
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

SVEN O. KRUMKE

Online Optimization
Competitive Analysis and Beyond

ZIB-Report 02-25 (June 2002)

Online Optimization

Competitive Analysis and Beyond

Sven O. Krumke

HABILITATIONSSCHRIFT TECHNISCHE UNIVERSITÄT BERLIN 2001

Contents

0 Introduction 1

1 Preliminaries 9
1.1 What is an Online Problem? . 9
1.2 Competitive Analysis . 11
1.3 Extensions of Competitive Analysis 15
1.4 Offline Computation and Approximation Algorithms 16

2 Minimizing the Makespan in Online-Dial-a-Ride Problems 19
2.1 Single-Server Dial-a-Ride-Problems 20
2.2 Problem Definition . 25
2.3 Application to Machine Scheduling 26
2.4 Lower Bounds . 27
2.5 Two Simple Strategies . 29
2.6 A Best-Possible Online-Algorithm 33
2.7 A Simple Randomized Algorithm 38
2.8 Extension to the Non-Closed Makespan 39
2.9 Remarks . 44

3 Competing with a Fair Adversary in the Online-TSP 47
3.1 Problem Definition . 48
3.2 Zealous Algorithms . 49
3.3 The Online-TSP on the Non-Negative Part of the Real Line . . 50
3.4 Fair Adversaries . 52
3.5 Remarks . 61

4 Minimizing Flow Times and Waiting Times 63
4.1 Problem Definition . 64
4.2 Lower Bounds . 65
4.3 Reasonable Load . 66
4.4 Bounds for the Flow Times . 69
4.5 A Disastrous Example for REPLAN 73
4.6 Replanning with a Different Objective 75
4.7 Remarks . 78

5 Minimizing the Sum of Completion Times 81
5.1 Problem Definition . 82
5.2 Lower Bounds . 82

II

5.3 A Deterministic Algorithm . 88
5.4 An Improved Randomized Algorithm 91
5.5 Remarks . 92

6 Offline Dial-a-Ride Problems with Precedence Constraints 95
6.1 Problem Definition . 96
6.2 Euler Cycles Respecting Source-Orders 102
6.3 A Polynomial Time Algorithm on Paths 105
6.4 An Approximation Algorithm for General Graphs 108
6.5 Improved Approximation Algorithm on Trees 113
6.6 Hardness Results . 115
6.7 Extensions . 118
6.8 Remarks . 121

7 A Capacitated Offline Dial-a-Ride Problem on Paths 123
7.1 Problem Definition . 124
7.2 An Approximation-Algorithm 124
7.3 Properties of the Subroutines 129
7.4 Correctness and Running Time of the Algorithm 133
7.5 Proof of Performance . 133
7.6 Remarks . 136

8 Online Bin Coloring 137
8.1 Problem Definition . 139
8.2 The Algorithm GREEDYFIT . 140
8.3 The Trivial Algorithm ONEBIN 145
8.4 A General Lower Bound for Deterministic Algorithms 147
8.5 A General Lower Bound for Randomized Algorithms 152
8.6 Remarks . 153

9 Conclusions 155

A Notation 157
A.1 Basics . 157
A.2 Sets and Multisets . 157
A.3 Analysis and Linear Algebra . 158
A.4 Growth of Functions . 158
A.5 Particular Functions . 159
A.6 Probability Theory . 159
A.7 Graph Theory . 159
A.8 Theory of Computation . 161

Bibliography 165

Index 173

Introduction

A Simple Problem?

A situation which many of us know: You overslept, you are already late
for the morning meeting, all traffic lights are on red, and once you finally
reach the office building it takes ages for the elevator to arrive. Who on
earth designed this elevator control system? There must be a way to craft a
perfect elevator control with a little bit of mathematics!

This thesis deals with the question whether the seemingly simple prob-
lem is really so simple.

1

2

3

4

25

�

�

�

The initial
situation: A, B,
and C request

transportations.

Let us consider the situation of an elevator that runs in a 25 floor build-
ing and which currently is waiting at the fourth floor. Person A requests
a transportation from the penthouse in the 25th floor down to the second
floor, B wants to be moved from the second floor to the first, and C wants to
go upwards from the first floor to the penthouse.

Our current task is easy: we obtain a shortest transportation, if we first
pick up B, then C, and finally take care of A.

However, just a second after we pass the third floor on our way down,
suddenly D appears at the third floor and wants to be carried to the second
floor. Hmm. . . , what shall we do? Should we first complete our initial trans-
portation schedule and care about D later? Or should we reverse direction,
and pick up D first? In any case we waste valuable time since we travel un-

�

�

�

�

25

4

3

2

1

D appears . . .
necessary distance which we could have avoided if we had known in advance
that (and when) D showed up.

We have just discovered the online aspect of the elevator problem. We
are facing incomplete information, and even if every time a new request
becomes known we compute a new “optimal” schedule this does not nec-
essarily lead to an overall optimal solution. Suppose that in our particular
case D were actually the last transportation request and our goal would be
to finish serving requests as early as possible. Then, in hindsight (or with
clairvoyance) the best solution would have been to wait at the third floor for
one second until D arrived.

25

4

3

2

1
�

�

�

�

�

Is this the future?
At the moment our most promising option looks like reversing gear and

handling D first (after all, we have just lost one second right now compared

2 CHAPTER 0 INTRODUCTION

to a clairvoyant controller). But what if E shows up on the fourth floor, just
before we pick up D? Should we then serve E first?

Perhaps the elevator problem is not so trivial!

Online Computation

In general, traditional optimization techniques assume complete knowl-
edge of all data of a problem instance. However, in reality it is unlikely that
all information necessary to define a problem instance is available before-
hand. Decisions may have to be made before complete information is avail-
able. This observation has motivated the research on online optimization. Anonline

optimization algorithm is called online if it makes a decision (computes a partial solution)
whenever a new piece of data requests an action.

In online optimization the input is modeled as a finite request sequencerequest sequence
r � , r � , . . . which must be served and which is revealed step by step to an
online algorithm. How this is done exactly, depends on the specific online
paradigm. The two most common models are the sequence model and the timeonline paradigm
stamp model.

Let ALG be an online algorithm. In the sequence model requests mustsequence model
be served in the order of their occurrence. More precisely, when serving
request r � , the online algorithm ALG does not have any knowledge of re-
quests r � with i > j (or the total number of requests). When request r � is
presented it must be served by ALG according to the specific rules of the
problem. The serving of r � incurs a “cost” and the overall goal is to mini-
mize the total service cost.1 The decision by ALG of how to serve r � is irrevo-
cable. Only after r � has been served, the next request r ����� becomes known
to ALG.

In the time stamp model each request has a arrival or release time at whichtime stamp model
it becomes available for service. The release time t � ≥ 0 is a nonnegative
real number and specifies the time at which request r � is released (becomes
known to an online algorithm). An online algorithm ALG must determine
its behavior at a certain moment t in time as a function of all the requests
released up to time t and of the current time t. Again, we are in the situation
that an online algorithm ALG is confronted with a finite sequence r � , r � , . . .

of requests which is given in order of non-decreasing release times and the
service of each request incurs a cost for ALG. The difference to the sequence
model is that the online algorithm is allowed to wait and to revoke deci-
sions and that requests need not be served in the order of their occurrence.

1It is also possible to define online profit-maximization problems. For those problems,
the serving of each request yields a profit and the goal is to maximize the total profit ob-
tained.

3

Waiting incurs additional costs, typically depending on the elapsed time.
Previously made decisions may, of course, only be revoked as long as they
have not been executed.

Analysis of Online Algorithms

Online problems had been studied already explicitly or implicitly during
the nineteen-seventies and nineteen-eighties. However, broad systematic
investigation only started when Sleator and Tarjan [ST85] suggested com-
paring an online algorithm to an optimal offline algorithm, thus laying the
foundations of competitive analysis. The actual term “competitive analysis” competitive

analysiswas coined in the paper [KM � 88].
An online algorithm ALG is called c-competitive if the objective function c-competitive

value of the solution produced by ALG on any input sequence is at most
c times that of an optimal offline algorithm on the same input. Here, the
“optimal offline algorithm“ has complete knowledge about the whole input
sequence.

Observe that in the above definition there is no restriction on the compu-
tational resources of an online algorithm. The only scarce resource in com-
petitive analysis is information. Competitive analysis of online algorithms
can be imagined as a game between an online player and a malicious offline
adversary. The online player uses an online algorithm to process an input adversary
which is generated by the adversary. If the adversary knows the (deter-
ministic) strategy of the online player, he can construct a request sequence
which maximizes the ratio between the player’s cost and the optimal of-
fline cost. For randomized algorithms we have to define what kind of infor-
mation about the online player is available to the adversary. This leads to
different adversary models which we discuss in Chapter 1.

The “Simple Problem” Revisited

Let us return to the initial elevator problem. This problem is most ade-
quately formulated within the time stamp model: at time t ≥ 0 all trans-
portation requests with release time at most t are known to an online algo-
rithm. We assume for the moment that our objective function is to minimize
the time when the last request has been served. This objective is usually
referred to as the makespan. makespan

We put ourselves into the situation of an online algorithm which controls
the elevator. In the initial situation where A, B, and C requested transporta-
tion we do not have any knowledge whether additional requests will be
released in the future. If we start to move the elevator downwards imme-

4 CHAPTER 0 INTRODUCTION

diately, then the advent of request D makes us lose some time compared to
the overall best possible solution for σ = A, B, C, D (if this is the entire se-
quence). On the other hand, if we wait at our current position in the fourth
floor, this waiting time is wasted in case D never shows up. This argument
shows that, in general, no online algorithm is capable of guaranteeing an
optimal solution. Expressed in terms of competitive analysis this means
that no online algorithm can be 1-competitive for the elevator problem.

But how well can “the best online algorithm” perform compared to the
all-knowing optimal offline algorithm? Can we show that there is a con-
stant c > 1 such that, no matter what the elevator control looks like, there
is always a bad situation where this online strategy yields costs at least c-
times the cost of an optimal offline algorithm? This brings us to one of the
central issues of competitive analysis, which we are going to investigate in
this thesis in the context of a number of online problems:

How much does one lose by not having complete information?

Real Time Issues

A natural approach for an online algorithm in our particular problem is the
following strategy: As soon as a new request arrives, the elevator completes
the current carrying move (if it is performing one), then it “replans”: it com-
putes a new shortest transportation which starts at the current position of
the elevator and takes care of all known but yet unserved requests. As we
will see in Chapter 2, the “replan”-strategy is in fact competitive for the
minimization of the makespan, although it is not “the best” algorithm from
a competitive analysis point of view.

Up to this point we have neglected the time complexity of algorithms.
Competitive analysis approaches online computation from an information
theoretic point of view. However, for instance the implementation of the
REPLAN-strategy in a real elevator system raises a new issue. If recomputa-
tion of a new transportation schedule takes very long time, then the whole
system will be stalled, since during the computation the elevator is idle.

Zzzz

2

1

3

25

Long computation
stalls the elevator
system.

A real-time problem (or real-time system) is a problem where an online
real-time problem

algorithm is required to deliver the next piece of the solution within a very
tight time bound, i.e., it is required to react in real-time. The correct behavior
of a real-time system depends on the quality of the solution as well as on the
time needed for producing the solution. A solution provided too late may
be useless or, in some cases, even dangerous because it does not fit to the
current system parameters which may vary over time.

Unfortunately, determining an optimal solution in real-time seems to be
intractable for many problems due to the problems’ computational com-

5

plexity. This raises the interest in algorithms that work fast (at least in poly-
nomial time) but nevertheless provide a guarantee on the quality of the deliv-
ered solution.

The competitive ratio has an analogue in offline optimization, the ap-
proximation ratio for approximation algorithms. An algorithm has performance approximation

ratio

approximation
algorithm

guarantee ρ, if the objective value of the solution produced by the algorithm
is at most ρ times the optimal solution for each instance. Polynomial time
approximation algorithms offer a way to trade solution quality for compu-
tation time.

Let us return to the elevator problem once more. The “replan”-approach
required to repeatedly solve offline instances of the problem. Computing
a shortest (offline) transportation problem can be accomplished in polyno-
mial time if the capacity of the elevator is one, that is, if the elevator can
carry at most one person at a time. However, if the capacity is larger, then
the problem becomes NP-hard. Fortunately, there exist approximation algo-
rithms which can be used in a real-time environment (see Chapters 6 and 7
for complexity results and algorithms).

Roadmap and Overview of Results

Chapter 1 is intended mainly as a reference for the notation used in this
thesis. It contains an introduction to online computation, competitive anal-
ysis and to approximation algorithms for offline problems. The most basic
notation from graph theory and the theory of computation can be found in
Appendix A.

In Chapters 2 to 5 we study online dial-a-ride problems. In an online dial-a- online dial-a-ride
problemride problem objects must be transported between points in a metric space

by a server of limited capacity. Transportation requests arrive online, spec-
ifying the objects to be transported and the corresponding source and des-
tination. Requests are presented to online algorithms according to the time
stamp model. The elevator problem described in the introduction is a spe-
cial case of an online dial-a-ride problem. In this case, the underlying metric
space is induced by a path and the “objects” are the passengers which arrive
online. Different objective functions lead to different dial-a-ride problems.

In Chapter 2 we address the task of minimizing the makespan in online makespan
dial-a-ride problems. The makespan is the time the server has completed
all transportation requests. We establish lower bounds on the competitive
ratio of deterministic and randomized algorithms. We then present several
competitive algorithms, among them a best possible deterministic online
algorithm from a competitive analysis point of view.

The online traveling salesman problem is a special case of an online dial-a- online traveling
salesman problemride problem. In Chapter 3 we study this problem on the metric space given

6 CHAPTER 0 INTRODUCTION

by R
�

� , the non-negative part of the real line. The emphasis of the chapter is
to investigate the effect of restricting the power of the adversary in the com-
petitive analysis and of restricting the class of online algorithms allowed.
We show that a very natural strategy achieves the best possible competi-
tive ratio against the conventional adversary. We then go beyond standard
competitive analysis and investigate algorithms against a restricted adver-
sary: A fair adversary always keeps its server within the convex hull of thefair adversary
requested points released so far. We show that this adversary model indeed
allows for lower competitive ratios. We also introduce and analyze a new
class of online algorithms which we call zealous algorithms. Roughly speak-zealous algorithm
ing, the server of a zealous algorithm never sits idle while there is work to
do. We prove that in general zealous algorithms are strictly weaker than
algorithms that allow waiting time.

Chapter 4 deals with the tasks of minimizing the maximal or the aver-
age flow time in online dial-a-ride problems. The flow time of a request isflow time
the time span between its release time and its completion time. Intuitively,
the average flow time measures the “throughput” of the system, while the
maximal flow time can be identified with the maximal dissatisfaction of cus-
tomers, for instance in an elevator system. It turns out that for the maximal
and average flow time there can be no competitive algorithm, neither deter-
ministic nor randomized. Thus, competitive analysis leads to a dead-end.

We develop a new concept to analyze online algorithms on request se-
quences that fulfill a certain worst-case restriction: informally, a sequence of
requests for the online dial-a-ride problem is reasonable if the requests thatreasonable request

sequence come up in a sufficiently large time period can be served in a time period
of at most the same length. This new notion is a stability criterion imply-
ing that the system is not overloaded. Under reasonable load it is possiblereasonable load
to obtain performance bounds for online algorithms and to distinguish the
performance of some particular algorithms, which seems to be impossible
by means of classical competitive analysis.

We return to classical competitive analysis in Chapter 5. We consider
online dial-a-ride problems with the objective of minimizing the weighted
sum of completion times of the requests. This is also known as minimizing theweighted sum of

completion times latency. As in the other chapters, we give lower bounds on the competitive

latency ratios of deterministic and randomized algorithms. We present a competi-
tive deterministic algorithm and an improved randomized version.

Chapters 6 and 7 address offline dial-a-ride problems which arise as sub-offline dial-a-ride
problem problems in the design of online-algorithms in previous chapters. In view

of real-time applications it is highly desirable to solve the offline instances
efficiently. We consider the task of minimizing the total distance traveled
which in our context is equivalent to finding a shortest (offline) transporta-
tion for a given set of requests.

Chapter 6 deals with the case of a unit capacity server and precedence

7

constraints between the transportation requests which emanate from the
same source. This variant was motivated by applications where first-in-
first-out waiting lines are present at the sources of the transportation jobs.
In this case, jobs can be served only according to their order in the line. Ex-
amples with first-in-first-out lines are cargo elevator systems where at each
floor conveyor belts deliver the goods to be transported. We show that in
case of an elevator the resulting offline problem can be solved efficiently in
polynomial time. As a byproduct we obtain a structural characterization of
graphs that contain Eulerian cycles which respect certain precedence con- Eulerian cycles
straints on the arcs. In case of a general metric space, or even a tree, the
offline dial-a-ride problem becomes NP-hard. We devise approximation al-
gorithms with provable guarantees.

Chapter 7 leads us back to elevators. As already remarked, elevators can
be modeled by dial-a-ride problems on paths. We consider such an offline
dial-a-ride problem and study its computational complexity. In contrast to
Chapter 6 the server has capacity larger than one. The main result of the
chapter is an approximation algorithm with provable performance.

In Chapter 8 we study the online bin coloring problem. The task in this online bin coloring
problemproblem is to pack colored items of unit size into bins of fixed size, such

that the maximum number of different colors per bin is minimized. The
packing process is subject to the constraint that at any moment in time at
most a bounded number of bins are partially filled. In contrast to the online
dial-a-ride problems, in the bin coloring problem requests are presented ac-
cording to the sequence model. An online algorithm must pack each item
irrevocably before the next item becomes known. The investigation of the
bin coloring problem from a competitive analysis point of view reveals a
number of oddities. A natural greedy-type strategy achieves a competitive
ratio strictly worse than a trivial algorithm. Moreover, no algorithm can be
substantially better than the trivial strategy. Even more surprising, neither
randomization nor “resource augmentation” helps to overcome the general
lower bound on the competitive ratio.

Acknowledgments

At this point, I am greatly indebted to all my friends and colleagues who
contributed in various ways to this thesis. First of all, I would like to thank
Martin Grötschel for his constructive criticism of competitive analysis and
for providing an excellent working environment at the Konrad-Zuse Zen-
trum für Informationstechnik in Berlin. I also want to thank explicitly Andreas
Eisenblätter, Diana Poensgen, Jörg Rambau, and Hans-Christoph Wirth
who did detailed reviews of this thesis and helped to improve its presenta-
tion.

8 CHAPTER 0 INTRODUCTION

Credits

Chapter 2 on minimizing the makespan in online dial-a-ride problems is
based on joint work with Norbert Ascheuer and Jörg Rambau [AKR00]. The
results reported in Chapter 3 on fair adversaries in the online traveling sales-
man problem were obtained together with Michiel Blom, Willem de Paepe
and Leen Stougie [BK � 01]. Chapter 4 contains material from joint work
with Dietrich Hauptmeier and Jörg Rambau [HKR00, HKR01]. The results
in Chapter 5 were obtained jointly with Willem de Paepe, Diana Poensgen
and Leen Stougie [KdP � 01a]. Chapter 6 is based on joint work with Diet-
rich Hauptmeier, Jörg Rambau, and Hans-Christoph Wirth [HK � 99]. Chap-
ter 7 contains results from joint research with Jörg Rambau and Steffen Wei-
der [KRW00]. The results reported in Chapter 8 were obtained jointly with
Willem de Paepe, Jörg Rambau and Leen Stougie [KdP � 01b].

All the joint work mentioned above represents many hours of stimulat-
ing discussions with my colleagues. I am extremely grateful to all of them
for their valuable time and for allowing me to include our joint work in this
thesis.

Preliminaries

In this chapter we review the most important theoretical concepts that we
are going to use. The first sections are dedicated to online computation, the
last section deals with offline computation. The presentation is intended to
make this thesis self-contained. Full details of the concepts given here can
be found in the cited literature. Appendix A contains a compilation of the
most basic notation used in this thesis.

In Sections 1.1 and 1.2 we introduce competitive analysis for determinis-
tic and randomized algorithms. Section 1.3 discusses extensions of compet-
itive analysis that have been suggested in the literature to overcome some
of its weaknesses.

Section 1.4 contains a brief compilation of the most important notions
from complexity theory. We also define approximation algorithms which, to
some extent, are an analogue to competitive online algorithms with respect
to offline computation.

1.1 What is an Online Problem?

In the introduction we defined an online problem informally by stating that
it is a problem where the data is revealed step by step to an online algorithm
according to either the sequence model or the time stamp model. This defini-
tion can be made precise with the help of request-answer games introduced
in [BDB � 94]. As we will see later, the general concept of a request-answer
game comprises both, the sequence model and the time stamp model.

Definition 1.1 (Request-Answer Game)
A request-answer game (R,A, C) consists of a request set R, a sequence of request-answer

gamenonempty answer sets A = A � , A � , . . . and a sequence of cost functions C =

cost � , cost � , . . . where cost � : R
� × A � × · · · × A � → R � ∪ {+∞}.

We remark here that in the literature one frequently requires each an-
swer set A � to be finite. This assumption is made to avoid difficulties with
the existence of expected values when studying randomization. However,
the finiteness requirement is not of conceptual importance. As remarked

10 CHAPTER 1 PRELIMINARIES

in [BEY98, Chapter 7] an infinite or even continuous answer set can be “ap-
proximated” by a sufficiently large finite answer set.

Definition 1.2 (Deterministic Online Algorithm)
A deterministic online algorithm ALG for the request-answer game (R,A, C) is adeterministic

online algorithm sequence of functions f � : R
� → A � , j ∈ N. The output of ALG on the input request

sequence σ = r � , . . . , r � is

ALG[σ] := (a � , . . . , a �) ∈ A � × · · · × A � , where a � := f � (r � , . . . , r �).

The cost incurred by ALG on σ, denoted by ALG(σ) is defined ascost

ALG(σ) := cost � (σ, ALG[σ]).

We now define the notion of a randomized online algorithm.

Definition 1.3 (Randomized Online Algorithm)
A randomized online algorithm RALG is a probability distribution over deter-randomized online

algorithm ministic online algorithms ALG � (x may be thought of as the coin tosses of the
algorithm RALG). The answer sequence RALG[σ] and the cost RALG(σ) on a given
input σ are random variables.

In terms of game theory we have defined a randomized algorithm as a
mixed strategy (where a deterministic algorithm is then considered to be amixed strategy
pure strategy). There is no harm in using this definition of a randomized al-pure strategy
gorithm since without memory restrictions all types of randomized strate-
gies, mixed strategies, behavioral strategies, and general strategies, are equiva-
lent (see e.g. [BEY98, Chapter 6]).

We illustrate request-answer games by two simple examples. The first
example is the classical paging problem:

Example 1.4 (Paging Problem)
Consider a two-level memory system (e.g., of a computer) that consists of
a small fast memory (the cache) with k pages and a large slow memory
consisting of a total of N pages. Each request specifies a page in the slow
memory, that is, r � ∈ R := {1, . . . , N}. In order to serve the request, the
corresponding page must be brought into the cache. If a requested page is
already in the cache, then the cost of serving the request is zero. Otherwise
one page must be evicted from the cache and replaced by the requested page
at a cost of 1. A paging algorithm specifies which page to evict. Its answer
to request r � is a number a � ∈ A � := {1, . . . , k}, where a � = p means to evict
the page at position p in the cache.

�����

...
...

�������	�
Main memory

�� � � ��
�
�

�Cache

Paging problem
with cache
size k = 3.

The objective in the paging problem is to minimize the number of page
faults. The cost function cost � simply counts the number of page faults which
can be deduced easily from the request sequence r � , . . . , r � and the answers
a � , . . . , a � . C

1.2 COMPETITIVE ANALYSIS 11

In the paging problem the answer to a request implies an irrevocable de-
cision of how to serve the next request, that is, the paging problem is formu-
lated within the sequence model. We will now provide a second example of
a request-answer game which specifies a problem in the time stamp model,
where decisions can be revoked as long as they have not been executed yet.

Example 1.5 (Online TCP Acknowledgment)
In the online TCP acknowledgment problem introduced in [DGS98] a num-
ber of packets are received. Each packet j has a receipt time t � ≥ 0 and a
weight w � ≥ 0. An online algorithm learns the existence of a packet only
at its receipt time. All packets must be acknowledged at some time after

�������

time
latency of � �

acknow-
ledgement

Online TCP
acknowledgment

problem.
their receipt. A single acknowledgment acknowledges all packets received
since the last acknowledgment. There is a cost of 1 associated with each ac-
knowledgment. Moreover, if packet j is acknowledged at time t ≥ t � , this
induces a latency cost of w � (t− t �). The goal in the online TCP acknowledg-
ment problem is to minimize the sum of the acknowledgment cost and the
latency cost.

At time t � when packet r � = (t � , w �) is received, an online algorithm ALG

must decide when to acknowledge all yet unconfirmed packets. Hence, the
answer to request r � ∈ R := R � × R � is a real number a � ∈ A � := R � with
a � ≥ t � . If an additional packet is received before time a � , then ALG is not
charged for the intended acknowledgment at time a � , otherwise it incurs an
acknowledgment cost of one. The cost function cost � counts the number of
actual acknowledgments and adds for each packet r � the latency cost result-
ing from the earliest realized acknowledgment in the answer sequence. The
condition that packets can not be acknowledged before they are received
can be enforced by defining the value cost � (r � , . . . , r � , a � , . . . , a �) to be +∞ if
a � < t � . C

1.2 Competitive Analysis

We now define competitiveness of deterministic and randomized algo-
rithms. While the deterministic case is straightforward, the randomized
case is much more subtle.

1.2.1 Deterministic Algorithms

Suppose that we are given an online problem as a request-answer game. We
define the optimal offline cost on a sequence σ ∈ R

� as follows: optimal offline cost

OPT(σ) := min{ cost � (σ, a) : a ∈ A � × · · · × A � }.

The optimal offline cost is the yardstick against which the performance of a
deterministic algorithm is measured in competitive analysis.

12 CHAPTER 1 PRELIMINARIES

Definition 1.6 (Deterministic Competititive Algorithm)
Let c ≥ 1 be a real number. A deterministic online algorithm ALG is called c-
competitive ifc-competitive

(1.1) ALG(σ) ≤ c · OPT(σ)

holds for any request sequence σ. The competitive ratio of ALG is the infimumcompetitive ratio
over all c such that ALG is c-competitive.

Observe that, in the above definition, there is no restriction on the com-
putational resources of an online algorithm. The only scarce resource in
competitive analysis is information.

We want to remark here that the definition of c-competitiveness varies
in the literature. Often an online algorithm is called c-competitive if there
exists a constant b such that

ALG(σ) ≤ c · OPT(σ) + b

holds for any request sequence. Some authors even allow b to depend on
some problem or instance specific parameters. In this thesis we will stick to
the definition given above.

Since for a c-competitive algorithm ALG we require inequality (1.1) to
hold for any request sequence, we may assume that the request sequence is
generated by a malicious adversary. Competitive analysis can be thought ofadversary
as a game between an online player (an online algorithm) and the adversary.

online player
The adversary knows the (deterministic) strategy of the online player, and
can construct a request sequence which maximizes the ratio between the
player’s cost and the optimal offline cost.

1.2.2 Randomized Algorithms

For randomized algorithms we have to be precise in defining what kind of
information about the online player is available to the adversary. This leads
to different adversary models which are explained below. For an in-depth
treatment we refer to [BEY98, MR95].

If the online algorithm is randomized then according to intuition, the
adversary has less power since the moves of the online player are no longer
certain. The weakest kind of adversary for randomized algorithms is the
oblivious adversary:

Definition 1.7 (Oblivious Adversary)
An oblivious adversary OBL must construct the request sequence in advanceoblivious

adversary based only on the description of the online algorithm but before any moves are made.

We can now define competitiveness against this adversary:

1.2 COMPETITIVE ANALYSIS 13

Definition 1.8 (Competitive Algorithm against an Oblivious Adversary)
A randomized algorithm RALG, distributed over a set {ALG � } of deterministic al-
gorithms, is c-competitive against an oblivious adversary for some c ≥ 1, c-competitive

against an
oblivious

adversary

if
E � [ALG � (σ)] ≤ c · OPT(σ).

for all request sequences σ. Here, the expression E � [ALG � (σ)] denotes the expecta-
tion with respect to the probability distribution Y over {ALG � } which defines RALG.

In case of a deterministic algorithm the above definition collapses to that
given in Definition 1.6. In contrast to the oblivious adversary, an adaptive
adversary can issue requests based on the online algorithm’s answers to pre-
vious ones.

The adaptive offline adversary (ADOFF) defers serving the request sequence adaptive offline
adversaryuntil he has generated the last request. He then uses an optimal offline algo-

rithm. The adaptive online adversary (ADON) must serve the input sequence adaptive online
adversary(generated by himself) online. Notice that in case of an adaptive adver-

sary ADV, the adversary’s cost ADV(σ) for serving σ is a random variable.

Definition 1.9 (Competitive Algorithm against an Adaptive Adversary)
A randomized algorithm RALG, distributed over a set {ALG � } of deterministic al-
gorithms, is called c-competitive against an adaptive adversary ADV for some c-competitive

against an
adaptive

adversary

c ≥ 1, where ADV ∈ {ADON, ADOFF}, if

E � [ALG � (σ) − c · ADV(σ)] ≤ 0.

for all request sequences σ. Here, ADV(σ) denotes the adversary cost which is a
random variable.

The above adversaries differ in their power. Clearly, an oblivious adver-
sary is the weakest of the three types and an adaptive online adversary is no
stronger than the adaptive offline adversary. Moreover, as might be conjec-
tured, the adaptive offline adversary is so strong that randomization adds
no power against it. More specifically, the following result holds:

Theorem 1.10 ([BDB � 94]) Let (R,A, C) be a request-answer game. If there ex-
ists a randomized algorithm for (R,A, C) which is c-competitive against any adap-
tive offline adversary, then there exists also a c-competitive deterministic algorithm
for (R,A, C). 2

The strength of the adaptive online adversary can also be estimated:

Theorem 1.11 ([BDB � 94]) Let (R,A, C) be a request-answer game. If there ex-
ists a randomized algorithm for (R,A, C) which is c-competitive against any adap-
tive online adversary, then there exists a c

� -competitive deterministic algorithm
for (R,A, C). 2

14 CHAPTER 1 PRELIMINARIES

In this thesis we are only going to consider the weakest adversary, the
oblivious adversary, in the analysis of randomized algorithms.

1.2.3 Lower Bounds on the Competitive Ratio

A lower bound on the competitive ratio is usually derived by providing a
set of specific instances on which no online algorithm can perform well com-
pared to an optimal offline algorithm. Here, again, we have to distinguish
between deterministic and randomized algorithms.

For deterministic algorithms finding a suitable set of request sequences
is in most cases comparatively easy. For randomized algorithms, however,
it is usually very difficult to bound the expected cost of an arbitrary ran-
domized algorithm on a specific instance from below. In these cases, the
following approach using Yao’s Principle (see Theorem 1.12 below) is help-Yao’s Principle
ful.

Suppose that the set of possible request sequences for an online problem
is indexed by the set X , that is, the set of inputs is represented by { σ � : x ∈
X }. Also, let { ALG � : y ∈ Y } be the set of deterministic online algorithms
for the problem.

To establish that no randomized algorithm can achieve a competitive
ratio better than c̄ against an oblivious adversary, we must show that for
any probability distribution Y over the set of deterministic algorithms, there
exists some x ∈ X such that the inequality

E � [ALG � (σ �)] ≥ c̄ · OPT(σ �)

holds. This is equivalent to inf � sup � ∈X {E � [ALG � (σ�)] − c̄ · OPT(σ �)} ≥ 0.
Let us denote by X a probability distribution over the set { σ � : x ∈ X } of
sequences. Then we have

inf
�

sup
� ∈X

{E � [ALG � (σ �)] − c̄ · OPT(σ �)}

= inf
�

sup
� ∈X

∫

Y
(ALG � (σ�) − c̄ · OPT(σ �)) dY

= inf
�

sup�

∫

X

∫

Y
(ALG � (σ�) − c̄ · OPT(σ �)) dY dX

≥ sup� inf
�

∫

X

∫

Y
(ALG � (σ �) − c̄ · OPT(σ �)) dY dX

= sup� inf
�

∫

Y

∫

X
(ALG � (σ�) − c̄ · OPT(σ �)) dX dY

= sup� inf
� ∈Y

∫

X
(ALG � (σ�) − c̄ · OPT(σ �)) dX.

1.3 EXTENSIONS OF COMPETITIVE ANALYSIS 15

Notice that the exchange of integration order above is justified by Fubini’s
Theorem (see e.g. [Rud76]). Define the expected cost of the deterministic algo-
rithm ALG with respect to the distribution X over the set of sequences to be

expected cost
EX [ALG(σx)] of a

deterministic
algorithm ALG

E
�

[ALG(σ�)] :=

∫

X
ALG(σ �) dX.

With this notation the above chain of inequalities can be rewritten as

inf
�

sup
� ∈X

{E � [ALG � (σ�)] − c̄ · OPT(σ �)}

≥ sup� inf
� ∈Y

{E
�

[ALG � (σ�)] − c̄ E
�

[OPT(σ �)]} ,

which is a special form of Yao’s Principle from game theory.

Theorem 1.12 (Yao’s Principle) Let { ALG � : y ∈ Y } denote the set of deter-
ministic online algorithms for an online minimization problem. If X̄ is a probability
distribution over input sequences { σ � : x ∈ X } and c̄ ≥ 1 is a real number such
that

(1.2) inf
� ∈Y

E ¯
�

[ALG � (σ�)] ≥ c̄ E ¯
�

[OPT(σ�)] ,

then c̄ is a lower bound on the competitive ratio of any randomized algorithm
against an oblivious adversary. 2

1.3 Extensions of Competitive Analysis

Competitive analysis is a type of worst-case analysis. It has (rightly) been
criticized as being overly pessimistic. Often the adversary is simply too
powerful and allows only trivial competitiveness results. This phenomenon
is called “hitting the triviality barrier” (see [FW98]). To overcome this unsat-
isfactory situation various extensions and alternatives to pure competitive
analysis have been investigated in the literature.

In comparative analysis the class of algorithms where the offline algorithm comparative
analysisis chosen from is restricted. This concept has been introduced in the context

of the paging problem [KP94]. The authors compare the performance of an
online algorithm for the paging problem with that of the best paging algo-
rithm having limited lookahead. Let Π be a minimization (online) problem.
The comparative ratio cALG � B of an algorithm ALG for Π relative to a class B comparative ratio
of algorithms is defined as the worst case ratio between the solution cost
produced by ALG and the best solution produced by an algorithm in B:

cALG � B := sup� ∈B
sup�

ALG(σ)

B(σ)
.

16 CHAPTER 1 PRELIMINARIES

If B is the class of all offline algorithms for Π, then the comparative ratio
reduces to the standard competitive ratio.

The comparative ratio has also been studied in the context of online fi-
nancial problems. For most of these problems the standard adversary also
appears to be too strong. To obtain meaningful (theoretical) results about
the performance, e.g., of online portfolio selection algorithms, a compari-
son with a restricted class of offline algorithms is used. We refer to [BEY98,
Chapter 14] for details.

We are going to use the concept of comparative analysis for investigat-
ing the online traveling salesman problem in Chapter 3 and show that a
restricted adversary model (the “fair adversary”) indeed allows for lower
competitive ratios.

Another approach to strengthen the position of an online algorithm is the
concept of resource augmentation (see e.g. [PS � 97, PK95, ABF96, ST85]). Here,resource

augmentation the online algorithm is given more resources (e.g., more or faster machines
in scheduling) to serve requests than the offline adversary.

The diffuse adversary model introduced in [KP94] deals with the situationdiffuse adversary
where the input is chosen by an adversary according to some probability
distribution. Although the online algorithm does not know the distribution
itself, it is given the information that this distribution belongs to a specific
class of distributions.

In Chapter 4 we are going to introduce the concept of reasonable load
which enables us to to prove performance bounds in a case where competi-
tive analysis fails to give decision support.

Other approaches to go beyond pure competitive analysis include the ac-
cess graph model for paging [BI � 91, BI � 95, IKP92] and the statistical adversaryaccess graph

model

statistical
adversary

[BK � 96]. We refer to [FW98, Chapter 17] for a comprehensive survey.
All of the extensions and alternatives to competitive analysis have been

proven to be useful for some specific problem and powerful enough to obtain
significant results. However, none of these approaches has yet succeeded in
replacing competitive analysis as the standard tool in the theoretical analy-
sis of online algorithms.

1.4 Offline Computation and Approximation
Algorithms

As mentioned before, many problems are not only online but also real-time.
Unfortunately, it can be shown for many important problems that deter-
mining an optimal solution may be extremely time consuming due to their
computational complexity. The class of NP-complete problems represents a
large collection of such problems, which are all related in the sense that a

1.4 OFFLINE COMPUTATION AND APPROXIMATION ALGORITHMS 17

polynomial-time solution of one of them implies the polynomial-time solv-
ability of the whole class. Up to now, no polynomial-time algorithm for an
NP-complete problem is known (see Appendix A.8 for a brief compilation
of notation from the theory of computation).

If exact methods fail to produce answers in real-time the next step is to
look for suboptimal solutions which have a guaranteed quality and which
can be determined fast.

Definition 1.13 (Approximation algorithm)
A (deterministic)1 algorithm ALG for a minimization problem Π is called ρ-ap-
proximative, if ρ-approximative

(1.3) ALG(I) ≤ ρ OPT(I)

holds for any problem instance I of Π. The infimum of all values of ρ for which ALG

is ρ-approximative is called approximation ratio or performance ratio of ALG. approximation
ratio

performance ratio
In view of applications, in the design of approximation algorithms speed

is of first priority since here computation time is the scarce resource. Thus,
one usually restricts approximation algorithms to the class of polynomial-
time algorithms.2 In contrast, time complexity is not an issue in competitive
analysis: there is (at least in theory) no bound on the computation time for
an answer generated by an online algorithm.

We also use the term ρ-approximation algorithm to denote an algorithm ρ-approximation
algorithmwhich is ρ-approximative. Often it is difficult to determine the exact approx-

imation ratio of an algorithm and one resorts to proving an upper bound on
this ratio. Any such upper bound will be referred to as a performance of the performance
algorithm.

Approximation algorithms are closely related to competitive online al-
gorithms. By the above definition, a c-competitive online algorithm is also
c-approximative. Conversely, if a c-approximate algorithm is additionally
online, it is also c-competitive. Many approximation algorithms have a sim-
ple structure and are in fact online.

Example 1.14 (Load Balancing on Identical Machines)
Consider the following load balancing problem arising in machine scheduling. load balancing

problemOne is given a sequence j � , . . . , j � of jobs where job j � has processing time p � .
The task is to distribute the jobs on n identical machines M � , . . . , M � such
that the maximum load of the machines is minimized. Here, the load of a

1One can also define randomized approximation algorithms analogously to randomized
online algorithms. In this thesis we are only going to use deterministic approximation
algorithms.

2In the literature the notion of an approximation algorithm often includes the property
of the algorithm being polynomial-time.

18 CHAPTER 1 PRELIMINARIES

machine is defined to be the sum of job processing times assigned to the
machine.

Graham [Gra66, Gra69] proposed the following greedy-type heuris-
tic LIST: Consider the jobs in order of their occurrence in the input se-
quence j � , . . . , j � . Always assign the next job to the machine which currently
has the least load (breaking ties arbitrarily). C

� �
� �
���
���

Graham’s
algorithm LIST: the
next job is always
assigned to the
machine with the
currently least
load.

Clearly, LIST can be implemented to run in polynomial time. The al-
gorithm LIST can be shown to be (2 − 1/n)-approximative [Gra66, Gra69].
Moreover, LIST is also an online algorithm for the online version of the
scheduling problem where jobs are revealed to an online algorithm accord-
ing to the sequence model. Hence, LIST is also (2 − 1/n)-competitive.

For NP-hard problems, polynomial-time approximation algorithms of-
fer a way to trade solution quality for computation time. Polynomial-time
approximation algorithms have been intensively considered within the last
years. For comprehensive surveys on approximation algorithms we refer to
[Mot92, Hoc97, AC � 99, Vaz01].

Minimizing the Makespan in
Online-Dial-a-Ride Problems

In this chapter we introduce the basic setup for the generic online-dial-a-
ride problem OLDARP, which can be outlined as follows: Transportation re-
quests between points in a metric space arrive online, specifying the objects
to be transported and the corresponding sources and destinations. These
requests are to be handled by a server which picks up and drops objects at
their sources and destinations.

The makespan is arguably the simplest objective function and hence a
good starting point for deriving competitiveness results for online-dial-a-
ride problems. We analyze several competitive algorithms and establish
tight competitiveness results. The first two algorithms, REPLAN and IGNORE

are very simple and natural: REPLAN completely discards its (preliminary)
schedule and recomputes a new one whenever a new request arrives. IG-
NORE always runs a (locally optimal) schedule for a set of known requests
and ignores all new requests until this schedule is completed. We then
present a somewhat less natural strategy SMARTSTART, which in contrast
to the other two strategies may leave the server idle from time to time al-
though unserved requests are known. The SMARTSTART-algorithm achieves
the best-possible competitive ratio for deterministic algorithms.

Online dial-a-ride
problem.

