative solution and then roll-
back if the solution turns out to be unsatisfactory later on. This feature seems of general interest and INRIA
Regal will discuss its precise specification and implementation with Giorgos Santipantakis. As far as we can
see, this feature does not raise any new and interesting scientific problem; it is just an engineering issue.

3.4 VOFS

3.4.1 Introduction

VOFS is a personal tool that can be used by both ordinary users and expert administrators to create a simple
to use and straightforward peer-to-peer file-sharing environment for collaboration, over the traditional file
system. A number of users were introduced to the VOFS prototype and their feedback was analyzed in order
to validate the ideas and solutions behind VOFS and some aspects of usability and engineering nature. The
next sections present the evaluation method, an analysis of the feedback and general conclusions.

3.4.2 Evaluation method

The evaluation plan for VOFS featured a workshop session organised by a VOFS developer (the introducer)
where users (the evaluators) would be introduced to VOFS, allowed to experiment with it and would provide
feedback in the form of pre-prepared Questionnaires. The actual evaluation was performed in two separate
workshop sessions where 5 people attended and provided formal feedback (i.e. filled a Questionnaire).
Additional feedback was received by personal communication of the evaluator with another 2 individuals.
The individuals received a similar introduction of the VOFS as in the workshop but over the Internet.

For the workshop, two laptops were configured to be ready for use with VOFS as public laptops were users
would experiment and users also brought their own laptops to participate in the VOFS network. All
computers were connected to a LAN.

The introduction to VOFS started with basic concepts about what VOFS is and progressively offered more
specific information along with a practical introduction to the software. The next paragraphs summarize the
introduction given both during the workshop sessions and to the individuals over the internet.

VOFS provides a file server for everyone. This file server preferably remains always online and serves a
unique file system with the user's files. Users access this file system with their clients, which may or may not
be located in the same machine. The client presents this file system as a normal file system in their local
Operating System. Users were asked to perform a new VOFS installation and were directed to launch their
server and client as in the package documentation.

VOFS appears as a conventional disk file system but it is not. To facilitate the extra controls needed for
VOFS, a naming convention introduces a number of special “virtual” files per real file. The users were shown
what virtual files are and were given examples of their usage.

Each file server in the VOFS network is actually a peer accessible by other peers. User's clients are such
peers and users were shown how to navigate other user's file systems, using the special naming
conventions introduced by VOFS. Using virtual files, users were directed to create symbolic links from a
given file system to another one. The introducer then explained how this feature can be used to federate files
into a common directory, creating a shared workspace. Scripts that automated the workspace creation and
management were introduced to the users and they were encouraged to experiment.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 19/60

VOFS clients are designed to expect and deal with loss of network connectivity with the minimum cost for the
user. Both file system structure and data are cached locally and this cache is used to immediately serve user
requests. Users were invited to disconnect their computers and try to access remote files. It was
demonstrated that responsiveness was immune to network unavailability. Users were encouraged to
experiment with different types of network failure and combinations of failing machines.

Finally, the VOFS network has a third kind of peer, the storage provider which is the peer that actually hosts
file data. By default, the storage provider is not separate from the file server. Users were introduced to
launching separate storage providers, assemble storage pools and control the storage on a file-to-file or
whole directory basis. The introducer explained the role of the storage pool in the workspace created by the
automated scripts and invited the users to experiment.

3.4.3 Analysis of feedback

Evaluator profiles
The evaluators will be anonymously referred to by the numbers 1 to 7. Evaluators 6 and 7 were the two that
were introduced by personal communication over the internet. Evaluators 1 to 5 were computer experts.
Evaluators 6 and 7 were comfortable with computers and the Internet beyond office work but were not
computer experts.

Although questionnaires were prepared to collect feedback from evaluators, during the workshop sessions
there was a lot of discussion and eventually most of the feedback was collected personally by the introducer
by keeping notes on the discussed issues and opinions. A significant portion of the feedback was offered in
conversation by evaluators that were discussing questionnaire questions they were trying to answer.
Questionnaires were filled just for formality as the information collected otherwise made them irrelevant,
especially since all evaluators had time and direct communication with the introducer.

Two general issues were taken into account when interpreting the evaluator opinions and reactions. First,
users might raise issues regarding VOFS that are either of engineering or conceptual nature. Engineering
aspect is not the main concern of the evaluation, since our objective was to understand the impact of the
concepts behind VOFS and not its maturity as a product. Second, there was a noticeable distinction between
two types of evaluators. The first type, which we will code-name the enthusiasts, care about their efficiency
and that of the tools they use, have well formed opinions and preferences, and are curious and willing to
experiment in order to personalize and optimize their workflows. The second type, which we will code-name
the conventional, conform to the standard workflows of their environment and prefer to just get the job done
the way they have been shown to and they do not invest time in experimentation. To extract more insight,
evaluator feedback was always interpreted with a certain bias considering the two types of evaluators.

Specific feedback analysis
This section presents an analysis of specific evaluator feedback according to the structure of the
questionnaire that ends with feedback from discussion that came up independently.

Software set-up and launch

 The evaluators found the set up and launch of VOFS software straightforward. Concerns
about setting up the prerequisite software were deemed unimportant as engineering issues. One issue
raised was whether setting up and launch would remain simple after VOFS had matured into a full-featured
system. However, this is no concern since by design, all additional complex features and services that are
added to VOFS have to present themselves through the same simple and standard environment as the basic
functions are.

New and interesting features

 By popularity, the evaluators reported as the most interesting VOFS features, the links
across file systems, disconnected operation, and storage pools and controlling storage. However, the
evaluators reported that the control VOFS offers on file storage is not convenient. VOFS requires the user to
decide the storage provider before file creation whereas users found it cumbersome to care about storage
beforehand. Instead they would prefer to be able to adjust storage details afterwards and only if needed.
From a technical point of view this would be inefficient but from a usability point of view it is an issue to be
addressed.
How VOFS was used by evaluators

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 20/60

 An unexpected realization was that most evaluators thought media sharing and sharing for
collaboration as different tasks. We speculate that this is due to the different contexts active and different
tools that are used to accomplish these tasks. The enthusiast evaluators were intrigued by the realization
that VOFS as a personal tool could unify the way both flavors of sharing is achieved.

Local network performance

 The evaluators when asked reported that performance was lower than the local file system
but was well accepted for small files and was only a concern with large files or directories. However, all
evaluators were content with the consistency of the performance and the responsiveness of the system.
From a technical point of view this performance was expected as a constant overhead that can be eliminated
by further engineering. The focus of the VOFS prototype is its responsiveness and handling of the unique
environment VOFS creates.

The biggest flaw

 The conclusion about the flaws that were reported was that the evaluators tried to use or at
least considered VOFS for their every day needs but found that it was not mature enough and sufficiently
integrated with their software environment. However, such integration is out of scope of the prototype and
the fact that the evaluators tried to incorporate VOFS in their workflows validates its design.

The nicest thing about VOFS

 The reported nicest practical thing about VOFS was by far its responsiveness and tolerance
for connectivity problems. The evaluators reported that frustration with software responsiveness due to
network problems was a recurring issue in their every day work and were relieved to discover the extent
VOFS was unaffected. From a conceptual point of view, all evaluators recognized the need for simplified file
sharing the way VOFS promotes. The enthusiasts were also positive about the peer-to-peer character of the
system in contrast to similar solutions that always require some central management out of their control.

Independent discussion

 Due to the technical nature and expertise of the enthusiasts, there was a lot of general
discussion about VOFS and the ideas that puts forward. Besides integration, which is an engineering issue,
other interesting issues were raised.

The new idea that everyone has their own server and serve shared files on the Internet was well accepted.
Inside a LAN there is no issue, but on the Internet traditionally home users do not have the connectivity
required to maintain servers. However, emerging computing technologies, such as the ones collectively
labeled as cloud computing, will soon offer the capability to easily maintain such servers not in the home but
on a provider's infrastructure. The VOFS design anticipates that development, especially in the context of the
Grid4All goal for democratization of computing.

Security is a complex issue, both technically and socially. An important realization was that users trust
impersonal corporations (e.g. Google) with their files even if they know there are security issues. On the
other hand, the same users are unwilling to risk exposure to their socially close peers through an
environment such as VOFS, even if security is technically better than the impersonal corporation case.

3.4.4 Lessons learnt

Overall, the evaluation justified the VOFS proposition to add simple new primitives for sharing into the
traditional file system. Users were found to indeed need new tools towards that direction. From a technical
point of view, most engineering issues were already anticipated. The most constructive results of the
evaluation concern the way the technical features of VOFS have to be presented and exploited in the context
of the users and their environment.

Regarding direction of future development, VOFS has two alternatives: evolve more towards being a
personal tool or being an administrator's tool for infrastructure. The prototype followed the former approach
and the evaluation showed that it would be more appropriate. User's frustration came from the complexity
and inefficiency to use tools and solutions and not from the lack of them.

Another realisation was that VOFS introduces new concepts and new ways of thinking and working that is
not easy for all users. Therefore, VOFS should focus first on a receptive audience, such as the enthusiasts
described earlier. They that will help both in better shaping VOFS and in introducing it to new users and
supporting them.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 21/60

3.5 CFS

3.5.1 Introduction

The Collaborative File Sharing Application allows all participants in the system to share files in a
collaborative way. It is related to all scenarios with needs in sharing information among users. This
application will provide mechanisms for collaboratively uploading, downloading and updating files among the
participants. All operations are executed in an optimistic way, i.e. there will be no locks in any file when being
used by other user. In order to maintain a consistent view for all users, a mechanism for solving any possible
conflict will be provided.

CFS is used to facilitate collaborative learning activities as part of courses, at the UPC campus, which
usually last for 5 to 10 weeks. Students work in projects to develop Internet based applications for a fictitious
or real organization. They work in groups, in the classroom using laptops with support from the teacher, and
at different times from other places during the course of the project. The result is an “Educational Portfolio”: a
collection of materials (documents and folders) that demonstrate the work done.

3.5.2 Evaluation method

Based on the description in D5.4 on the planning for the experiment, the evaluation was performed as
follows.

The evaluation team was a mix of selected and voluntary participants from UPC: 4 lecturers, an 6 students
were involved. The evaluators were end-users from university, students and teachers, who regularly use
computers in the classroom. They participated at a seminar describing CFS and its features that support
collaborative learning activities. Background Evaluators are lecturers and students at UPC and UOC. They
are well versed in IT technologies. They evaluated CFS in their corresponding roles of teacher and students.

The seminar was performed as a hands-on session where participants edited shared files and organized
them in folders. CFS was tested considering its use in collaborative learning (portfolio development for
project-based learning projects), in the second week of May 2009. The session was followed by a brief
discussion. The questionnaires were then completed by the evaluators.

3.5.3 Analysis of feedback

The feedback was obtained from the resulting questionnaires already presented in D5.4c4 and the
discussion at the end of the evaluation activity.

These lessons can be divided as:

• A qualitative part describing the overall evaluation of the result: What went particularly well or badly,

lessons learned paying attention to comments that highlight key aspects.

• Identification of new usage scenarios as expressed by evaluators.

• Ideas for improvement of CFS and new features based on needs expressed by evaluators.

The 10 questionnaires contained questions with answers in the range 1-5 (lowest to highest rating), yes/no
questions, and questions with three options (yes, no, a third response), and free-form text fields to collect
comments. The non textual responses have been summarized in the following table showing the average
values in each response.

The summary of the evaluation from the moderator of the discussion at the end of the session is as follows:

“Users do not clearly perceive the benefits of CFS compared to other applications (they also tested
and use TortoiseSVN and BSCW). They are not clearly aware of the decisions made in conflict
resolution. Instead, they see it not very user friendly and lacking in certain basic features. Some
shortcomings or deficiencies found: the application does not automatically detect the type of file to
download (the user must manually set the extension), no information messages are displayed to

4 Deliverable D5.4c – Addendum to Evaluation Criteria and Test Plan

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 22/60

users to know the status of others, or actions that are being conducted on different items, the
functions for copy / paste do not work properly, it does not allow the "rating" of the different versions,
how to upload and download files is not very intuitive, does not have instant messaging and file
preview options, the interface is not attractive.

As for the resolution of conflicts, they have only been able to observe the behavior of CFS with 2
different situations: when uploading at the same time 2 versions of the same document the
application recognizes both versions as "top versions, but when a new version is uploaded, the
previous 2 versions appear as completely different. On the other hand, if a user changes the name
of a folder, while another user deletes it, the application always delete the folder and does not notify
the conflict nor how it has been resolved.

Ultimately, as we had anticipated, the general assessment is not very favorable, but “the concept”
and possibilities of CFS are perceived as valuable, although CFS would not be used in its current
stage of development.”

The most relevant results from the quantitative results from the evaluation questionnaire is average (blue) or
high (green) for most results. The most negative comments are: they would not consider using CFS instead
of other applications they know (5a: 0.3 with 0=No, 1=Yes). To the question if they would recommend CFS,
the answer is close to “not in the current form”, and they suggest several shortcomings that must be solved
before the application could be recommended (as we could expect since CFS is a prototype, not a release
quality product). As it is, and based on their experience with other tools, they consider that the features CFS
provides do not really improve additional features to support collaborative work (4d: 0.4) although they
consider CFS very useful (4e: 1).

A few users also mentioned that CFS could be applicable not only in collaborative learning activities but also
for other activities that require sharing a collection of files that are created and modified over time, as it
occurs in research groups that produce reports and papers with several contributors potentially located at
different places and working at different times.

Q Values AVG
2a Activity
2b Dimensions
2c Status

Ease of learning
3a Documentation 2,9
3b Use 3,4
3c Overall 2,9

Functionality
 Version mgmt

4a Ease of use - 1..5 + 3,3
 Recovering top version - 1..5 + 3,9
 Recovering old version - 1..5 + 3,6
 Folders

4b Ease of use - 1..5 + 2,7
 Correct automatic resolution of conflicts - 1..5 + 3,1
 Event logs

4c Ease of use - 1..5 + 3,7
 Info on items read - 1..5 + 4
 Info on relevance of an item - 1..5 + 2,7

4d Features that improve collaborative support N 0..1 Y 0,4
4e Useful features for supporting the intended collaborative activity N 0..1 Y 1
4f Missing features N 0..1 Y 0,8

4g Functionality already provided by alternative application N 0, ? 1, 2 Y 1,2
4h Overall experience - 1..5 + 2,9

Satisfaction and trust
5a Consider using CFS in future similar activities N 0..1 Y 0,3
5b Recommend it N 0, ? 1, 2 Y 1,7
5c Overall experience - 1..5 + 2,8

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 23/60

3.5.4 Lessons learnt

This application is a prototype and users have evaluated the application in comparison with stable
commercial products with similar but also some different features. The most positive and distinctive or
innovative aspects perceived are:

• The application provides a user-friendly graphical interface that facilitates access, organization and
work with a repository of files combined with discussion forums and folders shared by a group of
people.

• The application provides mechanisms supporting the resolution of certain conflicts that can occur
when multiple participants share a collection of files that can be modified at the same time by
multiple participants.

However, the potential of the application cannot be exploited in full, as it is currently, due to the following
reasons:

• The application has several limitations in the usability of the user interface, and on the user-
friendliness in providing sufficient feedback or notification of changes (e.g. Awareness of what other
group members are doing). This was known in advance but the development effort was limited in
this part.

• The resolution of conflicts is not sufficiently sophisticated: users could see the application was
resolving conflicts but they found that way they were solved was not so friendly. Again, the effort in
this part was limited to simple resolution, not more.

• One great potential for CFS was the support for disconnected mode (where users could work at
different places, different times and disconnected from other co-workers). As Telex did not support
this mode by the time CFS was finished, this part is not currently supported by the application.

• In settings where work is collocated (face-to-face: performed in small groups at the same place and
the same time) conflicts do not happen so frequently. In case they occur they can be more easily
solved by social interaction. The automatic resolution may also be confusing to the participants as
the current implementation does not ask or notify the user. It simply takes a default action.

The answers obtained from the evaluation show which are the main issues perceived by users that must be
resolved and improved before it can constitute a better alternative than related products (even with less
functionality). Once these aforementioned issues have been solved, CFS has the potential to effectively
support collaborative learning (or work) particularly in activities that expand over time and distance, and
where users may be partially disconnected (one Telex supports disconnected mode). Another aspect, not
that visible to users is that CFS only works in a now old version of the Firefox environment: updating CFS to
work on the latest Firefox engine (3.5 at the time of writing) is another need. As a result, CFS could become
a useful addition to one of the most widespread web browsers in the world. Based on that, the plans of the
UPC group are to spend some effort within the research group to try to solve these issues and then release
to the community an open source version of a usable CFS application during the following year.

3.6 eMeeting

3.6.1 Introduction

eMeeting is an online synchronous collaborative tool allowing users to share among several remote
participants not only voice and video but also documents, charts and perform polls during meetings, and can
be seen as a perfect companion for the rest of the G4A applications as it provides people with a
synchronous environment supporting rich interaction, giving the possibility to immediately share information
or discuss and decide on an activity or project without the delays of asynchronous communication.

The evaluation session was expected to be performed with members of the “Atlas de la diversidad” network.
Due to some delay on the release of the new “Atlas de la diversidad” website, it’s been not possible to
perform it.

In order to evaluate the eMeeting results related to the Grid4All project, Antares prepared an evaluation
session with members of the e-learning company 3iMultimedia. 3iMultimedia is already using the e-Tutor
application, developed by Antares which is the basis of the eMeeting application. As an e-learning company,

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 24/60

3iMultimedia makes an intensive use of the application to run on-line synchronous tutoring sessions,
enabling and supporting collaborative work through a widespread audience (at different locations). Its
participation as evaluators was useful due to its knowledge on the usage of the application.

3.6.2 Evaluation method

Evaluation has been planned as a comparison between e-Tutor and eMeeting applications, having both the
same functionality but running on different environments (at least partially).

The session took place the 26th May at Antares offices and was lead by Gabriel Belvedere (responsible of e-
Tools at Antares) and Alicia Bou (Project Manager) with the participation of Lluis Recolons (CEO Manager),
Beatriz Muntaner and José Luis Riera from 3i Multimedia.

To evaluate the eMeeting adaptation to the infrastructure of Grid4All we asked the participants to make a
reservation through the room reservation module. As the integration with the rest of the services wasn’t
100% complete, the request was successfully created via a web service call, and forwarded to Sakura’s
(shared calendar) confirmation.

Once the reservation was scheduled, we asked the users to identify with VOManager in order to log on. The
first user who logged in became the session host (and this gives permission to control the application
features) and the other evaluators are simple participants.

During the meeting, we tested the audio and video, and basically checked if the documents stored in VOFS
were available for the session and the users were able to correctly access these documents.

With the integration tests in mind we asked evaluators to assess the experience compared to using the
application in a centralized environment. To do this we modified the questionnaire by eliminating questions 1,
4, 5, 6, 13 and 14.

3.6.3 Analysis of feedback

Question Evaluator 1 Evaluator 2 Evaluator 3 Comment

Will the number of participants be the
same for each session or will they
vary from session to session?

No, from
session to
session the
number of users
is going to be
different.

No, from session
to session the
number of users
is going to be
different.

No, from session
to session the
number of users
is going to be
different.

Are your sessions intensive in direct
interaction among participants?

Some users are
very active,
others not so
much.

Some users are
very active,
others not so
much.

Some users are
very active,
others not so
much.

Is the eMeeting user manual useful?

Documentation
is right, and I
have been able
to find all the
information in
the manual.

Documentation is
right, and I have
been able to find
all the information
in the manual.

Documentation is
right, and I have
been able to find
all the
information in the
manual.

Could you rank from 1 to 5 how easy
the use of the eMeeting’s Tools is?

File system: 2;
Video: 2;
calendar: 3;
Chat; 1

File system: 3;
Video: 3;
calendar: 3; Chat;
1

File system: 3;
Video: 2;
calendar: 3;
Chat; 1

Note: very easy
(1), easy (2), not
diffcult (3),
difficult (4), very
difficult (5)

Could you rank from 1 to 5 the utility
of the eMeeting's Tools?

File system: 2;
Video: 1;
Collaborative
calendar: 2;
Chat; 1

File system: 2;
Video: 1;
Collaborative
calendar: 3; Chat;
1

File system: 2;
Video: 1;
Collaborative
calendar: 2;
Chat; 1

Note: very useful
(1) (2) (3) (4) (5)
not useful

Please, can you rate the video
quality? 3 3 3

Note: poor (1)
(2) (3) (4) (5)
very good

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 25/60

Do you think it may be useful to keep
the files used in an eMeeting session
available for other users once the
session has already finished?

Yes Yes Yes

While you were showing the file
slides, has anyone noticed any
delay?

3 3 3
Note: often (1)
(2) (3) (4) (5)
never

Do you find the calendar tool useful? 3 4 2
Note: very useful
(1) (2) (3) (4) (5)
not useful

Are the functionalities of calendar
tool sufficient? If not, what would you
like?

Yes Yes Yes

Do you think you could use some of
the eMeeting features, such as file
Management or Shared Calendar
independently of its use in eMeeting
for other purposes in your
organization?

Yes, Shared
calendar

Yes, Shared
calendar

Yes, Shared
calendar

What other Tools do you think would
be interesting to be offered by
eMeeting?

Collaborative
whiteboard

Document
exporting feature

Collaborative
whiteboard

How do you rank your experience
with eMeeting? 4 3 4

Note: bad (1) (2)
(3) (4) (5) very
satisfying

As for the conclusions drawn from the questionnaire, we can state that:

The number of users and the interaction between them will always depend on the topic of the meeting and
therefore the application should be prepared to manage any of the conditions that may occur.

The questionnaires revealed a high degree of satisfaction using the application in questions 6, 9, and 13
(How would you rate the video Quality, Do you find the calendar tool useful? How do you rank your
experience with eMeeting)?