This chapter is organized as follows: In Section 2.1 we introduce the
basic framework for formulating single-server dial-a-ride problems. We will
use this framework for stating the online and offline dial-a-ride problems in
subsequent chapters.

The “closed makespan” C �max is the objective function on which we
mainly focus in this chapter. It is introduced in Section 2.2. In Section 2.3
we show how certain machine scheduling problems can be modeled as spe-
cial cases of dial-a-ride problems. In Section 2.4 we establish lower bounds
for the competitive ratio of deterministic online algorithms. In Section 2.5
we analyze the strategies REPLAN and IGNORE. Section 2.6 contains our
improved algorithm SMARTSTART. A simple randomized algorithm is pre-
sented in Section 2.7. In Section 2.8 we show how to extend our results to
the non-closed makespan, that is, the case where the server is not required
to return to its initial position at the end of its work.

20 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

Related Work

We do not claim originality for the two online-algorithms IGNORE and RE-
PLAN; instead, we show how to analyze them for online dial-a-ride problems
and how ideas from both strategies can be used to construct the new online
strategy SMARTSTART with better competitive ratio.

The first, to the best of our knowledge, occurrence of the strategy IGNORE

can be found in the paper by Shmoys, Wein, and Williamson [SWW95]:
They show a general result about obtaining competitive algorithms for min-
imizing the total completion time (also called the makespan) in machine
scheduling problems when the jobs arrive over time: If there exists a ρ-
approximation algorithm for the offline version, then this implies the exis-
tence of a a 2ρ-competitive algorithm for the online-version, which is es-
sentially the IGNORE strategy (we present an improvement of this result in
Section 2.6).

The results from [SWW95] show that IGNORE-type strategies are com-
petitive for a number of online scheduling problems. The strategy REPLAN

is probably folklore; it can be found also under different names like REOPT

or OPTIMAL.
The difference of the OLDARP to the machine scheduling problems

treated in [SWW95] are as follows: For OLDARP, the “execution time” of
jobs depends on their execution order. OLDARP can be viewed as a gener-
alized scheduling problem with order dependent setup costs and execution
times (see also Section 2.3).

In [AF � 01, AF � 95, AF � 94] the authors studied the online traveling sales-
man problem (OLTSP) which is obtained as a special case of OLDARP, whenonline traveling

salesman problem for each request its source and destination coincide. It is shown in [AF � 01]
that there is a metric space, namely the boundary of the unit square, where
any deterministic algorithm for the OLTSP has a competitive ratio of at
least 2. For the case that the metric space is the real line, a lower bound
of

� � √ ���� ≈ 1.64 is given in [AF � 95].

2.1 Single-Server Dial-a-Ride-Problems

Let M = (X, d) be a metric space with distinguished origin o ∈ X. We
assume that M is “connected and smooth´´ in the following sense: for all
pairs (x, y) of points from M, there is a rectifiable path γ : [0, 1]→ X in X with
γ(0) = x and γ(1) = y of length d(x, y) (see e.g. [AF � 01]). Examples of met-
ric spaces that satisfy the above condition are the Euclidean space R

�
and a

metric space induced by an undirected connected edge-weighted graph.

�
��� �
	

�
� ����
 	� ����� 	

Connected and
smooth metric
space.

An instance of the basic online dial-a-ride problem OLDARP in the met-
ric space M consists of a sequence σ = r � , . . . , r � of requests. Each request is

2.1 SINGLE-SERVER DIAL-A-RIDE-PROBLEMS 21

d(x, z)

x
z

d(x, y) − d(x, z)

y

Figure 2.1
A weighted graph

induces a
connected and
smooth metric

space.

a triple r � = (t � , α � , ω �) ∈ R×X×X with the following meaning: t � = t(r �) ≥ 0

is a real number, the time where request r � is released (becomes known),
and α � = α(r �) ∈ X and ω � = ω(r �) ∈ X are the source and destination,
respectively, between which the object corresponding to request r � is to be
transported.

It is assumed that the sequence σ = r � , . . . , r � of requests is given in
order of non-decreasing release times, that is, 0 ≤ t(r �) ≤ t(r �) ≤ · · · ≤
t(r �). For a real number t we denote by σ≤ � the subsequence of requests
in σ released up to and including time t. Similarly, σ � � and σ � � denote the
subsequences of σ consisting of those requests with release time exactly t

and strictly smaller than t, respectively.
A server is located at the origin o ∈ X at time 0 and can move at constant

unit speed. The server has capacity C, i.e., it can carry at most C objects at a
time. We do not allow preemption: once the server has picked up an object,
it is not allowed to drop it at any other place than its destination.

�
�
�
�
�

�
�
�
�
�

� �� �

� �� �
	 	

� �� �

Elevator and
representation in

OLDARP.

An online algorithm for OLDARP does neither have information about
the release time of the last request nor about the total number of requests.
The online algorithm must determine the behavior of the server at a certain
moment t of time as a function of all the requests released up to time t (and
the current time t). In contrast, an offline algorithm has information about
all requests in the whole sequence σ already at time 0.

Informally, a feasible online/offline solution, called transportation sched-
ule, for a sequence σ is a sequence of moves for the server such that the transportation

schedulefollowing conditions are satisfied: (i) the server starts in the origin at time 0,
(ii) each request in σ is served, but picked up not earlier than the time it is
released. If additionally (iii) the server ends its work at the origin, then the
transportation schedule is called closed. Depending on the specific variant of closed

transportation
schedule

OLDARP only closed schedules may be feasible.
Given an objective function cost, the problem cost-OLDARP consists of

finding a feasible schedule S∗ minimizing cost(S∗).
We now formally introduce the notions of a transportation schedule and

an objective function for the OLDARP. The presentation is technical, but
avoids ambiguities. Moreover, the definitions enable us to state the problem
cost-OLDARP cleanly as a request-answer game: Essentially, an algorithm
must answer each request with a transportation schedule which serves all

22 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

yet unserved requests and which does not conflict with previous answers.
We will use the more informal definition of a transportation schedule

given above in subsequent chapters as long as no confusion can occur.

2.1.1 Transportation Schedules and Objective Functions

The building blocks of transportation schedules are transportation moves.
A transportation move is a quadruple (τ, x, y, R), where x ∈ X is the starting

�

time �

time �

�

�

� � � ��� � 	

Transportation
move carrying
objects R.

point, y ∈ X the end point, and τ the starting time, while R is the (possibly
empty) set of requests carried by the move. The arrival time of the move is
the sum τ + d(x, y) of its starting time τ and the distance d(x, y) covered.

Definition 2.1 (Transportation Schedule)
A transportation schedule for a sequence σ of requests is a sequencetransportation

schedule
S = (τ � , x � , y � , R �), (τ � , x � , y � , R �), . . . , (τ � , x � , y � , R �)

of transportation moves with the following properties:

(i) The (i + 1)st move starts at the endpoint of the ith move and not earlier
than the time that the ith move is completed, that is, x � ��� = y � and τ � ��� ≥
τ � + d(x � , y �) for all i;

(ii) Each move carries at most C requests, that is, |R � | ≤ C for all i;

(iii) For any request r ∈ σ, the subsequence of S consisting of those moves
(τ � , x � , y � , R �) with r ∈ R � is a contiguous nonempty subsequence

S(r) = (τ � , x � , y � , R �), . . . , (τ � � � , x � � � , y � � � , R � � �)

of S which forms a transportation from α(r) to ω(r), that is, x � = α(r) and
y � � � = ω(r). The sub-transportation S(r) does not start before r is released,
that is, τ � ≥ t(r).

The time τ � and the point x � ∈ X are called the starting time and the startingstarting
time/point point of S. Similarly, the time τ � + d(x � , y �) and the point y � are referred to as the

end time , and the end point of S.end time/point
A schedule which ends at the origin o is called a closed transportation sched-

ule. The length l(S) of schedule S is defined as the difference between its end timelength l(S)

and its start time, that is, l(S) = τ � + d(x � , y �) − τ � .

Depending on the specific problem setup we may require that an algo-
rithm produces a closed transportation schedule. For instance, in the online
traveling salesman problem (OLTSP) (see Definition 2.6) only closed schedules
have finite objective function value.

2.1 SINGLE-SERVER DIAL-A-RIDE-PROBLEMS 23

r �
ar �

r � r �

o b

c

time d(o, a)
+d(a, b)

+d(b, o) + 1

time 0 time d(o, a) time d(o, a)
+d(a, b)

r �r �r �

r �

Figure 2.2
A transportation
schedule for the

sequence
σ = r1, r2.

Example 2.2
Consider the request sequence σ = r � , r � , where r � = (0, a, b) and r � =

(d(o, a) + d(a, b) + d(b, 0) + 1, o, c). Figure 2.2 illustrates the (non-closed)
transportation schedule

S = (0, o, a, ∅), (τ � , a, b, {r � }), (τ � , b, o, ∅), (τ � , o, c, {r � }),

for σ, where τ � = d(o, a), τ � = τ � +d(a, b), τ � = τ � +d(b, o)+ 1. Notice that
the last move from o to c starts one time unit later than the previous move
has ended. This is due to the fact that r � has not yet been released at time
τ � + d(b, o). C

Definition 2.3 (Objective Function for OLDARP)
Let R = R � × X × X be the set of all possible requests and S the set of all possible
transportation schedules. Denote by R∗ the set of all sequences which are composed
of requests from R in order of non-decreasing release times. An objective function
for OLDARP is a mapping cost : R∗ × S → R � ∪ {+∞}. objective function

for OLDARP

Definition 2.4 (Online Dial-a-Ride Problem cost-OLDARP)
Given an instance of the basic online dial-a-ride problem OLDARP and an objective
function cost, the online dial-a-ride problem cost-OLDARP consists of finding a cost-OLDARP

transportation schedule which starts at the origin and which minimizes cost.

2.1.2 Online Dial-a-Ride Problems as Request-Answer
Games

In this section we show how to formulate the online dial-a-ride problem
cost-OLDARP in the metric space (X, d) as a request-answer game. We set
R := R � × X × X and for n ∈ N we define A � to be the collection of all

24 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

transportation schedules for sequences of requests from R. It remains to
specify the sequence of cost functions cost � , i = 1, 2, Let

S = (τ � , x � , y � , R �), (τ � , x � , y � , R �), . . . , (τ � , x � , y � , R �)

be a transportation schedule.
The prefix of S at time t is the transportation schedule resulting from theprefix

movements of the server from time 0 until time t. We define the prefix more
rigorously. To this end, let j with 1 ≤ j ≤ ` be maximal with the property
that the jth move starts no later than time t, that is, τ � ≤ t. Let γ : [0, 1]→ X

be the rectifiable path in X between the starting point x � and the end point y �

of the jth move. We set

z :=

{
γ
(��� ������ � � � � ���)

)

if τ � ≤ t ≤ τ � + d(x � , y �)

y � if t > τ � + d(x � , y �).

In other words, z ∈ X is the position in the connected and smooth metric
space where according to the schedule S the server is located at time t. The
first case in the above equation corresponds to the situation where the jth
move is not yet completed at time t and the server is at a position “between
x � and y � ”. The second case reflects the situation where the jth move is com-
pleted before time t. Observe that in this case the server is still at point y �

since by definition of j the (j + 1)st move has not yet started. With these
notation the prefix of S at time t is given by

(τ � , x � , y � , R �), . . . , (τ � , x � , z, R �).

Let cost : R∗ × S → R � ∪ {+∞} be the objective function of cost-OLDARP
(see Definition 2.3). We define the cost function cost � , i = 1, 2, . . . in the
request-answer game as follows:

cost� (r � , . . . , r � , a � , . . . , a �) :=





+∞ if a � is not a valid transportation schedule for r � , . . . , r �

for some 1 ≤ j ≤ i

or
a � � � and a � have different prefixes at time t

for some 1 ≤ j ≤ i and some t ≤ t � ,
cost(a �) otherwise.

The case that a � � � and a � have different prefixes in the above definition cor-
responds to the fact that “history is irrevocable” for an online algorithm. At
time t, all answers given so far (i.e., all transportation schedules produced
so far) must have the same prefix.

2.2 PROBLEM DEFINITION 25

2.2 Problem Definition

In the present chapter we consider the following objective functions for the
OLDARP:

Closed Makespan C �max: For a closed schedule S, closed makespan

S = (τ � , x � , y � , R �), . . . , (τ � , x � , y � , R �),

the closed makespan C �max is defined to be the time when the schedule S

ends, that is, C �max(S) = τ � + d(x � , y �). Moreover, C �max(S
′) := +∞ for

all non-closed schedules S ′.

Makespan Cmax: The makespan Cmax(S) of a schedule S equals the time makespan
when S ends, independent of whether S is closed or not.

Definition 2.5 (Online Dial-a-Ride Problem C �max-/Cmax-OLDARP)
The problems C �max-OLDARP and Cmax-OLDARP consist of finding a transporta-
tion schedule which starts at the origin and minimizes the closed makespan C �max
and the (non-closed) makespan Cmax, respectively.

The objective function C �max may look somewhat artificial at first glance,
since we force any competitive algorithm to make its server return to the
origin at the end. However, other online problems, such as scheduling prob-
lems, can be formulated as a special case of C �max-OLDARP (see Section 2.3).
In particular, C �max-OLDARP comprises the online traveling salesman problem
(OLTSP) which was introduced in [AF � 01, AF � 95, AF � 94] as an online vari-
ant of the famous traveling salesman problem (TSP).

In the OLTSP cities (requests) arrive online over time while the salesman
is traveling. The requests are to be handled by a salesman-server that starts
and ends his work at a designated origin. The cost of such a route is the
time when the server has served the last request and has returned to the
origin (if the server does not return to the origin at all, then the cost of such
a route is defined to be infinity). Notice that the OLTSP differs from its

Home

Online traveling
salesman problem

(OLTSP).
famous relative, the traveling salesman problem, in certain aspects: First,
the cost of a feasible solution is not the length of the tour but the total travel-
time needed by the server. The total travel time is obtained from the tour
length plus the time where the server remains idle. Second, due to the online
nature of the problem it may be unavoidable that a server reaches a certain
point in the metric space more than once.

Definition 2.6 (Online Traveling Salesman Problem (OLTSP))
The online traveling salesman problem (OLTSP) is the special case of the C �max-
OLDARP, when for each request r its source and destination coincide, that is,
α(r) = ω(r) for all r.

26 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

If σ = r � , . . . , r � is a sequence of requests for the OLTSP we write briefly
r � = (t � , α �) instead of r � = (t � , α � , α �). Observe that the capacity of the server
is irrelevant in case of the OLTSP. We will investigate more aspects of the
OLTSP in Chapter 3.

2.3 Application to Machine Scheduling

Suppose that there is a single machine which can process q different types
T � , . . . , T � of jobs. A setup cost s � is charged in order to process a job of type T � ,
unless the preceeding job on the machine was of the same type. This setup
cost models for instance the situation where special auxiliary devices must
be installed at the machine to perform a certain job type.

job types tools

schedule

T �
T �
T �
T �

x �

Figure 2.3
Modeling of a
scheduling
problem with
setup costs (four
job types) as
Co

max-OLDARP.

The problem of minimizing the makespan in this machine scheduling
problem when jobs arrive over time can be modeled as a C �max-OLDARP with
a unit-capacity server on a star-shaped metric space with center o (see Fig-
ure 2.3 for an illustration). For each of the q job types there is one ray in
the metric space emanating from o. On ray i there is a special point x � at
distance s � /2 from o. A job of type T � with processing time p is modeled by
a transportation request from the point x � to the point x � + p/2.

The above outlined transformation of the scheduling problem to the
OLDARP can also be used for other objective functions such as the aver-
age/maximal flow time (see Chapter 4 for definitions). A c-competitive
algorithm for cost-OLDARP with a unit capacity server then implies a c-
competitive algorithm for the online scheduling problem of minimizing the
objective function cost on a single machine when jobs arrive over time.

A natural generalization of the basic setting in OLDARP is to consider the
situation where there are k servers with arbitrary capacities C � , . . . , C � ∈
N. We denote this generalized problem by k-OLDARP. The problem k-

k-OLDARP: More
than one server.

OLDARP with k unit-capacity servers can be used to model the scheduling
problem with setup costs when there are k uniform machines instead of just

2.4 LOWER BOUNDS 27

a single machine. Using the above construction of the star-shaped metric
space we obtain the following result: M1

M2

M3

M4

time

makespan

jo
bs

m
ac

hi
ne

s

Scheduling on
parallel machines
with jobs arriving

over time.

Observation 2.7 Suppose that there exists a c-competitive algorithm for the k-
cost-OLDARP with unit capacity servers. Then there exists a c-competitive al-
gorithm for the scheduling problem of minimizing the objective function cost on
k uniform machines when jobs arrive over time.

We will see later that the IGNORE and SMARTSTART-strategies (see Sec-
tions 2.5 and 2.6) can be applied to k-C �max-OLDARP. Their competitive
ratios of 5/2 and 2, respectively, hold as well in the generalized case. As
a corollary, we obtain 2-competitive algorithms for a number of machine
scheduling problems with setup-costs.

2.4 Lower Bounds

In this section we address the question how well online algorithms can per-
form compared to the optimal offline algorithm. To repeat the question
posed in the introduction: How much does one lose by not having com-
plete information?

Ausiello et al. established the following lower bounds for the OLTSP:

Theorem 2.8 ([AF � 01, AF � 95, AF � 94]) Any deterministic online algorithm for
the OLTSP in general metric spaces has a competitive ratio greater or equal to 2.
Any deterministic online algorithm for the OLTSP on the real line has competitive
ratio at least (9 +

√
17)/8. 2

9+
√

17
8

≈
1.640388203

Since C �max-OLDARP generalizes the OLTSP, the above theorem yields as
a corollary a lower bound of 2 on the competitive ratio of any deterministic
algorithm for C �max-OLDARP in general metric spaces. As a consequence,
the SMARTSTART-Algorithm presented in Section 2.6 is in fact best possi-
ble among all deterministic algorithms from a competitive analysis point of
view.

Theorem 2.9 Any deterministic online algorithm for the C �max-OLDARP in gen-
eral metric spaces has a competitive ratio greater or equal to 2. For the case of the
real line, any determinstic algorithm has a competitive ratio at least c ≥ 1+

√
2/2. 1 +

√
2/2 ≈

1.707106781

Proof: As noted above, the general lower bound is an immediate conse-
quence of Theorem 2.8. We now address the case of the real line (with server
capacity equal to one). Suppose that ALG is a deterministic online algorithm
with competitive ratio c ≤ 1+

√
2/2. We show that also c ≥ 1+

√
2/2, which

proves the claim of the theorem.

28 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

At time 0, the algorithm ALG is faced with two requests r � = (0, o, 2) and
r � = (0, 2, o). The optimal offline cost to serve these two requests is 4.

�

�

� �

time
�

time �

�

Lower bound
construction in
Theorem 2.9.

The server operated by ALG must start serving request r � at some time
2 ≤ T ≤ 4c−2, because otherwise ALG could not be c-competitive. At time T

the adversary issues another request r � = (T, T, 2). Then OPT(r � , r � , r �) = 2T .
On the other hand, ALG(r � , r � , r �) ≥ 3T + 2. Thus, the competitive ratio c

of ALG satisfies

c ≥ 3T + 2

2T
=

3

2
+

1

T
≥ 3

2
+

1

4c − 2
.

The smallest value c ≥ 1 such that c ≥ 3/2+1/(4c−2) is c = 1+
√

2/2. This
completes the proof. 2

We conclude the section with a lower bound for randomized algorithms.
The lower bound will be shown for the OLTSP on the real line endowed with
the usual Euclidean metric.

Theorem 2.10 Any randomized algorithm for the OLTSP on the real line has com-
petitive ratio greater or equal to 3/2 against an oblivious adversary.

Proof: We use Yao’s Principle (Theorem 1.12 on page 15) as a tool for deriv-
ing the lower bound. No request will be released before time 1. At time 1

with probability 1/2 there is a request at 1, and with probability 1/2 a re-
quest at −1. This yields a probability distribution X over the two request
sequences σ � = (1, 1) and σ � = (1, −1).

Since OPT(σ �) = OPT(σ �) = 2 it follows that E
�

[OPT(σ �)] = 2. We now
calculate the expected cost of an arbitrary deterministic algorithm. Consider
the deterministic online algorithm ALG � which has its server at position y ∈
R at time 1 (clearly, any deterministic online algorithm is of this form). With
probability 1/2, y is on the same side of the origin as the request which is
released at time 1, with probability 1/2 the position y and the request are on
opposite sides of the origin. In the first case, ALG � (σ �) ≥ 1+(2−y) (starting
at time 1 the server has to move to 1 and back to the origin which needs time
at least 2 − y). In the other case, ALG � (σ �) ≥ 1 + (2 + y). This yields

E
�

[ALG � (σ �)] =
1

2
(3 − y) +

1

2
(3 + y) = 3.

Hence E
�

[ALG � (σ�)] ≥ 3/2 · E
�

[OPT(σ �)] and the claimed lower bound fol-

�

�

�
�

� �

�

�

Positions of the
online server in
the randomized
lower bound
construction in the
proof of
Theorem 2.10.

lows by Yao’s Principle. 2

Corollary 2.11 Any randomized algorithm for the C �max-OLDARP on the real line
has competitive ratio greater or equal to 3/2 against an oblivious adversary. 2

2.5 TWO SIMPLE STRATEGIES 29

2.5 Two Simple Strategies

In this section we present and analyze two very natural online-strategies for
C �max-OLDARP. In Section 2.8 we show how to extend our results to the case
of the Cmax-OLDARP where the server is not required to return to its initial
position at the end of its work.

Algorithm REPLAN REPLAN

As soon as a new request r � arrives the server stops and replans:
it computes a schedule with minimum length which starts at the
current position of the server, takes care of all yet unserved re-
quests (including those that are currently carried by the server),
and ends at the origin. Then it continues using the new schedule.

Algorithm IGNORE IGNORE

The server remains idle until the point in time t when the first
requests become known. The algorithm then serves the requests
released at time t immediately, following a shortest schedule S

which starts and ends at the origin. All requests that arrive dur-
ing the time when the algorithm follows S are temporarily ig-
nored. After S has been completed and the server is back in the
origin, the algorithm computes a shortest schedule for all un-
served requests and follows this schedule. Again, all new re-
quests that arrive during the time that the server is following the
schedule are temporarily ignored. A schedule for the ignored re-
quests is computed as soon as the server has completed its cur-
rent schedule. The algorithm keeps on following schedules and
temporarily ignoring requests in this way.

Both algorithms above repeatedly solve “offline instances” of the C �max-
OLDARP. These offline instances have the property that all release times
are no less than the current time. Thus, the corresponding offline problem
is the following: given a number of transportation requests (with release
times all zero), find a shortest transportation for them. This offline dial-a-
ride problem is investigated in Chapters 6 and 7. offline dial-a-ride

problemFor a sequence σ of requests and a point x in the metric space M, let
L∗(t, x, σ) denote the length of a shortest schedule (i.e., the time difference

L∗(t, x, σ)
between its completion time and the start time t, see Definition 2.1) which
starts in x at time t, serves all requests from σ (but not earlier than their
release times) and ends in the origin.

Observation 2.12 The function L∗ has the following properties:

(i) L∗(t ′, x, σ) ≤ L∗(t, x, σ) for all t ′ ≥ t;

30 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

(ii) L∗(t, x, σ) ≤ d(x, y) + L∗(t, y, σ) for all t ≥ 0 and all x, y ∈ X;

(iii) OPT(σ) = L∗(0, o, σ);

(iv) OPT(σ) ≥ L∗(t, o, σ) for any time t ≥ 0.

We now derive another useful property of L∗ for the special case that
the server has unit-capacity. This result will be used in the proof of the
competitiveness of the REPLAN-strategy.

Lemma 2.13 Let σ = r � , . . . , r � be a sequence of requests for the C �max-OLDARP
with unit capacity, i.e., with C = 1. Then for any t ≥ t � and any request r from σ,

L∗(t, ω(r), σ\{r}) ≤ L∗(t, o, σ) − d(α(r), ω(r)) + d(α(r), o).

Here σ \ {r} denotes the sequence obtained from σ by deleting the request r.

Proof: Consider a transportation schedule S∗ which starts at the origin o

at time t, serves all requests in σ and has length L∗(t, o, σ). It suffices to
construct another schedule S which starts in ω(r) no earlier than time t,
serves all requests in σ\{r} and has length at most L∗(t, o, σ)−d(α(r), ω(r))+

d(α(r), o).

� � �
	� � �

	

�

� ∗

Constructing a
schedule starting
at ω(r) (dashed
lines) from S∗

(thick solid lines).
Let S∗ serve the requests in the order r � � , . . . , r ��� and let r = r ��� . Notice

that if we start in ω(r) at time t and serve the requests in the order

r ��� ��� , . . . , r � � , r � � , . . . , r ���
	 �

and move back to the origin, we obtain a schedule S with the desired prop-
erties. 2

Let σ = r � , . . . , r � be any request sequence for C �max-OLDARP. Since the
optimal offline algorithm can not serve the last request r � = (t � , α � , ω �)

from σ before this request is released we get that

(2.1) OPT(σ) ≥ max {L∗(t, o, σ), t � + d(α � , ω �) + d(ω � , o)}

for any t ≥ 0.
We are now ready to prove the first result about the performance of RE-

PLAN:

Theorem 2.14 Algorithm REPLAN is 7/2-competitive for the C �max-OLDARP.

Proof: Let σ = r � , . . . , r � be any sequence of requests. We first handle
the general case with arbitrary capacity C of the server. We distinguish be-
tween two cases depending on the current load of the REPLAN-server at the
time t � , i.e., the time when the last request is released.

2.5 TWO SIMPLE STRATEGIES 31

If the server is currently empty it recomputes an optimal schedule which
starts at its current position, denoted by s(t �), serves all unserved requests,
and returns to the origin. This schedule has length at most L∗(t � , s(t �), σ) ≤
d(o, s(t �)) + L∗(t � , o, σ). Thus,

REPLAN(σ) ≤ t � + d(o, s(t �)) + L∗(t � , o, σ)

≤ t � + d(o, s(t �)) + OPT(σ) by (2.1)(2.2)

� � � �

�

� � � � 	

� �

� ∗ � � � � ���
 	

Theorem 2.14,
Case 1: The server

is empty at
time tm when the

last request is
released.

Since the REPLAN server has traveled to position s(t �) at time t � , there
must be a request r ∈ σ where either d(o, α(r)) ≥ d(o, s(t �)) or d(o, ω(r)) ≥
d(o, s(t �)). By the triangle inequality this implies that the optimal offline
server will have to travel at least twice the distance d(o, s(t �)) during its
schedule. Thus, d(o, s(t �)) ≤ OPT(σ)/2. Plugging this result into inequal-
ity (2.2) we get that the total time the REPLAN server needs is no more
than 5/2 OPT(σ).

�

� � � � 	
� � �

	

�

� � �
	

OPT(σ) ≥
2 d(o, s(tm))

We now consider the second case, when the server is currently carrying
a set of requests. Let R = {r � � , . . . , r ��� } with p ≤ C be the set of objects carried
by the REPLAN-server at time t � . Without loss of generality assume that the
objects in R are dropped at their destination by OPT in the order r � � , . . . , r ��� .
Moreover, let B denote the length of a shortest Hamiltonian path in X which
starts in ω � � , passes all points from {ω � � , . . . , ω � � 	 � } and ends in ω ��� .

By the triangle inequality we have

(2.3) OPT(σ) ≥ d(o, ω � �) + B + d(ω ��� , o).

On the other hand

�

� � � � 	

� ����� � �
p

	
� ����� � �

1

	

� �
1�

� �
p

OPT
�
 	

�

Case 2 (general C):
The server is

carrying objects R.

REPLAN(σ) ≤ t � + d(s(t �), ω � �) + B + d(o, ω � �) + L∗(t � , ω ��� , σ \ R)

≤ t � + d(s(t �), o) + d(o, ω � �) + B + d(ω ��� , o) + OPT(σ)

≤ t � + d(s(t �)) + 2 OPT(σ) by (2.3)
≤ 7/2 · OPT(σ).

Here, we have used (2.1) and d(s(t �), o) ≤ OPT(σ)/2. This completes the
proof of the fact that REPLAN is 7/2-competitive for general capacities. 2

In case that the capacity of the server is one, we can prove a better result
about the competitiveness of REPLAN:

Theorem 2.15 In case of a server with unit-capacity (C = 1), REPLAN is 5/2-
competitive for the C �max-OLDARP.

Proof: We have already shown in the proof of Theorem 2.14 above that the
cost of the REPLAN-strategy is at most 5/2 times the optimum offline cost

32 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

in case that the server is empty at the time t � . Thus, it suffices to consider
the case that the server is serving a request r at the time t � when the last
request r � becomes known. The time needed to complete the current move
is d(s(t �), ω(r)). A shortest schedule starting at ω(r) serving all unserved
requests has length at most L∗(t � , ω(r), σ\{r}). Thus, we have

REPLAN(σ) ≤ t � + d(s(t �), ω(r)) + L∗(t � , ω(r), σ\{r})

≤ t � + d(s(t �), ω(r)) + L∗(t � , o, σ)

− d(α(r), ω(r)) + d(α(r), o) by Lemma 2.13

≤ t � + OPT(σ) − d(α(r), ω(r))

+ d(s(t �), ω(r)) + d(α(r), s(t �))
︸ ︷︷ ︸

� ����� ��� � � � ��� � �
+d(s(t �), o)

= t � + d(o, s(t �)) + OPT(σ).

Hence, inequality (2.2) also holds in case that the server is carrying an object

s(tm)

α(r)� � �
	

� �
� �

�

� �

���� �
	 	
� ∗ � � � � � � �

	 �

Case 2 (C=1): The
server is serving
request r.

at time t � . As argued above, t � + d(o, s(t �)) + OPT(σ) ≤ 5/2 OPT(σ). This
completes the proof. 2

We are now going to analyze the competitiveness of the second simple
strategy IGNORE.

Theorem 2.16 Algorithm IGNORE is 5/2-competitive for the C �max-OLDARP.

Proof: We consider again the point in time t � when the last request r �

becomes known. If the IGNORE-server is currently idle at the origin o, then
it completes its last schedule no later than time t � + L∗(t � , o, σ � � �), where
σ � � � is the set of requests released at time t � .

Since L∗(t � , o, σ � � �) ≤ OPT(σ) and OPT(σ) ≥ t � , it follows that in this
case IGNORE completes no later than time 2 OPT(σ).

It remains the case that at time t � the IGNORE-server is currently work-
ing on a schedule S for a subset σ � of the requests. Let t � denote the starting
time of this schedule. Thus, the IGNORE-server will complete S at time t � +

L∗(t � , o, σ �). Denote by σ≥ �
� the set of requests presented after the IGNORE-
server started with S at time t � . Notice that σ≥ �
� is exactly the set of requests
that are served by IGNORE in its last schedule. The IGNORE-server will com-
plete its total service no later than time t � + L∗(t � , o, σ �) + L∗(t � , o, σ≥ �
�).

�

���
OPT

�
 	

≥ � S

Proof of
Theorem 2.16: The
inequality
OPT(σ) ≥ tS +

L∗(tS, αf, σ≥tS
)

holds.
Let r � ∈ σ≥ � � be the first request from σ≥ � � served by OPT. Thus

(2.4) OPT(σ) ≥ t � + L∗(t � , α � , σ≥ �
�) ≥ t � + L∗(t � , α � , σ≥ �
�).

2.6 A BEST-POSSIBLE ONLINE-ALGORITHM 33

Now, L∗(t � , o, σ≥ � �) ≤ d(o, α �) + L∗(t � , α � , σ≥ � �) and L∗(t � , o, σ �) ≤
OPT(σ). Therefore,

IGNORE(σ) ≤ t � + OPT(σ) + d(o, α �) + L∗(t � , α � , σ≥ �
�)
≤ 2 OPT(σ) + d(o, α �) by (2.4)

≤ 5

2
OPT(σ).

This completes the proof. 2

The following set of instances shows that the competitive ratio of 5/2

proved for IGNORE is asymptotically tight even for the case when the metric
space M is the real line.

At time 0 there is a request r � = (0, 1, o). The next requests are r � =

(ε, 2, 2 + ε) and r � = (2 + ε, 2, 1). It is easy to see that IGNORE(r � , r � , r �) =

10 + 2ε, while OPT(r � , r � , r �) = 4 + 2ε. Thus, the ratio

IGNORE(r � , r � , r �)

OPT(r � , r � , r �)
=

5 + ε

2 + ε

can be made arbitrarily close to 5/2 by choosing ε > 0 small enough.
Strategy IGNORE can be easily generalized to the case of k-C �max-OLDARP

(see Page 26). For k-C �max-OLDARP the IGNORE strategy always plans sched-
ules for its servers such that the length of the longest schedule is minimized.
All schedules are constructed in such a way that they start and end in the
origin. New requests are ignored until the last of the servers has returned
to the origin. It is not too hard to see that the proof of Theorem 2.16 remains
valid even for k-C �max-OLDARP. This yields the following result:

0

0

0

0

time 2 + ε

time 6 + 2ε

time ε

time 0

21

1 2

1 2

21

Worst-case
sequence for

IGNORE.

Theorem 2.17 IGNORE is 5/2-competitive even for the k-C �max-OLDARP. 2

2.6 A Best-Possible Online-Algorithm

In this section we present and analyze our algorithm SMARTSTART which
achieves a best-possible competitive ratio of 2 (cf. the lower bound given
in Theorem 2.8). The idea of the algorithm is basically to emulate the IG-
NORE-strategy but to make sure that each sub-transportation schedule is
completed “not too late”: if a sub-schedule would take “too long” to com-
plete then the algorithm waits for a specified amount of time. Intuitively
this construction tries to avoid the worst-case situation for IGNORE where
right after the algorithm starts a schedule a new request becomes known.

SMARTSTART has a fixed “waiting scaling” parameter θ > 1. From time
to time the algorithm consults its “work-or-sleep” routine: this subroutine “work-or-sleep”

routine

34 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

computes an (approximately) shortest schedule S for all unserved requests,
starting and ending in the origin. If this schedule can be completed no later
than time θt, i.e., if t+l(S) ≤ θt, where t is the current time and l(S) denotes
the length of the schedule S, the subroutine returns (S, work), otherwise it
returns (S, sleep).

In the sequel it will be convenient to assume that the “work-or-sleep”
subroutine uses a ρ-approximation algorithm for computing a schedule: the
approximation algorithm always finds a schedule of length at most ρ times
the optimal one. While in online computation one is usually not interested
in time complexity (and thus in view of competitive analysis we can assume
that ρ = 1), employing a polynomial-time approximation algorithm will
enable us to get a practical algorithm (and in particular to improve the result
of [AF � 01, AF � 95] for the OLTSP).

The server of algorithm SMARTSTART can assume three states:

idle In this case the server has served all known requests, is sitting in the
origin and waiting for new requests to occur.

sleeping In this case the server is sitting at the origin and knows of some
unserved requests but also knows that they take too long to serve
(what “too long” means will be formalized in the algorithm below).

working In this state the algorithm (or rather the server operated by it) is
following a computed schedule.

working state

Zzzz

idle state

�

�

�

sleeping state

States of the
SMARTSTART-
server.

We now formalize the behavior of the algorithm by specifying how it
reacts in each of the three states.

Algorithm SMARTSTARTSMARTSTART

If the algorithm is idle at time T and new requests arrive, calls
“work-or-sleep”. If the result is (S, work), the algorithm enters
the working state where it follows schedule S. Otherwise the
algorithm enters the sleeping state with wakeup time t ′, where
t ′ ≥ T is the earliest time such that t ′+l(S) ≤ θt ′ and l(S) denotes
the length of the just computed schedule S, i.e., t ′ = min{ t ≥ T :

t + l(S) ≤ θt }.

In the sleeping state the algorithm simply does nothing until its
wakeup time t ′. At this time the algorithm reconsults the “work-
or-sleep” subroutine. If the result is (S, work), then the algorithm
enters the working state and follows S. Otherwise the algorithm
continues to sleep with new wakeup time min{ t ≥ t ′ : t + l(S) ≤
θt }.

In the working state, i.e, while the server is following a schedule,
all new requests are (temporarily) ignored. As soon as the cur-
rent schedule is completed the server either enters the idle-state

2.6 A BEST-POSSIBLE ONLINE-ALGORITHM 35

(if there are no unserved requests) or it reconsults the “work-or-
sleep” subroutine which determines the next state (sleeping or
working).

Theorem 2.18 For all real numbers θ ≥ ρ with θ > 1, Algorithm SMARTSTART

is c-competitive for the C �max-OLDARP with

c = max
{

θ, ρ

(

1 +
1

θ − 1

)

,
θ

2
+ ρ

}
.

Moreover, the best possible choice of θ is �
�
(

1 +
√

1 + 8ρ
)

and yields a competitive
ratio of c(ρ) :=

�
�
(

4ρ + 1 +
√

1 + 8ρ
)

.

1.5 2 2.5 3

2.5
3

3.5
4

4.5

Competitive
ratio c(ρ) of
SMARTSTART

for ρ ≥ 1.

Proof: Let σ � � � be the set of requests released at time t � , where t � de-
notes again the point in time when the last requests becomes known. We
distinguish between different cases depending on the state of the SMART-
START-server at time t � :
Case 1: The server is idle.

In this case the algorithm consults its “work-or-sleep” routine which
computes an approximately shortest schedule S for the requests in σ � � � .
The SMARTSTART-server will start its work at time t ′ = min{ t ≥ t � :

t+l(S) ≤ θt }, where l(S) ≤ ρL∗(t � , o, σ � � �) denotes the length of the sched-
ule S.

If t ′ = t � , then by construction the algorithm completes no later than
time θt � ≤ θ OPT(σ). Otherwise t ′ > t � and it follows that t ′ + l(S) = θt ′.
By the performance guarantee ρ of the approximation algorithm employed
in “work-or-sleep”, we have that OPT(σ) ≥ l(S)/ρ = � � �� t ′. Thus, it follows
that

SMARTSTART(σ) = t ′ + l(S)

≤ θt ′ ≤ θ · ρ OPT(σ)

θ − 1
= ρ

(

1 +
1

θ − 1

)

OPT(σ).

Case 2: The server is sleeping.
Note that the wakeup time of the server is no later than min{ t ≥ t � :

t + l(S) ≤ θt }, where S is now a shortest schedule for all the requests in σ

not yet served by SMARTSTART at time t � , and we can proceed as in Case 1.
Case 3: The algorithm is working.

If after completion of the current schedule the server enters the sleeping
state, then the arguments given above establish that the completion time of
the SMARTSTART-server does not exceed ρ

(

1 +
�

� � �
)

OPT(σ).
The remaining case is that the SMARTSTART-server starts its final sched-

ule S ′ immediately after having completed S. Let t � be the time when the

36 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

server started S and denote by σ≥ � � the set of requests presented after the
server started S at time t � . Notice that σ≥ � � is exactly the set of requests that
are served by SMARTSTART in its last schedule S ′.

(2.5) SMARTSTART(σ) = t � + l(S) + l(S ′).

Here, l(S) and l(S ′) ≤ ρL∗(t � , o, σ≥ �
�) denotes the length of the schedule S

and S ′, respectively. We have that

(2.6) t � + l(S) ≤ θt � ,

since the SMARTSTART only starts a schedule at some time t if it can complete
it not later than time θt. Let r � ∈ σ≥ �
� be the first request from σ≥ �
� served
by OPT.

Using the arguments given in the proof of Theorem 2.16 we conclude as
in (2.4)that

(2.7) OPT(σ) ≥ t � + L∗(t � , α � , σ≥ � �).

Moreover, since the tour of length L∗(t � , α � , σ≥ �
�) starts in α � and returns to
the origin, it follows from the triangle inequality that

L∗(t � , α � , σ≥ �
�) ≥ d(o, α �).

Thus, from (2.7) we get

(2.8) OPT(σ) ≥ t � + d(o, α �).

On the other hand

�

� �

≥ � S

� � � � � � 	
OPT

�
 	

The lower bound:
OPT(σ) ≥
tS + d(o, αf).

l(S ′) ≤ ρ (d(o, α �) + L∗(t � , α � , σ≥ �
�))
≤ ρ (d(o, α �) + OPT(σ) − t �) by (2.7).(2.9)

Using (2.6) and (2.9) in (2.5) and the assumption that θ ≥ ρ, we obtain

SMARTSTART(σ) ≤ θt � + l(S ′) by (2.6)
≤ (θ − ρ)t � + ρ d(o, α �) + ρ OPT(σ) by (2.9)
≤ θ OPT(σ) + (2ρ − θ)d(o, α �) by (2.8)

≤
{

θ OPT(σ) + (2ρ − θ)
OPT

� �
�

� , if θ ≤ 2ρ

θ OPT(σ) , if θ > 2ρ

≤ max
{

θ

2
+ ρ, θ

}
OPT(σ)

This completes the proof. 2

2.6 A BEST-POSSIBLE ONLINE-ALGORITHM 37

For “pure” competitive analysis we may assume that each schedule S

computed by “work-or-sleep” is in fact an optimal schedule, i.e., that ρ = 1.
The best competitive ratio for SMARTSTART is then achieved for that value
of θ where the three terms θ, 1 +

�

� � �
and �� + 1 are equal. This is the case

for θ = 2 and yields a competitive ratio of 2. We thus obtain the following
corollary.