Even when the tests were satisfactory and the use of the tool was not being harmed by it integration into the
environment Grid4All, the evaluators found no clear benefits in the two tools that were added (SC and
VOFS), but they could see the potential of the eventual integration in a decentralized environment as
Grid4All.

We conclude however that while peer-to-peer sharing through VOFS may not be of great interest to these
participants, decentralization of eMeeting could be advantageous from an economic point of view since it
would reduce the costs of a Flash Media Server and increase the scalability and the capacity to work when
the main server degrades or fails. Re-engineering the centralized version of the collaboration tool will
nevertheless incur a high initial cost that as mid-size business, they cannot afford.

3.6.4 Lessons learnt

Based on the perception of the evaluators as previous users of the centralized version of eMeeting, it
appears that the advantages of integration into Grid4All are not clear to the end user although it should be
pointed out that the assessment was not conducted in real conditions for integration, but in a simulation.

One possible advantage of integrating eMeeting with Grid4All would be the ability to access files outside the
eMeeting application (by using VOFS) and the potential of using a group calendar applications, in addition,
being able to distribute video and audio in a decentralized manner will also be a relevant opportunity.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 26/60

3.7 Synthesis of the Qualitative Evaluation

Below we have summarized in a table the main pros, cons for each analyzed result.

Grid4all
result

Stakeholder Strengths Weaknesses Other Comment

Niche
(DCMS)

D Performance (in
decentralized
architecture)

Tolerance to churn

Interoperability (Linux-
Windows)

Installation proc.

Documentation

Telex EU, D Simplicity

No roll-back No alternate
middleware/platform
provides this
combination of
features

Questionnaire will be
posted to Telex's web
site

VOFS EU, D Responsiveness

Tolerance to
disconnections

Low maturity
(integration to OS
environment)

Easier accessible to
the more technical
users

CFS EU Combines shared
documents with
versions, files and
folders

Automatic conflict
resolution

Poor user-friendliness

Lack of support for
disconnected mode

 Could become an
addition to Firefox

eMeeting EU Wide scope:
synchronous share of
voice, video,
documents, charts

Integration within
Grid4all is partial

 Opinions depend on
the topic of the
meeting

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 27/60

4. Quantitative Evaluation

4.1 Niche (a Distributed Component Management System, DCMS)

Name Niche structured overlay network infrastructu re performance
Test objective Assess the performance of underlying Niche for application deployment
Testing steps Communication components perform series of lookups on systems (overlay

networks) of varying size.
Measuring the average lookup time and the average number of hops.

Comparative Average number of hops to do a lookup in varying sized overlays are compared to
the expected O(log n) number of hops

RESULTS Our performance experiments on Grid5000 show that the lookup in Niche is
scalable as O(log n) and follows the expected number of hops.
Figure below depicts the number of hops to do a lookup in the Niche overlay with
different number of nodes; and the expected theoretical number of hops, O(log n),
to do lookup in a structured overlay network. It is easy to see that experimental
values almost coincide with expected theoretical values.
The performance evaluation experiments have been performed on PlanetLab (128
nodes) and on Grid5000 (512 nodes) testbeds.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 28/60

Name Niche user experience based on YASS (Yet Another Storage Service)
Test objective Evaluate the scalability and robustness of applications developed and managed using Niche

based on the user experience under different conditions and scale.
The application used for evaluation is Yet Another Storage Service, YASS, which is a robust
storage service that allows a client to store, read and delete files on a set of computers. The
service transparently replicates files in order to achieve high availability of files and to improve
access time. The current version of YASS maintains the specified number of file replicas
despite of nodes leaving or failing, and it can scale (i.e. increase available storage space) when
the total free storage is below a specified threshold.

Testing steps Simulate user file store operation and measure the average time needed to store a file under
different network sizes (16 – 64 nodes) and dynamic environments (node churn following the
shifted Pareto distribution).
YASS has been configured to have a number of storage components (each on its own
computer) and one front-end (YASS client) issuing store requests with configurable intensity.
YASS was deployed on Grid5000 nodes. YASS performance was estimated as the average
time it takes to store a file with replicas (file transfer was not included). In order to evaluate how
performance of YASS depends on the system scale (number of storage elements) and the level
of churn (intensity of nodes leaves and joins), we performed a number of experiments running
YASS with different number of storage components (16, 32, or 64) and different rates of churn:
no churn, low churn (mean node lifetime of 60 min following Pareto distribution), medium churn
(mean node lifetime of 40 min following Pareto distribution) and high churn (mean node lifetime
of 20 min following Pareto distribution). Note that when YASS is running under churn, the self-
healing control loop restores the files and replicas, which are lost due to node failures or leaves;
whereas the self-configuration control loop allocates and deploys new storage components to
maintain the required size of the storage space. Thus, when YASS operates under churn, we
expect that the access performance will decrease. Some results of performance experiments
are presented below (see RESULTS)

Comparative N/A
RESULTS Figure below depicts file-store operation time versus the size of the overlay network in which

YASS operates (the number of storage components, each component on its own node). Figure
shows two cases: no churn, and low churn (average node lifetime of one hour following shifted
Pareto distribution).
In the case of no churn, Niche/YASS scales with increase of the network size (number of
storage components). In case of low churn, the average store operation time increases
because of timeout/retry that can happen when nodes leave or fail, and also when nodes join
and by this make overlay routing tables temporarily inconsistent. The results are sensitive to the
timeout values that can be tuned for different environments.
The performance evaluation experiments have been performed on the Grid5000 test bed using
up to 64 nodes.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 29/60

Name Niche user experience based on YACS (Yet Another Computing Service)
Test objective Measure the management overheads for job management in a self-managing computing service

called Yet Another Computing Service (YACS).
YACS is a robust distributed computing service implemented using Niche. YACS allows a client
to submit and execute jobs, which are bags of independent tasks, on a network of nodes
(computers). YACS guarantees execution of jobs despite of nodes leaving or failing. Furthermore,
YACS scales, i.e. changes the number of execution components, when the number of jobs/tasks
changes. YACS supports check pointing that allows restarting execution from the last checkpoint
when a worker component fails or leaves.
The goal of these performance experiments is to estimate YASS self-management efficiency
(namely self-configuration efficiency) measured as self-management overhead in executing jobs
(bag of tasks) of different size and granularity by YACS with different amount of computing
resources (masters and workers, each on its own computer). In evaluation experiments, YACS
operates without resource churn (node leaves, joins, failures).

Testing steps Divide a job to different number of tasks (of different granularity), assign the job to different
number of workers and measure the time to complete the job.
The jobs execution time is measured as the period of time between submitting a job by the YACS
front-end (client) and receiving execution results by the client. Management overhead includes
the time of interaction of the front-end with YACS to find a free master for the given job, time of
interaction of the master with the resource service to find free workers to execute tasks in the job;
time to assign the tasks to the workers; time to communicate results from workers to its master;
time to deploy new masters and workers in the case of high load.
The performance experiments have been performed on the Grid5000 test bed using up to 32
nodes.
Experiment scenario: Create a job with different number of tasks (of different granularity) and
assign the job to a master that uses different number of workers to execute the job; measure the
execution time it takes for the master and workers to complete all tasks in the job. Compare the
execution time with the time of an idealised execution (with no overhead) that includes only useful
work of performing tasks. Comparison of real execution time with the ideal one should show the
management overhead.

Comparative Ideal-case job execution without management overheads
RESULTS The figure below shows the management overhead versus the number of tasks (load) for YACS

with different number of works.
According to results (see figure below), the management overhead can be very low if using the
optimum number of workers and task granularity. The high overhead can be accepted for critical
jobs where the finish time is more important than the overhead.
In the performance experiments, the functional part of YACS was configured to have 1 front-end,
1 resource service (that keeps track and allocates workers and masters), and a number of
workers (up to 30).
The performance experiments have been performed on the Grid5000 test bed using up to 32
nodes.

Overhead as percentage increase to idealized model time

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

1 5 10 20 30 60 120

of tasks

%
 in

cr
ea

se
 o

ve
r

m
od

el

10 workers

20 workers

30 workers

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 30/60

Name YACS (Yet Another Computing Service) tolerance t o churn
Test objective YACS is a robust distributed computing service implemented using Niche. YACS

allows a client to submit and execute jobs, which are bags of independent tasks, on
a network of nodes (computers). Job execution in YACS follows the master-worker
paradigm. YACS guarantees execution of jobs despite of nodes leaving or failing,
i.e. it can tolerate node churn (leaves, joins, failures).
The goal of these evaluation experiments was to test how YACS/Niche can tolerate
resource churn, i.e. how it can operate when nodes (running masters and workers)
can unpredictably leave the service, fail, and new nodes can join the service. Note
that when a new node joins the Niche overlay, YACS worker or master can be
deployed on that node and put to service.

Testing steps Apply different increasing intensities of churn until the system breaks, i.e. until it
fails to complete tasks of submitted jobs.
Experiment scenario: Assume some intensity of node churn (joins, leaves and
failures) in YACS. Submit a job (with configurable number and granularity of tasks)
to YACS and observe whether the service is able to complete all tasks in the job. If
YACS manages to complete the job given the churn intensity, it is said to be able to
successfully tolerate churn of that intensity.
YACS was tested under the following three types of churn: (1) alternating leaves
and joins, beginning with a leave; (2) only leaves; (3) random leaves and joins.
Load: Jobs of 30 tasks of 6 min each with checkpoints every 10 seconds.
Churn intensity was chosen in the range from 1 leave/join each 240 sec (4 min) to
1 leave/join each 5 seconds. The churn intensity of 1 failure each 4 min was meant
to have one failure during the lifetime of a 6-min task (of the job performed by 30
workers). The churn intensity of 1 failure each 5 sec was meant to test YACS
configured with timeout of 10 sec, under the churn intensity higher than the churn
intensity that YACS was expected to tolerate.

RESULTS Churn-tolerance test experiments on Grid5000 have shown that the service is
consistently successful to tolerate churn until the churn rate with nodes joining and
leaving around every 10000 ms (10 sec), which is the configured value of the
internal Niche timeout causing restart of stalled operations.
YACS churn tolerance was much better than YASS (Yet Another Storage Service).
This is due to application design. Because in YASS a failure requires much more
self management actions to restore files than in YACS to restart failed jobs/tasks.
This shows that churn tolerance is highly application specific.
The churn-tolerance experiments have been performed on the Grid5000 test bed
for different number of nodes (up to 192 nodes)

4.2 Telex

Due to lack of resources, quantitative evaluation has not been performed. In this last period, the Telex team
has focused on qualitative evaluation, to improve Telex documentation and correct bugs.

4.3 VOFS

Since the VOFS prototype was tailored to be a personal tool rather than an infrastructure tool, simple and
portable back-ends were developed without focus on performance. Therefore, the quantitative evaluation of
the prototype aimed at a usability minimum rather than high performance.

Name Basic file system access

Test objective Test the performance of creating/writing and reading a number of files across different
peers.

Testing steps 256 files, sized 400KB each were copied into a workspace and then read from another
peer. The files were distributed across 1, 2 and 4 machines in a LAN in different tests.

RESULTS • Create/write 256 files of 400KB each: ~1.6 seconds per file

Performance was the same for 1, 2 or 4 machines

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 31/60

• Read 256 files of 400KB each (not cached): ~0.34 seconds per file

Performance was the same for 1, 2, or 4 machines

The results indicate that the prototype is usable for lesser rates of I/O.

The constant performance scaling indicates that there is a constant overhead that can be
eliminated with further engineering. This is very likely due to the generic and portable
back-ends used, especially for storage (sqlite3)

Future Work Performance has to be improved by removing the constant overhead from back-ends or
develop high-performing new ones.

4.4 SIS

Name Query-Answering performance
Test objective Test the performance of query execution within the SIS
Testing steps Measure response times to queries against various collections and numbers of

advertisements. The evaluation process of the G4A-SIS Web Service consisted of query
submissions on a variety of collections of resource advertisements. Initially, twenty five
collection variations were defined, based on the five complexity levels. For each
complexity level, five collections of advertisements were created, comprising 50, 100,
200, 300 and 500 advertisements respectively. For each of the twenty five collections, ten
queries were submitted and the response times were measured for each one. Each entry
in Table 1 corresponds to the average response time for each distinct case. The response
times reported are in seconds. As shown in Table 1 (see Erreur ! Source du renvoi
introuvable.), level 1 is for collections containing only compute node offers, level 2 is for
collections containing an equal amount of compute node offers and complex compute
node offers, level 3 is for collections with complex compute node offers, level 4 is for
collections with cluster offers, and level 5 is for collection with complex cluster offers. The
bottom right cell of the table (queries on collections of 500 complex cluster offers) does
not contain any results because the client which was used to issue queries shut down the
connection to the service before any results were retrieved (timeout for the client was set
to ten minutes, which means the service would need more time to return results)

RESULTS Another setup was created in order to observe the responsiveness of the G4A-SIS Web
Service in more realistic cases, as far as complexity of advertisements and queries is
concerned. For example, it is generally expected that most of the agents interacting with
the G4A-SIS will either provide or search for compute nodes, and only few of them will
offer or request clusters combined with XOR/AND operators. Therefore, an attempt was
made to capture an “average” state of the G4A-SIS registry. This was accomplished by
creating collections of advertisements which contain the four basic kinds of
advertisements (not level 2), distributed according to the Zipfian distribution. Table 2
shows the obtained results after testing the G4A-SIS Web Service by submitting queries
to registries that contained advertisements distributed using the Zipfian distribution. Ten
measurements were taken for each collection, and the values in the table are the average
values. In “Zipf 1” collections, the distribution exponent is equal to 1, while in “Zipf 2”
collections the exponent is equal to 2.

Table 1. G4A-SIS Response times

Level \ #Ads 50 100 200 300 500

1 0.654 1.772 5.572 13.087 33.899

2 1.219 4.472 14.318 28.931 80.498

3 1.981 6.581 25.765 56.996 154.878

4 3.200 11.200 42.649 98.242 269.048

5 12.237 49.024 189.731 450.335 N/A

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 32/60

Table 2. G4A-SIS Response times (Zipfian distribution of advertisements)

Distribution \ #Ads 50 100 200 300 500

Zipf 1 1.988 6.740 25.565 58.724 153.182

Zipf 2 1.297 4.100 15.284 35.143 84.905

Name Automated Semantic Annotation of WSDL Services A ccuracy
Test objective Measure the accuracy of USDS method (synthesis of state-of-the-art mapping methods) – a

method to discover matches between WSDL part names and OWL domain ontology classes using
textual descriptions of WSDL elements

Testing steps Measure accuracy of USDS method using Semantic Service Selection (S3) Contest test bed (250
selected services of 7 domains) and compare results with state-of the art mapping methods
(string-based and vector-based ones)

RESULTS Accuracy is quite satisfactory for most of the tests (6 out of 7 domains). In Figure 1 we present
accuracy results from individual mapping methods as well as from the USDS. USDS exploits
information from the “name” attribute of each operation, the “name” attribute of messages and the
“name” attribute of part elements of messages. Text that may have been introduced in the
documentation element of operations and messages’ parts, contribute further information in the
process. The USDS system performs equally well to the corpus, with or without exploiting
documentation (textual descriptions). This mainly happens since, in the specific corpus we have
used in these experiments, all the significant terms that describe the intended meaning of the
service’s part name are used as components of the value of the “name” attribute of part,
messages, and operation elements. Special attention should be given to domain 5 where the
SimpleString method achieves accuracy equal to 0.59 (in average), while the other individual
methods perform lower than 0.60, and the USDS method performs impressively well, achieving an
accuracy of 0.93. In domain 7 the USDS method performs equally well with the SimpleString
(base-line) method. The vector-based methods perform mildly for this domain. It should be stated
that although the SimpleString method performs well in our corpus, in real life services this is
unlikely to happen due to the fact that it is very rare to develop services whose part names are
syntactically so much close to the labels of classes in any ontology, even in highly technical
domains.

FUTURE
WORK

Improve accuracy using different synthesis operators (e.g. union, geometric mean, etc) of the
USDS method

Fig. 1. Average accuracy results for the corpus, per method and domain

Name Ranking and Selection Efficiency

Test objective Measure the efficiency of the internal Selection module to satisfy buyers' and sellers'
preferences as well as to balance query load among sellers.

Testing steps Measure the satisfaction and query load of agents (buyers and sellers) for different workloads
and in the following environments: when agents are (i) only interested in their preferences, (ii)
only interested in their load, and (iii) interested in both their load and preferences.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 33/60

RESULTS Our main objective during all our experiments was: to study how well this module adapts to
different agents' preferences. With this in mind, we consider agents (i) that are only interested in
their preferences (the preference-based case), (ii) that are only interested in their load (the
utilization-based case), and (iii) that are interested in both their load and their preferences (the
normal case).

Figure 2 shows the satisfaction results of these experiments with a workload range from 30 to
100 percent of the total system capacity. Values above 1 mean that agents are satisfied with
query allocation and values under 1 means that they are not satisfied. We can observe in such
a figure that, as expected, agents are more satisfied in the preference-based case than in the
utilization-based case. But, contrary to the expected, providers are less satisfied in the
preference-based case than in the normal case. During our experimentations, we observed that
those providers with highly preferences tend to monopolize the queries, which causes
dissatisfaction to those with lowly preferences. This phenomenon does not occur in the normal
case because the ranking internal service also considers the agents' utilization. This is why
agents are in average less satisfied in the preference-based case than in the normal case.
However, since in the normal case providers pay more attention to their utilization as the
workload increases, providers have the same degree of satisfaction, for high workloads, in both
preference-based and normal cases. Concerning query load balancing (see Figure 3), the
Selection module performs well in the utilization-based and normal cases. But, in the
preference-based case, the Selection module significantly degrades the agents' utilization
because agents have no consideration for their load. On the other side, observe that, in the
utilization-based case, the Selection module follows the behavior of a load balancing algorithm,
but it is much better from a satisfaction point of view. These results allow us to conclude that the
Selection module allows agents to obtain from the system what they want and not what the
system considers relevant for them. In other words, our results demonstrate that the Selection
module ensures good levels of satisfaction as far as the system is adequate to agents and vice
versa. Thus, if the agents correctly express their preferences, the Selection module allows them
to reach their expectations while ensuring good query load balancing as well.

FUTURE WORK Improve performance of the Selection module by optimizing the agents' preferences manager.

Fig. 2. Satisfaction results for a workload range from 30 to 100% of the total system capacity when
participants are captive and for three kinds of providers: (i) when they are interested only in their preferences
(the preference-based case), (ii) when they are just interested in their utilization (the utilization-based case),
and (iii) when their utilization is as important as their preferences (the normal case).

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 34/60

Fig. 3. Query load balancing results for a workload range from 30 to 100% of the total system capacity when
participants are captive and for three kinds of providers: (i) when they are interested only in their preferences
(the preference-based case), (ii) when they are just interested in their utilization (the utilization-based case),
and (iii) when their utilization is as important as their preferences (the normal case).

4.5 MIS

Name Evaluation within decentralised markets
Test objective Evaluate the influence of the MIS to decentralised markets
Testing steps The bidding agents are trading in separated equilibriums prices at one of the 8 markets.

Afterwards, the MIS provides the agents with a global information and the influence is
measured

Comparative -Centralised Grid markets like Tycoon. We took the central market as optimal price to
reach, however the central market is limited in its scalability. Our decentralized market
using the MIS performs close to the prices obtained by the central market.
-Decentralised markets without MIS. Our system with decentralized markets using the
MIS leads to a higher social welfare and to fairer prices. Without the MIS, the system
shows a lower social welfare at each market and a high variety among the prices.

FUTURE WORK Intelligent bidding tools and strategies exploiting market information.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 35/60

4.6 CAS – CA

Name Comparison of heuristics developed to solve t he Winner Determination Problem
for Grid4ALL CA model

Test objective Compare the allocative efficiency (surplus) and time to compute WDP with that of an
exact resolution using CPLEX solver.

Testing steps Same set of input instances (bids representing jobs from buyers and bids representing
bundle offer from sellers) are resolved using the following methods:

� CPLEX solver
� Greedy methods
� Gradient descent method

Comparative Qualitative comparison with other published combinatorial auction mechanisms
specifically adapted for computational resources have been done. Comparable solutions
for the most part do not satisfy one or more of the following criteria (a) provide heuristics-
based resolutions (b) provide means for suppliers to indicate the minimum quantity of
allocation (c) preferentially allocate at the earliest possible times.
The GreedyX heuristic proposed by SORMA project (www.ist-sorma.eu) presents 70%
average efficiency.

PREVIOUS STATUS
(D5.2)

When instance sizes (bids) exceed 100, CPLEX either stops (out of memory) or takes
many hours to achieve reasonable gaps from best estimated solution.
The different greedy methods achieve different levels of efficiency. The best achieved
allocative efficiency (closeness to optimal solution) reached 85% of optimality.
The gradient descent method has shown to reach 82% of optimality over the compared
input instances. It also improves the quality of solution by increasing the number of
allocated jobs and preferentially allocates (maintaining equivalent efficiency) the closest
(to current time) time slots.