0 2 3 4 5

1
2
3
4
5

The three terms θ,
1 + 1

θ−1
and θ

2
+ 1

coincide for θ = 2.

Corollary 2.19 For ρ = 1 and θ = 2, Algorithm SMARTSTART is 2-competitive
for the C �max-OLDARP. 2

For the special case of the OLTSP Christofides’ algorithm [Chr76] yields OLTSP

a polynomial-time approximation algorithm to solve the offline instances
in the “work-or-sleep” subroutine with a performance of ρ = 3/2. For this
value of ρ, the best competitive ratio of SMARTSTART is attained for θ =
� � √ � �

� and equals � � √ � �
� .

7+
√

13
4

≈
2.651387819

Thus, our algorithm SMARTSTART can be used to obtain a polynomial-
time competitive algorithm for the OLTSP with competitive ratio approx-
imately 2.6514. This improves the result of [AF � 01, AF � 95] where a 3-
competitive polynomial-time algorithm for the OLTSP was given.

Note that the SMARTSTART-strategy inherits some desirable properties
from the IGNORE-strategy: The algorithm can also be used for the k-C �max-
OLDARP and provides the same competitive ratio.

Theorem 2.20 SMARTSTART is 2-competitive for the k-C �max-OLDARP. 2

The above theorem implies a 2-competitive algorithm for the machine
scheduling problems with setup costs discussed in Section 2.3. Moreover,
we can use SMARTSTART to obtain competitive polynomial-time algorithms
for scheduling problems. Shmoys et al. showed the following result:

Theorem 2.21 ([SWW95]) Suppose that there exists a polynomial-time ρ-approx-
imation algorithm for the machine scheduling problem of minimizing the makespan
in an environment where all jobs to be scheduled are available at time 0. For the
analogous environment in which the existence of a job is unknown until its release
date, there exists a polynomial-time algorithm which is 2ρ-competitive. 2

1.5 2 2.5 3

3

4

5

6

Improved
competitive
ratio c(ρ) of

SMARTSTART-
based

polynomial-time
algorithm vs. the
competitive ratio

of 2ρ from
[SWW95]
for ρ ≥ 1.

Using the transformation shown in Section 2.3 and applying the re-
sult from Theorem 2.18 about SMARTSTART, we obtain a polynomial-time
scheduling algorithm which is c(ρ)-competitive with

c(ρ) =
1

4

(

4ρ + 1 +
√

1 + 8ρ
)

.

Since c(ρ) < 2ρ for all ρ > 1, the Algorithm SMARTSTART improves
the result from [SWW95] stated in the above theorem. In particular, we

38 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

obtain a c(2)-competitive polynomial-time algorithm for scheduling on un-
related machines, where c(2) = (9 +

√
17)/4. The previously best algorithm

achieved a competitive ratio of 4 [SWW95].
9+

√
17

4
≈

3.280776406

2.7 A Simple Randomized Algorithm

In this section, we present a competitive randomized algorithm RANDSLEEP

for C �max-OLDARP. The competitive ratio of 1 + 1/ ln 2, achieved by RAND-
SLEEP does not improve upon SMARTSTART. However, RANDSLEEP beats
REPLAN and IGNORE. Moreover, the beauty of RANDSLEEP lies in its sim-
plicity and the easy proof of its performance.

Algorithm RANDSLEEPRANDSLEEP

Initialization: At the start, the algorithm chooses a random num-
ber δ ∈ (0, 1] according to the uniform distribution. After this
random choice, the algorithm is completely deterministic.

Set L to be the earliest time when a request could be completed
by OPT (we can assume that L > 0 since L = 0 means that there
are requests released at time 0 with source and destination 0.
These requests are served at no cost). Until time L remain in 0.
For i = 0, 1, 2, . . . , set B � := 2

� ��� L.

Phase �
time

��� ����� � ����� �
Values Bi and
phases in Algo-
rithm RANDSLEEP.

Phase i, for all i = 1, 2, . . .: Phase i is started at time B � . At this
time, the algorithm considers all requests R � that have been re-
leased up to time B � but not been served yet. RANDSLEEP com-
putes a shortest schedule S � which starts and ends in the origin
and which serves all requests in R � .

If this schedule can be completed no later than time B � ��� , the
server follows this schedule. Otherwise, if the schedule needs
more than B � � � − B � = B � time units, then the server simply does
nothing: it sleeps until time B � ��� .

In order to analyze the performance of RANDSLEEP we need an elemen-
tary lemma. This lemma will again be useful in Chapter 5, where we pro-
vide a randomized algorithm for the objective function of minimizing the
sum of completion times.

Lemma 2.22 Let z, L ∈ R
�

� with z ≥ L, and let δ ∈ (0, 1] be a random variable
uniformly distributed on (0, 1]. Define B by

B := max{ 2
� ��� L : 2

� ��� L < z and k ∈ N }.

Then, the expected value of B satisfies: E [B] =
�

� ln � .

2.8 EXTENSION TO THE NON-CLOSED MAKESPAN 39

Proof: Suppose that 2
�
L ≤ z < 2

� ���
L for some k ≥ 0. Observe that

B =

{
2

� ��� L if δ ≤ log �
� �
� ���
�

2
� � � ��� L otherwise

Hence

E [B] =

∫ log �
� � � ���

�

�
2

� ��� L dδ +

∫ �

log �
� � � � �

�

2
� � � ��� L dδ

= L2
�
[

−
1

ln 2
2 ���
] �

�
+ L2

�
[

−
1

ln 2
2 ���
] �

log �
� � � � �

�

=
z

2 ln 2
.

This completes the proof. 2

We are now ready to prove the competitiveness of RANDSLEEP.

Theorem 2.23 RANDSLEEP is c-competitive for the C �max-OLDARP, where c =

1 + 1/ ln 2.
1 + 1/ ln 2 ≈
2.442695041

Proof: Let k ∈ N be such that 2
� � � L < OPT(σ) ≤ 2

� � � � � L (such a k exists,
since L is a lower bound on OPT(σ) and δ > 0). From Lemma 2.22 we obtain
that E

[

2
� ��� L

]

= OPT(σ)/(2 ln 2).
From the fact that the optimal schedule can be completed before time

2
� � � ��� L, we can conclude two facts: first, all requests have been released by

time 2
� ��� ��� L, and second, in the (k + 1)st phase RANDSLEEP scheduled all

requests, since in this phase it allows 2
� � � ��� L time units for a schedule which

serves all remaining requests. Clearly, the length of the schedule computed
in the (k + 1)st phase can not exceed OPT(σ). Hence,

E [RANDSLEEP(σ)] ≤ 4E
[

2
� � � ��� L

]

+ OPT(σ) =

(

1 +
1

ln 2

)

OPT(σ).

This is what we wanted to show. 2

length
�
�
� �

�
�

�
�
� � �

�
� �

� � �
�
� �

timeOPT
�
 	

Phase k + 1 in
RANDSLEEP allows

time Bk+1 ≥
OPT(σ).

2.8 Extension to the Non-Closed Makespan

We briefly show how to extend our results to the case where the objective
is the (non-closed) makespan Cmax and, hence, the server is not required to
return to the origin at the end of its service.

40 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

2.8.1 Lower Bounds

Theorem 2.24 Any randomized algorithm for the OLTSP on the real line has com-
petitive ratio greater or equal to 2 against an oblivious adversary.

Proof: The construction is essentially the same as in Theorem 2.10: No re-
quest will be released before time 1. At time 1, with probability 1/2 there is
a request at 1 and with probability 1/2 a request at −1. It is straightforward
to verify that for any deterministic algorithm this yields an expected cost of
at least 2 while the expected offline cost equals 1. The claim of the theorem

�

�

�

�
�

time
 probability
�� �

�

probability
�� �

Randomized lower
bound
construction in
Theorem 2.24.

now follows by Yao’s Principle. 2

Corollary 2.25 Any randomized algorithm (and thus also any deterministic algo-
rithm) for the Cmax-OLDARP on the real line has competitive ratio greater or equal
to 2 against an oblivious adversary. 2

2.8.2 Competitive Ratios of the Algorithms

The algorithms REPLAN, IGNORE, and SMARTSTART are modified in such
a way that each schedule computed is a shortest schedule which starts at
the current position of the server, but not necessarily ends at the origin. In
addition, we build into REPLAN the constraint that its server only moves
on shortest paths between points of known requests, that is, at any time t,
the REPLAN-server only moves on shortest paths between points in the set
{ α(r), ω(r) : r ∈ σ≤ � }.

For a sequence σ of requests and a point x in the metric space M let
L̃∗(t, x, σ) denote the length of a shortest schedule which starts in x at time t

and serves all requests from σ. The difference to L∗(t, x, σ) defined in Sec-
tion 2.5 is that we do not require the schedule to end at the origin.

For t ′ ≥ t we have that L̃∗(t ′, x, σ) ≤ L̃∗(t, x, σ). Moreover, OPT(σ) =

L̃∗(0, o, σ) and thus OPT(σ) ≥ L̃∗(t, o, σ) for any time t ≥ 0. Since the optimal
offline server OPT can not serve the last request r � from σ before this request
is released at time t � = t(r �) we get that

(2.10) OPT(σ) ≥ max{L∗(t, o, σ), t � + d(α � , ω �)} for any t ≥ 0.

The following lemma can be proved similarly to Lemma 2.13:

Lemma 2.26 Let σ = r � , . . . , r � be a sequence of requests for the Cmax-OLDARP
with unit capacity, i.e., with C = 1. Then for any t ≥ t � and any request r ∈ σ

there exists a r ′ ∈ σ such that

� � �
	� � �

	

�

� ′

Schedule starting
at ω(r) (dashed)
from L̃(t, o, σ)

(solid).

L̃∗(t, ω(r), σ \ {r}) ≤ L̃∗(t, o, σ) − d(α(r), ω(r)) + d(ω(r ′), o),

2.8 EXTENSION TO THE NON-CLOSED MAKESPAN 41

in particular

L̃∗(t, ω(r), σ \ {r}) ≤ 2L̃∗(t, o, σ) − d(α(r), ω(r)).

2

We are now ready to establish the analogue of Theorem 2.14 for Cmax.

Theorem 2.27 Algorithm REPLAN is 9/2-competitive for the Cmax-OLDARP.

Proof: If at the time t � when the last requests from σ are released, the RE-
PLAN-server is empty, then the total time needed by REPLAN is no more than

� �� � � �

�

� � � � 	
� ∗ � � � � ���

Case 1: The
REPLAN-server is

empty at time tm.

t � + L̃∗(t � , s(t �), σ) ≤ t � + d(s(t �), o) + L̃∗(t � , o, σ)

≤ d(o, s(t �)) + 2 OPT(σ).

Since d(o, s(t �)) ≤ t � by the unit-speed of the server, it follows from the
above inequality that REPLAN(σ) ≤ 3 OPT(σ).

Now consider the situation where at time t � the REPLAN-server is carry-
ing a set R = {r � � , . . . , r ��� } of requests. By construction, s(t �) is on a shortest
path between two points x and y, where

x, y ∈ { α(r) : r ∈ σ≤ � � } ∪ { ω(r) : r ∈ σ≤ � � }.

Let P = (v � = o, v � , . . . , v� � �) be a shortest Hamiltonian path in X

through all the points {x, y, ω � � , . . . , ω ��� } subject to the constraint that P

starts at the origin o.
We denote by d(P) =

∑� � �
� � � d(v � , v � ���) the length of P and by z the end-

point of P. Without loss of generality we assume that, starting at o, the
point x is visited before y on P. Then with the help of the triangle inequality
we obtain

OPT(σ) ≥ d(P)

≥ d(o, x) + d(x, y) + d(y, z)

= d(o, x) + d(x, s(t �)) + d(s(t �), y) + d(y, z)

≥ d(s(t �), o) + d(s(t �), z)(2.11)

Here we have used the fact that s(t �) is on a shortest path between x and y.

�

� � � � 	

�

y

�
� � � � � � 	 � � 	

� � � � � � � 	 � � 	

Case 2: At time tm,
the REPLAN-server
is working. Path P

is a shortest
Hamiltonian path.

From (2.11) we see that d(o, s(t �)) ≤ d(P)/2 or d(s(t �), z) ≤ d(P)/2.
If d(o, s(t �)) ≤ d(P)/2, then, starting at time t � , the REPLAN-server

could move from it current position at s(t �) to the origin (which needs
d(s(t �), o) ≤ d(P)/2 units of time), then follow P until its endpoint z and
then move back to the origin empty. After that, all unserved requests can be
served at cost at most L̃(t � , o, σ) ≤ OPT(σ). Hence

�

� � � � 	

�

�

�

Case (a):
d(o, s(tm)) ≤

d(P)/2.

42 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

REPLAN(σ) ≤ t � +
3

2
d(P) + d(z, o) + OPT(σ)

≤ 5

2
OPT(σ) + t � + d(z, o) by (2.11)

≤ 9

2
OPT(σ).

Here, in order to obtain the last inequality we have used the fact that
OPT(σ) ≥ t � and OPT(σ) ≥ d(o, z), where the latter estimate stems from
the fact that z is either a source or a target of a request from σ.

If d(s(t �), z) ≤ d(P)/2, then at time t � one option for REPLAN is as fol-
lows: Move from s(t �) to z (at cost d(s(t �), z) ≤ d(P)/2), then follow P in
reverse direction from z to the origin o. At this point the server is empty
and can serve the remaining requests at cost at most OPT(σ). The total time

�

� � � � 	

y

�

�

Case (b):
d(s(tm), z) ≤
d(P)/2.

needed by the REPLAN-server is

REPLAN(σ) ≤ t � +
3

2
d(P) + OPT(σ) ≤ 7

2
OPT(σ).

This proves the claim of the theorem. 2

As in the case of the closed makespan C �max, we can establish a better
competitive ratio for a server with unit-capacity.

Theorem 2.28 In case of a unit capacity server, REPLAN is 3-competitive for the
Cmax-OLDARP.

Proof: In view of the proof of Theorem 2.27 given above, we only need
to consider the situation where the REPLAN-server is serving a request r at
time t � . We have

REPLAN(σ) ≤ t � + d(s(t �), ω(r)) + L̃∗(t � , ω(r), σ)

≤ t � + d(s(t �), ω(r)) + 2 L̃∗(t � , o, σ) − d(α(r), ω(r))

by Lemma 2.26

≤ t � + 2 L̃∗(t � , o, σ)

≤ 3 OPT(σ).

This completes the proof. 2

We now turn to Algorithm IGNORE.

Theorem 2.29 Algorithm IGNORE is 4-competitive for the Cmax-OLDARP.

2.8 EXTENSION TO THE NON-CLOSED MAKESPAN 43

Proof: The only interesting case is that at the time t � , when the last re-
quests becomes known, the IGNORE server is currently working on a sched-
ule S. Suppose that S was started at time t � and has starting point x and
endpoint y. Then the schedule will be completed no later than time t � +

L̃∗(t � , x, σ �), where σ � denotes the subset of requests served in the current
schedule S. Since by construction of IGNORE all requests in σ � have release
times at least t � , it follows that

L̃∗(t � , x, σ �) = L̃∗(t � , x, σ �) ≤ d(o, x) + OPT(σ).

Hence, the IGNORE server will complete its total work no later than time

t � + d(o, x) + OPT(σ) + L̃∗(t � , y, σ≥ �
�),

where σ≥ �
� denotes the set of requests released no earlier than t � . Let r � be
the first request from the set σ≥ �
� of ignored requests served by OPT. Then

OPT(σ) ≥ t � + L̃∗(t � , α � , σ≥ � �) ≥ t � + L̃∗(t � , α � , σ≥ � �)
≥ t � + L̃∗(t � , α � , σ≥ � �)
≥ t � + L̃∗(t � , y, σ≥ � �) − d(y, α �).

�

� �

≥ � S

OPT
�
 	

Proof of
Theorem 2.29:

OPT(σ) ≥
tf+L̃∗(tS, αf, σ≥tS

)

Thus, we have that

IGNORE(σ) ≤ d(o, x) + d(y, α �) + 2 OPT(σ)

It is easy to see that both values d(x, o) and d(y, α �) are bounded from above
by OPT(σ), and so the theorem follows. 2

We finally address the SMARTSTART-strategy.

Theorem 2.30 For all θ ≥ 2, Algorithm SMARTSTART is c-competitive for the
Cmax-OLDARP with

c = max
{

θ + 1, 2

(

1 +
1

θ − 1

)}
.

The best choice for θ is θ = 1 +
√

2 and yields a competitive ratio of 2 +
√

2.
2 +

√
2 ≈

3.414213562

Proof: SMARTSTART always computes shortest schedules which start with
an empty server either at the origin or at the destination ω(r) of a request r ∈
σ. Since L̃(t, ω(r), σ ′) ≤ 2 L̃(t, o, σ ′) for any subset σ ′ of the requests and
all r ∈ σ ′, we are essentially in the situation when SMARTSTART uses a 2-
approximation algorithm in its “work-or-sleep” routine.

44 CHAPTER 2 MINIMIZING THE MAKESPAN IN ONLINE-DIAL-A-RIDE PROBLEMS

Suppose that at time t � the SMARTSTART-server is idle or sleeping. Fol-
lowing the lines of the proof of Theorem 2.18 we can conclude that in either
case

SMARTSTART(σ) ≤ max
{

θ, 2

(

1 +
1

θ − 1

)}
OPT(σ).

It remains the case that at time t � , SMARTSTART is working on a schedule S.
As in the proof of Theorem 2.18 it suffices to consider the situation that
the SMARTSTART-server starts its final schedule S ′ immediately after having
completed S. Let t � be the time when the server started S and denote by
σ≥ �
� the set of requests presented after the server started S at time t � . Let
r � ∈ σ≥ �
� be the first request in σ≥ �
� served by the optimal offline algorithm.
It follows that OPT(σ) ≥ t � + L̃(t � , α � , σ≥ �
�) which yields

Herlitz
distribution center
in Falkensee near
Berlin.

l(S ′) ≤ d(o, α �) + L̃(t � , α � , σ≥ �
�)
≤ OPT(σ) − t � + d(o, α �)
≤ 2 OPT(σ) − t � .(2.12)

Hence

SMARTSTART(σ) = t � + l(S) + l(S ′)

≤ (θ − 1)t � + 2 OPT(σ) by (2.12)
≤ (θ + 1)OPT(σ).

This completes the proof. 2

2.9 Remarks

Our investigations of the C �max-OLDARP were originally motivated by the
performance analysis of a large distribution center of Herlitz AG, Berlin
[AG � 98]. Its automatic pallet transportation system employs several verti-
cal transportation systems (elevators) in order to move pallets between the
floors of the building. The pallets that have to be transported during one
day of production are not known in advance. If the objective is chosen as
minimizing the makespan then this can be modeled by the C �max-OLDARP
where the metric space is induced by a graph which is a path.

Table 2.1 provides an overview over the results presented in this chapter.

Automatic pallet
transportation
system.

2.9 REMARKS 45

Problem Competitive Ratios Lower Bounds

Co
max-OLDARP REPLAN: 5/2 (C = 1)

(Theorem 2.15)
7/2 (general C)

(Theorem 2.14)

IGNORE: 5/2

(Theorem 2.16)
SMARTSTART: 2

(Corollary 2.19)

deterministic algorithms
in general metric spaces: 2

[AF+01, AF+95, AF+94]
on the real line: 9+

√
17

8

(Theorem 2.9)

RANDSLEEP: 1 + 1/ ln 2

(Theorem 2.23)
randomized algorithms

on the real line: 3/2

(Theorem 2.10)

Cmax-OLDARP REPLAN: 3 (C = 1)
(Theorem 2.27)

9/2 (general C)
(Theorem 2.28)

IGNORE: 4

(Theorem 2.29)
SMARTSTART: 2 +

√
2

(Theorem 2.30)

deterministic algorithms
in general metric spaces: 2

on the real line: 2

(Corollary 2.25)

randomized algorithms: 2

in general metric spaces: 2

on the real line: 2

(Corollary 2.25)

Table 2.1: Results for the minimization of the makespan in online dial-a-ride
problems

Competing with a Fair Adversary
in the Online-TSP

In the online traveling salesman problem (OLTSP) requests for visits to cities
(points in a metric space) arrive online while the salesman is traveling. The
salesman moves at unit speed and starts and ends his work at a designated
origin. The objective is to find a routing for the salesman which finishes as
early as possible. The OLTSP is a special case of the C �max-OLDARP intro-
duced in Chapter 2.

Home

Online traveling
salesman problem

(OLTSP).
In this chapter we mainly consider the OLTSP on the metric space given

by R
�
� , the non-negative part of the real line endowed with the Euclidean

metric. We show that a very natural strategy is 3/2-competitive against the
conventional adversary. This matches the lower bound on competitive ra-
tios achievable for algorithms for this problem.

The emphasis of this chapter is to study the effect of restricting the power
of the adversary in the competitive analysis and of restricting the class of on-
line algorithms allowed. We deal with an objection frequently encountered
against competitive analysis concerning the unrealistic power of the adver-
sary against which performance is measured. For the OLTSP on the real line
all known lower bound constructions work with an adversary which uses
its clairvoyant abilities to move to some point x, far away from all previous
requests, arriving there just when a request at point x is released. The on-
line algorithm which has no information about the request at x before this
request is released, must be close to previous requests or the origin to be
competitive at all.

We introduce an adversary, called the fair adversary, who is in a natural fair adversary
way restricted in the context of the OLTSP. A fair adversary always keeps its
server within the convex hull of the requests released so far. This adversary
can be seen as a more reasonable adversary model.

We show that the fair adversary model indeed allows improved com-
petitive ratios. For instance, the above mentioned 3/2-competitive MRIN-
strategy against the conventional adversary is 4/3-competitive against the
fair adversary. Moreover, there exists an algorithm with competitive ratio
(1 +

√
17)/4 ≈ 1.28 against the fair adversary.

We also introduce and analyze a new class of online algorithms which

48 CHAPTER 3 COMPETING WITH A FAIR ADVERSARY IN THE ONLINE-TSP

we call zealous algorithms. Roughly speaking, the server of a zealous algo-zealous algorithms
rithm never sits idle while there is work to do. A similar concept was used
for scheduling problems in [LL74]. A precise definition of zealousness is
presented in Section 3.2, where we also show that in general zealous al-
gorithms are strictly weaker than algorithms that allow waiting time. Our
result is the first one that shows that waiting is advantageous in the OLTSP.

This chapter is organized as follows. Section 3.1 contains notation and
a restatement of the OLTSP. Zealous Algorithms are introduced in Sec-
tion 3.2. In Section 3.3 we investigate the competitive ratio of algorithms
for the OLTSP in R

�
� against the conventional adversary. The influence of a

fair adversary is studied in Section 3.4.

Related Work

Ausiello et al. [AF � 95, AF � 01] present a 2-competitive algorithm for OLTSP
which works in general metric spaces. Recall that the SMARTSTART-strategy
from Section 2.6 is also 2-competitive even for the more general case of the
C �max-OLDARP. The authors also show that for general metric spaces no
deterministic algorithm can be c-competitive with c < 2. For the special
case that the metric space is R, the real line, their best algorithm is 7/4-
competitive, whereas a lower bound on the competitive ratio of any algo-
rithm of (9 +

√
17)/8 ≈ 1.64 is derived [AF � 01]. Recently, Lipmann [Lip99]

designed an algorithm for the problem on the real line with a competitive
ratio that matches the just mentioned lower bound (9 +

√
17)/8 ≈ 1.64.

3.1 Problem Definition

The online traveling salesman problem (OLTSP) has already been intro-
duced as a special case of the C �max-OLDARP (see Definition 2.6). We repeat
the definition of the OLTSP for convenience:

Definition 3.1 (Online Traveling Salesman Problem (OLTSP))
The Online Traveling Salesman Problem (OLTSP) is the special case of the C �max-
OLDARP, where for each request r its source and destination coincide, that is,
α(r) = ω(r) for all r.

Co
max-OLDARP: see

Definition 2.4
The objective in the OLTSP is to minimize the closed makespan, that is, the

time when the server has served all requests and returned to the origin.

A delicate issue arises in the design of an online algorithm for the OLTSP:
Suppose that at some moment in time all known requests have been served.
If the algorithm wants to produce a solution with finite cost, then its server
must return to the origin after a finite amount of waiting time. But how long
should this waiting time be? If the server returns immediately, then a new

3.2 ZEALOUS ALGORITHMS 49

request might become known and all the traveling to the origin has been
in vain. However, a too large waiting time before returning to the origin
increases the cost of the solution unnecessarily.

As in Chapter 2 we use the shorter notation r � = (t � , α �) for a request
in a sequence σ = r � , . . . , r � for the OLTSP. In this chapter we are mainly
concerned with the special case that the metric space (M, d) is R

�
� , the non-

negative part of the real line endowed with the Euclidean metric, i.e., X =

R
�
� = { x ∈ R : x ≥ 0 }, and d(x, y) = |x − y|; the origin o coincides with the

point 0.
Recall that for a real number t we denote by σ≤ � , σ � � and σ � � the subse-

quence of requests in σ released up to time t, exactly at time t and strictly
before time t, respectively.

3.2 Zealous Algorithms

In this section we introduce a particular class of algorithms for OLTSP which
we call zealous algorithms. Intuitively, a zealous algorithm should never sit zealous algorithms
idle when it could serve yet unserved requests. A zealous server should also
move towards work directly without any detours. To translate this intuition
into a rigorous definition requires some care.

o

A zealous
algorithm must

move directly
towards known

requests.

Definition 3.2 (Zealous Algorithm)
An algorithm ALG for the OLTSP is called zealous, if it satisfies the following
conditions:

1. If there are unserved requests, then the direction of the server operated by ALG

changes only if

• a new request becomes known, or

• the server is either at the origin or at a request which has just been
served.

2. At any time when there are unserved requests, the server operated by ALG

moves either towards an unserved request or the origin at maximum (i.e.
unit) speed. (The latter case is only allowed if the server operated by ALG is
not yet in the origin.)

We emphasize that a zealous algorithm is allowed to move its server
towards an unserved request and change its direction towards another un-
served request or towards the origin at the moment a new request becomes
known.

�

�

Upon arrival of a
new request (red) a

zealous algorithm
may change its

direction.
As noted in Theorem 2.8 there is a lower bound of (9 +

√
17)/8 ≈ 1.64

for the competitive ratio of deterministic online algorithms for the OLTSP

50 CHAPTER 3 COMPETING WITH A FAIR ADVERSARY IN THE ONLINE-TSP

in R. We now establish a corresponding lower bound for zealous algo-
rithms. This lower bound shows that the 7/4-competitive algorithm pre-
sented in [AF � 01], which is, in fact, a zealous algorithm, is best possible
within the class of zealous algorithms for the OLTSP on the real line.

Lemma 3.3 Let ALG be a zealous online algorithm for OLTSP on the real line R.
Then the competitive ratio of ALG is at least 7/4.

Proof: Suppose that ALG is a zealous algorithm for OLTSP on the real line.
Consider the following adversarial input sequence. At time 0 and 1/2 two
requests r � = (0, 1/2) and r � = (1/2, o) are released. There are no further
requests before time 1. Thus, by the zealousness of the algorithm the server
will be at the origin at time 1.

At time 1 two new requests at points 1 and −1, respectively, are released.
Since the algorithm is zealous, starting at time 1 it must move its server to
one of these requests at maximum, i.e., unit, speed. Without loss of gener-
ality assume that this is the request at 1. ALG’s server will reach this point
at time 2. Starting at time 2, ALG will have to move its server either directly
towards the unserved request at −1 or towards the origin, which essen-
tially gives the same movement and implies that the server is at the origin
at time 3. At that time, the adversary issues another request at 1. Thus,
ALG’s server will still need at least 4 units of time to serve −1 and 1 and
to return at the origin. Therefore, it is not able to complete its work before
time 7.

0

0

0

0

−1 −1

−1−1

+1/2

time 0

time 1/2

time 3

time 1

Lower bound
construction of
Lemma 3.3.

The offline adversary handles the sequence by first serving the request
at −1, then the two requests at 1 and finally returns to the origin at time 4.
This yields the desired result. 2

3.3 The Online-TSP on the Non-Negative Part of
the Real Line

We first consider OLTSP on R
�

� in case that the offline adversary is the con-
ventional (omnipotent) opponent.

Theorem 3.4 Let ALG be any deterministic algorithm for OLTSP on R
�

� . Then the
competitive ratio of ALG is at least 3/2.

Proof: At time 0 the request r � = (0, 1) is released. Let T ≥ 1 be the time
that the server operated by ALG has served the request r � and returned to
the origin o. If T ≥ 3, then no further request is released and ALG is no better
than 3/2-competitive since OPT(r �) = 2. Thus, assume that T < 3.

�

�
time 0

time T

�

Lower bound
construction of
Theorem 3.4.

3.3 THE ONLINE-TSP ON THE NON-NEGATIVE PART OF THE REAL LINE 51

In this case the adversary releases a new request r � = (T, T). Clearly,
OPT(r � , r �) = 2T . On the other hand ALG(r � , r �) ≥ 3T , yielding a competitive
ratio of 3/2. 2

The following simple strategy achieves a competitive ratio that matches
this lower bound (as we will show below):

Algorithm MRIN (“Move-Right-If-Necessary”) MRIN

If a new request is released and the request is to the right of the
current position of the server operated by MRIN, then the MRIN-
server starts to move right at unit speed. The server continues to
move right as long as there are yet unserved requests to the right
of the server. If there are no more unserved requests to the right,
then the server moves towards the origin o at unit speed.

It is easy to verify that Algorithm MRIN is in fact a zealous algorithm. The
following theorem shows that the MRIN-strategy has a best possible compet-
itive ratio for OLTSP on R

�
� .

Theorem 3.5 MRIN is a zealous 3/2-competitive algorithm for the OLTSP on R
�

� .

Proof: We establish the theorem by induction on the number of requests in
the sequence σ. It clearly holds if σ contains at most one request. The induc-
tion hypothesis states that the claim of the theorem holds for any sequence
of m − 1 requests.

Suppose that request r = (t � , x) is the request from σ � � � which is
furthest away from the origin. If t � = 0, then MRIN is obviously 3/2-
competitive, so we will assume that t � > 0. Let f be the position of the
request unserved by the MRIN-server at time t � (excluding r �), which is
furthest away from the origin (if all requests in {r � , . . . , r � � � } have already
been served by MRIN at time t � then we set f = 0).

���

If x ≤ f, MRIN’s
cost does not

increase.
In case x ≤ f, MRIN’s cost for serving σ is equal to the cost for serving the

sequence consisting of the first m − 1 requests of σ. Since new requests can
never decrease the optimal offline cost, the induction hypothesis implies the
theorem.

Now assume that f < x. Thus, at time t � , the request in x is the furthest
unserved request. If the position of MRIN at time t � is to the right of x, then
its cost does not increase by the release of r � . The claim then follows from
the induction hypothesis as above. On the other hand, if at time t � MRIN is

� � �

If x > f, but the
MRIN-server is to
the right of x, the

cost does not
increase either.

to the left of x, then MRIN will complete its work no later than time t � + 2x.
The optimal offline cost OPT(σ) is bounded from below by max{t � + x, 2x}.
Therefore,

MRIN(σ)

OPT(σ)
≤ t � + x

OPT(σ)
+

x

OPT(σ)
≤ t � + x

t � + x
+

x

2x
=

3

2
.

2

0 f x

If x > f, and the
MRIN-server is to
the left of x, then

MRIN(σ) ≤ tm +2x.

52 CHAPTER 3 COMPETING WITH A FAIR ADVERSARY IN THE ONLINE-TSP

The result established above can be used to obtain competitiveness re-
sults for the generalization of the OLTSP on the real line when there are
k ≥ 2 servers, and the goal is to minimize the time when the last of its
servers returns to the origin after all requests have been served.

Lemma 3.6 There is an optimal offline strategy for the k-OLTSP on the real line
with k ≥ 2 servers such that no server ever crosses the origin.

Proof: Let σ be any request sequence and let (t �� , x ��) and (t
�

� , x
�

�) be the
leftmost and rightmost request in σ. We can assume that x �� < 0 and x

�
� > 0,

since otherwise the claim is trivial. For any time t we denote by σ � � the
subsequence of requests released strictly after time t.

Consider the following offline strategy for routing the servers. Only two
of the servers are used. At time 0 the first server moves to the right until
point x

�
� , the second moves to the left until it reaches x �� . We now describe

the strategy for the first server after it has arrived at x
�

� . The situation for
the other server is symmetric.

The server waits at x
�

� until time T := max{x
�

� , t
�

� }. Then it moves left un-
til it reaches the position of x

�
� , the rightmost request in the subsequence σ �

�

with release time t
�

� . It waits there until time T ′ := max{T +x
�

� −x
�

� , t
�

� }. The
time parameter T is updated to T := T ′, and the left movement is continued
as above. If σ �

� becomes empty the server moves back to the origin.
It is easy to see that the parameter T maintained by the right server al-

ways has the property that T + x
�

� is a lower bound for the optimum offline
completion time. Thus, the strategy described above yields in fact an opti-
mal offline solution. 2

Corollary 3.7 There is a 3/2-competitive algorithm for the k-OLTSP with k ≥ 2

servers on the real line.

Proof: The online algorithm uses two servers. One server handles all re-
quests on R

�
� , the other one serves the requests on R �� . The server in R

�
�

uses the MRIN-strategy, the other server the analogous “mirrored version”
for*R �� . It follows from Theorem 3.5 and Lemma 3.6 that this strategy is 3/2-
competitive. 2

3.4 Fair Adversaries

The adversaries used in the bounds of the previous section are abusing their
power in the sense that they can move to points where they know a request
will pop up without revealing the request to the online server before reach-
ing the point.

3.4 FAIR ADVERSARIES 53

As an alternative we propose the following more reasonable adver-
sary that we baptized fair adversary. We show that this model allows im-
proved competitive ratios for the OLTSP on R

�
� . Under this adversary model

there also exists a distinction in competitiveness between zealous and non-
zealous algorithms.

Definition 3.8 (Fair Adversary) An offline adversary for the OLTSP in the Eu-
clidean space (R

�
, ‖.‖) is fair, if at any moment t, the position of the server operated

by the adversary is within the convex hull of the origin o and the requested points
from σ � � .

o

o

o

The fair adversary
moves in the

convex hull of
points released.

In the special case of R
�

� a fair adversary must always keep its server
in the interval [0, F], where F is the position of the request with the largest
distance to the origin o = 0 among all requests released so far.

The following lower bound result shows that the OLTSP on the real line
against a fair adversary is still a non-trivial problem.

Theorem 3.9 Let ALG be any deterministic algorithm for OLTSP on R. Then the
competitive ratio of ALG against a fair adversary is at least (5 +

√
57)/8.

5+
√

57
8

≈
1.568729304

Proof: Suppose there exists a c-competitive online algorithm ALG, with c ≤
(5 +

√
57)/8. The adversarial sequence starts with two requests at time 0,

namely r � = (0, 1) and r � = (0, −1). Without loss of generality, we assume
that r � is the first request which is served by ALG. At time 2 the online server
can not have served both requests. We distinguish two main cases divided
in some subcases.

�

time �

� �� �

�
 �

Beginning of the
lower bound

construction in
Theorem 3.9.

Case 1: None of the requests has been served at time 2.

• If at time 3 request r � is still unserved, let t′ be the first time the server
crosses the origin after serving the request r � . Clearly, t′ ≥ 4. At time t′

the online server still has to visit the request in −1.

If t′ > 4c − 2 the server can not be c-competitive because the fair ad-
versary can serve the sequence and be back in the origin at time 4.

Thus, suppose that 4 ≤ t ′ ≤ 4c−2. At time t′, a new request r � = (t′, 1)

is released. The online server can not finish the complete sequence
before t′ + 4, whereas the adversary needs time t′ + 1. Therefore, c ≥

� ′ � �
� ′ � � . For 4 ≤ t ′ ≤ 4c − 2 we have that the expression � ′ � �

� ′ ��� is decreasing
in t ′. Thus

c ≥ (4c − 2) + 4

(4c − 2) + 1
=

4c + 2

4c − 1
,

implying c ≥ (5 +
√

57)/8.

�
� � �

�

�
�

time � ′

At time
4 ≤ t ′ ≤ 4c − 2

when the server
crosses the origin

after having
served r1, a new

request r3 is
released in 1.

54 CHAPTER 3 COMPETING WITH A FAIR ADVERSARY IN THE ONLINE-TSP

• If at time 3 the request r � has already been served, the online server
can not be to the left of the origin at time 3 (given the fact that at time 2

no request had been served). The adversary now issues a new request
r � = (3, 1). There are two possibilities: either r � , the request in −1, is
served before r � , or vice versa.

�

�

time �

time
�

�
 �

�
�

� �

�
�

�

�
�

�

range for
server

At time 2 no
request has been
served. If at time 3

the request r1 has
been served, the
server can not be
left of the origin at
this time.

If the server decides to serve r � before r � , then it can not complete
before time 7. Since the adversary completes the sequence in time 4,
the competitive ratio is at least 7/4.

If the online server serves r � first, then, again, let t′ be the time that
the server crosses the origin after serving r � . As before, we must have
4 ≤ t ′ ≤ 4c − 2. At time t′, the fourth request r � = (t′, 1) is released.
The same arguments as above apply to show that the algorithm’s com-
petitive ratio is at least (5 +

√
57)/8.

Case 2: r � has been served at time 2 by the online server.
At time 2, the third request r � = (2, 1) is released. In fact, we are now back
in the situation in which at time 2 none of the two requests are served. In
case the movements of the online server are such that no further request is
released by the adversary, the latter will complete at time 4. In the other
cases the last released requests are released after time 4 and the adversary
can still reach them in time. 2

For comparison, the best possible algorithm for the OLTSP in R against
an adversary which is not restricted to be fair is (9 +

√
17)/8-competitive

(see [Lip99]). So far, we have not been able to design an algorithm that
has competitive ratio (5 +

√
57)/8 against a fair adversary in R. In that

sense the picture is complete for the non-negative part of the real line (see
Theorems 3.11 and 3.12 for zealous algorithms and Theorems 3.10 and 3.13
for non-zealous algorithms below).

Theorem 3.10 Let ALG be any deterministic algorithm for OLTSP in R
�

� . Then
the competitive ratio of ALG against a fair adversary is at least (1 +

√
17)/4.

1+
√

17
4

≈
1.280776406

Proof: Suppose that ALG is c-competitive for some c ≥ 1. At time 0 the
adversary releases the request r � = (0, 1). Let T denote the time by which
the server operated by ALG has served this request and is back at the origin.
For ALG to be c-competitive, we must have T ≤ c · OPT(r �) = 2c. At time T

the adversary releases a second request r � = (T, 1). The completion time of
ALG becomes then at least T + 2.

On the other hand, starting at time 0 the fair adversary moves its server
to 1, lets it wait there until time T , and then goes back to the origin, yielding
a completion time of T + 1. Therefore,

ALG(σ)

OPT(σ)
≥ T + 2

T + 1
≥ 2c + 2

2c + 1
= 1 +

1

2c + 1
,

3.4 FAIR ADVERSARIES 55

given the fact that T ≤ 2c. Since by assumption ALG is c-competitive, we
have that 1 + 1/(2c + 1) ≤ c, implying that c ≥ (1 +

√
17)/4. 2

�

�

time
�

time �

Lower bound
construction in
Theorem 3.10.

For zealous algorithms we can show a higher lower bound against a fair
adversary.

Theorem 3.11 Suppose that ALG is any deterministic zealous algorithm for the
OLTSP on R

�
� . Then the competitive ratio of ALG against a fair adversary is at

least 4/3.

Proof: Consider the adversarial sequence consisting of the three requests
r � = (0, 1), r � = (1, 0), and r � = (2, 1).

By its zealousness the online algorithm will start traveling to 1 at time 0,
back to the origin o at time 1, arriving there at time 2. Then its server has
to visit 1 again, so that he will finish no earlier than time 4. Obviously, the
optimal fair offline solution is to leave 1 not before time 2, and finishing at
time 3. 2

Just recently, de Paepe [dP01] was able to establish a lower bound of 8/5

for the competitive ratio of zealous algorithms against a fair adversary in
case of the OLTSP in R.

We show now that the algorithm MRIN presented before has a better com-
petitive ratio against the fair adversary than the 3/2 against a conventional
adversary. In fact we show the ratio matches the lower bound for zealous
algorithms proved in Theorem 3.11.

Theorem 3.12 Algorithm MRIN is 4/3-competitive for the OLTSP on R
�

� against
a fair adversary.

Proof: Again we use induction on the number of requests in the sequence σ

to establish the claim. The claim clearly holds if σ contains at most one
request. The induction hypothesis states that the claim of the theorem holds
for any sequence of m − 1 requests.

Let σ = r � , . . . , r � be any sequence of requests. We consider the time t :=

t � when the last set of requests σ � � � is released. If t = 0, then the claim
obviously holds, so we will assume for the remainder of the proof that t > 0.
Let r = (t, x) be that request of σ � � � which is furthest away from the origin.

In the sequel we denote by s(t) and s∗(t) the positions of the MRIN-server
and the fair adversary server at time t, respectively.

Let r � = (t � , f) be the furthest unserved request by MRIN of the subse-
quence σ � � at time t, that is, the unserved request from σ � � most remote
from the origin o. Finally, let r � = (t � , F) be the furthest request in σ � � .
Notice that by definition f ≤ F.