FUTURE WORK The pricing scheme has been completed (below) and this module is executed once
optimal allocations have been computed.
The combinatorial auction has not been integrated within the auction framework as
planned (lack of resources).
It is recommended that the following tools complement the current design:
• Selection of appropriate heuristic (or exact method) based on input instances and

other parameters (such as time to resolve, availability of licence)
• Weighted multi-attribute matching with appropriate similarity functions
• Intelligent tools for consumers to specify bids based on knowledge of price and

supply/demand trends and local policies.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 36/60

Name Evaluation of the pricing scheme developed for Grid4ALL Combinatorial auction
Test objective Study the quality of hourly commodity (resource) prices that is computed by the auction
Testing steps Different set of input instances (bids representing jobs from buyers and bids representing

bundle offer from sellers) are resolved to compute the allocations.
Based on the computed allocations, generate prices:
• Per resource type and as function of time
• Per resource type and as function of resource quality
• Per resource type

Comparative Comparable pricing schemes (reported in literature) do not furnish either commodity
prices or commodity prices as a function of time. Instead they compute prices of bundled
resources. Whereas this is computationally efficient, this approach does not allow
participants to understand the weight associated to each type of resource (storage, cpu,
network etc).
Further more the only incentive-compatible pricing schemes that have been reported
basically follow the Vickrey-Clarkes-Grove method. This method is not budget-balanced
and more over computationally very intensive.
One of the methods (MACE) proposed by the Sorma project (www.ist-sorma.eu) is to
generate bundle prices and distribute the surplus amongst the suppliers inversely
proportional to their contribution to the welfare. This cannot be explained. The second
method they propose (GreedyEx) distributes the surplus based only on the quantity of
CPU that is contributed. This is not acceptable since the importance of each type of
resource is dependent on the nature of the application. Furthermore by this method,
suppliers who furnish only storage do not receive any surplus.

RESULTS Not applicable
FUTURE WORK The method that we propose determines commodity (per resource type) prices as a

function of time. The computed price satisfies (a) market clearing property, i.e. losing
jobs (bundles) have prices that are inferior (superior) (b) is budget balanced (c)
individually rational. It is however not incentive compatible (strategy proof).
There is however a limitation in the quality of prices at different time-slots. If the different
times are insufficiently bid, then price complementarities (between times) may not be
computable, e.g., some slots may have prices set to zero. This should not be a reason to
discard commodity pricing schemes; however adaptive interpretations methods should
be studied and proposed.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 37/60

5. Conclusion

An evaluation has been performed to several innovative integrations of Grid4all results. This evaluation had
two forms:

• qualitative: questionnaire-based evaluation; different stake-holders, end-users or developers external to
the project have used and exercised the software results; feedback was retrieved by requesting the
evaluators to fill questionnaires and also through informal discussions between experts and the
evaluators.

• quantitative: technical evaluations provide quantitative metrics of different software; for each software
result, quantitative evaluation has focused on the most meaningful metrics (in most cases performance).

Individual software results evaluated quantitatively to measure metrics relevant to the nature of the offered
functionality. Quantitative evaluation is important since it has helped identify the weak points and the areas
that require improvement. For example performance figures give thresholds that could help improve
operational exploitation.

Qualitative evaluation allowed us to assess the adequacy of these Grid4all results against the users needs
and more generally the stakeholders needs. The most mature set of results were identified for qualitative
evaluation. Qualitative evaluation was conducted by the stake-holders according to the nature of the result.
Telex and Niche were evaluated through development projects where applications (or servers) were
designed and developed using these software platforms. VOFS, CFS and eMeeting were evaluated by end-
users of different degrees of technical (at least in this domain) awareness.

Developers (evaluating Telex and Niche) evaluated the suitability of the APIs, the programming complexity,
the feature set. End-users (evaluating VOFS, CFS and eMeeting) focused on the ergonomic aspects, the
usefulness with respect to their needs and the efficiency of the products.

Finally these qualitative evaluation results show that:

• ergonomic improvements and more documentation are necessary in several cases;

• generally the software results are not in a release-quality stage yet.

Overall, the results technically fulfill their initial objectives; and when comparis ons with existing
solutions are possible, Grid4All, in the context of the democratized grid, provides better functionali ty
and/or improved performance .

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 38/60

Appendix 1: Niche Evaluation Questionnaires

Evaluator A
DCMS: Distributed Component Management System Evalu ation Questionnaire
We are interested to get a feedback on using the DCMS development environment for development and
implementation of distributed applications with or without self-managing capabilities.
1. About you (you can remain anonymous if you want)
Your name: Leif Lindbäck Email: leifl@kth.se

Institution: SCS, ICT, KTH Your position: Lecturer

2. About your application
(a) Please, give a short description of your application.

YASS file transfer, Niche exploration

(b) What was the development stage of your application, when you considered using DCMS?

� Idea � Specification � Design

X Developed � Released � Other:

(c) What design methodology and software engineering methodology have you used?

(d) What are the management concerns of your application?

� Configuration X Fault-tolerance � Optimization

� Protection � None � Other:

(e) Which of the following self-managing properties should your application have?

� Self-configuration X Self-healing � Self-optimization

� Self-protection � None � Other:
(f) Have you developed the functional part of your application using DCMS?

X Yes

� No. What alternative development environment/platform have you used to develop the functional part of
your application?

(g) Have you developed the management part (for self-management) of your application using DCMS?

X Yes

� No. Why not?

(h) What is the expected number and type of nodes, on which your application is expected to execute?

(i) What is the approximate size of your application (in lines of code)?

3. Your knowledge about DCMS
(a) How did you hear about DCMS?

� Searching the Web � Research papers � Friend X Colleague � Other:

(b) Have you considered using another development environment(s) for developing of a self-managing
application or a management part of your application?

X No

� Yes. Which?

(c) What was the main motivation for considering DCMS as a development environment?

X To extend an existing application with self-management capabilities

� To develop a self-managing application from scratch

� To re-write my application in order to achieve self-management capabilities

X To evaluate DCMS as a development environment

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 39/60

� Others:
4. Ease of learn (documentation, examples, time to learn)
(a) Was the DCMS documentation sufficient to learn DCMS?

� Not at all X Partially � Almost � Fully

(b) How was the DCMS documentation pedagogically?

� Excellent � Good X Rather good � Rather bad � Bad

(c) What is your opinion about the provided examples (“hello world”, YASS)?

� Excellent � Good � Rather good X Rather bad � Bad

(Short) comment:

When i say “Rather bad” i mean as an example for learning Niche, i find that YASS is good in itself. The
problem is that YASS is a bit confusing as an example program since there are so many versions and it is
not really clear which class does what. I do not think i would have understood it fully without help. I did not try
the “hello world” program.

(d) How much time did it take you to understand and to successfully run the "hello world" example?

X I did not try it � 1 day � 3 days � 1 week � Other:

(e) How much time did it take you to understand and to successfully run the YASS example?

� I did not try it � 1 day � 3 days � 1 week X Other: About three days, but it would have been
considerably more without help.

(f) In overall, how easy or difficult it was to get acquainted with DCMS in order to develop your own
application?

� Very difficult � Difficult X Acceptable � Easy � Very easy

(Short) comment:

(g) Did you have to explain your DCMS-based application to other people who are not familiar with DCMS
(e.g. to present its details to your colleagues or an examiner), and, if yes, how difficult it was?

X No, I didn't have to

� Yes, I had to, but failed miserably. They need to read DCMS documentation first

� Yes. It was somewhat complicated to introduce DCMS

� Yes. It was rather straightforward

5. Usability and Complexity
(a) How much time did it take to install and to configure DCMS?

� 1 day X 3 days � 1 week � other:

(b) How much time (excluding the learning and installation phases) did it take to code and test a first
prototype of your application developed using DCMS?

� 1 day X 3 days � 1 week � other:

(c) What of the following DCMS features have you used in the functional part of your application?

� Deployment X Groups X One-to-any bindings X One-to-all bindings

� I did not use DCMS in the functional part

(d) What of the following DCMS features have you used in the management part of your application?

� Deployment � Watchers � Aggregators � Managers

� Sensors � Actuation API X I did not develop the management part

(e) Which of the following DCMS features were useful in development your application?

� Deployment X Groups X One-to-any bindings X One-to-all bindings

� Watchers � Aggregators � Managers � Sensors � Actuation API

� Others:

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 40/60

(f) Would you like to have any additional features (e.g. APIs, refinement of APIs, higher-level tools or
services) in DCMS?

Said in words

(g) Did you find the DCMS programming model pertinent for designing self-managing applications?

� No, the DCMS model did not help

� Yes, the DCMS model did help

� The DCMS model enabled self-management

(h) What alternative self-management programming models do you prefer?

 (i) Did DCMS help you to design a modular application, with good separation of concerns?

� I don't think DCMS matters here

� It should have helped, but it didn't

� Somewhat

X Very

� Perfectly

(j) If you developed the functional part of your application using DCMS, how difficult or easy it was to code
the application as a set of distributed components?

� Very difficult � Difficult � Acceptable X Easy � Very easy
(k) How difficult or easy it was to develop and to code the management part of the application?

� Very difficult � Difficult � Acceptable � Easy � Very easy

(l) Do you find the complexity of the framework justified?

� It is not complex at all

� Yes, it is justified

X It is partially justified

� No, it is too complicated (please indicate which parts of the framework or/and APIs are unnecessary
complex)

(m) In overall, how easy or difficult it was to implement your application in the DCMS framework?

� Very difficult � Difficult X Acceptable � Easy � Very easy

6. Performance, scalability, interoperability, and stability
(a) Did your DCMS application perform according to your expectations?

X Sorry, I do not know

� Yes

� No; why

(b) Did your DCMS application scale according to your expectations?

X Sorry, I do not know

� Yes

� No; why:

(c) Have you faced performance issues with using DCMS for your application?

X No

� Yes; what issues:

(d) Have you faced interoperability issues with using DCMS for your application?

X No

� Yes; what issues:

 (e) How would you rate the stability of the DCMS implementation?

X Excellent � Very good � Fair � Not good � Bad � Sorry, I don't know

7. Satisfaction

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 41/60

(a) Will you use DCMS again?

� No, why

X Yes, in which area

(b) Will you recommend DCMS to other developers?

X Yes

� No, why:

(c) In overall, how you would you rate your experience with DCMS?

� Excellent � Good X Rather good � Rather bad � Bad

8. Any other comments:
Told in words

9. Any suggestions on improvement of DCMS:
Told in words

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 42/60

Evaluator B
DCMS: Distributed Component Management System Evalu ation Questionnaire
We are interested to get a feedback on using the DCMS development environment for development and
implementation of distributed applications with or without self-managing capabilities.

1. About you (you can remain anonymous if you want)
Your name: Atli Thor Hannesson Email: athan@kth.se

Institution: KTH Your position: Master student

2. About your application
(a) Please, give a short description of your application.

Yet Another Computing Service (YACS) is the name of the application. It is a distributed computing, or
execution, service that enables the use of shared and distributed computational resources for user
programmed tasks, e.g. CPU intensive and time consuming movie transcoding. It shows self-healing and
self-configuration capabilities to help it survive failures and adapt to changes in the environment, e.g. from
membership or load changes.

(b) What was the development stage of your application, when you considered using DCMS?

� Idea X Specification � Design

� Developed � Released � Other:

(c) What design methodology and software engineering methodology have you used?

Iterative development. Initial requirements specification and preliminary design were created. These
requirements and preliminary design were then divided up into three iterations. These iterations were
processed sequentially, with each being designed, implemented and tested.

(d) What are the management concerns of your application?

X Configuration X Fault-tolerance � Optimization

� Protection � None � Other:

Preferably all should be of concern, but only configuration and fault-tolerance are seriously considered in
current YACS implementation.

(e) Which of the following self-managing properties should your application have?

X Self-configuration X Self-healing � Self-optimization

� Self-protection � None � Other:

Preferably all, but only configuration and fault-tolerance are implemented in current YACS.

(f) Have you developed the functional part of your application using DCMS?

X Yes

� No. What alternative development environment/platform have you used to develop the functional part of
your application?

(g) Have you developed the management part (for self-management) of your application using DCMS?

X Yes

� No. Why not?

(h) What is the expected number and type of nodes, on which your application is expected to execute?

Community grid nodes, i.e. in general ordinary users, like domestic users, small schools and institutions, with
unstable and highly varied resources and connectivity. Number unknown.

(i) What is the approximate size of your application (in lines of code)?

Total number of lines is 14299. This includes every single line; e.g. source code, Javadoc and comment
lines.

3. Your knowledge about DCMS
(a) How did you hear about DCMS?

� Searching the Web � Research papers � Friend � Colleague X Other: school project

(b) Have you considered using another development environment(s) for developing of a self-managing
application or a management part of your application?

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 43/60

X No � Yes. Which?

(c) What was the main motivation for considering DCMS as a development environment?

� To extend an existing application with self-management capabilities

X To develop a self-managing application from scratch

� To re-write my application in order to achieve self-management capabilities

X To evaluate DCMS as a development environment

� Others:
4. Ease of learn (documentation, examples, time to learn)
(a) Was the DCMS documentation sufficient to learn DCMS?

� Not at all � Partially X Almost � Fully

(b) How was the DCMS documentation pedagogically?

� Excellent X Good � Rather good � Rather bad � Bad

(c) What is your opinion about the provided examples (“hello world”, YASS)?

� Excellent X Good � Rather good � Rather bad � Bad

(Short) comment: YASS shows most, if not all, major properties; i.e. groups, the group communication
patterns, fault detection, application specific sensing, all management element types and their hierarchy.
Therefore, I feel it is a good example. Unfamiliar with the “hello world” example.

(d) How much time did it take you to understand and to successfully run the "hello world" example?
X I did not try it � 1 day � 3 days � 1 week � Other:

(e) How much time did it take you to understand and to successfully run the YASS example?

� I did not try it � 1 day � 3 days � 1 week X Other: approx. 5 days.

(f) In overall, how easy or difficult it was to get acquainted with DCMS in order to develop your own
application?

� Very difficult � Difficult X Acceptable � Easy � Very easy

(Short) comment:

Conceptually, I feel DCMS is easy to understand. In practice it is a bit more difficult:

− Development perspective: I feel the bindings complicate things considerably. There are multiple places
where they are defined or specified in some way, in Fractal files and throughout code in binding calls
and group templates. Multiple ways of binding also complicate, to-all, to-any, coupled with return-value
bindings and without. It gets easy to lose track and make mistakes that only become apparent in
runtime.

− Deployment perspective. Getting YASS to deploy and start was a time consuming and frustrating
process. Getting the YACS system to deploy and start for the first time was very time consuming and
very frustrating. There are configurations, scripts and files in multiple different locations that must all be
correct so the different systems are able work together, build-src.xml, build.xml, beanshell scripts,
build.properties the manifest files are examples of places that must be modified so that Jade properly
deploys and starts. These are many places and its easy to make mistakes. Any errors can be very
cryptic and hard to understand.

(g) Did you have to explain your DCMS-based application to other people who are not familiar with DCMS
(e.g. to present its details to your colleagues or an examiner), and, if yes, how difficult it was?

� No, I didn't have to

� Yes, I had to, but failed miserably. They need to read DCMS documentation first

� Yes. It was somewhat complicated to introduce DCMS

X Yes. It was rather straightforward

I have not seen any comments on my thesis report regarding confusion with respect to its discussion of
DCMS/Niche per se.

5. Usability and Complexity
(a) How much time did it take to install and to configure DCMS?

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 44/60

� 1 day � 3 days � 1 week X other: a few days, closer to 1 week than three days, for
both DCMS and YASS. All initial DCMS work was done in relation to getting YASS running so I can’t really
distinguish time between them.

(b) How much time (excluding the learning and installation phases) did it take to code and test a first
prototype of your application developed using DCMS?

� 1 day � 3 days � 1 week X other: Getting things done once you’ve solved deployment
and startup issues is easy. I probably spent 2-3 days on deployment issues, but after that it was only a
matter of hours to define very basic components and get messages flowing between them.

(c) What of the following DCMS features have you used in the functional part of your application?

X Deployment X Groups X One-to-any bindings X One-to-all bindings

� I did not use DCMS in the functional part

(d) What of the following DCMS features have you used in the management part of your application?
X Deployment X Watchers X Aggregators X Managers

X Sensors X Actuation API � I did not develop the management part

(e) Which of the following DCMS features were useful in development your application?

X Deployment X Groups X One-to-any bindings X One-to-all bindings

X Watchers X Aggregators X Managers X Sensors X Actuation API

X Others: non-group bindings, i.e. to individual components.

 (f) Would you like to have any additional features (e.g. APIs, refinement of APIs, higher-level tools or
services) in DCMS?

− Component un-deployment API.

− Synchronous communication API between management elements. Or rather that the current binding
API (and underlying system, of course) supports it.

− Bindings which support both return-value and void functions at the same time.

− Binding the same interface to many different components or groups at the same time. That is
multiple instances of the same interface, bound to different components/groups.

− Difficulty in invoking the self-management. Now I have to listen for group creation events to get
things moving and have the appropriate management elements deployed. I guess the goal is to have
it transparent to the user but it shouldn’t either cause significant “acrobatics” in the self-management
part. Also, having a special component subscribed to ALL components for group creation events
seems shaky.

(g) Did you find the DCMS programming model pertinent for designing self-managing applications?

� No, the DCMS model did not help

� Yes, the DCMS model did help

X The DCMS model enabled self-management

(h) What alternative self-management programming models do you prefer?

(i) Did DCMS help you to design a modular application, with good separation of concerns?

� I don't think DCMS matters here

� It should have helped, but it didn't

� Somewhat
X Very

� Perfectly

(j) If you developed the functional part of your application using DCMS, how difficult or easy it was to code
the application as a set of distributed components?

� Very difficult � Difficult � Acceptable � Easy X Very easy

(k) How difficult or easy it was to develop and to code the management part of the application?

� Very difficult � Difficult � Acceptable X Easy � Very easy

(l) Do you find the complexity of the framework justified?

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 45/60

� It is not complex at all

� Yes, it is justified

X It is partially justified

� No, it is too complicated (please indicate which parts of the framework or/and APIs are unnecessary
complex)

I feel the bindings are too complex and to spread out. They are defined in multiple places, in fractal files and
in code. Easy to make mistakes.

Group binding templates are a source of mystery.

(m) In overall, how easy or difficult it was to implement your application in the DCMS framework?

� Very difficult � Difficult � Acceptable X Easy � Very easy

6. Performance, scalability, interoperability, and stability
(a) Did your DCMS application perform according to your expectations?
X Sorry, I do not know

� Yes

� No; why:

(b) Did your DCMS application scale according to your expectations?

X Sorry, I do not know

� Yes � No; why:

(c) Have you faced performance issues with using DCMS for your application?

� No

X Yes; what issues: component deployment occasionally block for a long, but configurable, amount of time.

(d) Have you faced interoperability issues with using DCMS for your application?

� No

X Yes; what issues: instability when running in cross-OS setting. When running between Linux and Win
deployments there were multiple false failure suspicions, which wreaked havoc with YACS.

 (e) How would you rate the stability of the DCMS implementation?

� Excellent � Very good X Fair � Not good � Bad � Sorry, I don't know

7. Satisfaction
(a) Will you use DCMS again?

� No, why
X Yes, in which area

If un-deployment is added I could imagine trying it out for a fault-tolerant and adaptation capable data-center
infrastructure project that I’m headed for.

(b) Will you recommend DCMS to other developers?

X Yes

� No, why:

 (c) In overall, how you would you rate your experience with DCMS?

� Excellent X Good � Rather good � Rather bad � Bad

8. Any other comments:
No comments

9. Any suggestions on improvement of DCMS:
I’ve mentioned many of these things earlier in the questionnaire. But I’ll summarize them here:

− Un-deploy support is essential for production use.

− Difficulty in invoking self-management. Having to listen for group creation events is somewhat awkward.
As is having to bind to the group in order to find out what kind of group it is, which is needed to be able
to deploy appropriate management elements. I would say its unlikely that systems will only have one
type of group that needs management, in fact YACS has different ones.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 46/60

− Bindings and interfaces are complicated in general. They are defined and named in fractal files, bound in
different places in code and listed in mysterious group templates. To further complicate there are the
different binding possibilities of one-to-any and one-to-all, coupled with return or no-return value
bindings. It is very easy to make mistakes and this is only discovered in runtime. Some of these factors
definitely have a very valid “existence”, e.g. the one-to-any and all possibilities, but I wonder how it could
be simplified.

− Binding the “same” interface to multiple components/groups at the same time, i.e. interface instances.
For example, the Job Master component of YACS has to bind to Workers individually and instruct each
to perform a particular task. If it later wants to query the status of the task it has to rebind to each Worker
component that is of interest.

− Bindings/function invocations that time out, instead of blocking indefinitely. I believe this has been
implemented by now, but I haven’t had the chance to test.

− The redundant event delivery is an easy problem to solve, but would be nice to be without.

− Guaranteed consistency among management element replicas would be extremely beneficial.

− Synchronous cross management element communication

− In addition to the now possible asynchronous event communication.

− Removing the stable boot node requirement.

− Forcing NON-co-location deployment. If I want to be “absolutely” sure that an element is not on the same
node as the component, or group.

− IF I recall correctly:

o NO_SEND_TO_SENDER doesn’t work

o Parameter-less functions don’t work

− Initial deployment and startup is a frustrating experience. Configuration parameters, scripts and file
deployments are ubiquitous. It is very easy to make mistakes and the results are often very cryptic error
messages. The number of systems, flow of information and sequence of events is complicated; Jade,
Beanshell, Oscar etc.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 47/60

Evaluator C
Niche (A Distributed Component Management System) E valuation Questionnaire
We are interested to get a feedback on using the Niche development environment for development and
implementation of distributed applications with or without self-managing capabilities.

1. About you (you can remain anonymous if you want)
Your name: Lin Bao Email: linb@kth.se

Institution: KTH Your position: Master student

2. About your application
(a) Please, give a short description of your application.

I integrate a generic policy based framework into Niche platform and demonstrate it with YASS control loop
self-healing and self-configuration.

(b) What was the development stage of your application, when you considered using Niche?

 Idea � Specification � Design

� Developed � Released � Other:

(c) What design methodology and software engineering methodology have you used?

Design methodology, I drew the class diagram for each class, and remembered that they will be deployed on
different nodes

(d) What are the management concerns of your application?

 Configuration √  Fault-tolerance √ � Optimization

� Protection � None � Other:

(e) Which of the following self-managing properties should your application have?