56 CHAPTER 3 COMPETING WITH A FAIR ADVERSARY IN THE ONLINE-TSP

We distinguish three different cases depending on the position x of the
request r relative to f and F.
Case 1: x ≤ f

Since the MRIN-server still has to travel to f, all the requests in σ � � will be
served on the way back to the origin and the total completion time of the
MRIN-server will not increase by releasing the requests σ � � . Since new re-
quests can never decrease the optimal offline solution value, the claim fol-
lows from the induction hypothesis.

σ=tm

� ����

Case 1: If x ≤ f,
MRIN’s cost does
not increase.

Case 2: f ≤ x < F

If s(t) ≥ x, again MRIN’s completion time does not increase compared to
the situation before the requests in σ � � were released, so we may assume
that s(t) ≤ x. The MRIN-server will now travel to point x which needs

� �

range for � � �
	

� �

Case 2: f ≤ x < F

and s(t) ≤ x.

time d(s(t), x), and then return to the origin. Thus, MRIN(σ) = t+d(s(t), x)+

x. On the other hand OPT(σ) ≥ t + x. It follows that

(3.1)
MRIN(σ)

OPT(σ)
≤ 1 +

d(s(t), x)

OPT(σ)

We now show that OPT(σ) is at least 3 times d(s(t), x), this will establish the
claimed ratio of 4/3. Notice that f < F (since f ≤ x < F) and the fact that f

is the furthest unserved request at time t implies that the MRIN-server must
have already visited F at time t (otherwise the furthest unserved request
would be at F and not at f < F). Therefore, t ≥ F + d(F, s(t)), and

(3.2) OPT(σ) ≥ t + x ≥ F + d(F, s(t)) + x.

Clearly, each of the terms on the right hand side of inequality (3.2) is at
least d(s(t), x).
Case 3: f ≤ F ≤ x

First recall that the MRIN-server always moves to the right if there are yet
unserved requests to the right of his present position. Since the last re-

� �� �

range for � � � 	

Case 3: f ≤ F ≤ x.
quest (t, x) is at least as far away from the origin as F, the optimal offline
server will only move left after it has served the furthest request in σ, in
this case at x. In fact, the optimal fair offline strategy is as follows: as long
as there are unserved requests to the right of the server, move right, other-
wise wait at the current position. As soon as the last request (t, x) has been
released and the offline server has reached x, it moves to the origin and
completes its work (see also the description of the optimal offline strategy
which has been described in the proof of Lemma 3.6).

Hence, at any time in the interval [0, t], the fair adversary’s server is to
the right of the MRIN-server or at the same position.

MRIN
OPT

MRIN

OPT� � �

ti
m

e

The fair adversary
is always to the
right of the
MRIN-server.

Because the offline server does not move left as long as there will be new
requests released to the right of its current position, the distance between
the MRIN-server and the offline server increases only if the offline server is

3.4 FAIR ADVERSARIES 57

waiting at some point. Let W∗(t) be the total waiting time of the offline
server at the moment t when the last request x is released. Then we know
that

(3.3) d(s(t), s∗(t)) ≤ W∗(t).

Moreover, the following relation between the current time and the waiting
time holds:

(3.4) t = d(o, s∗(t)) + W∗(t).

Since the adversary is fair, its position s∗(t) at time t can not be to the right
of F. Thus, d(s∗(t), x) = d(s∗(t), F) + d(F, x) which gives us

OPT(σ) ≥ t + d(s∗(t), F) + d(F, x) + x(3.5)
= d(o, s∗(t)) + W∗(t) + d(s∗(t), F) + d(F, x) + x by (3.4)
= W∗(t) + F + d(F, x) + x

= W∗(t) + 2x

≥ W∗(t) + 2d(s(t), s∗(t))

≥ 3d(s(t), s∗(t)) by (3.3)(3.6)

At time t MRIN’s server has to move from its current position s(t) to x and
from there to move to the origin:

MRIN(σ) = t + d(s(t), x) + x

= t + d(s(t), s∗(t)) + d(s∗(t), F) + d(F, x) + x.

Hence,

� � � �

Track of the
MRIN-server

starting at time t.

MRIN(σ)

OPT(σ)
=

t + d(s∗(t), F) + d(F, x) + x

OPT(σ)
+

d(s(t), s∗(t))

OPT(σ)

≤ 1 +
d(s(t), s∗(t))

OPT(σ)
by (3.5)

≤ 4

3
by (3.6).

This proves the claim. 2

Given the lower bound for general non-zealous algorithms in Theo-
rem 3.10, we conclude that online algorithms which may obtain better com-
petitive ratios against a fair adversary, will have to be non-zealous, i.e.,
incorporate waiting times.

The problem with Algorithm MRIN is that shortly after it starts to return
towards the origin from the furthest previously unserved request, a new
request to the right of its server is released. In this case the MRIN-server has
to return to a position it just left. Algorithm WS presented below avoids this
pitfall successfully.

58 CHAPTER 3 COMPETING WITH A FAIR ADVERSARY IN THE ONLINE-TSP

Algorithm WS (“Wait Smartly”)WS

The WS-server moves right if there are yet unserved requests to
the right of its present position. Otherwise, it takes the following
actions. Suppose it arrives at its present position s(t) at time t.

1. Compute the optimal offline solution value OPT(σ≤ �) for all
requests released up to time t.

2. Determine a waiting time W := α OPT(σ≤ �) − s(t) − t, with
α = (1 +

√
17)/4.

3. Wait at point s(t) until time t + W and then start to move
back to the origin.

�

�

�

ti
m

e

Bad case for the
Algorithm MRIN.

We note that when the server is moving back to the origin and no new
requests are released until time t + W + s(t), then the WS-server reaches the
origin at time t+W+s(t) = α ·OPT(σ≤ �) having served all requests released
so far. If a new request is released at time t ′ ≤ W + t + s(t) and the request
is to the right of s(t ′), then the WS-server interrupts its waiting and starts to
move to the right immediately until it reaches the furthest unserved request.

Theorem 3.13 WS is α-competitive for the OLTSP on R
�

� against a fair adversary
with α = (1 +

√
17)/4 < 1.2808.

1+
√

17
4

≈
1.280776406

Proof: From the design of Algorithm WS the claim follows if we can prove
that at any point where a waiting time is computed this waiting time is non-
negative. In that case the server will always be back at the origin before time
α OPT(σ). The claim is clearly true if the sequence σ contains at most one
request. We make the induction hypothesis that WS is α-competitive for any
sequence of at most m − 1 requests.

Let σ = r � , . . . , r � be any sequence of requests. As in the proof of The-
orem 3.12 we consider the time t := t � when the last set of requests σ � � is
released and let r = (t, x) be that request of σ � � which is furthest away from
the origin. If t = 0, then the claim obviously holds, so we will assume for
the remainder of the proof that t > 0.

We denote by s(t) and s∗(t) the positions of the WS- and the fair adver-
sary’s server at time t, respectively. As before, we let r � = (t � , f) be the
furthest (i.e. most remote from the origin) yet unserved request by WS at
time t of σ � � . Finally, let r � = (t � , F) be the furthest released request in σ � � .

Again, we distinguish three different cases depending on the position of
x relative to f and F. Recall that f ≤ F.
Case 1: x ≤ f

Since the WS-server has to travel to f anyway and by the induction hy-
pothesis, there was a non-negative waiting time in f or s(t) (depending on
whether s(t) > f or s(t) ≤ f) before requests σ � � were released, the waiting

3.4 FAIR ADVERSARIES 59

time in f or s(t) can not decrease since the optimal offline completion time
can not decrease by an additional request.

σ=tm

� � ��

Case 1: If x ≤ f,
the cost of WS does

not increase.

Case 2: f ≤ x < F

If s(t) ≥ x, then again by the induction hypothesis and the fact that the route
length of WS’s server does not increase, the possible waiting time at s(t) is
non-negative.

Thus, we can assume that s(t) < x. The WS-server will now travel to
point x, arrive there at time t + d(s(t), x), and possibly wait there some
time W before returning to the origin, with

� �

range for � � � 	

� �

Case 2: f ≤ x < F

and s(t) < x.
W = αOPT(σ) − (t + d(s(t), x) + x).

Inserting the obvious lower bound OPT(σ) ≥ t + x yields

W ≥ (α − 1)OPT(σ) − d(s(t), x).(3.7)

To bound OPT(σ) in terms of d(s(t), x) consider the time t ′ when the WS-
server had served the request at F and started to move left. It must hold that
t ′ < t since otherwise s(t) could not be smaller than x as assumed. Thus, the
subsequence σ≤ � ′ of σ does not contain (t, x). By the induction hypothesis,
WS is α-competitive for the sequence σ≤ � ′ . At time t ′, when WS left F, it
would have been able to arrive at the origin at α times the optimal offline
cost OPT(σ≤ � ′) on that subsequence:

�

� � �

� �

�

�

time �

time � ′

Case 2: WS was at
position F at
time t ′ < t.

(3.8) t ′ + F = α · OPT(σ≤ � ′).

Notice that t ≥ t ′ + d(F, s(t)). Since OPT(σ≤ � ′) ≥ 2F we obtain from (3.8)
that

(3.9) t ≥ α2F − F + d(F, s(t)) = (2α − 1)F + d(s(t), F).

Since by assumption we have s(t) < x < F we get that d(s(t), x) ≤ d(s(t), F)

and d(s(t), x) ≤ F, which inserted in (3.9) yields

(3.10) t ≥ (2α − 1)d(s(t), x) + d(s(t), x) = 2αd(s(t), x).

We combine this with the previously mentioned lower bound OPT(σ) ≥ t+x

to obtain:

(3.11) OPT(σ) ≥ 2αd(s(t), x) + x ≥ (2α + 1)d(s(t), x).

Using inequality (3.11) in (3.7) gives

W ≥ (α − 1)(2α + 1)d(s(t), x) − d(s(t), x)

= (2α
�
− α − 2)d(s(t), x)

=

(

9 +
√

17

4
−

1 +
√

17

4
− 2

)

d(s(t), x)

= 0.

60 CHAPTER 3 COMPETING WITH A FAIR ADVERSARY IN THE ONLINE-TSP

This completes the proof for the second case.
Case 3: f ≤ F ≤ x

Starting at time t, the WS-server moves to the right until it reaches x, and
after waiting there an amount W, the server returns to the origin, with

(3.12) W = αOPT(σ) − (t + d(s(t), x) + x).

Again we will show that W ≥ 0, i.e., that also in this case the computed
waiting time at x for WS is nonnegative. At time t the adversary’s server
still has to travel at least d(s∗(t), x) + x units. This results in

� �� �

range for � � � 	

Case 3: f ≤ F ≤ x.

OPT(σ) ≥ t + d(s∗(t), x) + x.

Since the offline adversary is fair, its position s∗(t) at time t can not be
strictly to the right of F. This yields

(3.13) OPT(σ) ≥ t + d(F, x) + x.

Insertion into (3.12) yields

W ≥ (α − 1)OPT(σ) + OPT(σ) − (t + d(s(t), x) + x)

≥ (α − 1)OPT(σ) + d(F, x) − d(s(t), x)

= (α − 1)OPT(σ) − d(s(t), F)(3.14)

since s(t) ≤ F by definition of the algorithm WS.
The rest of the argumentation is similar to the previous case. Again,

suppose that WS’s server started to move to the left from F at some time
t ′ ≤ t (where t ′ is chosen maximal). By the induction hypothesis, the WS-
server would have returned to the origin at time α OPT(σ � � ′) (if the requests
in σ � � had not been released). Hence,

(3.15) t ′ + F = α OPT(σ � � ′).

Notice that t ≥ t ′ + d(s(t), F) and OPT(σ � � ′) ≥ 2F (by the fact that σ � � ′ must
contain at least one request at F since otherwise WS would not have moved
its server to F). Hence, we obtain from (3.15) that

t ≥ α2F − F + d(s(t), F) = (2α − 1)F + d(s(t), F) ≥ 2αd(s(t), F).

We combine this with (3.13) and the fact that x ≥ F ≥ d(s(t), F) to achieve

OPT(σ) ≥ 2αd(s(t), F) + d(F, x) + x ≥ (2α + 1)d(s(t), F).

Using this inequality in (3.14) gives

W ≥ (α − 1)(2α + 1)d(s(t), F) − d(s(t), F)

= (2α
�
− α − 2)d(s(t), F)

=

(

9 +
√

17

4
−

1 +
√

17

4
− 2

)

d(s(t), F) = 0

This completes the proof. 2

3.5 REMARKS 61

3.5 Remarks

We introduced an alternative, more fair, performance measure for online
algorithms for the online traveling salesman problem. This model is fairer
than the conventional one and the first results are encouraging. The fair
model allows a strictly lower competitive ratio than the conventional model
with an omnipotent adversary on the non-negative part of the real line.

We also considered a restricted class of algorithms for the online trav-
eling salesman problems, called zealous algorithms. We showed that, in
general, zealous algorithms have strictly higher competitive ratios than al-
gorithms which sometimes leave the server idle, in order to wait for possible
additional information.

In online routing companies, like courier services or transportation com-
panies, waiting instead of immediately starting as soon as requests are pre-
sented is common practice. Our results support this strategy.

For the problem on the real line our results together with the recent result
of Lipmann [Lip99] show that non-zealous algorithms can do strictly better
than zealous algorithms against a conventional adversary. Our results sug-
gest that this is the same against a fair adversary. However, it remains open
to find a non-zealous algorithm that beats the best possible zealous ones
against a fair adversary in R.

We notice here that for general metric spaces the lower bound of 2 on
the competitive ratio of algorithms in [AF � 01] is established with a fair ad-
versary as opponent (however, the metric space itself, the boundary of the
unit-square, is not convex). Moreover, a zealous algorithm is known which
has a competitive ratio that meets the lower bound.

Table 3.1 summarizes the results of this chapter and known results from
the literature for the OLTSP in R

�
� and R.

62 CHAPTER 3 COMPETING WITH A FAIR ADVERSARY IN THE ONLINE-TSP

Problem Competitive Ratio Lower Bound

OLTSP in R

with
general
adversary

zealous algorithms: 7/4

[AF+01]
general algorithms: 9+

√
17

8

[Lip99]

zealous algorithms: 7/4

(Lemma 3.3)
general algorithms: 9+

√
17

8

[AF+01]

OLTSP in R

with
fair adversary

zealous algorithms: 7/4

[AF+01]
general algorithms: 9+

√
17

8

[Lip99]

zealous algorithms: 8/5

[dP01]
general algorithms: 5+

√
57

8

Theorem 3.9

OLTSP in R+
0

with
general
adversary

zealous algorithms: 3/2

(Theorem 3.5)
general algorithms: 3/2

(Theorem 3.5)

zealous algorithms: 3/2

(Theorem 3.4)
general algorithms: 3/2

(Theorem 3.4)

OLTSP in R+
0

with
fair adversary

zealous algorithms: 4/3

(Theorem 3.12)
general algorithms: 1+

√
17

4

(Theorem 3.13)

zealous algorithms: 4/3

(Theorem 3.11)
general algorithms: 1+

√
17

4

(Theorem 3.10)

Table 3.1: Results for the OLTSP.

Minimizing Flow Times and
Waiting Times

In this chapter, we consider the task of minimizing the maximal respective
average flow time in online dial-a-ride problems. The flow time of a request flow time
is defined as the difference between its completion time and its release time,
that is, the time the request is “unserved in the system”.

Consider the elevator application from the introduction (Chapter 0). In
this context, the maximal flow time can be considered as a measure for the maximal flow time
maximal “dissatisfaction of the passengers”. On the other hand, the average
flow time measures intuitively the “throughput of the system”. average flow time

Unfortunately, there can be no competitive algorithm, neither determin-
istic nor randomized, for the minimization of flow times. Hence, from a
competitive analysis point of view, all algorithms are equally bad and can
not be distinguished from each other by their performance. This unsatisfac-
tory situation motivates the search for alternative analysis methods.

Our idea is to introduce the notion of ∆-reasonable request sets. A set ∆-reasonable
of requests is ∆-reasonable if, roughly speaking, requests released during
any period of time δ ≥ ∆ can be served in time at most δ by an optimal
offline algorithm. A sequence of requests σ is reasonable if there exists a
∆ < ∞ such that σ is ∆-reasonable. This means that for non-reasonable
request sequences we find arbitrarily large periods of time where requests
are released faster than they can be served, even if the server has the optimal
offline schedule. When a system has only to cope with reasonable request
sets, we call this situation reasonable load. reasonable load

Under reasonable load it is possible to obtain performance bounds for
online algorithms and to distinguish the performance of particular algo-
rithms, which seems to be impossible by means of classical competitive
analysis.

This chapter is organized as follows. In Section 4.1 we formally define
the objective functions Favg (“average flow time”) and Fmax (“maximal flow Favg

Fmax
time”) and introduce the corresponding online dial-a-ride problems which
are the subject of our studies. Section 4.2 is essentially a collection of bad
news. We show that there can not exist competitive algorithms for the

64 CHAPTER 4 MINIMIZING FLOW TIMES AND WAITING TIMES

problems under investigation. In Section 4.3 we introduce the new con-
cept of reasonable load. We use this concept in Section 4.4 to prove worst-
case bounds on the flow times of the IGNORE- and SMARTSTART-Strategies
from Chapter 2. Section 4.5 illustrates that similar bounds for the REPLAN-
strategy do not exist.

Related Work

In queuing theory, continuously operating systems are usually modeled by
a stability assumption: the rate of incoming requests is at most the rate
of requests served. To the best of our knowledge, there has been nothing
similar so far in the existing theory of discrete online algorithms. Since for
most instances we have no exploitable information about the distributions
of requests, we want to develop a worst-case model rather than a stochastic
model for stability of a continuously operating system. The notion of rea-
sonable load can be viewed as a discrete and deterministic analogue of the
stability assumption from queuing theory.

Offline dial-a-ride problems with release times (where all requests are
known at the start of the algorithm) are known to be NP-hard to solve for
the objective functions of minimizing the average or maximal flow time.
They are even very hard to approximate. More specifically, there can be no
approximation algorithm with constant performance ratio [KTW96].

4.1 Problem Definition

Let S = (τ � , x � , y � , R �), . . . , (τ � , x � , y � , R �) be a feasible transportation sched-
ule for a given sequence σ of requests. Let r � ∈ σ be any request and let
S(r �) = (τ � , x � , y � , R �), . . . , (τ � � � , x � � � , y � � � , R � � �) be the subsequence of S con-
sisting of those moves which transport r � (see Definition 2.1 (iv) on page 22).

The completion time of request r � in S, denoted by C � (S), is defined tocompletion time
be the time when S(r �) is completed, that is C � (S) = τ � � � + d(x � � � , y � � �).
We omit the reference to the specific transportation schedule S if it is clear
from the context. The flow time of request r � in schedule S, denoted by F � (S)flow time
is defined as the difference between the completion time C � (S) of r � and
its release time t(r �), i.e., the time the request is in the system: F � (S) :=

C � (S) − t(r �). In this chapter we consider the following objective functions
for OLDARP:

Maximal Flow Time Fmax: By Fmax(S) := max � ≤ � ≤ � F � (S) we denote the max-
imal flow time of a request in the transportation schedule S.maximal flow time

Average Flow Time Favg: The average flow time of a transportation scheduleaverage flow time
is defined as Favg(S) :=

�
�
∑ �

� � � F � (S).

4.2 LOWER BOUNDS 65

Observe that minimizing the average flow time is equivalent to mini-
mizing the sum

∑ �
� � � F � (S) of the flow times.

Definition 4.1 (Online Dial-a-Ride Problem Fmax-OLDARP)
The problem Fmax-OLDARP consists of finding a transportation schedule which Fmax-OLDARP

starts at the origin and which minimizes the maximal flow time.

Definition 4.2 (Online Dial-a-Ride Problem Favg-OLDARP)
The problem Favg-OLDARP consists of finding a transportation schedule which Favg-OLDARP

starts at the origin and which minimizes the average flow time.

4.2 Lower Bounds

How well can an online algorithm for the Fmax-OLDARP or the Favg-OLDARP
perform from a competitive analysis point of view? We start with a discour-
aging result for the Fmax-OLDARP which shows that even randomization can
not help to achieve a constant competitive ratio.

Theorem 4.3 No randomized algorithm for the Fmax-OLDARP on R
�

� can achieve
a constant competitive ratio against an oblivious adversary.

Proof: Let 0 < ε < 1 be a small constant. With probability 1/2 there will
be one request at time 1 from 1 to 1 − ε. With probability 1/2 there will
be one request at time 1 from the origin o to ε. This yields a probability
distribution X over the two request sequences σ � = (1, 1, 1 − ε) and σ � =

(1, o, ε). Each sequence can be served by an optimal offline algorithm at
cost ε, whence E

�

[OPT(σ �)] = ε.

� �

�
 � �
1

time
 probability
 � �

probability
 � �

Lower bound
construction in

Theorem 4.3.
Consider a generic deterministic online algorithm ALG � which has its

server at position y ∈ R
�

� at time 1. Since either y < 1/2 or y ≥ 1/2 it follows
that on average ALG � incurs a cost of at least 1/2. Hence the expected cost
of the algorithm satisfies E

�

[ALG � (σ �)] ≥ 1/2.
This yields

E
�

[ALG � (σ�)]

E
�

[OPT(σ �)]
≥ 1

2ε
.

By choosing ε > 0 small enough the above ratio becomes unbounded. The
theorem now follows by applying Yao’s Principle. 2

Corollary 4.4 No deterministic algorithm for the Fmax-OLDARP on the non-
negative part of the real line R

�
� can achieve a constant competitive ratio. 2

The situation is even worse in case of the Favg-OLDARP. The competitive
ratio of any algorithm is doomed to grow with the number of requests in
the request sequence as the following lower bound results show.

66 CHAPTER 4 MINIMIZING FLOW TIMES AND WAITING TIMES

Theorem 4.5 Any deterministic algorithm for the Favg-OLDARP on the non-
negative part of the real line R

�
� has competitive ratio greater or equal to m, where

m := |σ| denotes the number of requests in the input sequence.
Any randomized algorithm for the Favg-OLDARP on R

�
� has competitive ratio

in Ω(
√

m) against an oblivious adversary.

Proof: We only prove the first part of the theorem. The second statement
is an immediate consequence of the corresponding lower bound result for
online machine scheduling in [Ves94] (cf. Section 2.3 for the relation between
dial-a-ride problems and machine scheduling).

Suppose that ALG is an arbitrary deterministic online algorithm for the
Favg-OLDARP. We release a request r � = (0, o, 1) at time 0. Let T ≥ 0 be the
time when ALG starts to serve request r � . At this time the adversary releases
m − 1 new requests r � = (T, o, o) (2 ≤ j ≤ m).

�

�

m
−

1
ne

w
re

qu
es

ts

� �

time
�

time �

Lower bound
construction in
Theorem 4.5.

After having served r � (incurring a flow time of T + 1), ALG must serve
the requests r � , . . . , r � . If ALG starts serving the small requests immediately
after having completed r � and as quickly as possible, then the flow time of
each of the m − 1 requests r � , . . . , r � is T + 2. Hence the average flow time
of ALG satisfies

ALG(σ) ≥ 1

m
(T + 1 + (m − 1)(T + 2)) = T + 2 −

1

m
.

The adversary can process the sequence σ by first serving the requests
r � , . . . , r � and then taking care of r � . Each of the requests r � , . . . , r � in-
curs a zero flow time. Hence, the average flow time of the optimal offline
algorithm is bounded from above by �

� (T + 1). Thus,

ALG(σ)

OPT(σ)
≥ m +

m − 1

T + 1
> m,

and, consequently, the algorithm ALG can not achieve a competitive ratio
smaller than m. 2

4.3 Reasonable Load

Considering the negative results from the previous section we can not hope
for performance guarantees that may be relevant in practice. In particular,
the algorithms REPLAN, IGNORE and SMARTSTART (see Chapter 2) can not
be distinguished by classical competitive analysis.

In a continuously operating system we wish to guarantee that work can
be accomplished at least as fast as it is presented. In the following we pro-
pose a mathematical set-up which models this idea in a worst-case fashion.

4.3 REASONABLE LOAD 67

Since we are always working on finite subsets of the whole request set, the
request set itself may be infinite, modeling a continuously operating system.

In the sequel we slightly abuse notation and treat a (possibly infinite)
sequence σ = r � , r � , . . . of requests also as a set σ = {r � , r � , . . . } of requests.
This allows us to use the usual notation for mappings.

We start by relating the release spans of finite subsets of a request set to
the time we need to fulfill the requests.

Definition 4.6 (Offline Version of Requests and Sequences)
The offline version of request r = (t, a, b) is the request offline version

roffline := (0, a, b).

Let σ = r � , r � , . . . be any (possibly infinite) sequence of requests. The offline
version of σ is the request sequence offline version of σ

σoffline := { roffline : r ∈ σ }.

An important characteristic of a request set with respect to system load
considerations is the time period in which it is released. Recall that t(r)

denotes the release time of request r.

�

�
δ̄(R)

�

�

Release span δ̄(R)

of a finite request
set R. The metric
space is induced

by a path (drawn
vertically). The

time axis is shown
horizontally.

Definition 4.7 (Release Span)
Let σ be any sequence of requests and R ⊆ σ be a finite subset. The release span
δ̄(R) of R is defined as

δ̄(σ) := max� ∈ � t(r) − min� ∈ � t(r).

In the case of dial-a-ride problems, provably good polynomial time
offline-algorithms exist for the (closed) makespan (see e.g. Chapters 6 and 7)
and the weighted sum of completion times [GK96, BC � 94, AK99]. How can
we make use of these algorithms in order to get performance guarantees for
minimizing the maximal (average) waiting (flow) times? We suggest a way
of characterizing request sets which we want to consider “reasonable”.

Define OPT ���
max

(R) to be the length of the optimal closed makespan for a se- OPTCo
max

(R)

quence R of requests.

Definition 4.8 (Load Bound)
Let σ be a request sequence. A weakly monotone function f : R

�
� → R

�
� is a load

bound on σ if for any δ ∈ R and any finite R ⊆ σ with δ̄(R) ≤ δ the closed load bound
makespan OPT ���

max
(Roffline) of the optimal schedule for the offline version Roffline of R

is at most f(δ), that is, if

OPT ���
max

(Roffline) ≤ f(δ).

68 CHAPTER 4 MINIMIZING FLOW TIMES AND WAITING TIMES

Remark 4.9 If the whole request sequence σ is finite then there is always
the trivial load bound given by the total completion time OPT � �

max
(σ) of σ.

For every load bound f we may set f(0) to be the maximal completion time
needed for a single request, and nothing better can be achieved.

σ�

�

�

�
� � � 	

�

�
�

optimal
schedule

Load bound f for a
request set. If
δ̄(R) ≤ δ, then
OPTCo

max
(Roffline) ≤

f(δ). The set Roffline

is derived from R

by setting all
release times of the
requests in R to
zero. The track of
the optimal offline
solution
OPTCo

max
(Roffline is

shown in blue.

Intuitively, a “stable situation” would be obtained by a load bound equal
to the identity id on R

�
� , id(x) = x. (By “stable” we mean that the number

of unserved requests in the system does not become arbitrarily large.) In
that case we would never get more work to do than we can accomplish. If
a request sequence σ has a load bound equal to a function id/ρ, where id is
the identity and where ρ ≥ 1, then ρ measures the “tolerance” of the request
set in the following sense: assume that we have an offline ρ-approximation
algorithm at our disposal that is by (at most) a factor ρ worse than the
optimal offline algorithm. Then we can still ensure stability by using the
IGNORE-strategy: compute a ρ-approximate schedule (with respect to the
closed makespan) for the set R of all released but unserved requests. The
load bound and the performance guarantee ensure that the schedule takes
no longer than ρ · δ̄(R)/ρ = δ̄(R) to complete. Thus, the set of requests that
are released in the meantime has a release span no larger than δ̄(R), and we
can proceed by computing a ρ-approximate schedule for that set.

However, we cannot expect that the identity (or any linear function) is a
load bound because of the following observation: a request set consisting of
one single request has a release span of 0 whereas in general, it takes non-
zero time to serve this request. In the following definition we introduce a
parameter describing how far a request set is from being load-bounded by
the identity.

Definition 4.10 (Reasonable Request Sequence)
Let ∆, ρ ∈ R

�
� be fixed. A load bound f is (∆,ρ)-reasonable, if

f(δ) ≤ δ/ρ for all δ ≥ ∆.

A request sequence σ is (∆,ρ)-reasonable if it has a (∆,ρ)-reasonable load bound.

� ���

� ��

� �

� ���

� � � 	

Graph of a
(∆, ρ)-reasonable
load bound f. For ρ = 1, we say that the request sequence is ∆-reasonable.

In other words, a load bound is (∆,ρ)-reasonable, if it is bounded from
above by id(δ)/ρ for all δ ≥ ∆ and by the constant function with value ∆/ρ

otherwise.

Remark 4.11 If ∆ is sufficiently small, such that all request sets consisting of
two or more requests have a release span larger than ∆, then the first-come-
first-serve strategy is good enough to ensure that there are never more than
two unserved requests in the system. Hence, the request set does not require
scheduling the requests in order to provide for a stable system.

4.4 BOUNDS FOR THE FLOW TIMES 69

In a sense, ∆ is a measure for the combinatorial difficulty of the request
sequence σ. Thus, it is natural to ask for performance guarantees for algo-
rithms in terms of this parameter. This is done in the next section.

4.4 Bounds for the Flow Times

We are now in a position to prove bounds for the maximal flow time for
the algorithms IGNORE and SMARTSTART. As in previous chapters we use
the term “(approximately) shortest schedule” for a transportation schedule
which (approximately) minimizes the closed makespan.

4.4.1 Analysis of IGNORE

In our initial version of the IGNORE-strategy we required each schedule
computed to be a shortest one. It will be useful to relax these requirements
and extend the IGNORE-strategy in the way we did for the SMARTSTART-
algorithm. We allow each schedule computed to be approximately optimal
with respect to the closed makespan. For convenience we restate the algo-
rithm IGNORE from Section 2.5 with this minor modification:

Algorithm IGNORE IGNORE

The server remains idle until the point in time t when the first
requests become known. It serves the requests released at time t

immediately, following an approximately shortest schedule S

which starts and ends at the origin. All requests that arrive
during the time when the algorithm follows S are temporarily
ignored. As soon as S has been completed and the server is back
in the origin, the algorithm computes an approximately short-
est schedule for all unserved requests and follows this sched-
ule. Again, all new requests that arrive during the time that
the server is following the schedule are temporarily ignored. A
schedule for the ignored requests is computed as soon as the
server has completed its current schedule.

Let us consider the intervals in which IGNORE organizes its work in more
detail. The algorithm IGNORE induces a dissection of the time axis R

�
� in the

following way: We can assume, without loss of generality, that the first set
of requests is released at time 0. Let δ � = 0, i.e., the point in time where
the first set of requests is released (these are processed by IGNORE in its first
transportation schedule). For i = 1, 2, . . . let δ � be the duration of the time
period the server is working on the requests that have been ignored during
the last δ � � � time units. Then the time axis is split into the intervals

[δ � = 0, δ �], (δ � , δ �], (δ � , δ � + δ �], (δ � + δ � , δ � + δ � + δ �], . . .

70 CHAPTER 4 MINIMIZING FLOW TIMES AND WAITING TIMES

Let us denote these intervals by I � , I � , I � , I � , Moreover, let R � be the set
of those requests that are released in I � . Clearly, the complete set of requests
R is the disjoint union of all the R � .

� � � � � �� �
0

Track of the
IGNORE-server on
a graph which is a
path over time.

At the end of each interval I � we solve an offline problem: all requests
to be scheduled are already available. The work on the computed schedule
starts immediately (at the end of interval I �) and is completed δ � � � time units
later (at the end of interval I � ���). On the other hand, the time we need to
serve the schedule is not more than ρ times the optimal completion time
of R � offline. In other words:

Lemma 4.12 For all i ≥ 0 the estimate

δ � ��� ≤ ρ · OPT ���
max

(R � offline).

holds. 2

Let us now prove the first positive result for the online minimization of
the maximal flow time.

Theorem 4.13 Let ∆ > 0 and ρ ≥ 1. For all instances of the Fmax-OLDARP with
(∆, ρ)-reasonable request sets, IGNORE employing a ρ-approximation algorithm
for solving offline instances of the C �max-OLDARP yields a maximal flow time of no
more than 2∆.

Proof: Let r be an arbitrary request in R � for some i ≥ 0, i.e., r is released
in I � . By construction, the transportation schedule containing r is completed
at the end of interval I � ��� , i.e., at most δ � + δ � ��� time units later than r was
released. This results in the following upper bound:

Fmax(IGNORE[σ]) ≤ sup
� ≥ �

(δ � + δ � ���) .

IGNORE[σ]:
Solution produced
by IGNORE on
input σ, see
Definition 1.2

If we can show that δ � ≤ ∆ for all i > 0 then we are done. To this end,
let f be a (∆, ρ)-reasonable load bound for R. Since δ̄(R �) ≤ δ � we have
OPT ���

max
(R � offline) ≤ f(δ �) by definition of a load bound. By Lemma 4.12, we

get for all i > 0

δ � � � ≤ ρOPT ���
max

(R � offline) ≤ ρf(δ �) ≤ max{δ � , ∆}.

Using δ � = 0 the claim now follows by induction on i. 2

� ���

� ��

� �

� ���

� � � 	

Graph of a
(∆, ρ)-reasonable
load bound f.

From the fact that the average flow time can never be larger than the
maximal flow time, we obtain as a trivial consequence the following corol-
lary:

Corollary 4.14 For (∆, ρ)-reasonable request sets, IGNORE employing a ρ-ap-
proximation algorithm for solving offline instances of the C �max-OLDARP yields
an average flow time of no more than 2∆. 2

4.4 BOUNDS FOR THE FLOW TIMES 71

4.4.2 Analysis of SMARTSTART

We continue to analyze the SMARTSTART-strategy from Section 2.6 with re-
spect to its behavior under reasonable load. For an easier reference, we
repeat the definition of the SMARTSTART-algorithm:

Algorithm SMARTSTART SMARTSTART

If the algorithm is idle at time T and new requests arrive, SMART-
START calls “work-or-sleep”. If the result is (S, work), the al-
gorithm enters the working state where it follows schedule S.
Otherwise, the algorithm enters the sleeping state with wakeup
time t ′, where t ′ ≥ T is the earliest time such that t ′ + l(S) ≤ θt ′

and l(S) denotes the length of the just computed schedule S, i.e.,
t ′ = min{ t ≥ T : t + l(S) ≤ θt }.

In the sleeping state the algorithm does nothing until its wakeup
time t ′. At this time the algorithm reconsults the “work-or-
sleep” subroutine. If the result is (S, work), then the algorithm
enters the working state and follows S. Otherwise, the algorithm
continues to sleep with new wakeup time min{ t ≥ t ′ : t + l(S) ≤
θt }.

In the working state, i.e, while the server is following a schedule,
all new requests are (temporarily) ignored. As soon as the cur-
rent schedule is completed the server either enters the idle state
(if there are no unserved requests) or it reconsults the “work-or-
sleep” subroutine which determines the next state (sleeping or
working).

Recall that the “work-or-sleep” routine of SMARTSTART computes an ap-
proximately shortest schedule S for all unserved requests which starts and
ends in the origin. Let θ > 1. If the schedule S can be completed no later
than time θt, i.e., if t + l(S) ≤ θt, where t is the current time, the subroutine
returns (S, work), otherwise it returns (S, sleep).

The analysis of SMARTSTART essentially parallels that of IGNORE, so we
only highlight the differences. The crucial observation needed is formulated
in the following lemma:

Lemma 4.15 For (∆, ρ)-reasonable request sequences the server of SMARTSTART

never sleeps after time t̄ :=
�

� � �
.

� ¯� �
�

� 	 �

no sleep

Track of the
SMARTSTART-

server on a path
graph over time.
The server does

never sleep after
time t̄ = ∆

θ−1
.

Proof: Consider a call to the “work-or-sleep” routine at an arbitrary time
t ≥ t̄. Let R be the set of requests not served by SMARTSTART at time t and
let S be a ρ-approximate shortest schedule for R. By the (∆, ρ)-reasonability

72 CHAPTER 4 MINIMIZING FLOW TIMES AND WAITING TIMES

of the input sequence, the length of schedule S for R can be bounded from
above by

l(S) ≤ ρ · max
{

∆

ρ
,
δ̄(R)

ρ

}
= max{∆, δ̄(R)}.

Trivially, we have δ̄(R) ≤ t, since all requests in R have been released at
time t. Hence, it follows that

t + l(S) ≤ t + max{∆, δ̄(R)}

≤ t + max{∆, t} (since δ̄(R) ≤ t)
= t + max{(θ − 1)t̄, t} (since t̄ = ∆/(θ − 1))
≤ θt (since t ≥ t̄).

Consequently, the “work-or-sleep” routine does not return the invitation to
sleep.

The same arguments as given above show that, if SMARTSTART goes to
sleep before some time t < t̄, the wakeup time is no later than time t̄. Hence,
the lemma follows. 2

Let S be the last schedule started by SMARTSTART no later than time t̄

and denote by t � ≤ t̄ its start time. From Lemma 4.15 we conclude that from
time t̄ on, SMARTSTART behaves like IGNORE, provided the input sequence
is (∆, ρ)-reasonable. Using the arguments given in the proof of Theorem 4.13
we can conclude that the flow time of any request released after time t � is
bounded from above by 2∆.

�

schedule
�

� � ¯� �
�

� 	 �

After completing
schedule S which
was started at
time tS,
SMARTSTART

behaves exactly
like IGNORE.

It remains to treat the requests released before time t̄. Using again the
arguments of Theorem 4.13 we derive that all requests released after time t �
have flow time at most 2∆ and we finally need to consider those requests
released until time t � . Each of these requests is either served by S or by an
even earlier schedule. Since by definition of SMARTSTART, the transporta-
tion schedule S is completed no later than time θt � < θt̄ = �

� � �
∆, we obtain

the following result:

Theorem 4.16 Let ∆ > 0 and ρ ≥ 1. For all instances of the Fmax-OLDARP with
(∆, ρ)-reasonable request sets, Algorithm SMARTSTART employing a ρ-approxi-
mation algorithm in its “work-or-sleep” routine yields a maximal flow time of no
more than max

{
�

� � �
∆, 2∆

}
. In particular, if θ ≥ 2, then the maximal flow time

provided by SMARTSTART is bounded from above by 2∆. 2

As in the case of IGNORE a we can derive a trivial upper bound of 2∆ for
the average flow time of SMARTSTART under reasonable load.

4.5 A DISASTROUS EXAMPLE FOR REPLAN 73

4.5 A Disastrous Example for REPLAN

We first recall the strategy of algorithm REPLAN from Section 2.5.

Algorithm REPLAN REPLAN

As soon as a new request r � arrives the server stops and replans:
it computes a schedule with minimum length which starts at the
current position of the server, takes care of all yet unserved re-
quests (including those that are currently carried by the server),
and ends at the origin. Then it continues using the new schedule.

In the sequel, we provide an instance of the Fmax-OLDARP and a ∆-
reasonable request sequence σ such that the maximal and the average flow
time provided by REPLAN is unbounded, thereby proving that a positive
result as in Theorems 4.13 and 4.16 is not possible for REPLAN.

Theorem 4.17 There is an instance of the Fmax-OLDARP under reasonable load
such that the maximal and the average flow time of REPLAN are unbounded.

Proof: Figure 4.1 contains a sketch of an instance for the Fmax-OLDARP. The
metric space is a path on four nodes a, b, c, d with origin a; the length of the
path is `, the distances are d(a, b) = d(c, d) = ε, and hence d(b, c) = ` − 2ε.
At time 0 a request from a to d is issued; starting at time �

� `−ε, the remaining
requests periodically come in pairs from b to a and from c to d, respectively.
The time distance between them is ` − 2ε.

�
�
�
�
�
�
�
�
� ��

��

��

��

a

d

G

b

c

ε

` − 2ε

ε

Path-graph G used
in the proof of
Theorem 4.17.

`

3/2` − ε ` − 2ε ` − 2ε

εε ε

εεε

t

0

d

G

b

a

c

R2

Figure 4.1
Sketch of a

8
3
`-reasonable

instance of the
Fmax-OLDARP. The

horizontal axis
holds the time, the

vertical axis
depicts the metric

space in which the
server moves. A

request is denoted
by an arrow
horizontally

positioned at its
release time.

We show that for ` = 18ε, the request sequence σ indicated in the picture
is

�
� `-reasonable. Indeed, it is easy to see that the first request from a to d

does not influence reasonability. Consider an arbitrary set R � of k adjacent

74 CHAPTER 4 MINIMIZING FLOW TIMES AND WAITING TIMES

pairs of requests from b to a and from c to d. Then the release span δ̄(R �) of
R � is

δ̄(R �) = (k − 1)(` − 2ε).

The offline version R �
offline of R � can be served as follows: first, move the

server to c, the starting point of the upper requests: this contributes cost
` − ε. Next, serve all the upper requests and go back to c: this contributes
cost 2kε. Then, go down to b, the starting point of the lower requests: this
contributes another ` − 2ε to the cost. Now, serve the first lower requests:
the additional cost for this is ε. Finally, serve the remaining lower requests
at an additional cost of (k − 1) · 2ε. In total, we have the following:

OPT ���
max

(R �
offline) = 2` + 4(k − 1)ε.