 Self-configuration√  Self-healing√ � Self-optimization

� Self-protection � None � Other:

(f) Have you developed the functional part of your application using Niche?

� Yes

 No. What alternative development environment/platform have you used to develop the functional part of
your application? √

I did not develop any application on the platform. All things I was developing is nonfunctional requirements.
The functional part of YASS used as a case study was given.

(g) Have you developed the management part (for self-management) of your application using Niche?

 Yes√

� No. Why not?

 (h) What is the expected number and type of nodes, on which your application is expected to execute?

At least two nodes.

(i) What is the approximate size of your application (in lines of code)? 800 lines for XACML implementation,
600 lines for SPL implementation

3. Your knowledge about Niche
(a) How did you hear about Niche?

� Searching the Web � Research papers � Friend � Colleague  Other: √Supervisors

(b) Have you considered using another development environment(s) for developing of a self-managing
application or a management part of your application?

 No√

� Yes. Which?

 (c) What was the main motivation for considering Niche as a development environment?

� To extend an existing application with self-management capabilities

� To develop a self-managing application from scratch

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 48/60

� To re-write my application in order to achieve self-management capabilities

� To evaluate Niche as a development environment

 Others: √ to integrate a generic policy based framework into Niche, make the self-managing behavior
under the government of policies.

4. Ease of learn (documentation, examples, time to learn)
(a) Was the Niche documentation sufficient to learn Niche?

� Not at all  Partially√ � Almost � Fully

(b) How was the Niche documentation pedagogically?

� Excellent  Good√ � Rather good � Rather bad � Bad

(c) What is your opinion about the provided examples (“hello world”, YASS)?

 Excellent√ � Good � Rather good � Rather bad � Bad

(Short) comment: I did not use the “hello world” example. YASS is excellent. Small application with self-
managing control loops, is quite suitable to my work

(d) How much time did it take you to understand and to successfully run the "hello world" example?

 I did not try it√ � 1 day � 3 days � 1 week � Other:

(e) How much time did it take you to understand and to successfully run the YASS example?

� I did not try it � 1 day � 3 days  1 week√ � Other:

(f) In overall, how easy or difficult it was to get acquainted with Niche in order to develop your own
application?

� Very difficult � Difficult  Acceptable√ � Easy � Very easy

(Short) comment:

(g) Did you have to explain your Niche-based application to other people who are not familiar with Niche
(e.g. to present its details to your colleagues or an examiner), and, if yes, how difficult it was?

 No, I didn't have to √

� Yes, I had to, but failed miserably. They need to read Niche documentation first

� Yes. It was somewhat complicated to introduce Niche

� Yes. It was rather straightforward

5. Usability and Complexity
(a) How much time did it take to install and to configure Niche?

� 1 day � 3 days  1 week√ � other:

(b) How much time (excluding the learning and installation phases) did it take to code and test a first
prototype of your application developed using Niche?

� 1 day � 3 days  1 week√ � other:

(c) What of the following Niche features have you used in the functional part of your application?

� Deployment � Groups � One-to-any bindings � One-to-all bindings

 I did not use Niche in the functional part√

(d) What of the following Niche features have you used in the management part of your application?

� Deployment  Watchers√  Aggregators√  Managers√

� Sensors  Actuation API√ � I did not develop the management part

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 49/60

(e) Which of the following Niche features were useful in development your application?

� Deployment � Groups  One-to-any bindings√  One-to-all bindings√

 Watchers√  Aggregators√  Managers√ � Sensors  Actuation API√

� Others:

 (f) Would you like to have any additional features (e.g. APIs, refinement of APIs, higher-level tools or
services) in Niche?
With subscription, I want Niche to provide one-to-all and one-to-any binding, if the subscriber is a group.

(g) Did you find the Niche programming model pertinent for designing self-managing applications?

� No, the Niche model did not help

� Yes, the Niche model did help

 The Niche model enabled self-management√

(h) What alternative self-management programming models do you prefer?

(i) Did Niche help you to design a modular application, with good separation of concerns?

� I don't think Niche matters here

� It should have helped, but it didn't

� Somewhat

 Very√

� Perfectly

(j) If you developed the functional part of your application using Niche, how difficult or easy it was to code the
application as a set of distributed components?

� Very difficult � Difficult  Acceptable√ � Easy � Very easy

(k) How difficult or easy it was to develop and to code the management part of the application?

� Very difficult � Difficult  Acceptable√ � Easy � Very easy

(l) Do you find the complexity of the framework justified?

� It is not complex at all

 Yes, it is justified√

� It is partially justified

� No, it is too complicated (please indicate which parts of the framework or/and APIs are unnecessary
complex)

(m) In overall, how easy or difficult it was to implement your application in the Niche framework?

� Very difficult � Difficult  Acceptable√ � Easy � Very easy

6. Performance, scalability, interoperability, and stability
(a) Did your Niche application perform according to your expectations?

 Sorry, I do not know√

� Yes

� No; why:

(b) Did your Niche application scale according to your expectations?

 Sorry, I do not know√

� Yes

� No; why:

(c) Have you faced performance issues with using Niche for your application?

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 50/60

 No√

� Yes; what issues:

(d) Have you faced interoperability issues with using Niche for your application?

� No

 Yes; what issues: √ Synchronized operation

 (e) How would you rate the stability of the Niche implementation?

� Excellent � Very good � Fair � Not good � Bad  Sorry, I don't know √
7. Satisfaction
(a) Will you use Niche again?

 No, why √ I finished my thesis work.

� Yes, in which area

 (b) Will you recommend Niche to other developers?

 Yes√

� No, why:

 (c) In overall, how you would you rate your experience with Niche?

� Excellent  Good√ � Rather good � Rather bad � Bad

8. Any other comments:
Niche does not provide a unified development environment. Some parts are programmed in Fractal model
and some parts are hard coded in Java Classes. Each MEs contains long, almost the same java code of
“Fractal Stuff”. I think only different codes need to be present here. Furthermore, those “Fractal Stuff” make
the code less readable.

9. Any suggestions on improvement of Niche:
Subscription can support one-to-any, one-to-all binding. Maybe it has already provided, but I never used.
StartManager in YASS application should be implemented in Fractal model.

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 51/60

Evaluator D
DCMS: Distributed Component Management System Evalu ation Questionnaire
We are interested to get a feedback on using the DCMS development environment for development and
implementation of distributed applications with or without self-managing capabilities.

1. About you (you can remain anonymous if you want)
Your name: Catalin Stefan Email: stefan.catalin@orange-ftgroup.com

Institution: France Telecom Your position: stagiaire/intern

2. About your application
(a) Please, give a short description of your application.

The application is an autonomic distributed storage system with adaptive replication, which aims to adjust
the replication of stored data in order to provide some quality of service guarantees to the user. The system
implements autonomic management to adjust to a dynamic environment.

(b) What was the development stage of your application, when you considered using DCMS?

 Idea � Specification � Design

� Developed � Released � Other:

(c) What design methodology and software engineering methodology have you used?

Rational Unified Process engineering model

(d) What are the management concerns of your application?

� Configuration  Fault-tolerance  Optimization

� Protection � None � Other:

 (e) Which of the following self-managing properties should your application have?

 Self-configuration  Self-healing  Self-optimization

� Self-protection � None � Other:

 (f) Have you developed the functional part of your application using DCMS?

 Yes

� No. What alternative development environment/platform have you used to develop the functional part of
your application?

 (g) Have you developed the management part (for self-management) of your application using DCMS?

 Yes

� No. Why not?

 (h) What is the expected number and type of nodes, on which your application is expected to execute?

Estimated: hundreds

(i) What is the approximate size of your application (in lines of code)?

Abt. 10000 lines, of which 30% functional code.

3. Your knowledge about DCMS
(a) How did you hear about DCMS?

� Searching the Web � Research papers � Friend � Colleague  Other: University
professor, work supervisor

(b) Have you considered using another development environment(s) for developing of a self-managing
application or a management part of your application?

 No

� Yes. Which?

(c) What was the main motivation for considering DCMS as a development environment?

� To extend an existing application with self-management capabilities

 To develop a self-managing application from scratch

� To re-write my application in order to achieve self-management capabilities

 To evaluate DCMS as a development environment

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 52/60

� Others:
4. Ease of learn (documentation, examples, time to learn)
(a) Was the DCMS documentation sufficient to learn DCMS?

� Not at all  Partially � Almost � Fully

(b) How was the DCMS documentation pedagogically?

� Excellent � Good  Rather good � Rather bad � Bad

(c) What is your opinion about the provided examples (“hello world”, YASS)?

� Excellent  Good � Rather good � Rather bad � Bad

(Short) comment:

(d) How much time did it take you to understand and to successfully run the "hello world" example?

� I did not try it  1 day � 3 days � 1 week � Other:

(e) How much time did it take you to understand and to successfully run the YASS example?

� I did not try it � 1 day � 3 days  1 week � Other:

(f) In overall, how easy or difficult it was to get acquainted with DCMS in order to develop your own
application?

� Very difficult  Difficult � Acceptable � Easy � Very easy

(Short) comment:

(g) Did you have to explain your DCMS-based application to other people who are not familiar with DCMS
(e.g. to present its details to your colleagues or an examiner), and, if yes, how difficult it was?

 No, I didn't have to

� Yes, I had to, but failed miserably. They need to read DCMS documentation first

� Yes. It was somewhat complicated to introduce DCMS

� Yes. It was rather straightforward

5. Usability and Complexity
(a) How much time did it take to install and to configure DCMS?

� 1 day � 3 days  1 week � other:

(b) How much time (excluding the learning and installation phases) did it take to code and test a first
prototype of your application developed using DCMS?

� 1 day � 3 days � 1 week  other: a month

Comment:

A first prototype of the application was lengthy to develop and was somewhat complex in that in included
several dcms features that we were testing: statically deployed components, groups and bindings,
experimentation with monitoring stacks etc. There were several problems with dynamic component
deployment and dynamic bindings and obtaining information (e.g. id of manager) for statically deployed
components; which took a lot of time to resolve.

Also, note that development of a first prototype was very much linked with developing an initial architecture
of the application.

A hello world application was also developed simply to test that the dcms was installed correctly and to verify
the way to start creating applications. This step took only 2-3 days.

(c) What of the following DCMS features have you used in the functional part of your application?

� Deployment  Groups  One-to-any bindings  One-to-all bindings

� I did not use DCMS in the functional part

(d) What of the following DCMS features have you used in the management part of your application?

 Deployment  Watchers  Aggregators  Managers

 Sensors  Actuation API � I did not develop the management part

(e) Which of the following DCMS features were useful in development your application?

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 53/60

 Deployment  Groups  One-to-any bindings  One-to-all bindings

 Watchers  Aggregators  Managers  Sensors � Actuation API

� Others:

Comment:

deployment – initial deployment of application is done both statically, for regular components, and
dynamically for management elements in a start manager.

Monitoring stacks (sensors, watchers and aggregators) are widely used in my application both to send
events occurring in the system, and to send acknowledgements from regular component to manager.
Clarification: a manager issues batch operations to different regular components, regular components
perform operations locally and need to send back the result. Since they cannot directly connect to a
manager, a monitoring stack is in place to send the result as an event.