In order to find the smallest parameter ∆ for which the request set R � is

0

�
�

�
�
�

�
� �� � ��� ��� �
 	 �

Track of the
optimal closed
makespan
for Rk

offline (here
k = 3).

∆-reasonable, we solve

f(δ̄(R �)) = OPT ���
max

(R �
offline)

for the integer k − 1 and get

k − 1 =

⌈

2`

` − 6ε

⌉

= 3 for ` = 18ε.

Hence, we can set ∆ to

∆ := OPT ���
max

(R �
offline) =

�
� `.

Now we define the function f : R
�

� → R
�

� by

f(δ) :=

{
∆ for δ < ∆,

δ otherwise.

By construction, f is a load bound for R � . Because the time gap after which a
new pair of requests occurs is certainly larger than the time it increases the
offline makespan, f is also a load bound for the whole sequence σ. Thus, the
request sequence σ is ∆-reasonable, as desired.

How does REPLAN perform on this instance? Figure 4.2 shows the track
of the server following the schedules produced by REPLAN on the request
sequence σ. Since a new pair of requests is issued exactly when the server
is still closer to the requests at the top all the requests at the bottom will be
postponed. Thus, the server always returns to the top when a new pair of
requests arrives.

The maximal flow time of REPLAN on this instance is realized by the flow
time of the request (

�
� ` − ε, b, a), which is unbounded.

Moreover, since all requests from b to a are postponed after serving all
the requests from c to d we get that REPLAN produces an unbounded aver-
age flow time as well. 2

4.6 REPLANNING WITH A DIFFERENT OBJECTIVE 75

G `

0
3/2` − ε ` − 2ε ` − 2ε

εε ε

εεε

t

Figure 4.2
The track of the

REPLAN-server on
the instance
described in

Theorem 4.17.

In Figure 4.3 we show the track of the server of the IGNORE-algorithm.
After an initial inefficient phase the server ends up in a stable operating
mode. This example also shows that the analysis of IGNORE in Section 4.4 is
sharp.

t

Figure 4.3
The track of the
IGNORE-server.

4.6 Replanning with a Different Objective

It is quite natural to ask whether modified replan-strategies that repeatedly
minimize the maximal respective average flow times on the known request
sets (instead of the closed makespan) would give provable bounds on the
maximal and average flow times under reasonable load. Call these modified
replan-strategies REPLAN � max and REPLAN � avg. REPLANFmax

REPLANFavg

We mentioned already that the offline problem of minimizing the aver-
age flow time is computationally very hard in general (see e.g. [KTW96]). In

76 CHAPTER 4 MINIMIZING FLOW TIMES AND WAITING TIMES

the offline problem that REPLAN � avg has to solve, however, all requests have
release times in the past. It is easy to see that the problem is equivalent to
the minimization of the average completion time counted from the point in
time where the planning takes place. Moreover, since the average flow time
is larger by the “average age” of the requests, the performance guarantees
of approximation algorithms minimizing the average completion time carry
over. The following result shows that even under reasonable load we cannot
expect a worst case stable behavior of REPLAN � avg.

Theorem 4.18 There is an instance of the Fmax-OLDARP under reasonable load
such that the maximal and average flow times of REPLAN � avg are unbounded.

�
× � u

i

� � � ���
× � u

i+1

� l
i+1� l

i

t

d

c

G

b

a

0

� u
1

�
× � u

3 � × � u
5

� l
1 � l

2 � l
3 � l

4 � l
5

3
2 � 	��

�
× � u

2

�
× � u

4

� 	
� �

�
�
� � �

�
� � � �

� � � � 	 ��� �

Figure 4.4
The track of the
REPLANFavg -server
on the example
from
Theorem 4.18.

Proof: We construct a set of requests in the same metric space as in the
previous Section 4.5 as follows:

• At time 0 we issue again one request from a to d.

• At time T � :=
�
� ` − ε we issue a pair consisting of one “upper” request

R
	
� from c to d and one “lower” request R

�
� from b to a.

• At time T � ��� := T � + ` + 2(i − 2)ε we issue

– a set of i “upper” requests R
	
� ��� from c to d and

– one “lower” request R
�
� � � from b to a.

4.6 REPLANNING WITH A DIFFERENT OBJECTIVE 77

Figure 4.4 sketches the construction. For ` = 18ε this request set is again
�

� `-
reasonable since we have increased the time intervals between the release
times of the requests by the additional amount that is needed to serve the
additional copies of upper requests.

At time T � , for all i > 0, REPLAN � avg has still to serve as many upper re-
quests as there are lower requests. Thus, at T � the schedule with minimum
average flow time for the currently available requests serves the upper re-
quests first. Hence, the requests at the bottom have to wait for an arbitrarily
long period of time.

In order to prove the assertion concerning the average flow time we con-
sider the result that REPLAN � avg produces on the input set R � which contains
all requests up to time T � .

In order to estimate the average flow time of a request in the solu-
tion produced by REPLAN � avg we first consider the sum of all flow times∑

F � (REPLAN � avg[R �]). Clearly, the sum of the waiting times of the lower
requests is a lower bound on the sum of the flow times:

∑
F � (REPLAN � avg[R �]) ≥

�∑

� � �

�∑

� � �

(` + 2(i − 2)ε)

≥
�∑

� � �

�∑

� � �

(i − 2)ε.

The number of requests |R � | in R � is

|R � | = 1 +

�∑

� � �
(k + 1),

so that

Favg(REPLAN � avg[R �]) =

∑
F � (REPLAN � avg[R �])

|R � |

�����
−→ ∞,

which completes the proof. 2

A strategy that minimizes just the maximal flow time does not make a lot
of sense since sometimes this only determines which request is to be served
first; the order in which all the other requests are scheduled is unspecified.
Thus, the most sensible strategy in this respect seems to be the following:
consider an offline instance of the dial-a-ride problem. A vector consist-
ing of all flow times of requests in a feasible solution ordered decreasingly
is called a flow vector. All flow vectors are ordered lexicographically. The
online strategy REPLAN � max for the online dial-a-ride problem does the fol- REPLANFmax

78 CHAPTER 4 MINIMIZING FLOW TIMES AND WAITING TIMES

lowing: whenever a new request becomes available REPLAN � max computes a
new schedule of all yet unserved requests minimizing the flow vector.

It is an open problem what the performance of this strategy is under ∆-
reasonable load. In practice, however, it is probably too difficult to solve the
offline problem with this objective function.

4.7 Remarks

To overcome the weakness of competitive analysis, we have introduced the
mathematical notion “∆-reasonable´´ describing the combinatorial difficulty
of a possibly infinite request set for Fmax-OLDARP. For reasonable request
sets we were able to prove bounds on the maximal respective average flow
time of the algorithms IGNORE and SMARTSTART for Fmax-OLDARP; in con-
trast to this, there are instances of Fmax-OLDARP where the algorithm RE-
PLAN yields an unbounded maximal and average flow time.

One key property of our results is that they can be applied in continu-
ously working systems. Computer simulations have meanwhile supported
the theoretical results in the sense that algorithm IGNORE does not delay
individual requests for an arbitrarily long period of time, whereas REPLAN

has a tendency to do so [GH � 99, GH � 00].
While the notion of ∆-reasonability is applicable to minimizing maximal

flow time, it would be of interest to investigate an average analogue in order
to prove non-trivial bounds for the average flow time.

Table 4.1 summarizes the discouraging results on lower bound for the
competitive ratios of algorithms for the Fmax-OLDARP and the Favg-OLDARP.
Table 4.2 gives an overview over the performance bounds of algorithms un-
der reasonable load obtained in this chapter.

4.7 REMARKS 79

Problem Competitive Ratios Lower Bounds

Fmax-OLDARP — deterministic algorithms:
no constant ratio possible

(Corollary 4.4)
— randomized algorithms:

no constant ratio possible
(Theorem 4.3)

Favg-OLDARP — deterministic algorithms:
m = |σ|

(Theorem 4.5)
— randomized algorithms:

Ω(m)

[Ves94]

Table 4.1: Results about competitive algorithms for the Fmax-OLDARP and
the Favg-OLDARP.

Algorithm Bound on Fmax under (∆, ρ)-reasonable load

IGNORE 2∆

(Theorem 4.13)

SMARTSTART max
{

θ
θ−1

∆, 2∆
}

(Theorem 4.16)

REPLAN no upper bound possible
(Theorem 4.17)

REPLANFavg no upper bound possible
(Theorem 4.18)

Table 4.2: Performance bounds under reasonable load.

Minimizing the Sum of
Completion Times

In the traveling repairman problem (TRP) [AC � 86] a server must visit a set of
m points x � , . . . , x � in a metric space. Given a tour through the m points, the
completion time C � of point x � is defined as the time traveled by the server
on the tour until it reaches x � (j = 1, . . . , m). Each point x � has a weight
w � , and the objective of the TRP is to find a tour that minimizes the total
weighted completion time

∑ �
� ��� w � C � . This objective is also referred to as

the latency.
In this chapter we consider an online version of the TRP called the on-

line traveling repairman problem (OLTRP). Requests for visits to points are

� � � =

�
�
�

3
�

2

4

1

� �
� �
� �
� �

Traveling
repairman

problem (TRP)
released over time while the repairman (the server) is traveling. In the on-
line setting the completion time of a request r � at point x � with release time t �

is the first time at which the repairman visits x � after the release time t � . The
OLTRP is a special case of the dial-a-ride problem

∑
w � C � -OLDARP (similar

as the OLTSP is a special case of the dial-a-ride problem C �max-OLDARP).
We present competitive algorithms and randomized lower bounds for

the OLTRP and the more general
∑

w � C � -OLDARP. Our algorithms im-
prove the competitive ratios given in previous works. For the case of the∑

w � C � -OLDARP our algorithms are the first competitive algorithms. The
randomized lower bounds are the first ones for the OLTRP and the

∑
w � C � -

OLDARP.
This chapter is organized as follows. In Section 5.1 we define the OLTRP

and the
∑

w � C � -OLDARP formally. In Section 5.2 we prove lower bounds
on the competitive ratio of randomized algorithms against an oblivious ad-
versary. Section 5.3 contains the deterministic algorithm INTERVAL and the
proof of its competitive ratio. In Section 5.4 we present the randomized al-
gorithm RANDINTERVAL which achieves a better competitive ratio.

Related Work

In [FS01] Feuerstein and Stougie presented a 9-competitive algorithm for
the OLTRP on the real line and a 15-competitive algorithm for the

∑
w � C � -

82 CHAPTER 5 MINIMIZING THE SUM OF COMPLETION TIMES

OLDARP on the real line for the special case that the server has infinite ca-
pacity. In the same paper lower bounds of 1 +

√
2 and 3 on the competitive

ratio of any deterministic algorithm for OLTRP and
∑

w � C � -OLDARP, re-
spectively, are proved.

The offline traveling repairman problem TRP is known to be NP-hard
even on trees [AC � 86]. Approximation algorithms for the TRP have been
studied in [GK96, BC � 94, AK99].

5.1 Problem Definition

In addition to the framework for online dial-a-ride problems described in
Section 2.1, in the

∑
w � C � -OLDARP each request r � ∈ σ = r � , . . . , r � addi-

tionally specifies a weight w � := w(r �), that is, each request r � is a quadruple
(t � , α � , ω � , w �) ∈ R

�
� × X × X × R

�
� .

Recall that the completion time of request r � in a transportation schedule S,completion time
denoted by C � (S), is defined to be the time that S(r �), the subschedule in
which r � is served, is completed (see Section 4.1). In this chapter we are
concerned with the following objective function:

Weighted Sum of Completion Times
∑

w � C � : This function is defined as∑ �
� ��� w � C � (S) and is also referred to as the latency of a transportationlatency

schedule.

We are now ready to state the problems
∑

w � C � -OLDARP and OLTRP
formally:

Definition 5.1 (Online Dial-a-Ride Problem
∑

w � C � -OLDARP)
The
∑

w � C � -OLDARP consists of finding a transportation schedule S, which
starts at the origin and which minimizes the weighted sum of completion times∑

w � C � (S).

Definition 5.2 (Online Traveling Repairman Problem OLTRP)
The online traveling repairman problem (OLTRP) is the special case of the∑

w � C � -OLDARP, when for each request r its source and destination coincide,
that is, α(r) = ω(r) for all r.

5.2 Lower Bounds

Feuerstein and Stougie proved the following lower bounds for deterministic
algorithms:

5.2 LOWER BOUNDS 83

Theorem 5.3 ([FS01]) For the
∑

w � C � -OLDARP on the real line, any determin-
istic online algorithm has a competitive ratio greater or equal to 3. Any determin-
istic online algorithm for the OLTRP on the real line has competitive ratio at least
1 +

√
2. 2

1 +
√

2 ≈
2.414213562

In this section we establish lower bounds for the competitive ratio of
any randomized algorithm against an oblivious adversary for the problem∑

w � C � -OLDARP. The basic method for deriving such a lower bound is
once more Yao’s Principle (see Theorem 1.12).

Recall that the heart of Yao’s Principle is to specify a probability distri-
bution X̄ over input sequences such that on average, every deterministic
algorithm performs badly, that is, such that E ¯

�

[ALG � (σ �)] is high compared
to the expected optimal cost E ¯

�

[OPT(σ �)]. In this chapter we use a method
proposed in [Sei00] to compute a suitable distribution once our ground set
of request sequences has been fixed.

5.2.1 A General Lower Bound for
∑

wjCj-OLDARP

We provide a general lower bound where the metric space is a star, which
consists of three rays of length 2 each. The center of the star is the origin,
denoted by o. The server capacity equals one.

Let the rays of the star be named A, B and C. Let x � be the point on A

with distance x to o, 0 < x ≤ 2. Points on B and C will be denoted in the
same manner. Let k ∈ N, k ≥ 2 be arbitrary.

�
��� �

�

length
�

�

�

The star with three
rays used in the

lower bound
construction for∑
wjCj-OLDARP.

At time 0 there is one request from o to 1 � with weight 1, denoted by
r � = (0, o, 1 � , 1). With probability θ there are no further requests. With

��

�

��
�

�
�

Situation at time 0.

probability 1−θ there are k requests at time 2x, where x ∈ (0, 1] is chosen ac-
cording to a density function p. The density p satisfies θ+

∫ �
� p(x) dx = 1 and

will be determined suitably in the sequel. Each of the k requests released at
time 2x has weight 1. With probability �

� (1 − θ) these requests will be given
from 2x � to 2x � and with probability �

� (1 − θ) from 2x � to 2x � . This yields
a probability distribution X over the set Σ = { σ � � � : x ∈ [0, 1], R ∈ {B, C} } of
request sequences where σ � � � = r � for R ∈ {B, C}, and

σ � � � = r � , (2x, 2x � , 2x � , 1), . . . , (2x, 2x � , 2x � , 1)︸ ︷︷ ︸
� times

for 0 < x ≤ 1 and R ∈ {B, C}.

We first calculate the expected cost E
�

[OPT(σ � � �)] of an optimal offline al-

�

�

��

�

�

?

?

With probability
1 − θ a set of k new

requests arrives
either on ray B or

on ray C.

gorithm with respect to the distribution X on Σ. With probability θ there
is only request r � to be served, and in this case the offline cost is 1. Now
consider the situation where there are k additional requests at position 2x �

or 2x � . Clearly, the optimal offline cost is independent of the ray on which

84 CHAPTER 5 MINIMIZING THE SUM OF COMPLETION TIMES

the requests arrive. First serving request r � and then the k requests yields
the objective function value 1 + k(2 + 2x), whereas first serving the set of
k requests and then r � results in a total cost of 2kx+4x+1. Hence, for k ≥ 2,
we have

(5.1) E
�

[OPT(σ � � �)] = θ +

∫ �

�
(2kx + 4x + 1)p(x) dx.

The strategy of a generic deterministic online algorithm ALG � can be cast
into the following framework: ALG � starts serving request r � at time 2y

where y ≥ 0, unless further requests are released before time 2y. If the
sequence ends after r � , the online costs are 2y + 1. Otherwise, two cases
have to be distinguished.

��

�

�

Case 1: The set of
k new requests
arrives after the
online algorithm
has started to
serve r1.

If 2x > 2y, that is, the set of k requests is released after the time at which
ALG � starts the ride requested in r � , the algorithm must first finish r � before
it can serve the k requests. In this case, the cost of ALG � is at least 2y + 1 +

k(2y + 2 + 2x).
If 2x ≤ 2y, the server of ALG � has not yet started r � and can serve the

k requests before r � . To calculate the cost it incurs in this case, let l denote
the distance of ALG � ’s server to the origin at time 2x. Then 0 ≤ l ≤ y since
otherwise, the server cannot start r � at time 2y. We may assume that ALG �

is either on ray B or C, since moving onto ray A without serving r � is clearly
not advantageous.

Now, with probability �
� , ALG � ’s server is on the “wrong” ray. This yields

cost of at least (2x + (l + 2x))k + 6x + l + 1 for ALG � . Being on the “right”
ray will cost (2x + (2x − l))k + 6x − l + 1. Putting this together, we get that
for y ≤ 1

�

� �“wrong ray”

“right ray”

�

Case 2: The set of
k new requests
arrives before the
online algorithm
has started to
serve r1.

E
�

[ALG � (σ� � �)] ≥ θ(2y + 1) +

∫ �

�
(2y + 1 + k(2y + 2 + 2x)) p(x) dx

+
1

2

∫ �

�
(4kx + 6x + kl + l + 1)p(x) dx

+
1

2

∫ �

�
(4kx + 6x − kl − l + 1)p(x) dx.

This results in

E
�

[ALG � (σ� � �)] ≥θ(2y + 1) +

∫ �

�
(2y + 1 + k(2y + 2 + 2x))p(x) dx

+

∫ �

�
(4kx + 6x + 1)p(x) dx.

=: F(y).

(5.2)

Observe that for y ≥ 1 we have that

E
�

[ALG � (σ �)] ≥ θ(2y + 1) +

∫ �

�
(2y + 1 + k(2y + 2 + 2x))p(x) dx ≥ F(1).

5.2 LOWER BOUNDS 85

Hence in what follows it suffices to consider the case y ≤ 1. To maximize
the expected cost of any deterministic online algorithm on our random-
ized input sequence, we wish to choose θ and a density function p such
that min� ∈ � � � ��� F(y) is maximized. We use the following heuristic approach
(cf. [Sei00]): Assume that θ and the density function p maximizing the min-
imum have the property that F(y) is constant on [0, 1]. Hence F ′(y) = 0 and
F ′′(y) = 0 for all y ∈ (0, 1). Differentiating we find that

F ′(y) = 2

(

θ + (1 + k)

∫ �

�
p(x) dx − (k − 2y)p(y)

)

and F ′′(y) = −2(k − 1)p(y) − 2(k − 2y)p ′(y).

From the condition F ′′(y) = 0 for all y ∈ (0, 1) we obtain the differential
equation

−2(k − 1)p(x) − 2(k − 2x)p ′(x) = 0,

which has the general solution

(5.3) p(x) = β(k − 2x)

�
� � � � � � .

The value of β > 0 is obtained from the initial condition θ +
∫ �

� p(x) dx = 1

as

(5.4) β =
1 − θ

∫ �
� (k − 2x)

�
� � � � � � dx

=
(1 + k) (θ − 1)

(k − 2)

� � ��
− k

� � �� .

It remains to determine θ. Recall that we attempted to choose θ and p in
such a way that F is constant over the interval [0, 1]. Hence in particular we
must have F(0) = F(1). Using

F(0) = θ +

∫ �

�
(1 + k(2 + 2x))p(x) dx

and F(1) = 3θ +

∫ �

�
(4kx + 6x + 1)p(x) dx,

and substituting p and β from (5.3) and (5.4), respectively, we obtain

θ =
(k − 2)

� � ��
(1 + k)

(k − 2)

� � ��
k + k

� � �� .

We now use the distribution obtained this way in (5.2) and (5.1). This results
in

E
�

[ALG � (σ� � �)] ≥
(1 + k)

(

−5(k − 2)

� � �� √
k +

√
k − 2 k

� �
(3 + 4k)

)

√
k − 2 (3 + k)

(

(k − 2)

� � �� √
k + k

� �
)

86 CHAPTER 5 MINIMIZING THE SUM OF COMPLETION TIMES

and

E
�

[OPT(σ � � �)]

=

√
k − 2 k

� � ��
(1 + k)(3 + 2k) − (k − 2)

� � ��
(1 + k)(4 + 3k)

√
k − 2

(

(k − 2)

� � ��
k(3 + k) + k

� � ��
(3 + k)

) .

Hence we conclude that

(5.5)
E

�

[ALG � (σ � � �)]

E
�

[OPT(σ� � �)]
≥ −5(k − 2)

� � � �
k +

√
k − 2 k

� � ��
(3 + 4k)√

k − 2 k

� � ��
(3 + 2k) − (k − 2)

� � ��
(4 + 3k)

.

For k→∞, the right hand side of (5.5) converges to ��� �
�

��� � � . Hence by Yao’s
Principle we obtain the following result:

Theorem 5.4 Any randomized algorithm for the
∑

w � C � -OLDARP has a compet-
itive ratio greater or equal to ��� �

�

��� � � against an oblivious adversary. 2

5−4e
3−2e

≈
2.410414067

5.2.2 A Lower Bound on the Real Line

The lower bound construction on the star uses the fact that the online server
does not know on which ray to move if it wants to anticipate on the arrival
of the k requests at time 2x. If the metric space is the real line, there are
only two rays, and this argument is no longer valid. The server can move
towards the point 2x (of course still at the risk that there will be no requests
at all on this ray) in anticipation of the set of k requests. Essentially the same
construction therefore leads to a slightly worse lower bound.

Theorem 5.5 Any randomized algorithm for
∑

w � C � -OLDARP on the real line
has competitive ratio greater or equal to ln ��� ���

ln ��� � � against an oblivious adversary.
ln 16+1
ln 16−1

≈
2.128293312

Proof: We use the following request set: At time 0 there is one request r � =

(0, 0, −1, 1). With probability θ there are no further requests. With proba-��
 � �
�

�

Situation at time 0

in the proof of
Theorem 5.5.

bility 1 − θ there are k requests at time 2x from 2x to 2x where x ∈ (0, 1]

is chosen according to the density function p(x), where θ +
∫ �

� p(x) dx = 1.
Again, this yields a probability distribution X over a set Σ = { σ � : x ∈ [0, 1] }

of request sequences where
��
 � �

?

�
�

With
probability 1 − θ a
set of k new
requests arrives.

σ � =






r � for x = 0

r � , (2x, 2x, 2x, 1), . . . , (2x, 2x, 2x, 1)︸ ︷︷ ︸
� times

for 0 < x ≤ 1.

By a similar argumentation as in the previous section we obtain

E
�

[OPT(σ �)] = θ +

∫ �

�
(2kx + 4x + 1)p(x) dx

5.2 LOWER BOUNDS 87

and

E
�

[ALG � (σ�)] ≥ θ(2y + 1) +

∫ �

�
(2kx + 4x + 1)p(x) dx

+

∫ �

�
(2y + 1 + k(2y + 2 + 2x))p(x) dx.

By choosing
p(x) = β(k − x + k x)

�
� �

	 � � �
,

β =
1 − θ

∫ �
� (k − x + kx) �

� �
	 � � � dx

=
(1 + k) (1 − θ)

k

� � �� 	 � − (−1 + 2 k)

� � �� 	 �
,

and θ =
−1 + k + 2 k

�

k
(

−1 + 2 k + k �
� �

	 � � � (−1 + 2 k)

� �
	 � � �) ,

we obtain

(5.6)
E

�

[ALG � (σ �)]

E
�

[OPT(σ �)]
≥ 1 +

2

(1 + k)
(

−2 + k

� � �� 	 � (−1 + 2 k)

� � �
	 � � �) .

For k → ∞, the right hand side of (5.6) converges to ln � � ���
ln � � � � . The theorem

now follows from Yao’s Principle. 2

5.2.3 Lower Bounds for the OLTRP

For the OLTRP we provide a general lower bound, again using a star with
three rays of length 2 as a metric space.

Theorem 5.6 Any randomized algorithm for OLTRP has competitive ratio greater
or equal to 7/3 against an oblivious adversary. 2

Proof: Let k ∈ N be arbitrary. With probability θ =
� ���
� � � , the input sequence

consists of only one request r � at distance 1 from the origin, released at
time 1, and with weight 1. The ray on which this request occurs is cho-
sen uniformly at random among the three rays. With probability 1−θ there

�� � � � �

� �

�

?

? ?�

Situation at time 0.
The ray for

request r1 is
chosen uniformly
at random among

the three rays.
will be an additional series of k requests at distance 2 from the origin, each
with weight equal to 1. These requests are released at time 2, and the ray
on which they occur is chosen uniformly among the two rays that do not
contain r � .

�

?

�
�

�

�

?

�

With
probability 1 − θ =

1
k+2

a set of k new
requests arrives on

one of the two
remaining rays.

The cost for the adversary is given by

E
�

[OPT(σ �)] = θ + (1 − θ)(2k + 5) =
3k + 6

k + 2
.

88 CHAPTER 5 MINIMIZING THE SUM OF COMPLETION TIMES

It is easy to show that no online algorithm can do better than one whose
server is in the origin at time 1 and, at time 2, at distance 0 ≤ y ≤ 1 from the
origin on the ray where r � is located. Using this fact, we get

E
�

[ALG � (σ�)] ≥ θ(3 − y) + (1 − θ)((4 + y)k + 7 + y) =
7k + 10

k + 2
.

This leads to

(5.7)
E

�

[ALG � (σ�)]

E
�

[OPT(σ �)]
≥ 7k + 10

3k + 6
.

By letting k → ∞ and applying Yao’s Principle once more, the theorem
follows. 2

On the real line, a lower bound is obtained by the following very simple
randomized request sequence. With probability 1/2 we give a request at
time 1 in −1, and with probability 1/2 we give a request at time 1 in +1.
This leads to the following theorem.

�

�

�

�
�

time
 probability
�� �

�

probability
�� �

Construction for
the proof of
Theorem 5.7.

Theorem 5.7 Any randomized algorithm for OLTRP on the real line has competi-
tive ratio greater or equal to 2 against an oblivious adversary. 2

5.3 A Deterministic Algorithm

Our deterministic strategy is an adaption of the GREEDY-INTERVAL algo-
rithm presented in [HSW96, HS � 97] for online scheduling. The proof of
performance borrows concepts of the proofs in [HSW96, HS � 97].

Algorithm INTERVALINTERVAL

Phase 0: In this phase the algorithm is initialized.

Set L to be the earliest time when a request could be completed
by OPT. We can assume that L > 0 since, L = 0 means that there
are requests released at time 0 with source and destination o.
These requests are served at no cost. Until time L remain in o.
For i = 0, 1, 2, . . . , define B � := 2

� � � L.

Phase 1 Phase i

� � � � � � � ��� �

� � � �
�
� ��� �� ����� �

�

�
� �� �

Computation and
execution of
schedules in
INTERVAL.

Phase i, for i = 1, 2, . . . : At time B � compute a transportation
schedule S � for the set of yet unserved requests released up to
time B � with the following properties:

(i) Schedule S � starts at the endpoint x � � � of schedule S � � � (we
set x � := 0).

(ii) Schedule S � ends at a point x � with an empty server such
that d(o, x �) ≤ B � .

5.3 A DETERMINISTIC ALGORITHM 89

(iii) The length of schedule S � , denoted by l(S �), satisfies

l(S �) ≤
{

B � if i = 1
�
� B � if i ≥ 2.

(iv) The transportation schedule S � maximizes the sum of the
weights of requests served among all schedules satisfy-
ing (i)–(iii).

If i = 1, then follow S � starting at time L until time B � . If i ≥ 2,
follow S � starting at time �

� B � until �
� B � � � .

� ��� �� � �
�� �

� ��� �
�� ��� �

Schedules in
INTERVAL.

To justify the correctness of the algorithm notice that by definition trans-
portation schedule S � computed at time B � can actually be finished before
time �

� B � � � , the time when transportation schedule S � ��� , computed at time
B � � � , needs to be started.

Lemma 5.8 Let R � be the set of requests served by schedule S � computed at time B � ,
i = 1, 2, . . . , and let R∗

� be the set of requests in the optimal offline solution which
are completed in the time interval (B � � � , B �]. Then

�∑

� � �

w(R �) ≥
�∑

� � �

w(R∗
�) for k = 1, 2,

Proof: We first argue that for any k ≥ 1 we can obtain from the optimal
offline solution S∗ a schedule S which starts in the origin, has length at
most B � , ends with an empty server at a point with distance at most B �

from the origin, and which serves all requests in
⋃ �

� � � R
∗
� .

Consider the optimal offline transportation schedule S∗. Start at the ori-
gin and follow S∗ for the first B � time units with the modification that, if a
request is picked up in S∗ before time B � but not delivered before time B � ,
omit this action. Observe that this implies that the server is empty at the
end of this schedule. We thereby obtain a schedule S of length at most B �

which serves all requests in
⋃ �

� � � R
∗
� . Since the server moves at unit speed, it

follows that S ends at a point with distance at most B � from the origin.

�

OPT
�
 	

k�

i=1

R∗

i

�
�

The first Bk units
of time of the

optimal schedule
yield a schedule S

serving all
requests in
⋃k

i=1 R∗
i .

We now consider phase k and show that by the end of phase k, at least
requests of weight

∑ �
� � � w(R∗

�) have been scheduled by INTERVAL. If k = 1,
the transportation schedule S obtained as outlined above satisfies already
all conditions (i)–(iii) required by INTERVAL. If k ≥ 2, then condition (i)
might be violated, since S starts in the origin. However, we can obtain a
new schedule S ′ from S starting at the endpoint x � � � of the schedule from
the previous phase by starting in x � � � , moving the empty server from x � � �

to the origin and then following S. Since d(x � � � , o) ≤ B � � � = B � /2, the new

90 CHAPTER 5 MINIMIZING THE SUM OF COMPLETION TIMES

schedule S ′ has length at most B � /2 + l(S) ≤ B � /2 + B � = 3/2 · B � which
means that it satisfies all the properties (i)–(iii) required by INTERVAL.

Recall that schedule S and thus also S ′ serves all requests in
⋃ �

� ��� R∗
� .

Possibly, some of the requests from
⋃ �

� � � R
∗
� have already been served by

INTERVAL in previous phases. As omitting requests can never increase the
length of a transportation schedule, in phase k, INTERVAL can schedule at
least all requests from

(�
⋃

� ���
R∗
�

)

\

(� � �
⋃

� ���
R �

)

.

Consequently, the weight of all requests served in schedules S � , . . . , S � of
INTERVAL is at least

⋃ �
� � � R

∗
� as claimed. 2

The previous lemma gives us the following bound on the number of
phases that INTERVAL uses to process a given input sequence σ.

Corollary 5.9 Suppose that the optimum offline schedule is completed in the in-
terval (B� � � , B�] for some p ≥ 1. Then the number of phases of the Algorithm IN-
TERVAL is at most p. Schedule S� computed at time B� by INTERVAL is completed
no later than time �

� B� � � .

Proof: By Lemma 5.8 the weight of all requests scheduled in the first p

phases equals the total weight of all requests. Hence all requests must be
scheduled within the first p phases. Since, by construction of INTERVAL,
schedule S� computed in phase p completes by time �

� B� � � , the claim fol-
lows. 2

To prove competitiveness of INTERVAL we need an elementary lemma
which can be proven by induction.

Lemma 5.10 Let a � , b � ∈ R
�

� for i = 1, . . . , p, for which

(i)
∑�

� � � a � =
∑�

� � � b � ;

(ii)
∑� ′

� � � a � ≥∑
� ′

� ��� b � for all 1 ≤ p ′ ≤ p.

Then
∑�

� � � τ � a � ≤
∑�

� � � τ � b � for any nondecreasing sequence 0 ≤ τ � ≤ · · · ≤
τ� . 2

Theorem 5.11 INTERVAL is 6-competitive for the
∑

w � C � -OLDARP.

Proof: Let σ = r � , . . . , r � be any sequence of requests. By definition of
INTERVAL, each request served in schedule S � completes no later than time

�
� B � ��� . Summing over all phases 1, . . . , p yields

(5.8) INTERVAL(σ) ≤ 3

2

�
∑

� � �
B � ��� w(R �) = 6

�
∑

� � �
B � � � w(R �).

5.4 AN IMPROVED RANDOMIZED ALGORITHM 91

From Lemma 5.8 we know that

�∑

� � �

w(R �) ≥
�∑

� � �

w(R∗
�) for k = 1, 2, . . . ,

and from Corollary 5.9 we know that

�
∑

� � �

w(R �) =

�
∑

� � �

w(R∗
�).

Therefore, application of Lemma 5.10 to the sequences a � := w(R �) and b � :=

w(R∗
�) with the weighing sequence τ � := B � � � , i = 1, . . . , p, gives Statement of

Lemma 5.10:∑p
i=1 τiai ≤∑p

i=1 τibi(5.9) 6

�
∑

� ���
B � � � w(R �) ≤ 6

�
∑

� � �
B � � � w(R∗

�)

Denote by C∗
� the completion time of request r � in the optimal offline so-

lution OPT(σ). For each request r � denote by (B � � , B � � � �] the interval that
contains C∗

� . Then

(5.10) 6

�
∑

� ���
B � � � w(R∗

�) = 6

�∑

� � �
B � � w � ≤ 6

�∑

� � �
w � C∗

� .

(5.8), (5.9), and (5.10) together complete the proof. 2

Corollary 5.12 INTERVAL is 6-competitive for the OLTRP. 2

5.4 An Improved Randomized Algorithm

In this section we use techniques from Section 2.7 to devise a randomized
algorithm RANDINTERVAL. At the beginning, RANDINTERVAL chooses a ran-
dom number δ ∈ (0, 1] according to the uniform distribution. From this
moment on, the algorithm is completely deterministic, working in the same
way as the deterministic algorithm INTERVAL presented in the previous sec-
tion. For i ≥ 0 define B ′

� := 2
� � � ��� L, where again L is the earliest time that a

request could be completed by OPT. As stated before in the case of INTERVAL

we can assume that L > 0.
The difference to INTERVAL is that all phases are defined using B ′

� :=

2
� � � ��� L instead of B � , i ≥ 1. Phase 1 is still started at time L.

92 CHAPTER 5 MINIMIZING THE SUM OF COMPLETION TIMES

Lemma 5.13 Let R � be the set of requests scheduled in phase i ≥ 1 of Algo-
rithm RANDINTERVAL and denote by R∗

� the set of requests that are completed by
OPT in the time interval (B ′

� � � , B
′
�]. Then

�∑

� � �
w(R �) ≥

�∑

� � �

w(R∗
�) for k = 1, 2,

Proof: We only have to ensure that schedule S � is finished before time �
� B

′
� .

The rest of the proof is the same as that for Lemma 5.8. The proof for the
first phase follows from the fact that �

� B
′
� −L = (3·2 ��� −1)L > 2 ��� L = B ′

� . 2

We can now use the proof of Theorem 5.11 with Lemma 5.8 replaced by
Lemma 5.13. This enables us to conclude that for a sequence σ = r � , . . . , r �

of requests the expected objective function value of RANDINTERVAL satisfies

(5.11) E [RANDINTERVAL(σ)] ≤ E

[

6

�∑

� ���
B ′

� � w �

]

= 6

�∑

� ���
w � E

[

B ′
� �
]

,

where (B ′
� � , B ′

� � � �] is the interval containing the completion time C∗
� of re-

quest r � in the optimal solution OPT(σ). From Lemma 2.22 we can conclude
that E

[

B ′
� �
]

=
�

� ln � C
∗
� . Using this result in inequality (5.11) yields the fol-

lowing theorem:

Theorem 5.14 RANDINTERVAL is c-competitive for the
∑

w � C � -OLDARP with
c =

�
ln � against an oblivious adversary. 2

3
ln 2

≈ 4.328085123

Corollary 5.15 RANDINTERVAL is c-competitive for the OLTRP with c =
�

ln �
against an oblivious adversary. 2

5.5 Remarks

In addition to the first randomized lower bounds, we we have presented
the first competitive algorithms for the

∑
w � C � -OLDARP. The application of

these algorithms for the special case of the OLTRP yielded an improvement
over the previously best known competitive ratios.

Table 5.1 gives an overview over the results for the OLTRP and the∑
w � C � -OLDARP.

5.5 REMARKS 93

Problem Competitive Ratios Lower Bounds

OLTRP INTERVAL: 6

(Corollary 5.12)
deterministic algorithms

in general metric
spaces: 1 +

√
2

[FS01]
on the real line: 1 +

√
2

[FS01]
RANDINTERVAL: 3/ ln 2

(Corollary 5.15)
randomized algorithms

in general metric spaces: 7/3

(Theorem 5.6)
on the real line: 2

(Theorem 5.7)

∑
wjCj-OLDARP INTERVAL: 6

(Theorem 5.11)
deterministic algorithms

in general metric spaces: 3

[FS01]
on the real line: 3

[FS01]
RANDINTERVAL: 3/ ln 2

(Theorem 5.14)
randomized algorithms

in general metric
spaces: 4e−5

2e−3

(Theorem 5.4)
on the real line: ln 16+1

ln 16−1

(Theorem 5.5)

Table 5.1: Results for the OLTRP and
∑

w � C � -OLDARP.

Offline Dial-a-Ride Problems with
Precedence Constraints

In an offline dial-a-ride problem all requests are known in advance to an
algorithm. We consider the case where additionally all release times of the
requests are equal to zero. In the offline dial-a-ride problem CDARP (short
for “capacitated dial-a-ride problem”) we are given (finitely many) trans-
portation requests between points in a metric space and the goal is to find a
shortest transportation schedule which serves all the requests. The problem
CDARP arises, for instance, as a subproblem in the algorithms REPLAN, IG-
NORE and SMARTSTART presented in Chapter 2. The problem DARP is the
restriction of the CDARP to a (single) server with unit capacity.

It turns out that it is helpful to view the sources and destinations of the
requests as the vertices of a weighted graph G which induces the underly-
ing metric space. This enables us to exploit the structural properties of the
graph G in the design of our algorithms.

A natural extension of the DARP is the addition of precedence constraints
between the requests that start at the same vertex. This variant which we
call SOURCE-DARP is motivated by applications in which first-in-first-out
(FIFO) waiting lines are present at the sources of the transportation requests.
In this case, requests can be served only according to their order in the line.
Examples with first-in-first-out lines are cargo elevator systems where at
each floor conveyor belts deliver the goods to be transported. Elevators
also motivate the restriction of DARP to paths, i.e., to the case where the
underlying graph forms a path.

ABC

FIFO waiting line:
Before serving C,
requests A and B

must be served.
In this chapter we consider the SOURCE-DARP for a (single) server with

unit capacity. Section 6.1 contains a formal statement of the problem. We
also show that the SOURCE-DARP can be equivalently formulated as a graph
augmentation problem. This key observation will be used to design our al-
gorithms. In Section 6.2 we prove structural facts about Eulerian cycles in
a graph that respect a given “source-order” on the arcs. (A formal defini-
tion of source-orders appears in Section 6.1.2.) The class of source-orders
contains as a special case partial orders which can be used to model first-
in-first-out waiting lines. Section 6.3 contains a polynomial algorithm for
SOURCE-DARP when restricted to paths. In Section 6.4 we present an ap-

96 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

proximation algorithm for general graphs with performance of (ρTSP + 3)/2,
where ρTSP is the performance of the best approximation for the traveling
salesman problem (TSP) with triangle inequality. An improved algorithm
for trees with performance 3/2 is given in Section 6.5. Section 6.6 is ded-
icated to hardness results. Section 6.7 briefly discusses extensions of our
results.

Related Work

The problem DARP is also known as the stacker-crane-problem. In [FG93] it isstacker-crane-
problem shown that the stacker-crane-problem is NP-hard even on trees. In [FHK78]

the authors present a 9/5-approximation algorithm for the stacker-crane-
problem on general graphs. An improved algorithm for trees with perfor-
mance 5/4 is given in [FG93]. On paths the stacker-crane-problem can be
solved in polynomial time [AK88].

The problem CDARP with server capacity C > 1 has been addressed
in [Gua98, CR98]. For capacity C > 1 the problem becomes NP-hard
even on paths. In [CR98] an approximation algorithm with performance
O(

√
C log n log log n) was given, where C denotes the capacity of the server

and n denotes the number of vertices in the graph. We will investigate
CDARP with server capacity C > 1 on paths in Chapter 7.

Precedence constraints have been studied in the case of Chinese post-
man tours in [DST87] (recall that the Chinese postman problem consists ofChinese postman

problem finding a shortest walk in a graph that traverses all edges and arcs). The au-
thors show that for general precedence relations it is NP-hard to determine
a Chinese postman tour of minimum length. Under strong restrictions on
the precedence relation the problem can be solved in time O(n

�
), where n

denotes the number of vertices in the input graph.

6.1 Problem Definition

We assume that the reader is familiar with the basics from graph theory
[Har72, AMO93]. A brief compilation of the necessary definitions with re-
spect to graphs can be found in Appendix A.7.

A multiset Y over a ground set U, denoted by Y < U, is a mapping Y : U→
N, where for u ∈ U the number Y(u) denotes the multiplicity of u in Y. For
a weight function d : U → R the weight of a multiset Y < U is defined by
d(Y) :=

∑
	 ∈ � d(u)Y(u). By Y + Z, Y − Z and Y ∩ Z we denote the union,

difference and intersection of the multisets Y and Z (see Appendix A.1).
Let G = (V, E, R) be a mixed graph, consisting of a set V of vertices, a

set E of undirected edges without parallels, and a multiset R of directed arcs
(parallel arcs allowed). An undirected edge between vertices u and v will

6.1 PROBLEM DEFINITION 97

be denoted by [u, v] and a directed arc from u to v will be denoted by (u, v).
In this chapter we let n := |V |, m � := |E| and m � := |R| be the number of
vertices, edges and arcs, respectively.

For v ∈ V we let R� be the set of arcs in R emanating from v. For edge
set E, denote by

(6.1) E
�

:= { (u, v), (v, u) : [u, v] ∈ E }

the set of arcs which contains for each undirected edge e ∈ E a pair of anti-
parallel arcs between the endpoints of e.

For v ∈ V we let R� be the set of arcs in R emanating from v. If X < R, we
briefly write deg ��

(v) and deg �� (v) instead of deg � �
�

�

� (v) and deg � �
�

�

� (v) for
the outegree and indegree of vertex v in the subgraph G[X] induced by X. A
graph G is called degree-balanced if degree-balanced

deg � �
(v) = deg � � (v)

for all vertices v ∈ V .
Let G = (V, E, R) be a mixed graph and suppose that W = (x � , . . . , x�),

x � ∈ E + R for i = 1, . . . , p, is an oriented walk in G. For a cost function
d : E + R→ R

�
� the cost of the walk W is given by cost

d(W) :=

�
∑

� � �
d(x �).

6.1.1 Basic Problem

In the capacitated dial-a-ride problem CDARP we are given a finite trans-
portation network and a finite set of transportation requests. Each request
specifies the source and target location which are both part of the network.
The goal of the CDARP is to find a shortest closed transportation schedule
for the requests which starts and ends at a designated origin. The problem
DARP is the restriction of the CDARP to those instances where the server
has capacity one. As mentioned before, in this chapter we consider the case
of a server with unit capacity.

Since the release times of all requests are zero, in all what follows we
can restrict ourselves to transportation schedules which do not use waiting
time. That is, we can assume without loss of generality that a feasible trans-
portation schedule S = (τ � , x � , y � , R �), , . . . , (τ � , x � , y � , R �) satisfies: τ � = 0

and τ � =
∑

� � � d(x � , y �). Hence, the length of a transportation schedule is
exactly the distance traveled by the server in the metric space.

We model the transportation network by an edge weighted undirected
connected graph. Each request is modeled by a directed arc from its source

98 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

node to its target node. The length of the arc is adjusted to reflect the length
of a shortest path in the network connecting its endpoints. Then a closed
oriented walk in the resulting mixed graph which traverses each arc corre-
sponds to a transportation for all the requests in the transportation network.
More formally, we define the DARP as follows:

Offline dial-a-ride
problem DARP:
The requests (red)
have sources and
destinations in the
transportation
network (black)
modeled by an
edge weighted
undirected graph.

Definition 6.1 (Offline Dial-a-Ride Problem DARP)
The input for the DARP consists of a finite mixed graph G = (V, E, R), an origin
vertex o ∈ V and a nonnegative weight function d : E→ R

�
� .

The weight function d is extended to R by defining for each arc r ∈ R, r =

(v, w), its cost d(r) to be the length of a shortest path from v to w in G[E].
The goal of the DARP is to find a closed oriented walk in G of minimum length

which starts (and ends) in o and traverses each arc in R.

It turns out that for the purpose of stating algorithms in a more conve-
nient way, it is helpful to use an equivalent formulation of the DARP as a
graph augmentation problem (cf. [AK88]). To this end consider the arc set E

�

graph
augmentation

defined in (6.1). Let the cost of each arc in E
�

equal the cost of the corre-
sponding edge in E.

Definition 6.2 (Graph Augmentation Version of DARP)
Given a mixed graph G = (V, E, R) with origin o ∈ V , and a cost function d : E→
R
�

� , extend d to R + E
�

as described in Definition 6.1 and the previous paragraph.
The goal is to find a multiset S, S < E

�
, of minimum cost such that the graph

G[R + S] is Eulerian and contains o.

We argue that Definitions 6.1 and 6.2 are in fact equivalent. Let W be a
feasible solution for the DARP as stated in Definition 6.1, that is, a closed ori-
ented walk that starts in o and traverses each arc in R. Construct a multiset
S < E

�
of arcs in the following way: Traverse edges and arcs along W. For

each time an undirected edge e ∈ E, e = [u, v], is traversed from u to v, add
a copy of the directed arc (u, v) to the multiset S. Then the graph G[R + S]

contains o, and since W defines a cycle, graph G[R + S] must be Eulerian.

�

empty
move

carrying
move

A feasible solution
for DARP
corresponds to an
augmenting set of
arcs. Each empty
move of the server
yields a new blue
arc. Conversely, let S < E

�
be a multiset of arcs such that G[R + S] is Eule-

rian and includes the origin o. Construct an oriented walk W as follows:
Traverse an Eulerian cycle C in G[R + S] starting in o. If the current arc a

from C is in R then add a to walk W, otherwise add the undirected edge
corresponding to a. By this construction, W is a closed oriented walk in G

traversing each arc from R and including o.
In both cases we have d(W) = d(R + S), i.e., the cost of walk W equals

the cost of the multiset S plus cost of the arc set R.

6.1 PROBLEM DEFINITION 99

6.1.2 Precedence Constraints

In real applications of the DARP there are often additional constraints on the
order of the execution of transportation requests. This can be modeled by
introducing a partial order ≺ on the set of arcs. A feasible oriented walk is
then required to satisfy the condition that, whenever a ≺ b, then a must be
traversed before b by the walk.

In some transportation networks there is a “waiting pool” at each node
where transportation requests originate. Each of the pools constrains the
order of execution of requests starting from this node while requests start-
ing from other nodes are not affected. For instance there might be waiting
pools with first-in first-out queues or waiting stacks (last-in first-out). This
motivates the definition of a source-order:

Definition 6.3 (Source-Order, Total-Source Order)
A source-order on the arcs of a mixed graph G = (V, E, R) is a partial order ≺
on R with the following property: a ≺ b implies that a and b emanate from the
same source node.

If a source-order ≺ has the property that

a and b share the same source node⇒ a ≺ b ∨ a ≺ b,

then ≺ is called a total source-order.

This leads to problem SOURCE-DARP (shorthand for “DARP with source-
orders”) which is the main focus of this chapter:

Definition 6.4 (Offline Dial-a-Ride Problem SOURCE-DARP)
An instance of the SOURCE-DARP consists of an instance of the DARP, together
with a source-order ≺ on the arc set R. The goal is to find a closed oriented walk sat-
isfying the requirements specified in Definition 6.1 and the precedence constraints
given by ≺.

a

b

o

Figure 6.1
The precedence

constraint b ≺ a

increases the cost
of an optimal

solution.

Figure 6.1 shows an example where an optimal source-order respecting
transportation is strictly longer than the optimal transportation neglecting
the precedences. If no constraints have to be obeyed, then the requests can
be served traversing only along the arcs. If the constraint b ≺ a must be
obeyed then two additional empty moves along undirected edges are nec-
essary.

It will be useful to restate the SOURCE-DARP as a graph augmentation
problem. We need some additional notation:

100 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

Definition 6.5 (≺-respecting Eulerian Cycle, ≺-Eulerian)
Let H = (V, A) be a directed graph, ≺ be a source-order on the arcs A, and o ∈ V .
A ≺-respecting Eulerian cycle in H with start o is a Eulerian cycle C in H such
that a ≺ a ′ implies that in the oriented walk from o along C the arc a appears
before a ′. The graph H is then called ≺-Eulerian with start o.

Notice that in contrast to the case of classical Eulerian cycles, for ≺-
respecting Eulerian cycles it is meaningful to specify a start node explicitly.

� ′

�

�

�

Given the
precedence
constraint b ≺ a,
the directed graph
indicated by the
red arcs is
≺-Eulerian with
start o ′ but not
with start o.

Definition 6.6 (Graph Augmentation Version of SOURCE-DARP)
An instance of the problem SOURCE-DARP consists of the same input as for DARP
and additionally a source-order ≺ on the arc set R. The goal is to find a multiset S

of arcs from E
�

minimizing the weight d(R + S) such that G[R + S] is ≺-Eulerian
with start o, and to determine a ≺-respecting Eulerian cycle in G[R + S].

Throughout this chapter we use S∗
< E

�
to denote an optimal solutionS∗, OPT

(augmentation set) for the SOURCE-DARP and OPT := d(R + S∗) to denote
its cost.

6.1.3 Basic Observations

We first start with some technical assumptions about input instances (G =

(V, E, R), d, o,≺) of the SOURCE-DARP depending on the structure of the
undirected graph G[E] specified in the instance. While all these assump-
tions are without loss of generality they simplify the presentation of our
algorithms.

Definition 6.7 (Essential Vertex)
A vertex v ∈ V is called essential, if deg � (v)

� deg �
� (v) ≥ 1, that is, if v is incidentessential vertex

with at least one arc from R.

Suppose that G[E] is a tree. We show that we can assume that most of the
nodes in V are essential. To this end, assume that v 6= o is not essential. If v

is of degree 2 in G[E], we can replace the two adjacent edges, say [u, v] and
[v, w], by the single edge [u, w] of cost equal to the sum of the two edges. If v

is a leaf, it can be removed without affecting the optimal solution (cf. [FG93]
for the DARP on trees).

�

��

�

� � �

� ′

A non-essential
vertex v 6= o of
degree 2 in G[E]

can be removed by
merging the two
adjacent edges. A
non-essential
vertex v ′ 6= o of
degree 1 can be
removed.

Assumption 6.8 (Technical assumption for the SOURCE-DARP on trees)
Each vertex of degree 1 or 2 in G[E], unless the origin o, is essential.

If G[E] is a path, then there are no longer vertices in G[E] which are of
degree 3 or greater. Thus, it is easy to see that we can make an even stronger
assumption without loss of generality (cf. [AK88] for the DARP on paths):

6.1 PROBLEM DEFINITION 101

Assumption 6.9 (Technical assumption for the SOURCE-DARP on paths)
Each vertex v ∈ V is essential.

We now turn to the SOURCE-DARP on general graphs.

Assumption 6.10 (Tech. ass. for the SOURCE-DARP on general graphs)
(i) Each vertex v ∈ V is essential.

(ii) G[E] is complete.

(iii) The cost function d obeys the triangle inequality, that is, for any edge e ∈ E,
e = [u, v], the cost d(e) equals dist � (u, v), the length of a shortest path
in G[E] between u and v.

�

�

dummy arc

� ′

cost 0

On general graphs
the start vertex o

can be enforced to
be essential. All

other non-essential
vertices can be

removed by
completing the

graph along
shortest paths

(complete graph
indicated by

dotted edges).

Assumption 6.10 can be enforced without increasing the value of an op-
timal solution. If the start vertex o is not essential, insert a new vertex o ′

joined by arc (o ′, o) and edge [o, o ′] to the start vertex, each of cost zero. To
satisfy the triangle inequality, for every pair u, v of vertices add a new edge
[u, v] of cost equal to the shortest path in G[E] between u and v. Afterwards
each bundle of parallel edges can be replaced by retaining the cheapest edge
of the bundle, and vertices which are not incident to an arc can be removed
safely (cf. [FHK78] for the DARP).

However, Assumption 6.10 can not be made without loss of generality
for SOURCE-DARP on trees, since the suggested modification of the graph
destroys the “tree-property”.

6.1.4 Balancing

The formulation of the SOURCE-DARP as a graph augmentation problem
suggests to investigate the structure of Eulerian graphs. A necessary condi-
tion for a graph to be Eulerian is that for each node its indegree equals its
outdegree. It turns out to be helpful for solving SOURCE-DARP to search for
augmenting sets which guarantee the resulting graph to be balanced in that balanced
way.

Definition 6.11 (Balancing Set)
Let G = (V, E, R) be a mixed graph. A multiset B < E

�
of arcs is called a balanc-

ing set if deg �
� �

� (v) = deg �
� �

� (v) for all vertices v ∈ V . balancing set

Suppose that G[E] is a tree and that Assumption 6.8 is satisfied. We now
show how to determine a multiset of arcs which is necessarily contained in
any feasible solution.

For a partition V = X∪Y of the vertex set define the cut (X : Y) to consist
of all edges and arcs from E + R with one endpoint in X and the other one
in Y. Any edge [x, y] ∈ E defines a partition V = X ∪ Y of the node set,

102 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

where X and Y are defined by the connected components after removing the
edge [x, y] from the tree. Obviously, the cut (X : Y) must be traversed by any
closed oriented walk W the same number of times in each direction. Denote
by φ(X, Y) := |{ (x, y) ∈ R : x ∈ X ∧ y ∈ Y }| the number of arcs emanating
from X. Hence, if W traverses all arcs from R, it must traverse edge [x, y]

from x to y at least b(x, y) times, where

�

� � � � � � � �

�
�

� �

Any feasible
closed oriented
walk must traverse
edge [x, y] in
direction from x

to y at least
b(x, y) = 2 times.

b(x, y) :=






1 if φ(X, Y) = φ(Y, X) = 0

φ(Y, X) − φ(X, Y) if φ(Y, X) > φ(X, Y)

0 otherwise.

This observation has the following consequence for the graph augmentation
version: If B < E

�
is a multiset of arcs such that B((x, y)) = b(x, y) for each

(x, y), that is, B contains exactly b(x, y) copies of the directed arc (x, y), then
there is at least one optimal solution S∗ such that B ⊆ S∗. This yields the
following lemma which is proved in [AK88, FG93].

Lemma 6.12 Let (G, d, o) be an instance of the DARP such that G[E] is a tree.
Then in time O(nm �) one can find a balancing set B < E

�
such that B ⊆ S∗ for

some optimal solution S∗. 2

It is straightforward to verify that Lemma 6.12 remains valid even in the
presence of source-orders. As is also shown in [AK88, FG93] the time bound
of O(nm �) can be improved to O(n + m �) by allowing balancing arcs to be
from V × V instead of just E

�
. This does not change the problem: the cost

function d can basically be extended from E
�

to V × V by using the length
of shortest paths.

6.2 Euler Cycles Respecting Source-Orders

Assume for the moment that ≺ is a total source order on the arcs of a given
directed graph H = (V, A). It is easy to decide whether H is ≺-Eulerian
with start o: The ≺-respecting cycle (if it exists) is uniquely determined and
can be found by an oriented walk through the graph where at each vertex v

we always choose among the yet unused arcs from A � the minimal (with
respect to ≺).

In the sequel we prove a necessary and sufficient condition for a graph
to be ≺-Eulerian with start at a given vertex.

Consider an Eulerian cycle with start o in a connected directed graph.
The cycle visits each vertex, and by this defines for each vertex v an arc
emanating from v which is traversed last.

6.2 EULER CYCLES RESPECTING SOURCE-ORDERS 103

Definition 6.13 (Set of Last Arcs)
Let C be an Eulerian cycle with start o. We define the set of last arcs of C, denoted set of last arcs
by L � , to contain for each vertex v ∈ V the unique arc emanating from v which is
traversed last by C.

Recall that a directed in-tree rooted at o ∈ V is a subgraph of a directed
graph H = (V, A) which is a tree and which has the property that for
each v ∈ V it contains a directed path from v to o.

Observation 6.14 The set L � of last arcs consists of a directed in-tree rooted at o

plus one single arc emanating from o.

Proof: Let D denote the set L � without the arc emanating from o. Since
|D| = |V | − 1 it suffices to show that for each vertex v ∈ V there exists a
directed path from v to the origin o using only arcs from D. Suppose for
the sake of a contradiction that there is no such path from a certain vertex v

to o. Since by definition for each vertex from V \ {o} there is exactly one

�

�

Consequence of
the contradictory

assumption:
Following the arcs
in D yields a cycle

which does not
contain o.

arc from D emanating from this vertex and the graph D is finite, it follows
that D contains a cycle W. By construction D does not contain any arc ema-
nating from o. Hence, W does not touch o.

�

�

�

� o

The Eulerian
cycle C can not

leave the cycle W

composed of last
arcs.

Let (x, y) be the arc from W which is traversed last among all arcs in W

by the Eulerian cycle C with start o. Let (y, z) be the successor of (x, y)

in W. Since C ends in o, there must be an arc from D emanating from y with
endpoint not in W and which is traversed by C after (y, z). This, however,
contradicts the fact that (y, z) was a last arc. 2

We now investigate the case of Eulerian cycles which respect to source-
orders. Let ≺ be a source-order. We denote the set of maximal elements with maximal elements
respect to ≺ by M≺, that is,

M≺ := { a ∈ A : there is no arc a ′ such that a ≺ a ′ }.

Definition 6.15 (Possible Set of Last Arcs)
Let H = (V, A) be a directed graph and o ∈ V be a distinguished vertex. A
set L ⊆ A is called a possible set of last arcs, if H[L] is a directed in-tree rooted possible set of last

arcsat o plus an additional arc emanating from o.

Using the proof of Observation 6.14 it is easy to derive the following
equivalent characterization, which will be useful in the sequel.

Observation 6.16 A set L ⊆ A is a possible set of last arcs in H = (V, A) if and
only if it satisfies the following conditions:

(i) deg
� � (v) = 1 for all v ∈ V , and

104 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

(ii) for each v ∈ V there is a path from v to o in H[L].
2

The following theorem justifies the nomenclature “possible set of last
arcs”.

Theorem 6.17 Let H = (V, A) be a directed Eulerian graph with distinguished
vertex o ∈ V and let ≺ be a source-order with maximal elements M≺. Suppose that
a possible set L of last arcs satisfies L ⊆ M≺.

Then there exists an ≺-respecting Eulerian cycle C with start o in H such that
L � = L, i.e., such that L is the set of last arcs of C. This cycle can be found in
time O(|V | + |A|).

Proof: Color the arcs from L red and the arcs in A \ L blue. We claim that
by the following procedure we construct an Eulerian cycle C in H with the
desired properties. Start with current vertex o. As long as there is a blue
untraversed arc emanating from the current vertex, choose one which is not
≺-preceeded by any other untraversed arc, otherwise choose the red arc.
Traverse the chosen arc, let its target be the new current vertex, and repeat
the iteration. Stop, if there is no untraversed arc emanating from the current
vertex. Call the resulting path of traversed arcs C. Since H is Eulerian by
assumption, for each vertex its indegree equals its outdegree. Therefore,
C must end in the origin o and forms in fact a cycle. Moreover, C is ≺-
respecting by construction since L ⊆ M≺. Hence, if we can show that C

traverses all arcs from A then this implies L = L � and the proof is complete.

�
�

�
�

 �
�

�
�
 ��

Proof of
Theorem 6.17. The
numbers indicate
in which order the
arcs are traversed
by the constructed
Eulerian cycle C.

To this end, define for each node v ∈ V the value dist(v, o) to be the
distance to o (i.e., the number of arcs on the shortest path from v to o) in the
subgraph H[L]. We show by induction on dist(v, o) that all arcs emanating
from v are contained in C.

If dist(v, o) = 0 then v = o. Since our procedure stopped, all arcs ema-
nating from o are contained in C. This proves the induction basis. Assume
that the claim holds true for all vertices with distance t ≥ 0 and let v ∈ V

with dist(v, o) = t + 1. Let a = (v, w) be the unique red arc emanating
from v. Then dist(w, o) = t and by the induction hypothesis all arcs ema-
nating from w are contained in C. Since deg � �

(w) = deg � � (w), it follows that

�

�

�

�

All arcs emanating
from w have been
traversed. Since
deg+

H
(w) =

deg−
H

(w), also all
incoming arcs
including a must
be contained in the
cycle C.

all arcs entering w, in particular arc a, are also contained in C. Since red
arc a is chosen last by our procedure, all other arcs emanating from v must
be contained in C. This completes the induction. Hence, C is actually an
Eulerian cycle with the claimed properties. 2

Corollary 6.18 (Characterization of ≺-Eulerian Graphs) Let H = (V, A) be
a directed graph, o ∈ V and ≺ a source-order. Then the following two statements
are equivalent:

6.3 A POLYNOMIAL TIME ALGORITHM ON PATHS 105

1. H is ≺-Eulerian with start o.

2. H is Eulerian and the set M≺ of maximal elements with respect to ≺ contains
a possible set of last arcs.

Proof: Suppose that the directed graph H is ≺-Eulerian with start o, and let
C be an ≺-respecting Eulerian cycle with start o in H. Then L � ⊆ M≺. Thus,
Statement 1 implies 2. The other direction is an immediate consequence of
Theorem 6.17. 2

The above corollary implies a polynomial time algorithm for deciding
whether a given graph H is ≺-Eulerian with start o. Provided H is Eulerian it
suffices to check whether the subgraph formed by the arcs from M≺ contains
a possible set of last arcs. By the remark above this check can essentially be
performed by testing whether M≺ contains a directed in-tree D rooted at o

(which can be done in linear time).

6.3 A Polynomial Time Algorithm on Paths

We now present Algorithm ALG-PATH which solves the SOURCE-DARP on
paths. Let G = (V, E, R) be a mixed graph such that G[E] is a path. We
assume throughout this section that the technical Assumption 6.9 holds. An
illustration of the execution of ALG-PATH is shown in Figure 6.2.

1 3

o

o

o

o

balancing

augmentation via in-tree
2

14 11

4

8 10

9

b

in-tree computation

a

5

7

1213

6

Figure 6.2
Steps of

Algorithm ALG-
PATH. Initial

instance (top),
graph G[R + B]

after balancing,
minimum weight
in-tree D (the arcs

in D with non-zero
cost are shown as

dashed arcs), final
solution (bottom,

the numbers
indicate the order

of arcs in the
≺-respecting

Eulerian cycle).

106 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

Input: A mixed graph G = (V, E, R), such that G[E] is a path, a cost
function d on E, an initial vertex o ∈ V , and a source-order ≺.

1 Let M≺ be the set of maximal elements with respect to ≺.
2 Compute a balancing set B < E

�
such that B ⊆ S∗ for some optimal

solution S∗.
3 Compute a directed in-tree D rooted at o in G[B+M≺+E

�
] of minimum

weight d ′(D), where weight function d ′ is defined as follows:

d ′(r) =

{
0 if r ∈ B + M≺ ,

d(r) if r ∈ E
�

\ (B + M≺) .

4 Define a possible set L of last arcs by L := D∪ {r}, where r is an arbitrary
arc from R

�
∩ (M≺ + B).

{ Such an arc must exist since o is essential
and G[R + B] is degree-balanced. }

5 Let D � := D − (B + M≺) and N := E
�
∩ (D � ∪ D � �

�) .
{ The set N contains the set D � of “new arcs”

from the tree D and their inverses D � �
� . }

6 Use the method from Theorem 6.17 to find a ≺-respecting Eulerian cy-
cle C with start o in G[R + B + N] such that L is the set of last arcs of C.

7 return the multiset B + N and the cycle C.

Algorithm 6.1: Algorithm ALG-PATH for the SOURCE-DARP on paths.

The Algorithm ALG-PATH starts in Step 2 by determining a suitable bal-
ancing set B < E

�
which is guaranteed to be contained in some optimal so-

lution (following the results of Lemma 6.12). At this point, the graph G[R +

B] is degree-balanced but may consist of several connected components. In
order to turn the graph ≺-Eulerian with start o, the idea is to connect the
components by pairs of antiparallel arcs from set E

�
, and in the same mo-

ment ensuring the existence of a possible set of last arcs.
This task is performed in two parts by the algorithm: In Step 3, a directed

in-tree rooted at o of minimum cost is computed with respect to an auxiliary
cost function. This cost function is adjusted to measure only the additional
arcs that are not yet contained in R + B. In Step 5 an auxiliary arc set N

is defined which contains those additional arcs together with their inverse
arcs. This guarantees that G[R+B+N] is in fact ≺-Eulerian which is proved
formally in the following lemma:

Lemma 6.19 The set B+N returned by Algorithm ALG-PATH is a feasible solution
for the SOURCE-DARP i.e., G[R + B + N] is ≺-Eulerian with start o.

Proof: Since G[R + B] is degree-balanced and N consists of pairs of anti-

6.3 A POLYNOMIAL TIME ALGORITHM ON PATHS 107

parallel arcs, also G[R + B + N] is degree-balanced. By construction, G[R +

B + N] contains a directed in-tree rooted at o, namely the tree D computed
in Step 3. Hence, it is strongly connected and Eulerian.

The set L of arcs determined in Step 4 is clearly a possible set of last arcs.
The claim now follows from Theorem 6.17. 2

It remains to show that the solution produced by ALG-PATH is not only
feasible but also of minimum cost.

Theorem 6.20 ALG-PATH finds an optimal solution for the SOURCE-DARP on
paths.

Proof: Let S∗ be an optimal solution such that B ⊆ S∗ (by Lemma 6.12 such
a multiset S∗ exists). By feasibility of S∗ the graph G[R + S∗] is ≺-Eulerian
with start o. Consider the multiset

Z := (R + S∗) − (R + B) = S∗ − B

which contains the arcs from the optimal solution that are not contained
in the current intermediate balanced graph G[R + B]. We show that the
cost of the arcs added by ALG-PATH in the remaining steps of the algorithm
is bounded from above by d(Z). This shows that the solution returned is
indeed optimal.

Since G[R + B] and G[R + S∗] = G[R + B + Z] are both degree-balanced
and Z ∩ (R + B) = ∅, we can decompose the set Z into arc disjoint cycles.
Since Z consists of (multiple copies of) arcs from E

�
and G[E] is a tree, r ∈ Z

implies that r �
� ∈ Z.

Let C be a ≺-respecting Eulerian cycle in G[R + S∗] and let L be its set
of last arcs. Notice that L ⊆ B + M≺ + Z, where M≺ is the set of maximal
elements with respect to ≺ as defined in Step 1 of the algorithm.

The set L must contain a directed in-tree D ′ rooted at o. This tree spans
at least all those components which contain essential vertices. Since by As-
sumption 6.9 all nodes are essential, we can conclude that tree D ′ is a span-
ning tree. Now we can compare its weight to the weight of tree D which is
computed in Step 3 of the algorithm. Since the tree D is of minimum weight
with respect to the weight function d ′ we have

(6.2) d ′(D ′) ≥ d ′(D).

We partition D ′ into the sets D ′� ��� ≺
:= D ′ ∩ (B + M≺) and D ′� := D ′ ∩ Z.

Thus, d ′(D ′� ��� ≺
) = 0 and d ′(D ′�) = d(D ′�). Since we have seen that for each

arc r ∈ Z also its anti-parallel version r �
� ∈ Z (and D ′� does not contain a

pair of anti-parallel arcs) we get that

(6.3) d(Z) ≥ 2d(D ′�) = 2d ′(D ′�) + 2d ′(D ′� ��� ≺
) = 2d ′(D ′)

(6.2)
≥ 2d ′(D).

108 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

The set N computed in Step 5 has cost

(6.4) d(N) = 2d(D − (B + M≺)) = 2d ′(D − (B + M≺)) = 2d ′(D)
(6.3)
≤ d(Z).

Using this result yields that

d(R + B + N) = d(R + B) + d(N)

= d(R + (S∗ − Z)) + d(N)

≤ d(R + (S∗ − Z)) + d(Z) by (6.4)
= d(R + S∗).

Thus, B + N is an optimal solution as claimed. 2

We briefly comment on the running time of Algorithm ALG-PATH. A
balancing set B can be found in time O(nm �) by techniques as shown in
[AK88]. As noted before this time bound can be improved to O(n + m �)

by allowing balancing arcs to be from V × V instead of just E
�

. A directed
in-tree of minimum weight in a graph with n vertices and m arcs can be
computed in time O(min{m log n, n

�
}) by the algorithm from [Tar77].

Thus Algorithm ALG-PATH can be implemented to run in time O(n+m � +

min{(m � + n) log n, n
�
}).

6.4 An Approximation Algorithm for General
Graphs

In this section we present an approximation algorithm for the SOURCE-
DARP on general graphs. The algorithm uses ideas similar to the ones
in [FHK78]. In this section we will assume tacitly that Assumption 6.10
is satisfied.

Our final algorithm actually consists of two different sub-algorithms,
ALG-TSP and ALG-LA, which are run both and the best solution is picked.
The first sub-algorithm, ALG-TSP, uses the fact that a transportation sched-
ule must visit at least every vertex v with deg

�
� (v) > 0 and, hence, a trans-

portation schedule can be related to a TSP-tour on the vertices with positive
outdegree. Our second algorithm, ALG-LA, is based on similar ideas as the
algorithm from Section 6.3 for paths.

6.4.1 TSP-based Algorithm

Suppose that S is a arbitrary feasible solution for the SOURCE-DARP. Since
the corresponding ≺-respecting Eulerian cycle in G[R+S] traverses each arc

6.4 AN APPROXIMATION ALGORITHM FOR GENERAL GRAPHS 109

from R, this cycle must also visit each vertex v ∈ V from the set Vsource, where

Vsource := { v ∈ V : deg
�
� (v) > 0 }.

Thus, it follows that any feasible solution S has cost at least the length of an
optimal TSP-tour on the vertices Vsource. ALG-TSP computes a shortest TSP-
tour that visits each vertex in Vsource, i.e., a shortest Hamiltonian cycle in
the complete subgraph induced by Vsource. Then, it uses this TSP-tour to ob-
tain a feasible solution for the SOURCE-DARP. The solution traverses along
the TSP-tour, and whenever a vertex v is reached where arcs are emanating
from, for each arc in R� , that is, for each arc emanating from v, the TSP-tour
is augmented by a loop traversing that arc and a shortest path back to ver-
tex v. ALG-TSP is displayed in Algorithm 6.2. An example of the execution
is given in Figure 6.3.

Figure 6.3
Illustration of

Algorithm
ALG-TSP. The

vertices in Vsource
are emphasized

(left). The solution
on the right hand

side consists of the
TSP-tour (thick

lines) and loops
(arcs from R and

thin lines).

We now prove a bound on the quality of the solution found by the TSP-
based algorithm ALG-TSP.

Lemma 6.21 If in Step 3 of ALG-TSP a ρTSP-approximation algorithm for com-
puting a TSP-tour is employed, then the algorithm finds a solution of cost at most
ρTSP · OPT + 2d(R).

Proof: Let S∗ be an optimal augmenting set and C∗ be a ≺-respecting Eu-
lerian cycle in G[R + S∗] starting at o. By definition d(C∗) = OPT. As al-
ready remarked, the length of C∗ (which equals OPT) is at least that of a
shortest TSP-tour on Vsource. Thus, the tour computed in Step 3 will have
length at most ρTSP ·OPT. The additional cost incurred in Step 9 is not greater
than 2d(R), since each path added has the weight of the corresponding arc
from R. 2

Since the cost of the optimal tour serving all requests is at least d(R),
Lemma 6.21 implies that ALG-TSP is a (ρTSP + 2)-approximation algorithm
for SOURCE-DARP. Using Christofides’ algorithm [Chr76] we get ρTSP = 3/2

and thus ALG-TSP implies a 7/2-approximation for the SOURCE-DARP. In
the sequel we will improve this bound by providing a second algorithm and
combining this algorithm with ALG-TSP.

110 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

Input: A mixed graph G = (V, E, R), a cost function d on E, an initial
vertex o ∈ V , and a source-order ≺

1 Let Vsource be the set of vertices which are sources of arcs from R.
2 Compute a complete undirected auxiliary graph U with vertex set

Vsource. The weight d(v, w) of edge [v, w] is set to be the length of a short-
est path in G[E] from v to w.

3 Find an approximately shortest TSP-tour p in U. Assume that p visits
the nodes of Vsource in order (o = v � , v � , . . . , v � , v � ��� = o).

4 Construct a feasible cycle C for SOURCE-DARP as follows:
5 Start with the empty cycle C.
6 for i := 0, . . . , s do
7 Assume that R� � = {r � , . . . , r � } with r � ≺ r � ⇒ i < j.
8 For j = 1, . . . , k, let p � be a directed shortest path in G[E

�
] from the

endpoint of r � to v � .
9 Add the k loops r � p � , . . . , r � p � to C.

10 Append to C the directed shortest path in G[E
�

] from v � to v � ��� .
11 end for
12 Let S← C − A.
13 return the set S and the cycle C.

Algorithm 6.2: The TSP-based Approximation Algorithm ALG-TSP for the
SOURCE-DARP.

6.4.2 Algorithm Based on a Set of Last Arcs

Our second algorithm, ALG-LA, is based on similar ideas as the algorithm
from Section 6.3 for paths. We first compute a set of balancing arcs B which
makes G[R+B] degree balanced. Again, we then compute a directed in-tree
rooted at the origin o of minimum cost, double the new arcs which are not
yet in R + B and add the resulting set N to the solution. ALG-LA is shown in
Algorithm 6.3.

By a proof similar to Lemma 6.19 it follows that the set B + N found by
Algorithm ALG-LA is indeed a feasible solution. We proceed to bound the
cost of the solution produced by ALG-LA. This is accomplished in a number
of steps.

Lemma 6.22 The balancing set B found in Step 1 of algorithm ALG-LA has cost at
most OPT − d(R). Step 1 can be accomplished in the time needed for one minimum
cost flow computation on a directed graph with n vertices and 2m � arcs.

Proof: Let S∗
< E

�
be an optimal solution, i.e., an augmenting multiset of

arcs from E
�

with minimum cost. Recall that OPT = d(R) + d(S∗). Since
G[R + S∗] contains a ≺-respecting Eulerian cycle with start o, this graph is

6.4 AN APPROXIMATION ALGORITHM FOR GENERAL GRAPHS 111

Input: A mixed graph G = (V, E, R), a cost function d on E, an initial
vertex o ∈ V , and a source-order ≺.

1 Compute a balancing multiset B < E
�

of minimum cost.
{ How this step can be accomplished with the help of a

minimum cost flow computation is described
in detail in Lemma 6.22. }

2 Follow steps 1 and 3 to 6 of Algorithm ALG-PATH to compute a set N of
arcs and a ≺-respecting Eulerian cycle C with start o.

3 return the set B + N and the cycle C.

Algorithm 6.3: Algorithm ALG-LA “mimicking” the algorithm for paths.

in particular degree-balanced. Thus, the cost d(S∗) = OPT − d(R) is at least
that of a minimum cost set B < E

�
which achieves the degree-balance.

0
0

±0

0 0

-2 0

0

0

0

+2
2

Balancing step in
general graphs.
From the given

instance (top), a
flow network is

computed
(middle) with

node-charges as
shown by the

numbers at the
nodes. The

minimum cost
flow (indicated by

numbers at the
arcs in the center
figure) is used to

compute a
balancing set of

minimum cost
(bottom).

Step 1 can be carried out by performing a minimum cost flow compu-
tation in the auxiliary graph F = (V, E

�
). A vertex v has charge deg � � (v) −

deg � �
(v), and the cost of sending one unit of flow over arc a ∈ E

�
equals its

cost d(a). We then compute an integral minimum cost flow in F. If the flow
on an arc a is t ∈ N, we add t copies of arc a to the multiset B. 2

We continue to prove an upper bound on the cost of the set N of new
arcs and their inverses computed in Step 2 of ALG-LA.

Lemma 6.23 The cost of the arc set N computed by ALG-LA is at most 2OPT −

2d(R).

Proof: The proof of the lemma is similar to the one for Theorem 6.20. The
major difference is that, in general, we can not assure that the balancing
set B computed in Step 1 is a subset of an optimal solution.

Let S∗ be again an optimal augmenting set and L be the set of last arcs of
a ≺-respecting Eulerian cycle in G[R + S∗]. Then L ⊆ R + S∗ and thus

(6.5) OPT − d(R) = d(S∗) ≥ d(L − (R + B)).

The only arcs from R that L can contain are those from the set M≺. Thus
L − (R + B) = L − (M≺ + B) and

(6.6) d(L − (R + B)) = d(L − (M≺ + B)) = d ′(L).

The last equality follows from the definition of the weight function d ′ (see
step 3 in Algorithm ALG-PATH). Since L contains an in-tree rooted at o and
the tree D computed is weight-minimal with respect to d ′ we have d ′(L) ≥
d ′(D).

112 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

Using the same arguments as in inequality (6.4) of Theorem 6.20 we con-
clude that d(N) = 2d ′(D). Using this equality together with (6.5) and (6.6)
shows the claim of the lemma. 2

Lemma 6.22 and Lemma 6.23 imply the following bound on the perfor-
mance of Algorithm ALG-LA:

Corollary 6.24 ALG-LA finds a solution of cost at most 3 · OPT − 2d(R).

Proof: By Lemma 6.22, d(R+B) ≤ OPT. Lemma 6.23 establishes that d(N) ≤
2 · OPT − 2d(R). Thus d(R + B + N) ≤ 3 · OPT − 2d(R) as claimed. 2

6.4.3 Combining Both Algorithms

We are now ready to combine our algorithms ALG-TSP and ALG-LA into one
with an improved performance guarantee. The combined algorithm ALG-
COMBINE simply runs both algorithms and picks the better solution.

Theorem 6.25 ALG-COMBINE is ρ-approximative with ρ = 1/2 · (ρTSP + 3).

Proof: Let β := 4/(3 − ρTSP). If OPT ≥ βd(R), then the solution returned by
ALG-TSP has cost at most

(

ρTSP +
2

β

)

· OPT =

(

ρTSP + 2
3 − ρTSP

4

)

· OPT =
ρTSP + 3

2
· OPT.

If OPT < βd(R), then the cost of the solution found by ALG-LA is bounded
from above by

alg. upper
bound

ALG-TSP
�

TSP · OPT
� � ��� � �

ALG-LA � OPT

� � ��� � �
(

3 −
2

β

)

· OPT =

(

3 − 2
3 − ρTSP

4

)

· OPT =
ρTSP + 3

2
· OPT.

This shows the claim of the theorem. 2

Using Christofides’ algorithm [Chr76] with ρTSP = 3/2 results in a per-
formance guarantee of 3/4 + 3/2 = 9/4 for algorithm ALG-COMBINE.

Theorem 6.26 There exists an approximation algorithm for SOURCE-DARP with
performance 9/4. This algorithm can be implemented to run in time O(max{n

�
+

m � m � + m � n log n, m
� � log n + m � n log

�
n}).

Proof: The performance has already been proved. The running time of Al-
gorithm ALG-TSP is dominated by that of Christofides’ algorithm, which
can be implemented to run in time O(n

�
) [CLR90, JRR95], and the time

needed for the addition of the paths in Step 7 which can be done in total
time O(m � m � + m � n log n). The running time of ALG-LA is dominated by
the minimum cost flow computation which can be accomplished in time
O(m

� � log n + m � n log
�
n) by using Orlin’s enhanced capacity scaling algo-

rithm [AMO93]. 2

6.5 IMPROVED APPROXIMATION ALGORITHM ON TREES 113

6.5 Improved Approximation Algorithm on Trees

For graph classes where the TSP can be approximated within a factor better
than 3/2, the performance of ALG-COMBINE automatically improves over
the one stated in Theorem 6.26. In particular, for trees where the TSP can be
solved in polynomial time Theorem 6.25 already implies a 2-approximation
algorithm. However, we can still improve this performance guarantee.

Our algorithm for trees, called ALG-COMBINE-T, uses the same outline
as ALG-COMBINE. It runs two algorithms and chooses the best solution re-
turned by its sub-algorithms. The first sub-algorithm is ALG-TSP which, as
noted above, on trees is able to find a solution of cost at most OPT +2d(R) in
polynomial time due to the polynomial time solvability of the TSP on trees
(ρTSP = 1).

Lemma 6.27 For the SOURCE-DARP on trees ALG-TSP finds a solution of cost at
most OPT + 2d(R). 2

The second sub-algorithm is the modified version of ALG-LA shown in
Algorithm 6.4 and denoted by ALG-LA-T. The modifications are as follows:
We defer the removal of the non-essential vertices in V and the completion
of G via shortest paths until after the (modified) balancing step. The balanc-
ing step (Step 1 of ALG-LA-T) uses the fact that on trees we can determine a
balancing subset which is a subset of some optimal solution.

Input: A mixed graph G = (V, E, R), a cost function d on E, an initial
vertex o ∈ V , and a source-order ≺.

1 Compute a balancing multiset B < E
�

such that B ⊆ S∗ for some opti-
mal solution S∗.

2 Complete the graph and remove all nodes not incident with arcs
from R + B.

3 Follow steps 1 and 3 to 6 of Algorithm ALG-PATH to compute a set N of
arcs and a ≺-respecting Eulerian cycle C with start o.

4 return the set B + N and the cycle C.

Algorithm 6.4: Modified algorithm ALG-LA-T based on a set of last arcs for
SOURCE-DARP on trees.

Lemma 6.28 ALG-LA-T finds a solution of cost at most 2 OPT − 2d(R).

Proof: Let I = (G = (V, E, R), d, o,≺) be the original instance of the SOURCE-
DARP such that G[E] is a tree. We can consider the instance I ′ = (G ′ =

(V, E, R+B), d, o,≺) (still on a tree) which results from adding the balancing
arcs B as new transportation requests. Since any feasible solution to I will

114 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

have to use the arcs from B anyway (cf. Lemma 6.12), we get that OPT(I) =

OPT(I ′).
Now look at the instance I ′′ of the SOURCE-DARP which is obtained by

removing vertices and completing G along shortest paths as in our algo-
rithm. It is easy to see that OPT(I ′′) = OPT(I ′). Notice also that we can
transform any feasible solution of I ′′ to a feasible solution of I ′ of the same
cost: simply replace arcs not in E

�
by shortest paths.