Bindings – both types are used to send actuation commands. There are both statically assigned bindings at
deploy time, and dynamic bindings (a manager binds to the required group at run time).

(f) Would you like to have any additional features (e.g. APIs, refinement of APIs, higher-level tools or
services) in DCMS?

See section 9

(g) Did you find the DCMS programming model pertinent for designing self-managing applications?

� No, the DCMS model did not help

� Yes, the DCMS model did help

 The DCMS model enabled self-management

(h) What alternative self-management programming models do you prefer?

(i) Did DCMS help you to design a modular application, with good separation of concerns?

� I don't think DCMS matters here

� It should have helped, but it didn't

� Somewhat

 Very

� Perfectly
 (j) If you developed the functional part of your application using DCMS, how difficult or easy it was to code
the application as a set of distributed components?

� Very difficult � Difficult � Acceptable  Easy � Very easy

(k) How difficult or easy it was to develop and to code the management part of the application?

� Very difficult  Difficult � Acceptable � Easy � Very easy

(l) Do you find the complexity of the framework justified?

� It is not complex at all

 Yes, it is justified

� It is partially justified

� No, it is too complicated (please indicate which parts of the framework or/and APIs are unnecessary
complex)

(m) In overall, how easy or difficult it was to implement your application in the DCMS framework?

� Very difficult � Difficult  Acceptable � Easy � Very easy

6. Performance, scalability, interoperability, and stability
(a) Did your DCMS application perform according to your expectations?

� Sorry, I do not know

 Yes

� No; why:

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 54/60

(b) Did your DCMS application scale according to your expectations?

 Sorry, I do not know. I have not yet fully tested the scalability of the application

� Yes

� No; why:

 (c) Have you faced performance issues with using DCMS for your application?

 No

� Yes; what issues:

 (d) Have you faced interoperability issues with using DCMS for your application?

� No

 Yes; what issues:

Comment:

We would like to have a way for a local application (non-dcms) to be able to connect to a dcms component
and issue commands.

If two or more dcms instances are started independently, there is no way to merge them or communicate
between components of different instances.

(e) How would you rate the stability of the DCMS implementation?

 Excellent � Very good � Fair � Not good � Bad � Sorry, I don't know
7. Satisfaction
(a) Will you use DCMS again?

� No, why

 Yes, in which area

Comment: I would probably consider the possibility of using dcms as an infrastructure for an application that
requires autonomic management.

(b) Will you recommend DCMS to other developers?

 Yes

� No, why:

(c) In overall, how you would you rate your experience with DCMS?

� Excellent � Good  Rather good � Rather bad � Bad

8. Any other comments:
There were a few problems during development that took a long time to solve, or we needed to find a way
around.

Project development and testing - very long testing cycle - have to restart whole system each time

Resource management - difficult to use, unclear. example: discovery and allocation of resources the way
done in yass is not

 implementation of a resource manager unclear

 allocation of resources to nodes - currently we can allocate one resource for a node (ex storage
space)

Creation of components - can only dynamically deploy a regular component if we have a statically deployed
component from which we can use the parameters

Cannot obtain id of statically deployed management component

Group creation - two ways to create it, depending on the type of component (management/regular). Should
templates always be used? - unclear.

Binding problems - component binding to group works only when a group has been created using a template
for the bound interface

 If the group is created in regular component, and cannot add template,

If the required template is added to a supergroup, an invocation to the subgroup will work - not sure if this is
intended

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 55/60

 ONE_TO_ANY_WITH_RETURN_VALUE binding does not work

Cannot bind from regular component to management element - understandable - but we may need reply
values from a one-to-any or one-to-all invocation

E.g. if a manager needs to issue multiple commands to multiple components, and the commands require
processing on each component, we would not want the manager to connect to each component and wait for
a return value before issuing the next command. Instead, we would like the manager to issue all commands,
and each component upon completion of its computation, should connect back to the manager and provide a
reply value. Note that this can be resolved currently in several ways: a) using threads on the manager to
communicate with multiple components at one – this method introduces complexity for the developer, would
prefer to be avoided; b) using a monitoring stack (sensor, watcher, aggr) to pass back the result. However,
this is not the intended use of a monitoring stack, and also it introduces delays and potential
desynchronisations.

Do not have a way for an external component to connect to a DCMS component.

 E.g. we would like to have a client application – basically any local or remote application – to be able
to find an (one or more) entry point to the DCMS application (a component) and be able to issue commands.

9. Any suggestions on improvement of DCMS:
Filters for groups- to be able to do a one to any invocation and select a member with a specified probability

Extend groups to handle management elements: would be useful for implementing an inter-ME protocol

Control over the placement of (management) components e.g. close to other frequently accessed
components

Return path (bindings) from regular components to ME for simple return values (that cannot be provided
immediately with a function

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 56/60

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 57/60

Appendix 2: Telex Questionnaire

“Telex questionnaire”

We are interested to get a feedback on your usage of the Telex middleware in developing your collaborative
application.

1- About you

Name: X.Y Email:

Institution: Aegean University Role: Postgraduate student

Country: Greece

2- About your collaborative application

a- Please give a short description of your collaborative application and its execution environment. In
particular, indicate the type and number of devices involved (cell-phone, computer, ...), the network used
(Internet, corporate, ...), and usage profile (disconnected operation, mobile users, ...).

 The aim of our project was to develop a software system to assist the collaborative ontology
development and evolution. The operation of the system was based on the semantics of the actions
performed by the knowledge engineers and workers, acting on a single ontology, as these were realized and
exploited by Telex. The developed system aims to support the HCOME methodology for the collaborative
engineering of ontologies, as it has been presented by the Artificial Intelligence Laboratory of the University
of the Aegean, although being generic enough for supporting other methodologies and systems. Currently,
our system is developed for computer devices of unlimited number. It has been tested only on local area
network but we aim to have results over wider network settings soon. Both disconnected and online
operation is supported.

b- What is the development stage of your application?

[] Idea [] Specified [✓] Developed [] Released [] Other:

c- Please indicate the overall development time of your application (if applicable)

.6. man-month

d- Please indicate the number of lines of code of your application (if applicable)

.4961 lines of java and 467 lines of prolog code (as of June 10, 2009)

3- About your knowledge of collaborative middleware /platforms

a- How did you find about Telex?

[] Searching the Web [✓] Recommendation [] Technical papers [] Other:

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 58/60

b- Have you developed above a collaborative middleware/platform before?

[✓] no [] yes, which:

c- Have you considered using an alternate middleware/platform to develop this application?

[✓] no [] yes, which:

4- Ease of learning

a- How would you rate Telex's documentation (papers, tutorial, FAQ, etc.)?

(bad) [] 1 [✓] 2 [] 3 [] 4 [] 5 (excellent)

b- How would you rate the examples of application code (Telex shell, Sakura-sc, etc.)?

(bad) [] 1 [] 2 [✓] 3 [] 4 [] 5 (excellent)

c- How would you rate the support you got from the development team?

(bad) [] 1 [] 2 [] 3 [] 4 [✓] 5 (excellent)

d- Would you recommend that we organize a tutorial on Telex?

[✓] yes [] no

e- Overall, you would say that getting to learn Telex is

(very difficult) [] 1 [] 2 [] 3 [✓] 4 [] 5 (very easy)

5- Complexity

a- Is your application developed from scratch or is it a port above Telex?

[✓] scratch [] port

b- Please indicate the percentage of your application's code dedicated to interfacing with Telex

12.98 %

c- Please estimate the time it took to develop above Telex for the following development phases

design: .30. days 50 % of design phase

coding: .20. days 22.22% of coding phase

testing: .15. days 50 % of testing phase

d- Starting from the application's specification, you would say that translating application logic to actions and
constraints is

(very difficult) [] 1 [] 2 [] 3 [✓] 4 [] 5 (very easy)

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 59/60

e- Do you feel that some Telex's functions or some API's methods are unnecessarily complex?

[✓] no [] yes, which:

f- Overall, you would say that developing an application above Telex is

(very difficult) [] 1 [] 2 [] 3 [✓] 4 [] 5 (very easy)

6- Features

a- Do you think that Telex misses features that are important to your application?

[] no [✓] yes, which:

i. provide the ability to roll back on decisions taken if members agree to do so.

ii. provide the sequence of schedules taken. It can be useful to define the path that led to a schedule not
satisfying members, as well as the schedule to roll back instead of starting over.

b- Are those features provided by an alternate middleware/platform?

[✓] no [] don't know [] yes, which:

c- Please check the three Telex features that are the most important to your application

[✓] replication / disconnected operation

[✓] conflict detection and resolution

[✓] reconciliation of document replicas

[] multi-document / multi-application support

[] partial replication support

[] other, which:

d- Are those features provided by an alternate middleware/platform?

[✓] no [] don't know [] yes, which:

e- Please check the type of constraints that your application uses

high-level constraints: [] atomicity [✓] antagonism [✓] causality

low-level constraints5: [] enables [] not-after [] non-commuting

f- Have Telex enabled some of your application's functions that could hardly be provided otherwise?

[] no [✓] yes, which:

i. document replication and reconciliation enables ontology versions' distribution in the group

ii. conflict detection and resolution provides alternative ontology versions preserving consistency

iii. off-line operation allows members modify their ontology versions anytime, knowing that collaborative
members will be informed automatically by the time a network connection is present.

g- Overall, you would say that Telex's features are

(useless) [] 1 [] 2 [] 3 [] 4 [✓] 5 (essential)

5not used in high-level constraints

D5.3_final.doc - Final Proof of concept Implementation and Evaluation Report Grid4All-034567 01/06/2009

Grid4All Confidential Page 60/60

7- Control

a- Would you like to have more control on Telex operation?

[✓] no [] yes, in which area:

b- Would you like Telex to automate some of your application's tasks?

[✓] no [] yes, which:

c- Would you suggest that Telex's API should be standardized, or an effort to standardize should be
undertaken?

[] no [✓] yes

d- How would you rate Telex's interoperability (application language, log format, etc.) according to the needs
of your application?

(bad) [] 1 [] 2 [] 3 [✓] 4 [] 5 (excellent)

8- Satisfaction

a- Is the performance of Telex sufficient for your application needs?

[] yes [✓] no, in which area:

 the ability to roll back on decisions taken is an important issue

b- Will you use Telex to develop other applications?

[✓] yes, in which area: distributed ontologies, agents' knowledge alignment (currently under disucssion)

[] no, because:

c- Will you use Telex for release-quality applications?

[] yes

[✓] not in its current form, since: bugs detected. Until solutions are provided we are not able to do so.

[] no, because:

d- Which aspects should be improved in future releases of Telex?

i. documentation and tutorials

ii. demonstrating applications

e- Will you recommend Telex to other people?

[✓] yes [] no, why not?:

f- Overall, you would say that your experience of Telex is

(bad) [] 1 [] 2 [] 3 [✓] 4 [] 5 (very satisfying)