Let S∗ and S ′′ be optimal solutions for I and I ′′, respectively. Define the
multisets Z := S∗ − B. Since

(6.7) d(R + B) + d(Z) = OPT(I) = OPT(I ′′) = d(R + B) + d(S ′′),

we have that

(6.8) d(Z) = d(S ′′)

and

(6.9) d(Z) = OPT(I) − d(R + B).

Let R + B + N be the solution of instance I found by ALG-LA-T. We have

(6.10) d(R + B + N) = d(R + B) + d(N) = d(S∗) − d(Z) + d(N).

We can now use the arguments of Lemma 6.23 (taking into account that in
the current situation of instance I ′′, set S ′′ is the optimal augmenting set).
This yields

(6.11) d(N) ≤ 2d(S ′′)
(6.8)
= 2d(Z)

in the current context. Plugging this inequality into (6.10) results in

d(R + B + N) ≤ d(S∗) + d(Z) by (6.11)
= OPT(I) − d(R) + OPT(I) − d(R + B) by (6.7) and (6.9)
= 2 OPT(I) − 2d(R).

This completes the proof. 2

We are now ready to establish a bound on the performance of the com-
bined algorithm ALG-COMBINE-T.

Theorem 6.29 ALG-COMBINE-T is an algorithm for the SOURCE-DARP on trees
with performance 3/2. It can be implemented to run in time O(nm � + n

� log n).

6.6 HARDNESS RESULTS 115

Proof: We can estimate the cost of the best of the two solutions returned by
ALG-TSP and ALG-LA-T by the techniques from the proof of Theorem 6.25: if
d(R) ≤ �

� OPT, then the cost of the solution produced by ALG-TSP algorithm
(see Lemma 6.27) is bounded from above by

OPT + 2d(R) ≤ OPT +
1

2
OPT =

3

2
OPT .

On the other hand, if d(R) >
�

� OPT, then we know from Lemma 6.28 that
the cost of the solution returned by ALG-LA-T is no greater than

2 · OPT − 2d(R) ≤ 2 · OPT −
1

2
OPT =

3

2
OPT.

This yields an overall performance of 3/2 as claimed.

alg. upper
bound

ALG-TSP OPT
� � � � � �

ALG-LA-T � OPT

� � � � � �
The time bound for the algorithm is derived as follows: We can solve

the TSP on the metric space induced by G[E] in time O(n). We then root the
tree G[E] at an arbitrary vertex. With O(n) preprocessing time, the least
common ancestor of any pair of vertices can be found in constant time
(see [HT84, SV88]). Thus, we can implement ALG-TSP in such a way that
the invocations of Step 7 take total time O(nm �). This means that ALG-TSP

can be implemented to run in time O(nm �).
The balancing in ALG-LA-T can be accomplished in time O(n+m �). Com-

pletion of the graph by computing all-pairs shortest paths can be done in
time O(nm � + n

� log n) = O(n
� log n) [CLR90, AMO93]. All other steps

can be carried out in time O(n
�
) where again the algorithm from [Tar77] is

employed for computing a minimum weight in-tree. 2

6.6 Hardness Results

Since the SOURCE-DARP generalizes the DARP, it follows from the hardness
result in [FG93] that SOURCE-DARP is NP-hard to solve even on trees. We
show that this hardness continues to hold even if the source-order ≺ is a
total source-order. We can also strengthen the hardness result of [FG93] and
show that the DARP is hard on caterpillar graphs. This is in contrast to an
application of DARP in the next section where caterpillar graphs naturally
arise.

hair

foot

backbone

A caterpillar
graph.

A caterpillar graph is a special case of a tree, consisting of a path, called
caterpillar graph

the backbone of the caterpillar, and additional vertices of degree one, called
backbonethe feet of the caterpillar. The edges between vertices on the path and feet are

feetcalled hairs. We restrict the class of caterpillars further to those graphs where

hairs
no two hairs are incident, i.e., the nodes on the backbone are of maximum
degree 3.

116 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

Theorem 6.30 The DARP and the SOURCE-DARP are NP-hard to solve even on
caterpillar graphs. This result continues to hold, if the transportation requests are
restricted to have sources and targets only in the feet of the caterpillar. Furthermore,
all hardness results for SOURCE-DARP remain true if the source-order is restricted
to be total.

Proof: We first address the hardness of the DARP. The hardness is shown by
a reduction from the Steiner tree problem on bipartite graphs, BIPARTITE-
STP. An instance of BIPARTITE-STP consists of a bipartite graph H = (X ∪
Y, F) and a nonnegative number k ≤ |F|. It is NP-complete to decide whether
there exists a subtree of H that spans all the vertices in Y and has at most k

edges, see [GJ79, Problem ND12].

� �

Steiner tree (thick
edges) in a
bipartite graph
spanning all
vertices in Y.

One can make two assumptions on H without loss of generality: First,
each vertex in Y has degree at least two. Otherwise, for a vertex y ∈ Y with
degree one, there is no other choice than including the unique edge incident
to y in the Steiner tree. Second, H is connected. Otherwise, there is either a
connected component containing Y, or H can not contain a Steiner tree for
the set Y.

Let H = (X ∪ Y, F) be an instance of BIPARTITE-STP. We create an in-
stance I = (G = (V, E, R), d, o) of DARP. The construction of the graph G is
illustrated in Figure 6.4. Start with a graph consisting of |F| pairwise non-
incident edges and their 2|F| endpoints. For each edge [x, y] ∈ F where x ∈ X

and y ∈ Y, choose a yet unlabeled edge in G and label its endpoints by x

and y, respectively. Now create the backbone of the caterpillar graph by
inserting a path of |F| − 1 additional edges. These backbone edges are in-
serted between nodes with labels from X in such a way that for each x ∈ X

the graph induced by the nodes labeled x in G is a connected path, denoted
by P(x).

Set the weight of a backbone edge with two endpoints sharing the same
label to 0, and the weight of backbone edges with two different labels to
some large number M := 2|F| + 1. Set the weight of a hair to 1.

The arc set R is constructed as follows: For y ∈ Y denote by S(y) the set
of foot vertices in G labeled with y. Then, for each y ∈ Y, choose a directed
simple cycle connecting S(y) and add its arc set to R. Finally, the origin o of
the server is chosen to be the source of an arbitrary arc in R. Observe that
by construction the graph G[R] is degree-balanced. It consists of the set of
connected components { S(y) : y ∈ Y }. Each of the components is strongly
connected and Eulerian.

Let D =
∑ � ∈ � d(r). We claim that H contains a Steiner tree with at most

k edges if and only if there is a feasible solution to the instance I of the DARP
with cost at most D + 2k.

Suppose that T is a Steiner tree in H with at most k edges connecting the
vertices in Y. We construct a multiset S of arcs, S < E

�
, such that G[R + S]

6.6 HARDNESS RESULTS 117

P(b) P(c)a
X

Y
f g

b c

h

· · · · · ·

S(f)

S(g)

S(h)

Figure 6.4
Transformation of

the BIPARTITE-STP
into the DARP on a

caterpillar. The
thick lines

represent a feasible
solution and its
transformation.

is Eulerian and contains o and d(R + S) ≤ C + 2k: For each x ∈ X spanned
by T , add all arcs from the set P(x)

�
to S (these arcs are of cost 0). For each

edge [x, y] ∈ T , add a pair of antiparallel arcs between the endpoints of the
unique hair labeled [x, y] to the multiset S (these arcs are of cost 1 each). By
this construction, graph G[R+S] is degree-balanced. Since T was spanning Y

and connected, G[R + S] is strongly connected and hence Eulerian. Further,
d(R + S) ≤ D + 2k. This shows the first direction.

Assume conversely that S, S < E
�

, is a feasible solution for instance I,
and its cost satisfies d(R + S) ≤ D + 2k. Then G[R + S] is Eulerian and
contains o. The set S can not contain any arc of cost M, since otherwise
d(R + S) = d(R) + d(S) ≥ D + M = D + 2|F| + 1 > D + 2k.

We now define a subgraph T of H as follows: For each x ∈ X, y ∈ Y,
if S contains (at least one copy) of an arc between a vertex in P(x) and S(y)

in arbitrary direction, then the edge [x, y] is included in T . Since G[R] and
G[R + S] are degree-balanced and S ∩ R = ∅, we can decompose S into arc
disjoint cycles. Since S < E

�
and G[E] is a tree it follows that r ∈ S implies

that the inverse arc r �
� must also be contained in S. Hence, T consists of at

most d(S)/2 = k edges.

It remains to show that T is connected and spans the vertices in Y. To this
end, let y � and y � be two arbitrary vertices from Y. Since y � , y � are incident
with arcs from R, and G[R + S] is strongly connected, there is a directed
path (r � , . . . , r �) from a node labeled y � to one labeled y � in G[R + S]. The
node labels along this path change only when r � is of type r � = (x, y) or
r � = (y, x) for suitable x ∈ X and y ∈ Y. By construction, tree T contains
edge [x ′, y ′] in this case. Hence, T connects y � and y � . This completes the
proof of the hardness results for the DARP.

Since |R� | ≤ 1 for all nodes v in the construction used above, by choosing
≺ to be the empty relation the hardness for the SOURCE-DARP immediately
follows. 2

118 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

6.7 Extensions

6.7.1 Non-Closed Schedules

All our results in this chapter have been derived for the case where the
server has to return to the origin o at the end (this corresponds to the closed
makespan in the online situation). In this section we describe how to extend
our algorithmic results to the problem SOURCE-DARPopen where the server
needs not return to o (which corresponds to the non-closed makespan).
We denote by DARPopen the problem SOURCE-DARPopen without precedence
constraints.

Suppose that ALG is a ρ-approximation algorithm for the SOURCE-DARP.
We show how to construct a new approximation algorithm for the SOURCE-
DARPopen . The essence of the construction is that we try to “guess” the end-
point of an optimal (or approximately optimal) non-closed schedule.

Let I = (G = (V, E, R), d, o,≺) be an arbitrary instance of the SOURCE-
DARPopen . For v ∈ V \ {o} denote by I� the instance of the SOURCE-DARP
resulting from I by adding an additional dummy arc a� = (v, o) to R and
making a� a maximal element with respect to the source-order, that is, r ≺
a� for all r 6= a� emanating from v. Also, denote by I

�
:= I the instance I of

the SOURCE-DARPopen interpreted as an instance of the SOURCE-DARP.
We run ALG on the n = |V | instances I� (v ∈ V) of the SOURCE-DARP. Let

S� be the corresponding solution produced by ALG on input I � . It is easy to
see that for each v the multiset S� + {a� } is a feasible solution for the orig-
inal instance I of the SOURCE-DARPopen . In case that the original instance
contained no precedence constraints (that is, it was actually an instance of
the DARPopen), even each set S� is already feasible for the original instance
(unfortunately this property can not be guaranteed in general in the case of
the SOURCE-DARPopen).

��

�

dummy arc

�

Given the
precedence
constraint a ≺ b

the optimal
solution Sv = ∅

for the instance Iv

resulting from
adding the
dummy arc (v, o)

(dashed) is not
feasible for the
original instance I

of the SOURCE-
DARPopen.

An easy calculation shows that if we choose the multiset S � + {a� } with
the least cost, this yields a solution for the original instance of cost no
more than 2ρ OPT(I). In case of the DARPopen , that is, when there are no
precedence constraints at all, the multiset S� with least cost is (2ρ − 1)-
approximative. This yields the following theorem:

Theorem 6.31 If there is a ρ-approximation algorithm for the SOURCE-DARP,
then there exists a 2ρ-approximation algorithm for the SOURCE-DARPopen . If
there is a ρ-approximation algorithm for the DARP, then there exists a (2ρ − 1)-
approximation algorithm for the DARPopen . 2

6.7 EXTENSIONS 119

6.7.2 Start- and Stop-Penalties

In this section we show how to extend our results to the case when there are
start- and stop-penalties for the server, which makes the problem more re-
alistic in view of applications. In elevator systems the time that the elevator
needs to accelerate or decelerate in order to pick up or deliver its load can
usually not be neglected. Thus, it is natural to penalize each stop and start
of the server on its route.

Start- and stop-penalties do not introduce a completely new situation:
the problem with penalties can be modeled as a DARP on a slightly larger
graph. However, the penalties change the complexity of the problem when
restricted to the simplest class of graphs. We prove that the problem with
penalties becomes NP-hard even on paths without any precedence con-
straints, which contrasts with the polynomial solvability of the problem
without penalties.

fa
st

sl
ow

Stopping at each
empty floor and

accelerating again
is slower than

going to the top
floor directly.

The dial-a-ride problem with penalties is denoted by PENALTY-SOURCE-
DARP. An instance of PENALTY-SOURCE-DARP consists of the same input
as an instance of SOURCE-DARP, but additionally specifies penalty func-
tions p

� and p � on the set of vertices, where p
�
(v) is the time penalty for

starting from a vertex and p � (v) is the penalty for stopping at a vertex. The
goal is to find a closed oriented walk serving all requests, such that the cost
of the walk plus the cost of starting and stopping is minimized.

As in the preceding sections, we formulate PENALTY-SOURCE-DARP as
a graph augmentation problem. To do this in in a meaningful way, we have
to allow augmenting arcs from V × V and not just from E

�
, since each arc

corresponds to a move and incurs a start and a stop penalty. The cost func-
tion d : E→ R

�
� is extended by defining the cost of arc (v, w) to be the length

of a shortest path from v to w in G[E].

Definition 6.32 (Graph augm. version of PENALTY-SOURCE-DARP)
An instance of the PENALTY-SOURCE-DARP consists of the same input as for the
SOURCE-DARP together with additional penalty functions p

�
, p � : V → R

�
� on

the set of vertices V . The objective is to find a multiset S of arcs, S < V × V ,
minimizing the weight

d(R + S) +
∑

	 ∈ �
� deg

�
� � � (u)p

�
(u) +

∑

	 ∈ � 	
deg �

� � � (u)p � (u)

such that G[R + S] is ≺-Eulerian with start o. Here, U � is the set of sources of arcs
in R + S and U � is the set of endpoints of arcs in R + S.

In the sequel we show that PENALTY-SOURCE-DARP can be reduced
to SOURCE-DARP. We emphasize that the reduction does not preserve all
structural properties of the graph. This prevents us from applying all re-
sults from the preceding sections directly to PENALTY-SOURCE-DARP.

120 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

Let I = (G = (V, E, R), d, o,≺, p � , p
�
) be an arbitrary instance of the

PENALTY-SOURCE-DARP. We construct an an equivalent instance I ′ =

(G ′ = (V ′, E ′, R ′), d ′, o ′,≺ ′) of the SOURCE-DARP on a slightly larger graph
(the term “equivalent instance” will be formalized below).

The transformation is accomplished as follows: For each vertex v ∈ V

we add both v and a new vertex v
� ± �

to V ′. Vertex v
� ± �

is used to model
starting or stopping at vertex v. The set E ′ consists of the edges in E and
an additional edge e� between v and v

� ± �
for each vertex v ∈ V . The cost of

the new edges is d ′(e�) = (p
�
(v) + p � (v))/2. The cost function d ′ coincides

with d on the set E. For each arc r = (u, v) ∈ R we add an arc a ′ = (u
� ± �

, v
� ± �

)

to R ′ (the arcs in R are not contained in R ′). The partial order on the set R ′ is
induced naturally by that on R. Finally, the start vertex o ′ equals o

� ± �
.

���

� ±

�

�

�

� ′

�

Transformation of
an instance of the
PENALTY-
SOURCE-DARP
(top) to an instance
of the
SOURCE-DARP
(bottom).

Lemma 6.33 Let I be an instance of the PENALTY-SOURCE-DARP and I ′ the
instance of the SOURCE-DARP constructed by the above method. Then, I and I ′

are equivalent in the following sense: Any feasible solution for I ′ can be transformed
into a feasible solution for I of the same cost and vice versa. This transformation
can be accomplished in polynomial time.

Proof: Let S ′ be a valid solution for the instance I ′ of the SOURCE-DARP
where S ′ is an augmenting set of arcs. Let C ′ be a ≺-respecting Eulerian
cycle in G ′[R ′ + S ′] with start o ′.

We first construct an auxiliary set M of arcs by traversing C ′ and replac-
ing all chains of arcs from S ′ with a single arc from the start vertex of the
chain to its end vertex. Notice that all endpoints of arcs in M are contained
in V ′ \ V . We now construct a solution S by replacing each arc (u

� ± �
, v

� ± �
)

by (u, v). It is easy to see that S is in fact a valid solution for I of cost equal
to that of S ′.

4

1

5

3

2

1

� ±

3

8

2

7

9

� ′

�

�

� ′

�

�

�

5

4

16

A solution for the
SOURCE-DARP is
transformed into a
solution for the
original instance of
the PENALTY-
SOURCE-DARP.
The numbers on
the arcs indicate
the order in which
they are traversed.

Conversely, let S be a feasible solution for I. We can construct a so-
lution S ′ for I ′ with equal cost by adding for each arc (u, v) in S the arc
(u

� ± �
, v

� ± �
) to S ′.

The time bound is obvious from the construction. 2

It follows from the construction that if G[E] is a tree then G ′[E ′] is also a
tree. Thus, the previous lemma implies that approximation results for the
SOURCE-DARP on trees can be applied directly to the PENALTY-SOURCE-
DARP on trees. Similarly, approximation results for general graphs carry
over immediately. Hence, we obtain the following result:

Corollary 6.34 The PENALTY-SOURCE-DARP can be approximated on trees
with performance guarantee 3/2, and on general graphs with performance guaran-
tee 9/4. 2

6.8 REMARKS 121

However, if we transform an instance of the PENALTY-SOURCE-DARP
where G[E] is a path, this yields an instance of the SOURCE-DARP where
G ′[E ′] is a caterpillar graph. This seems unfortunate, since we know from
Theorem 6.30 that the SOURCE-DARP is NP-hard to solve on caterpillars. Is
there a better transformation? More specific, is PENALTY-SOURCE-DARP on
paths still polynomial time solvable?

The caterpillar constructed in the proof of Theorem 6.30 has the prop-
erty that requests have sources and targets only in the feet of the caterpil-
lar. Actually every instance of the SOURCE-DARP on caterpillars with these
properties can be transformed into an equivalent instance of the PENALTY-
SOURCE-DARP on a path: Let f be a foot and v be its unique adjacent vertex
on the backbone. We replace all arcs from R which are incident with f by
corresponding arcs with source or target v. We then remove foot f. The
start- and stop-penalties on v are set to the length d(f, v) of the hair between
v and the foot f.

It follows by arguments similar to those given in Lemma 6.33 that the

f

v

v

p+(v) = d(e, f)

p−(v) = d(e, f)

Any instance of
the SOURCE-DARP
on a caterpillar can

be transformed
into an equivalent

instance of the
PENALTY-

SOURCE-DARP on
a path.

constructed instance of the PENALTY-SOURCE-DARP on the path (which
corresponds to the former backbone) is in fact an equivalent instance to the
instance of the SOURCE-DARP on the caterpillar. Thus, we obtain the follow-
ing result which contrasts with the polynomial solvability of the SOURCE-
DARP on paths:

Theorem 6.35 The PENALTY-SOURCE-DARP on paths is NP-hard to solve. 2

6.8 Remarks

This chapter presented a natural extension of an offline dial-a-ride problem.
We have shown that even in the presence of source-order constraints for
the transportation requests the problem can be solved in polynomial time
on paths, which generalizes the result of [AK88]. On trees, however, the
problem is NP-hard. The application to more realistic elevator systems with
non-negligible acceleration of the moving server motivated the formulation
of a problem variant with start- and stop-penalties.

Table 6.1 gives an overview over the results obtained in this chapter and
the known results from literature for the DARP.

122 CHAPTER 6 OFFLINE DIAL-A-RIDE PROBLEMS WITH PRECEDENCE CONSTRAINTS

Graph class DARP SOURCE-DARP PENALTY-SOURCE-
DARP

Paths Polynomial time
solvable

[AK88]

Polynomial time
solvable

(Theorem 6.20)

NP-hard
(Theorem 6.35)

Approximable
within 3/2

(Corollary 6.34)

Trees NP-hard, even on
caterpillars

(Theorem 6.30)

NP-hard, even on
caterpillars

(Theorem 6.30)

NP-hard

Approximable
within 5/4

[FG93]

Approximable
within 3/2

(Theorem 6.29)

Approximable
within 3/2

(Corollary 6.34)

General Graphs NP-hard
[FHK78]

NP-hard NP-hard

Approximable
within 9/5

[FHK78]

Approximable
within 9/4

(Theorem 6.26)

Approximable
within 9/4

(Corollary 6.34)

Table 6.1: Complexity and approximation results for the SOURCE-DARP and
related problems.

A Capacitated Offline Dial-a-Ride
Problem on Paths

In this chapter we continue our study of offline dial-a-ride problems. While
in the previous chapter we considered the case of a unit-capacity server
(DARP, SOURCE-DARP), in this chapter we are concerned with the capac-
itated (offline) dial-a-ride problem CDARP where the capacity of the server
is arbitrary.

We focus on the CDARP for the special case when the underlying metric
space is induced by a simple path. As already mentioned, this setting arises
when modelling an elevator system as a dial-a-ride problem.

Unfortunately, the CDARP is NP-hard to solve even on paths, which are
arguably one of the simplest types of metric spaces. This is in contrast to
the unit-capacity case which we showed to be polynomial time solvable in
the previous chapter even under the presence of precedence constraints (see
Section 6.3).

This chapter is organized as follows. In Section 7.1 we formally define
the problem CDARP. The main result of this chapter is a polynomial time
approximation algorithm for the CDARP on paths with performance 3. We
present this algorithm in Section 7.2. The proof of the correctness and the
performance of the algorithm is divided into several parts. It is contained
in Sections 7.3 to 7.5.

Elevator with
capacity 2 and

path G[E]

representing the
transportation

network.

Related Work

Guan showed that the CDARP is NP-hard even on paths if the capacity of
the server is two [Gua98]. A version of the proof can be found in [Wei00].
The preemptive version is polynomial time solvable on paths [Gua98], but
NP-hard even on trees and even if the capacity of the server is one [FG93].
In [CR98] an approximation algorithm for the CDARP on general graphs
with performance O(

√
C log n log log n) was given, where C denotes the

capacity of the server. In the same paper the authors claimed an approx-
imation algorithm with performance 2 for the CDARP on paths but neither
the algorithm nor a proof of its performance was presented.

124 CHAPTER 7 A CAPACITATED OFFLINE DIAL-A-RIDE PROBLEM ON PATHS

7.1 Problem Definition
Definition 7.1 (Offline Dial-a-Ride Problem CDARP)
An instance of the CDARP is given by a finite mixed graph G = (V, E, R) with edge
weights given by d : E → R

�
� , a capacity C ∈ N and start position o ∈ V for the

server. The goal of the CDARP is to find a closed transportation schedule starting
at o with minimum length.

We denote the optimum cost of a feasible transportation for instance I of
CDARP by OPT(I). We drop the reference to I provided that no confusion
can occur.

In this chapter we are concerned with the situation that G[E] is a simple
path and o is one of its end points. For notational convencience we assume
that V = {1, . . . , n}, E = { [i, i + 1], i = 1, . . . , n − 1 } and that the initial
position o of the server is 1.

In our presentation we imagine the simple path G[E] as a vertical line
with vertex 1 being the lowest and vertex n the highest vertex. This is moti-
vated by the background of the elevator application.

2

3

6

1

4

5

7

8

9

� �

�
�

�
�

“Elevator-
visualization” of a
mixed graph given
in an instance of
the CDARP.

In all what follows we assume without loss of generality that vertex n is
essential, that is, at least one arc of R is incident with vertex n. Notice that
this implies OPT ≥ 2 · d(1, n), since any feasible transportation must visit
vertex n and return to its starting position at o = 1. We also assume that the
number of requests |R| is larger than C. If this is not the case, then a single
upward and downward motion of the server from 1 to n and backwards can
be used to obtain a transportation of cost 2 · d(1, n) which by the previous
comment must then be optimal.

7.2 An Approximation-Algorithm

Let G = (V, E, R) be a mixed graph given in an instance of CDARP, where
G[E] is a path. We define the set of upward requests and downward requests as
follows:

R
�
= { r ∈ R : α(r) < ω(r) }

R
�
= { r ∈ R : α(r) > ω(r) }.

� � � 	

� � � 	 �

� � � 	

�

� � � 	

�
�

� �

� �

Upward requests
R � = {r1, r2} (solid
arcs) and
downward
requests R � = {r3}

(dashed arcs).
Let A be a subset of R which is either completely contained in R

�
or R

�
.

In this case we let

α(A) = min{ α(r) : r ∈ A } and ω(A) = max{ ω(r) : r ∈ A }, if A ⊆ R
�

α(A) = max{ α(r) : r ∈ A } and ω(A) = min{ ω(r) : r ∈ A }, if A ⊆ R
�
.

7.2 AN APPROXIMATION-ALGORITHM 125

2
3

6

1

4
5

7
8
9

Figure 7.1
An instance of the

CDARP on a
path G with

9 vertices, and a
set of requests R.

For a less cluttered
display the

directed arcs
corresponding to R

are drawn parallel
to the path G[E].

In the sequel we have to refer to those request arcs r which have to be
transported over a specific edge [v, v + 1]. To facilitate the presentation we
define the notions of covers and segments.

Definition 7.2 (Cover)
Let e = [v, v + 1] be an edge in the undirected graph G[E]. A request arc r = cover
(α(r), ω(r)) ∈ R is said to cover e if α(r) ≤ v and ω(r) ≥ v + 1 or α(r) ≥ v + 1

and ω(r) ≤ v. A set of arcs R ′ covers edge e if at least one arc from R ′ covers e. � �
� �

�� �

Both requests, r1

and r2, cover edge
[v, v + 1].

Definition 7.3 (Segment)
Let R ′ ⊆ R. A segment of R ′ is an inclusionwise maximal subset S ⊆ R ′ with the
property that the set of edges from G covered by S forms a connected subpath of G.

Observe that the segments of a set R ′ ⊆ R form a partition of R ′.
We are now ready to state our approximation algorithm. The main al-

gorithm FIND-AND-PASTE is shown in Algorithm 7.1. This algorithm uses
the subroutines FIND-UP-ARCS presented in Algorithm 7.2 and FIND-DOWN-
ARCS displayed in Algorithm 7.3.

Before we prove the correctness and the performance of the algorithm,
we illustrate the execution of FIND-AND-PASTE on a small example. Con-
sider the instance of CDARP shown in Figure 7.1. In this instance G[E] is a
path with 9 vertices and there are |R| = 36 requests to be transported by a
server of capacity C = 3.

First the requests in R
�

are processed. At the beginning, the set R
�

con-
sists only of one segment S = R

�
. Now, FIND-UP-ARCS is called C = 3 times

producing a total of six sets M
�
� , M

�
� , j = 1, 2, 3. Two sequences of upward

moves U � and U � are constructed for the sets X
�
� = M

�
� + M

�
� + M

�
� and

X
�
� = M

�
� + M

�
� + M

�
� . Corresponding arcs are added to the auxiliary in-

stance of the DARP which will be used to chain all moves in a final paste
step (see Figure 7.2 for an illustration).

All requests transported in the upward moves in U � and U � are removed
from R

�
. Since R

�
6= ∅, the subroutine FIND-UP-ARCS is called again C = 3

126 CHAPTER 7 A CAPACITATED OFFLINE DIAL-A-RIDE PROBLEM ON PATHS

Input: An instance of CDARP where G[E] is a path.
1 Compute the set of upward requests R

�
and downward requests R

�
.

2 A := ∅ { Each arc in the multiset A corresponds to a transportation.
In a final “paste”-step these transportations will be pasted

together by considering the DARP instance (V, E, A). }
3 while R

�
6= ∅ do

4 Let S be a segment of R
�

5 Let L := α(S) and U := ω(S).
6 Call Algorithm FIND-UP-ARCS(S) C times with v

�
:= L and v � := U to

obtain 2C sets of arcs M
�
� and M

�
� , j = 1, . . . , C.

{ Notice that S shrinks with each call to FIND-UP-ARCS provided
it is not yet empty, but the values of v

� and v � remain fixed. }
7 Set X

�
� :=

⊎ �
� � � M

�
� for i = 1, 2.

8 Construct two sequences of upward moves, U � and U � , where U �

(i = 1, 2) transports all objects from X
�
� . U � starts at α(X

�
�) and ends

at ω(X
�
�).

9 A := A + (α(X
�
�), ω(X

�
�)) { Add elements to the multiset A. }

10 if X
�
� 6= ∅ then

11 A := A + (α(X
�
�), ω(X

�
�))

12 end if
13 R

�
:= R

�
\ (X

�
� ∪ X

�
�)

14 end while
15 while R

�
6= ∅ do

16 In the same way as above, call Algorithm FIND-DOWN-ARCS C times
and construct two sequences D � and D � of downward moves from
the 2C sets of downward arcs. Add directed arcs (α(D �), ω(D �)) of D �

(i = 1, 2) to the multiset A. Remove the downward arcs form the 2C

sets found by FIND-DOWN-ARCS from R
�
.

17 end while
18 Consider the instance Π of the SOURCE-DARP with underlying undi-

rected graph G[E], request set A, empty source-order ≺, and start ver-
tex o = 1. Each arc in A corresponds to one sequence of (upward or
downward) moves constructed above in steps 8 and 16.

{ Π contains no precedence constraints and could also be considered
as an instance of the simpler problem DARP. }

19 Find an optimal solution T � for Π in polynomial time with the help of
Algorithm ALG-PATH from Section 6.3.

20 Chain the sequences of upwards and downwards moves found in
steps 8 and 16 to a transportation by taking them in the order as the
corresponding arcs appear in T � .

Algorithm 7.1: Algorithm FIND-AND-PASTE

7.2 AN APPROXIMATION-ALGORITHM 127

Input: A multiset of requests S < R
�
, two vertices v

� ≤ v � from V

{ The multiset S is modified by FIND-UP-ARCS

and the modified set is returned. }
1 Let H be the subpath of G formed by the vertices v

�
, v

�
+ 1, . . . , v � .

2 if there exists edges [v, v + 1] in H with v
� ≤ v < v + 1 ≤ v � which are

not covered by any arc from S then
3 For each of these edges [v, v + 1] add a dummy arc (v, v + 1) to S.
4 end if
5 M � := ∅, M 	 := ∅ { Here, u stands for “upper” and l for “lower”.

We maintain the invariant that ω(M �) ≤ ω(M). }
6 while M 	 = ∅ or ω(M) < ω(S) do
7 Find a path P in the directed (acyclic) graph (V, S) with

(7.1) ω(M �) ≤ α(P) ≤ ω(M) < ω(P)

such that ω(P) is maximum among all those paths. (Here we set
ω(∅) := α(S)).

8 Set M � := M � ∪ P { Add the arcs from P to the “lower” set M � . }
9 S := S − P { Remove the arcs from P from the multiset S. }

10 Interchange the sets M � and M	 .
11 end while
12 return M � , M 	 and the modified multiset S.

Algorithm 7.2: Algorithm FIND-UP-ARCS

9
8
7
6
5
4
3
2
1

2
3

6

9

1

4
5

7
8

2
3

6

9

1

4
5

7
8

�
�
�

�
�
� �

�
�
�
�
�
�
�
�
�
�
�

U � U �

X
�
� X

�
�

3 calls to FIND-UP-ARCS instance of DARP

Figure 7.2
The sets

M
j
1, M

j
2, j = 1, 2, 3

obtained by the
first three calls to

FIND-UP-ARCS

(left), the resulting
sequences of

upward moves U1

and U2 (middle),
and the arcs added

to the auxiliary
instance of the
DARP (right).

128 CHAPTER 7 A CAPACITATED OFFLINE DIAL-A-RIDE PROBLEM ON PATHS

2
3

6

9

1

4
5

7
8

�
�
�
�
�
��

�
�

�
�
�

2
3

6

9

1

4
5

7
8

2
3

6

9

1

4
5

7
8

2
3

6

9

1

4
5

7
8

�
�
�

�
�
�

instance of DARP

Figure 7.3
Remaining arcs
in R � (left).
FIND-UP-ARCS is
called again to
construct sets of
arcs, upward
moves and new
arcs in the
auxiliary instance
of the DARP
(right). The dotted
arcs are the result
of the previous
iteration. 9

8
7
6
5
4
3
2
1

9
8
7
6
5
4
3
2
11

2
3
4
5
6
7
8
9

arcs added to
instance of DARP

Figure 7.4
The set R � and
moves
transporting all
objects in R � . The
picture on the
right shows the
arcs added to the
instance Π of the
DARP.

times. Notice that the modified set R
�

still consists of one segment, but now
covering only the edges [v, v + 1], v = 2, . . . , 7. The result of the second
round of calls to FIND-UP-ARCS is illustrated in Figure 7.3. Notice that in
this round a new situation arises. After the second call to FIND-UP-ARCS in
this round, the residual set R

�
does not cover a connected path anymore.

Hence, dummy arcs (2, 3) and (6, 7) are added (green arcs in Figure 7.3).
The dummy arcs are not included in the sequences constructed in Step 8.

After the second round of calls to FIND-UP-ARCS there remains only one
more request (3, 4). This arc will be transported by a single move. Now, the
downward requests R

�
are processed in a similar way with the help of FIND-

DOWN-ARCS. This results in the sequences of moves shown in Figure 7.4.
Now FIND-AND-PASTE constructs an instance Π of the SOURCE-DARP

and uses Algorithm ALG-PATH from Section 6.3 to find an optimal solution
T � for Π. The instance Π and its solution are shown in Figure 7.5. The dotted
arcs in the solution correspond to balancing arcs added by the algorithm.

The final solution found by FIND-AND-PASTE is displayed in Figure 7.6.
We proceed to establish the performance of FIND-AND-PASTE in two

steps. In a first step we derive some useful properties of the subroutines
FIND-UP-ARCS and FIND-DOWN-ARCS. In the second step we analyze the

7.3 PROPERTIES OF THE SUBROUTINES 129

2
3

6

9

1

4
5

7
8

2
3

6

9

1

4
5

7
8

instance of DARP instance after
balancing

optimal solution

Figure 7.5
The instance Π of

the DARP
constructed by

FIND-AND-PASTE

(left), the balanced
instance (middle)

and the optimal
solution (right).

2
3

6

9

1

4
5

7
8

Figure 7.6
The final solution

found by
FIND-AND-PASTE.
The upward and

downward
movements are

shown as
rectangles. They

transport the
requests displayed

within the
rectangles and are

executed in the
order indicated by

the dashed arcs.overall interaction between the algorithms.

7.3 Properties of the Subroutines

We start by analyzing properties of the subroutine FIND-UP-ARCS. At the
beginning, both sets, the “lower set” M � and the “upper set” M 	 are empty.
In each iteration of FIND-UP-ARCS a directed path is added to the “lower
set” M � satisfying condition (7.1) which means in particular that ω(M �) in-
creases to a value strictly larger than ω(M). This ends the current iteration
after which the roles of M 	 and M � are exchanged. Thus, we have the fol-
lowing observation:

Observation 7.4 At the beginning of each iteration of FIND-UP-ARCS the rela-
tion ω(M �) ≤ ω(M) holds true. 2

However, it is not trivial that in each iteration of FIND-UP-ARCS a path
with the desired property (7.1) exists. Our goal is to show that in fact such
a path can be determined in each iteration. To this end we investigate the
structural properties which such a potential path must satisfy and then use

130 CHAPTER 7 A CAPACITATED OFFLINE DIAL-A-RIDE PROBLEM ON PATHS

them to derive the existence of the path.

Definition 7.5 (Number µ� of Covering Requests)
For a vertex v ∈ V \ {n} and a subset D ⊆ R we define µ � (D) to be the number of
request arcs in D that cover the edge [v, v + 1]. We also set µ � (D) := 0. We omit
the set D if it is clear from the context.

� �

�

Requests covering
edge [v, v + 1] are
indicated via thick
lines. In the
example
µv(D) = 3.

Lemma 7.6 Suppose that Algorithm FIND-UP-ARCS is called with a nonempty set
S ⊆ R

�
and that P is a path which is found in Step 7 of FIND-UP-ARCS. Then this

path P satisfies:
µ � ��� � � � (S) > µ � ��� � (S)

for the current set S when P is added to M � in Step 8.

Proof: Suppose that the claim were not true for some path P. Let v = ω(P).
Since µ� � � (S) ≤ µ� (S), it follows that for any arc ending in v there must be
at least one arc from S emanating from v. However, P ends in v and thus we
could extend P by at least one arc from S which starts in v. This contradicts
the property that P was chosen in such a way that ω(P) = v is maximum.

2

� �

�

� �

� � ��� 	

� � ��� 	 �

If µv−1(S) ≤ µv(S),
then the path P

(thick lines) could
be extended.

Lemma 7.7 Suppose that Algorithm FIND-UP-ARCS is called with a nonempty
set S ⊆ R

�
. Then in any iteration of Step 7 there exists a path P with the required

properties.

Proof: We show the claim by induction on the number of iterations. In the
first iteration, we are in the situation that M 	 = M � = ∅. Hence, ω(M) =

ω(M �) = α(S) and condition (7.1) reduces to

(7.2) α(S) = α(P) < ω(P).

Clearly, there must be a path starting at α(S), since S is nonempty. Any such
path satisfies (7.2).

Assume now that we have reached the ith iteration (i ≥ 2) and for all
previous iterations it was possible to find a path. Let P

� � � � � be the path found
in the previous iteration i − 1. To shorten notation we set w := ω(P

� � � � �).
Let S

� � � � � and S
� � � denote the set S at the beginning of iteration (i − 1) and i,

respectively. Notice that for the set M 	 at the beginning of iteration i we

� � � � 	

� � � � 	

� � � 	

� � � 	 � �

� � � 	

�

� �

Properties claimed
for the
path P = P(i) to be
found in the ith
iteration.

have ω(M) = w. Thus (7.2) can be restated as

(7.3) ω(M �) ≤ α(P) ≤ w < ω(P).

At the beginning of the first iteration we have µ� (S
� � �

) ≥ 1 for all α(S) ≤
v < ω(S) by Step 3. Since in all previous iterations we have removed only
such arcs from S that end in vertices u ≤ w, it follows that

(7.4) µ 	 (S
� � � � �) = µ� (S

� � �
) for all u ≥ w.

7.3 PROPERTIES OF THE SUBROUTINES 131

By Lemma 7.6 we have µ� � � (S
� � � � �) > µ� (S

� � � � �). Together with (7.4) we
obtain

(7.5) µ� � � (S
� � �

) ≥ µ� (S
� � �

) ≥ 1.

Our first step is to construct a path P formed by arcs from S
� � � such that

(7.6) α(P) ≤ ω(M) = w < ω(P).

To this end, we distinguish two cases. If there exists an arc in S
� � � which

��
���
�

� � ��� 	 � �

� � � 	

�

� � � 	

Path P constructed
as a first step. The
position of ω(Ml)

is neglected.
starts in w, then the path consisting of this single arc already satisfies (7.6).
In the second case, no arc from S

� � � emanates from w. However, since
µ� (S

� � �
) ≥ 1 by (7.5) in this case there must be an arc r ∈ S

� � � with α(r) <

w < ω(r). Again, the path formed by this arc satisfies condition (7.6).

� �

�

� �

�

� �

Since µw(S(i)) ≥ 1,
there must exist

already a path
formed by a single

arc (cases
indicated by thick
highlighted lines)

which satisfies the
desired properties.

We now show that for any path P satisfying (7.6), we have in fact that
ω(M �) ≤ α(P) which proves the claim of the lemma. If M � = ∅ then there
is nothing to show. Hence assume that M � 6= ∅. Suppose that ω(M �) >

α(P). It follows that in one of the previous iterations j < i the path P sat-
isfied α(P) ≥ ω(M �

� � �
) for the then current version M �

� � � of M � . But this
means that P met all the conditions required in Step 7. Thus, the path cho-
sen in iteration j was not maximum with respect to its end vertex. This is a
contradiction. 2

� � � � � � � 	

� � � � 	

� � ��� 	 � �

� � � 	

�

� � � 	

If α(P) < ω(Ml),
then P would have

been eligible in a
previous

iteration j < i.

Corollary 7.8 Suppose that FIND-UP-ARCS is called with a nonempty set S ⊆ R
�
.

FIND-UP-ARCS terminates after at most n − 1 iterations with arc sets M � and M �

such that for each edge e covered by S there exists at least one and at most two arcs
in M � ∪ M � covering e. Moreover, all dummy arcs added in Step 3 are contained
in M � ∪ M � .

Proof: The property that FIND-UP-ARCS terminates after no more than n− 1

iterations follows from Lemma 7.7 and the fact that in each iteration ω(M)
increases strictly.

We now consider the covering property. By Lemma 7.7 the path found
in the first iteration starts at α(S). It is easy to show by induction that after
each iteration all edges [v, v + 1] with v < ω(M) are covered. Hence, at
termination all edges are covered at least once.

The arcs in M � do not overlap (where we call r and r ′ overlapping if
α(r) < α(r ′) < min{ω(r), ω(r ′)} or vice versa) and neither do those in M � .
Hence we can conclude that any edge is covered by at most two arcs, that is
at most one from M � and at most one from M � . If a dummy arc (v, v+1) was
added in Step 3 then by construction it is the only arc covering edge [v, v+1].
Since we have shown that each edge is covered by the arcs in M � ∪ M � it
follows that the dummy arc must be contained in M � ∪ M � . 2

Two overlapping
arcs.

132 CHAPTER 7 A CAPACITATED OFFLINE DIAL-A-RIDE PROBLEM ON PATHS

We close this section by commenting on Algorithm FIND-DOWN-ARCS

which is needed in Step 16 of the main Algorithm FIND-AND-PASTE. FIND-
DOWN-ARCS works on R

�
in the analogous way as FIND-UP-ARCS pro-

cesses R
�
. Basically the only difference is that the sets M � and M � “grow

downwards” from α(S) to ω(S) instead of “growing upwards“ as in FIND-
UP-ARCS.

Input: A multiset of requests S < R
�
, two vertices v

� ≤ v � from V

1 Let H be the subpath of G formed by the vertices v
�
, v

�
+ 1, . . . , v � .

2 if there exists edges [v, v + 1] in H with v
� ≤ v < v + 1 ≤ v � which are

not covered by any arc from S then
3 For each of these edges [v, v + 1] add a dummy arc (v + 1, v) to S.
4 end if
5 M � := ∅, M 	 := ∅

6 { We maintain the invariant that ω(M �) ≤ ω(M). Here, u stands for
“upper” and l for “lower”. }

7 while M � = ∅ or ω(M �) > ω(S) do
8 Find a path P in the directed (acyclic) graph (V, S) with

(7.7) ω(M) ≥ α(P) ≥ ω(M �) > ω(P)

such that ω(P) is minimum among all those paths. (Here we set
ω(∅) := α(S)).

9 Set M 	 := M 	 ∪ P { Add the arcs from P to the “upper” set M 	 . }
10 S := S − P { Remove the arcs from P from the multiset S. }
11 Interchange the sets M � and M 	 .
12 end while
13 return M � , M � and the modified multiset S.

Algorithm 7.3: Algorithm FIND-DOWN-ARCS

The following property of FIND-DOWN-ARCS can be proven analogously
to the corresponding results about FIND-UP-ARCS:

Lemma 7.9 Suppose that FIND-DOWN-ARCS is called with a nonempty set S ⊆
R

�
. FIND-DOWN-ARCS terminates after at most n − 1 iterations with arc sets M �

and M � such that for each edge e covered by S there exists at least one and at most
two arcs in M � ∪ M � covering e. Moreover, all dummy arcs added in Step 3 are
contained in M � ∪ M � . 2

7.4 CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 133

7.4 Correctness and Running Time of the
Algorithm

It is straightforward to see that FIND-AND-PASTE delivers a feasible solution
provided it terminates. We argue that FIND-AND-PASTE in fact terminates
after a finite number of steps (and hence outputs a feasible solution). Denote
by n := |V | the number of vertices in the input graph and by m � := |R| the
number of requests specified in the instance.

For any vertex v which is contained in a segment S in Step 6, the value µ�
decreases strictly by a single call to FIND-UP-ARCS provided it is greater than
zero since by Corollary 7.8 at least one arc from M � ∪ M � covers [v, v + 1].
Since in Step 6 FIND-UP-ARCS is called C times in iteration k we conclude
that

(7.8) µ� (R
� � � � � �

) ≤ max{µ� (R
� � � �

) − C, 0}.

Here R
� � � � denotes the set R

�
at the beginning of the kth iteration of the

while-loop in FIND-AND-PASTE enclosing Step 6. As an immediate conse-
quence of (7.8) we get that the while-loop is executed O(m � /C) times. After
this R

�
must be empty and hence all upward requests are contained in up-

ward moves. Analogous arguments apply to the downward requests and
downward moves constructed in the second while-loop. It now follows that
FIND-AND-PASTE must in fact terminate after a finite number of steps.

We now address the running time of FIND-AND-PASTE. By the arguments
given above, FIND-UP-ARCS and FIND-DOWN-ARCS are called O(m �) times.
Since ALG-PATH needs time O(min{(m � +n) log n, n

�
}) (see Section 6.3), this

yields a total running time of O(m � · Timefind + min{(m � + n) log n, n
�
}),

where Timefind denotes the effort for a single call to FIND-UP-ARCS or FIND-
DOWN-ARCS. Since the path-computation in FIND-UP-ARCS/FIND-DOWN-
ARCS can be accomplished in O(n + m �)-time by depth-first-search (see for
example [CLR90]) and the while-loop in FIND-UP-ARCS/FIND-DOWN-ARCS

is executed O(n) times, we obtain the following result:

Theorem 7.10 FIND-AND-PASTE computes a feasible solution for an instance of
CDARP in time O(nm � (n + m �). 2

7.5 Proof of Performance

We are finally going to establish the performance of our algorithm, that is,
the property that given any instance of the CDARP Algorithm FIND-AND-
PASTE finds a solution of cost at most 3 OPT.

134 CHAPTER 7 A CAPACITATED OFFLINE DIAL-A-RIDE PROBLEM ON PATHS

In fact, we are going to show a stronger result, namely that the cost of
the solution found by FIND-AND-PASTE is at most thrice the value of a lower
bound on OPT, called the flow bound.

Notice that max{dµ� (R
�
)/Ce, 1} is a lower bound on the number of times

any feasible transportation must traverse edge [v, v+1] in the direction from
vertex v to v + 1. Similarly, max{dµ� (R

�
)/Ce, 1} is a lower bound any trans-

portation must traverse [v, v + 1] in direction from v + 1 to v.

Definition 7.11 (Flow Bound)
Let I be any instance of the CDARP such that G[E] is a path and o is one of the end
vertices of G[E]. For edge e = [v, v + 1] of G we define

λ[v, v + 1] := max
{
dµ� (R

�
)/Ce, dµ� (R

�
)/Ce, 1

}

The value

� �

�

�

For capacity C = 2,
λ[v, v + 1] =

max{d3
2
e, d1

2
e} = 2.

LBflow(I) := 2
∑

� ≤� ≤ � � �
λ[v, v + 1] · d(v, v + 1)

is called the flow bound for instance I.flow bound

Since any feasible transportation always returns to the start point, it fol-
lows that in fact the flow bound LBflow is a lower bound on the optimal
solution cost:

Observation 7.12 For any instance I of CDARP the inequality

OPT(I) ≥ LBflow(I)

holds true. 2

One ingredient for bounding the cost of the solution found by FIND-AND-
PASTE lies in a closer look at Algorithm ALG-PATH from Section 6.3 for solv-
ing the SOURCE-DARP on paths. We have to consider the situation occur-
ring in the call issued by FIND-AND-PASTE when there are no precedence
constraints. In this case ALG-PATH essentially reduces to the algorithm for
DARP on paths presented in [AK88].

For convenience we briefly recall the actions taken by ALG-PATH. Let
G = (V, E, A) be the mixed graph given in the instance Π of SOURCE-DARP.
ALG-PATH first “balances” the graph (V, A) by adding additional “balancing”
arcs B such that for any edge [v, v+1] the number of upward arcs from A∪B

covering [v, v + 1] equals the number of downward arcs from A ∪ B cover-
ing [v, v + 1]. This implies that in the graph (V, A ∪ B) each vertex v ∈ V

satisfies deg
�
� ∪ � (v) = deg �

� ∪ � (v). In a second step the algorithm adds a set N

of “connecting arcs” of minimum weight such that (V, A∪B∪N) is strongly
connected and the degree-balance is maintained. The graph (V, A ∪ B ∪ N)

is Eulerian and a Eulerian cycle in (V, A ∪ B ∪ N) yields an optimum trans-
portation (see Section 6.3 for details).

We are ready to prove the main result about FIND-AND-PASTE:

7.5 PROOF OF PERFORMANCE 135

Theorem 7.13 Given any instance I of CDARP, FIND-AND-PASTE finds a solu-
tion of cost at most 3LBflow(I).

Proof: We show that for any edge [v, v + 1] the number of upward moves
constructed in Step 8 of FIND-AND-PASTE which traverse [v, v + 1] in direc-
tion from v to v + 1 is bounded from above by 2λ[v, v + 1]. The bound for
the number of downward moves constructed in Step 16 is established anal-
ogously.

By construction of FIND-AND-PASTE, upward moves which traverse the
edge [v, v+ 1] can only be added to the final solution in one of the following
two situations:

(i) Edge [v, v+1] is contained in a segment S used in Step 4 in an iteration
of the while-loop.

(ii) Empty upward moves are added to connect the sequences of moves
according to the solution of the instance Π of SOURCE-DARP in Step 20.

We first address situation (i). Let us denote the set R
�

at the beginning of
the kth iteration of the while-loop in FIND-AND-PASTE enclosing Step 8 by
R

� � � � . Then R
� � � �

= R
�

and µ� (R
� � � �

) ≤ λ[v, v + 1] for any v ∈ V . Suppose that
edge [v, v + 1] is contained in a segment S used in Step 4 in the kth iteration
of the while-loop. In this case µ� (R

� � � �
) > 0. From inequality (7.8) we can

conclude that [v, v + 1] can be used at most dµ � (R
�
)/Ce times in a segment

in Step 4 and thus by at most 2dµ� (R
�
)/Ce ≤ 2λ[v, v + 1] upward moves

constructed in Step 8. As noted above, the analogous bound for the number
of downward moves traversing [v, v + 1] is established similarly.

So far we know that for each edge [v, v + 1] at most 2λ[v, v + 1] upward
moves from Step 8 and at most 2λ[v, v + 1] downward moves from Step 16
traverse [v, v + 1]. We now consider the chaining of the sequences of moves
in Step 20 with the help of ALG-PATH from Section 6.3.

By adding balancing arcs (and corresponding empty moves) the maxi-
mum number of moves that traverse [v, v + 1] does not increase. Hence, it
suffices to consider the empty moves corresponding to connecting arcs N.
Since the set of arcs { (v, v + 1), (v + 1, v) : 1 ≤ v ≤ n − 1 } is a feasible set of
connecting arcs (which also preserves balance), it follows that the cost of the
connecting arcs C chosen by ALG-PATH can not be more than 2d(1, n). Thus,
the total weight of the solution found by FIND-AND-PASTE is not greater than
(

∑

� ≤� ≤� � �
2λ[v, v + 1]d(v, v + 1)

)

+ 2d(1, n) = 2 LBflow + 2d(1, n) ≤ 3 LBflow.

This completes the proof. 2

Corollary 7.14 FIND-AND-PASTE is 3-approximative for SOURCE-DARP. 2

136 CHAPTER 7 A CAPACITATED OFFLINE DIAL-A-RIDE PROBLEM ON PATHS

7.6 Remarks

In this chapter we have investigated the CDARP, an offline dial-a-ride prob-
lem with server capacity larger than one. Table 7.1 gives an overview over
the results obtained in this chapter and the known results from literature.
The table also includes the complexity and approximation results for the
preemptive version of the CDARP which from a complexity point of view is
somewhat ”easier” to solve.

Graph class CDARP without preemption CDARP with preemption

Paths Polynomial time solvable for
capacity C = 1

[AK88]
NP-hard for capacity C ≥ 2

[Gua98, Wei00]

Polynomial time solvable for
any capacity

[Gua98]

Approximable within 3

(Theorem 7.13)

Trees NP-hard for all capacities
[Gua98]

NP-hard for all capacities
[Gua98]

Approximable within 2

[CR98]

General Graphs NP-hard NP-hard

Approximable
within O(

√
C log n log log n)

[CR98]

Approximable
within O(log n log log n)

[CR98]

Table 7.1: Complexity and approximation results for the CDARP.

Online Bin Coloring

One of the commissioning departments in the distribution center of Herlitz
PBS AG, Falkensee, a main distributor of office supply in Europe, is devoted
to greeting cards. The cards are stored in parallel shelving systems. Order
pickers on automated guided vehicles collect the orders from the storage
systems, following a circular course through the shelves. At the loading
zone, which can hold q vehicles, each vehicle is logically “loaded” with
B orders which arrive online. The goal is to avoid congestion among the
vehicles (see [AG � 98] for details). Since the vehicles are unable to pass each
other and the “speed” of a vehicle is correlated to the number of different
stops it must make, this motivates to assign the orders to vehicles in such a
way that the vehicles stop as few times as possible.

Commissioning of
greeting cards.

Figure 8.1
Course for the

automated guided
vehicles through

the shelves.

The above situation motivates the following bin coloring problem:1 One
receives a finite sequence of unit size items σ = r � , r � , . . . where each item
has a color r � ∈ N, and is asked to pack them into bins of size B. The goal
is to pack the items into the bins “most uniformly”, that is, to minimize the
maximum number of different colors assigned to a bin. The packing process

1Due to the nature of the bin coloring problem this chapter contains a number of colored
figures. The best way to read it is either on a colored printout or in Postscript or PDF form.

138 CHAPTER 8 ONLINE BIN COLORING

is subject to the constraint that at any moment in time, at most q ∈ N bins
may be partially filled. Bins may only be closed if they are filled completely.
(Notice that without these strict bounded space constraints the problem is
trivial since in this case each item can be packed into a separate bin.)

In the online version, the online bin coloring problem (OLBCP)), each item
must be packed without knowledge of any future items. Trivially, any on-
line algorithm for the OLBCP is B-competitive, where B denotes the size of
the bins.

 �
· · ·

� open bins

ca
pa

ci
ty

�

Online bin
coloring.

We investigate which competitive ratios are achievable by online algo-
rithms for the OLBCP. Our results reveal a curiosity of competitive analy-
sis: a truly stupid algorithm achieves essentially a (non-trivial) best possi-
ble competitive ratio for the problem whereas a seemingly reasonable algo-
rithm performs provably worse in terms of competitive analysis.

We first analyze a natural “greedy-type” strategy, called GREEDYFIT, andGREEDYFIT

show that this strategy has a competitive ratio no greater than 3q but no
smaller than 2q, where q is the maximum number of bins that may be par-
tially filled (open) at the same time. We show that a trivial strategy, called
ONEBIN, that only uses one open bin at any time, has a strictly better com-ONEBIN

petitive ratio of 2q − 1. Then we show that surprisingly no deterministic
algorithm can be substantially better than the trivial strategy. More specifi-
cally, we prove that no deterministic algorithm can, in general, have a com-
petitive ratio less than q. Even more surprising, the general lower bound
of q for the competitive ratio continues to hold for randomized algorithms
against an oblivious adversary. Finally, not even “resource augmentation”,
which means that the online algorithm is allowed to use a fixed number
q ′ ≥ q of open bins instead of q, can help to overcome the lower bound of
Ω(q) on the competitive ratio.

The chapter is organized as follows. In Section 8.1 we formally define
the OLBCP and introduce notation. In Section 8.2 we describe and analyze
the obvious algorithm GREEDYFIT. In Section 8.3 we introduce and analyze
the trivial algorithm ONEBIN which surprisingly obtains a better competitive
ratio than GREEDYFIT. Sections 8.4 and 8.5 contain general lower bounds for
deterministic and randomized algorithms.

Related Work

The OLBCP can be viewed as a variant of the bounded space bin packing
problem, a well studied problem in mathematics and computer science (seebin packing

problem [CGJ97, CW98] for recent surveys). In the bin packing problem one receives
a sequence of items σ = r � , . . . , r � where each item has a size from (0, 1]. The
goal is to pack the items into bins of unit size so as to minimize the number
of bins used. In the bounded space variant only a fixed number of partially-

8.1 PROBLEM DEFINITION 139

filled bins may be open to further items at any time in the packing process.

 �
· · ·

� open bins

ca
pa

ci
ty

�

Online bounded
space bin packing.

In the offline version of the Bin Packing Problem the request sequence is
a priori known to the algorithm. In the online version each item must be
packed without knowledge of any future items.

The online bin packing problem was first studied by Johnson [Joh74].
He showed that the so-called NEXTFIT-algorithm achieves a competitive ra-
tio of 2. Competitiveness results and lower bounds for the bin packing
problem have been improved in “horserace-papers” [Joh01] over the last
years (we refer again to the surveys [CGJ97, CW98] for details). The cur-
rently best lower bound on the competitive ratio of deterministic algorithms
is 1.53635 [Bro79, Lia80]. The best competitive ratio had been for a long time
1.58872 claimed by Richey for the HARMONIC+1-algorithm [Ric91]. Just
recently Seiden found a bug in the analysis of HARMONIC+1 and, more-
over, showed that HARMONIC+1 can not achieve a competitive ratio smaller
than 1.59217 [Sei01]. In the same paper Seiden presents a new algorithm
HARMONIC++ and proves a competitive ratio of 1.58889 for this algorithm.

8.1 Problem Definition

We start by defining the problem under study.

Definition 8.1 (Online Bin Coloring Problem)
In the online bin coloring problem (OLBCP � � �) with parameters B, q ∈ N

(B, q ≥ 2), one is given a sequence σ = r � , . . . , r � of unit size items (requests),
each with a color r � ∈ N, and is asked to pack them into bins with size B, that is,
each bin can accommodate exactly B items. The packing is subject to the following
constraints:

1. The items must be packed according to the order of their appearance, that is,
item i must be packed before item k for all i < k.

2. At most q partially filled bins may be open to further items at any point in
time during the packing process.

3. A bin may only be closed if it is filled completely, i.e., if it has been assigned
exactly B items.

The objective is to minimize the maximum number of different colors assigned to a
bin.

 �
· · ·

index
 index
�

index �

index �index
�

index

The green item
must be packed
before the blue

item. Packing both
items into the first

open bin (the bin
with index 1)

closes this bin and
replaces it by a
new empty bin

(which has again
index 1).

An online algorithm for the OLBCP � � � must pack each item r � (irrevocably)
without knowledge of requests r � with k > i.

In the sequel it will be helpful to use the following view on the bins used
to process an input sequence σ. Each open bin has an index x, where the index

140 CHAPTER 8 ONLINE BIN COLORING

number x satisfies x ∈ {1, . . . , q}. Each time a bin with index x is closed
(since it is filled completely) and a new bin is opened the new bin will also
have index x. If no confusion can occur, we will refer to a bin with index x

as bin x.

8.2 The Algorithm GREEDYFIT

In this section we introduce a natural greedy-type strategy, which we call
GREEDYFIT, and show that the competitive ratio of this strategy is at most 3q

but no smaller than 2q (provided the capacity B is sufficiently large).

Algorithm GREEDYFIT

If upon the arrival of request r � the color r � is already contained

��
· · ·

Since a green item
is already present
in the bin with
index 2,
GREEDYFIT places
the new green item
there. The
magenta item is
packed into the
bin with the least
number of colors,
which at the
moment is the last
open bin.

in one of the currently open bins, say bin b, then put r � into bin b.
Otherwise put item r � into a bin that contains the least number
of different colors (which means opening a new bin if currently
less than q bins are non-empty). Ties are broken arbitrarily.

The analysis of the competitive ratio of GREEDYFIT is essentially via a
pigeon-hole principle argument. We first show a lower bound on the num-
ber of bins that any algorithm can use to distribute the items in a contiguous
subsequence and then relate this number to the number of colors in the in-
put sequence.

Lemma 8.2 Let σ = r � , . . . , r � be any request sequence for the OLBCP � � � and let
σ ′ = r � , . . . , r � � � be any contiguous subsequence of σ. Then any algorithm packs
the items of σ ′ into at most 2q + b(` − 2q)/Bc different bins.

Proof: Let ALG be any algorithm and let b � , . . . , b � be the set of open bins
for ALG just prior to the arrival of the first item of σ ′. Denote by f(b �) ∈
{1, . . . , B − 1} the empty space in bin b � at that moment in time. To close
an open bin b � , ALG needs f(b �) items. Opening and closing an additional
new bin needs B items. To achieve the maximum number of bins (≥ 2q),
ALG must first close each open bin and put at least one item into each newly
opened bin. From this moment in time, opening a new bin requires B new
items. Thus, it follows that the maximum number of bins ALG can use is
bounded from above as claimed in the lemma. 2

Theorem 8.3 Algorithm GREEDYFIT is c-competitive for the OLBCP � � � with c =

min{2q + b(qB − 3q + 1)/Bc, B}.

Proof: Let σ be any request sequence and suppose GREEDYFIT(σ) = w.
It suffices to consider the case w ≥ 2. Let s be the smallest integer such

8.2 THE ALGORITHM GREEDYFIT 141

that GREEDYFIT(r � , . . . , r � � �) = w−1 and GREEDYFIT(r � , . . . , r �) = w. By the
construction of GREEDYFIT, after processing r � , . . . , r � � � each of the currently
open bins must contain exactly w−1 different colors. Moreover, since w ≥ 2,
after processing additionally request r � , GREEDYFIT has exactly q open bins
(where as an exception we count here the bin where r � is packed as open
even if by this assignment it is just closed). Denote those bins by b � , . . . , b � .

Let bin b � be the bin among b � , . . . , b � that has been opened last by
GREEDYFIT. Let r � ′ be the first item that was assigned to b � . Then, the subse-
quence σ ′ = r � ′ , . . . , r � consists of at most qB − (q − 1) items, since between
r � ′ and r � no bin is closed and at the moment r � ′ was processed, q − 1 bins
already contained at least one item. Moreover, σ ′ contains items with at
least w different colors. By Lemma 8.2 OPT distributes the items of σ ′ into
at most 2q + b(qB − 3q + 1)/Bc bins. Consequently,

OPT(σ) ≥ w

2q + b(qB − 3q + 1)/Bc ,

which proves the claim. 2

Corollary 8.4 Algorithm GREEDYFIT is c-competitive for the OLBCP � � � with c =

min{3q − 1, B}. 2

We continue to prove a lower bound on the competitive ratio of algo-
rithm GREEDYFIT. This lower bound shows that the analysis of the previous
theorem is essentially tight.

Theorem 8.5 GREEDYFIT has a competitive ratio greater or equal to 2q for the
OLBCP � � � if B ≥ 2q

�
− q

�
− q + 1.

Proof: We construct a request sequence σ that consists of a finite number
M of phases in each of which qB requests are given. The sequence is con-
structed in such a way that after each phase the adversary has q empty bins.

 � Phase 1
� �

items � �
items

Phase 2

Phases in the
lower bound

construction of
Theorem 8.5.

Each phase consists of two steps. In the first step q
� items are presented,

each with a new color which has not been used before. In the second step
qB − q

� items are presented, all with a color that has occurred before. We
will show that we can choose the items given in Step 2 of every phase such
that the following properties hold for the bins of GREEDYFIT:

Step 2Step 1

different
all colors

�
�

items � �
� �

�

items

Structure of a
single phase.

Property 1 The bins with indices 1, . . . , q − 1 are never closed.

Property 2 The bins with indices 1, . . . , q− 1 contain only items of different
colors.

Property 3 There is an M ∈ N such that during Phase M GREEDYFIT assigns
for the first time an item with a new color to a bin that already contains
items with 2q

�
− 1 different colors.

142 CHAPTER 8 ONLINE BIN COLORING

Property 4 There is an assignment of the items of σ such that no bin con-
tains items with more than q different colors.

index �

General
development of
the bins managed
by GREEDYFIT.

different
all colors

�
�

items

Step 1 of phase �

�
�

adversary

�
�

�
�

GREEDYFIT

Packing of the
items in Step 1 of a
phase by
GREEDYFIT and by
the adversary in
Theorem 8.5.

We analyze the behavior of GREEDYFIT by distinguishing between the
items assigned to the bin with index q and the items assigned to bins with
indices 1 through q − 1. Let L � be the set of colors of the items assigned to
bins 1, . . . , q−1 and let R � be the set of colors assigned to bin q during Step 1

of Phase k.
We now describe a general construction of the request sequence given

in Step 2 of a phase. During Step 1 of Phase k there are items with |R � |

different colors assigned to bin q. For the moment, suppose that |R � | ≥ q

(see Lemma 8.8 (iv)). We now partition the at most q
� colors in |R � | into q

disjoint non-empty sets S � , . . . , S � . We give qB − q
� ≥ 2q

� items with colors
from |R � | such that the number of items with colors from S � is B − q for
every j, and the last |R � | items all have a different color.

By Lemma 8.8 (iii), GREEDYFIT will pack all items given in Step 2 into
bin q. Hence bins 1, . . . , q − 1 only get assigned items during Step 1, which
implies the properties 1 and 2.

The adversary assigns the items of Step 1 such that every bin receives
q items, and the items with colors in the color set S � go to bin j. Clearly, the
items in every bin have no more than q different colors. The items given
in Step 2 can by construction of the sequence be assigned to the bins of
the adversary such that all bins are completely filled, and the number of
different colors per bin does not increase (this ensures that property 4 is
satisfied).

Lemma 8.6 At the end of Phase k where k = 1, . . . , M − 1, bin q of GREEDYFIT

contains exactly B −
∑

� ≤ � |L � | items, and this number is at least q
� .

Proof: After Phase k, exactly kqB items have been given. Moreover, after
k phases bins 1 through q − 1 contain exactly

∑
� ≤ � |L � | items because the

items of Step 2 are always packed into bin q by GREEDYFIT. Thus, the num-
ber of items in bin q of GREEDYFIT equals

kqB −
∑

� ≤ �

|L � | mod B ≡ B −
∑

� ≤ �

|L � |

︸ ︷︷ ︸
� �

mod B.

We show that B −
∑

� ≤ � |L � | ≥ q
� . This implies that B −

∑
� ≤ � |L � | mod B =

B −
∑

� ≤ � |L � |.
Since k < M we know that each of the bins 1 through q − 1 contains at

most 2q
�
− 1 colors. Thus,

∑
� ≤ � |L � | ≤ (2q

�
− 1)(q − 1) = 2q

�
− 2q

�
− q + 1.

It follows from the assumption on B that B −
∑

� ≤ � |L � | ≥ q
� . 2

8.2 THE ALGORITHM GREEDYFIT 143

Corollary 8.7 For any Phase k < M, bin q is never closed by GREEDYFIT before
the end of Step 1 of Phase k.

Proof: The claim clearly holds for the first phase. Hence for the remainder
we consider the case k > 1.

Since there are exactly q
� items presented in Step 1 of any phase, the

claim is true by Lemma 8.6 as soon as |
∑

� ≤ � L � | ≥ q
� at the beginning of

Phase k: in that case, there is even enough space in bin q to accommodate
all items given in Step 1. We show that |L � | + |L � | ≥ q

� which implies that
|
∑

� ≤ � L � | ≥ q
� for k ≥ 2.

After Phase 1, each bin of GREEDYFIT contains q colors, which yields
|L � | = q(q − 1). It is easy to see that all items presented in Step 2 of the
first phase are packed into bin q by GREEDYFIT: All these items have colors
from R � where |R � | = q. Either a color from R � is currently already present in
bin q or bin q has less than q different colors, while all other bins contain q

colors. In either case, GREEDYFIT packs the corresponding item into bin q.
By Lemma 8.6, at the end of Phase 1 bin q contains at least q

� items.
Since the last |R � | = q items presented in Step 2 of the first phase have all
different colors (and all of these are packed into bin q as shown above) we
can conclude that at the beginning of Phase 2 bin q of GREEDYFIT already
contains q colors. Thus, in Step 1 of Phase 2 GREEDYFIT again puts q items
into each of its bins. At this point, the total number of distinct colors in the
first q − 1 bins is at least (q − 1)q + (q − 1)q = 2q

�
− 2q ≥ q

� for q > 1, so
that |L � | + |L � | ≥ q

� . As noted above, this implies the claim. 2

The success of our construction heavily relies on the fact that at the be-
ginning of each phase, bin q of GREEDYFIT contains at least q colors. We
show that this is indeed true.

Lemma 8.8 For k ≥ 1 the following statements are true:

(i) At the beginning of Phase k bin q of GREEDYFIT contains exactly the colors
from R � � � (where R � := ∅).

�
�
	 �

�
�

Step 2 of phase �

�
�

Step 1 of phase �

Statement of
Lemma 8.8.

(ii) After Step 1 of Phase k, each of the bins 1, . . . , q− 1 of GREEDYFIT contains
at least |R � | + |R � � � | − 1 different colors.

(iii) In Step 2 of Phase k GREEDYFIT packs all items into bin q.

(iv) |R � | ≥ q.

Proof: The proof is by induction on k. All claims are easily seen to be true
for k = 1. Hence, in the inductive step we assume that statements (i)–(iv)
are true for some k ≥ 1 and we consider Phase k + 1.

144 CHAPTER 8 ONLINE BIN COLORING

(i) By the induction hypothesis (iii) all items from Step 2 presented in
Phase k were packed into bin q by GREEDYFIT. Since at the end of
Phase k bin q contains at least q

� ≥ |R � | items (see Lemma 8.6) and
the last |R � | items presented in Phase k had different colors, it follows
that at the beginning of Phase k + 1, bin q contains at least all colors
from R � . On the other hand, since all the Bq−q

�
> B items from Step 2

of phase k were packed into bin q by GREEDYFIT, this bin was closed
during this process and consequently can only contain colors from R � .

(ii) By Corollary 8.7 bin q is not closed before the end of Step 1. After
Step 1 all colors from R � ��� are already in bin q by construction. Since
by (i) before Step 1 also all colors from R � were contained in bin q, it
follows that bin q contains at least |R � | + |R � � � | different colors at the
end of Step 1.

By construction of GREEDYFIT each of the bins 1, . . . , q − 1 must then
contain at least |R � | + |R � ��� | − 1 different colors.

(iii) When Step 2 starts, all colors from R � ��� are already in bin q by con-
struction. Therefore, GREEDYFIT will initially pack items with colors
from R � � � into bin q as long as this bin is not yet filled up. We have
to show that after bin q has been closed the number of colors in any
other bin is always larger than in bin q. This follows from (ii), since
by (ii) each of the bins 1, . . . , q − 1 has at least |R � | + |R � � � | − 1 colors
after Step 2 of Phase k + 1 and by the induction hypothesis (iv) the
estimate |R � | ≥ q holds, which gives

|R � | + |R � � � | − 1 ≥ |R � ��� | + q − 1 > |R � ��� |.

(iv) At the beginning of Phase k+1, bin q contains exactly |R � | colors by (i).
By the induction hypothesis (ii) and (iii) each of the bins 1, . . . , q − 1

contains at least |R � | + |R � � � | − 1 ≥ |R � | colors. Hence, at the beginning
of Phase k + 1, the minimum number of colors in bins 1, . . . , q − 1 is
at least the number of colors in bin q. It follows from the definition of
GREEDYFIT that during Step 1 of Phase k + 1, bin q is assigned at least
the q

�
/q = q colors. In other words, |R � ��� | ≥ q.

2

To this point we have shown that we can actually construct the sequence
as suggested, and that the optimal offline cost on this sequence is no more
than q. Now we need to prove that there is a number M ∈ N such that
after M phases there is a bin from GREEDYFIT that contains items with 2q

�

different colors. We will do this by establishing the following lemma:

Lemma 8.9 In every two subsequent Phases k and k + 1, either |L � ∪ L � ��� | > 0 or
bin q contains items with 2q

� different colors during one of the two phases.

8.3 THE TRIVIAL ALGORITHM ONEBIN 145

Proof: Suppose that there is a Phase k in which |L � | = 0. This means that all
q
� items given in Step 1 are assigned to bin q (|R � | = q

�). By Lemma 8.8 (i),
at the beginning of Phase k + 1, bin q still contains q

� different colors. If in
Step 1 of Phase k + 1 again all q

� items are assigned to bin q, bin q contains
items with 2q

� different colors (recall that bin q is never closed before the
end of Step 1 by Corollary 8.7). If less than q

� items are assigned to bin q

then one of the other bins gets at least one item, and |L � � � | > 0. 2

We can conclude from Lemma 8.9 that at least once every two phases the
number of items in the bins 1 through q−1 grows. Since these bins are never
closed (property 1), and all items have a unique color (property 2), after a
finite number M of phases, one of the bins of GREEDYFIT must contain items
with 2q

� different colors. This completes the proof of the Theorem 8.5. 2

8.3 The Trivial Algorithm ONEBIN

This section is devoted to arguably the simplest (and most trivial) algo-
rithm for the OLBCP, which surprisingly has a better competitive ratio than
GREEDYFIT. Moreover, as we will see later this algorithm achieves essen-
tially the best competitive ratio for the problem.

Algorithm ONEBIN

The algorithm uses only at most one open bin at any point in
time. The next item r � is packed into the open bin. A new bin is
opened only if the previous item has closed the bin by filling it
up completely.

σ = · · ·

The trivial strategy
ONEBIN only uses

one open bin to
pack all items.

The proof of the upper bound on the competitive ratio of ONEBIN is along
the same lines as that of GREEDYFIT.

Lemma 8.10 Let σ = r � , . . . , r � be any request sequence. Then for i ≥ 0 any
algorithm packs the items r � � ��� , . . . , r � � ��� � � into at most min{2q − 1, B} bins.

Proof: It is trivial that the B items r � � � � , . . . , r � � � � � � can be packed into at
most B different bins. Hence we can assume that 2q − 1 ≤ B, which means
q ≤ (B − 1)/2 ≤ B.

Consider the subsequence σ ′ = r � � ��� , . . . , r � � � � � � of σ. Let ALG be any
algorithm and suppose that just prior to the arrival of the first item of σ ′,
algorithm ALG has t open bins. If t = 0, the claim of the lemma trivially
follows, so we can assume for the rest of the proof that t ≥ 1. Denote the

146 CHAPTER 8 ONLINE BIN COLORING

open bins by b � , . . . , b � . Let f(b �) ∈ {1, . . . , B − 1} be the number of empty
places in bin b � , j = 1, . . . , t. Notice that

(8.1)
�∑

� ���
f(b �) ≡ 0 mod B.

Suppose that ALG uses at least 2q bins to distribute the items of σ ′. By argu-
ments similar to those given in Lemma 8.2, ALG can maximize the number
of bins used only by closing each currently open bin and put at least one
item into each of the newly opened bins. To obtain at least 2q bins at least∑ �

� ��� f(b �) + (q − t) + q items are required. Since σ ′ contains B items and
t ≤ q it follows that

(8.2)
�∑

� � �
f(b �) + q ≤ B.

Since by (8.1) the sum
∑ �

� ��� f(b �) is a multiple of B and q ≥ 1, the only
possibility that the left hand side of (8.2) can be bounded from above by B

is that
∑ �

� ��� f(b �) = 0. However, this is a contradiction to f(b �) ≥ 1 for
j = 1, . . . , t. 2

As a consequence of the previous lemma we obtain the following bound
on the competitive ratio of ONEBIN.

Theorem 8.11 Algorithm ONEBIN is c-competitive for the OLBCP � � � where c =

min{2q − 1, B}.

Proof: Let σ = r � , . . . , r � be any request sequence for the OLBCP � � � and
suppose that ONEBIN(σ) = w. Let σ ′ = r � � � � , . . . , r � � � � � � of σ be the subse-
quence on which ONEBIN gets w different colors. Clearly, σ ′ contains items
with exactly w colors. By Lemma 8.10 OPT distributes the items of σ ′ into at
most min{2q − 1, B} different bins. Hence, one of those bins must be filled
with at least �

min
� � � � � � ��� colors. 2

The competitive ratio proved in the previous theorem is tight as the fol-
lowing example shows. Let B ≥ 2q − 1. First we give (q − 1)B items. The
items have q different colors, every color but one occurs B − 1 times, one
color occurs only q − 1 times. After this, in a second step q items with
all the different colors used before are requested. Finally, in the third step
q − 1 items with new (previously unused) colors are given.

×
� �

�
 	

×
� �

�
 	

×
� � �
 	

� �
 items with

� items with
different colors

� � �
 	 �

items

new colors

ONEBIN OPT

The competitive
ratio of 2q − 1 is
tight for ONEBIN.

After the first (q − 1)B items by definition ONEBIN has only empty bins.
The adversary assigns all items of the same color to the same bin, using one
color per bin. When the second set of of q items arrives, the adversary can

8.4 A GENERAL LOWER BOUND FOR DETERMINISTIC ALGORITHMS 147

now close q−1 bins, still using only one color per bin. ONEBIN ends up with
q different colors in its bin.

The adversary can assign every item given in the third step to an empty
bin, thus still having only one different color per bin, while ONEBIN puts
these items in the bin where already q different colors where present.

8.4 A General Lower Bound for Deterministic
Algorithms

In this section we prove a general lower bound on the competitive ratio of
any deterministic online algorithm for the OLBCP. We establish a lemma
which immediately leads to the desired lower bound but which is even
more powerful. In particular, this lemma will allow us to derive essentially
the same lower bound for randomized algorithms in Section 8.5.

In the sequel we will have to refer to the “state” of (the bins managed
by) an algorithm ALG after processing a prefix of a request sequence σ. To
this end we introduce the notion of a C-configuration.

Definition 8.12 (C-configuration)
Let C be a set of colors. A C-configuration is a packing of items with colors from C
into at most q bins. More formally, a C-configuration can be defined as a mapping
K : {1, . . . , q}→ S � , where

S � = { S : S is a multiset over C containing at most B elements from C }

with the interpretation that K(j) is the multiset of colors contained in bin j. We
omit the reference to the set C if it is clear from the context.

C
� ��

C-configuration for
a four color set C.

We are now ready to prove the key lemma which will be used in our
lower bound constructions.

Lemma 8.13 Let B, q, s ∈ N be numbers such that s ≥ 1 and the inequality
B/q ≥ s − 1 holds. There exists a finite set C of colors and a constant L ∈ N

with the following property: For any deterministic algorithm ALG and any C-
configuration K there exists an input sequence σALG � � of OLBCP � � � such that

(i) The sequence σALG � � uses only colors from C and |σALG � � | ≤ L, that is, σALG � �
consists of at most L requests.

(ii) If ALG starts with initial C-configuration K then ALG(σALG � �) ≥ (s − 1)q.

(iii) If OPT starts with the empty configuration (i.e., all bins are empty), then
OPT(σALG � �) ≤ s. Additionally, OPT can process the sequence in such a way
that at the end again the empty configuration is attained.

148 CHAPTER 8 ONLINE BIN COLORING

Moreover, all of the above statements remain true even in the case that the online
algorithm is allowed to use q ′ ≥ q bins instead of q (while the offline adversary
still only uses q bins). In this case, the constants |C| and K depend only on q ′ but
not on the particular algorithm ALG.

Proof: Let C be a set of (s − 1)
�
q
�
q ′ colors and ALG be any deterministic

online algorithm which starts with some initial C-configuration K. The con-
struction of the request sequence σALG � � works in phases, where at the begin-
ning of each phase the offline adversary has all bins empty.

During the run of the request sequence, a subset of the currently open
bins of ALG will be marked. We will denote by P � the subset of marked bins

��

offline bins
empty

Phase 1 Phase 2

Phases in the
general lower
bound
construction in
Lemma 8.13.

at the beginning of Phase k. Then, P � = ∅ and we are going to show that
during some Phase M, one bin in P � will contain at least (s − 1)q colors.
In order to assure that this goal can in principle be achieved, we keep the
invariant that each bin b ∈ P � has the property that the number of different
colors in b plus the free space in b is at least (s − 1)q. In other words,
each bin b ∈ P � could potentially still be forced to contain at least (s − 1)q

different colors. For technical reasons, P � is only a subset of the bins with
this property.

For bin j of ALG we denote by n(j) the number of different colors cur-
rently in bin j and by f(j) the space left in bin j. Then every bin j ∈ P �

satisfies n(j) + f(j) ≥ (s − 1)q. By min P � := min � ∈ � � n(j) we denote the
minimum number of colors in a bin from P � .

����� 	 � �

� ��� 	

bin �

ca
pa

ci
ty

�

Number of
different
colors n(j) and
free space f(j) in
bin j.

The idea of the construction is the following (cf. Claim 8.15 below): We
will force that in each phase either |P � | or min P � increases. Hence, after a
finite number of phases we must have min P � ≥ (s−1)q. On the other hand,
we will ensure that the optimal offline cost remains bounded by s during the
whole process.

We now describe Phase k with 1 ≤ k ≤ q(s − 1)q ′. The adversary selects
a set of (s − 1)q new colors C � = {c � , . . . , c �

� � � � � } from C not used in any
phase before and starts to present one item of each color in the order

(8.3) c � , c � , . . . , c �
� � � � � , c � , c � , . . . , c �

� � � � � , c � , c � , . . .

until one of the following cases appears:
�

· · ·

�
�

Case 1: The online
algorithm puts an
item into a
bin p ∈ Pk.

Case 1 ALG puts an item into a bin p ∈ P � .

In this case we let Q := P � \ { j ∈ P � : n(j) < n(p) }, that is, we remove
all bins from P � which have less than n(p) colors.

Notice that min � ∈ � n(j) > min P � , since the number of different colors
in bin p increases.

Case 2 ALG puts an item into some bin j /∈ P � which satisfies

(8.4) n(j) + f(j) ≥ (s − 1)q.

8.4 A GENERAL LOWER BOUND FOR DETERMINISTIC ALGORITHMS 149

In this case we set Q := P � ∪ {j} (that is, we tentatively add bin j to the
set P �).

Notice that after a finite number of requests one of these two cases must

· · ·

��
�

Case 2: The online
algorithm puts an

item into a
bin j ∈ Pk with

n(j) + f(j) ≥
(s − 1)q.

occur: Let b � , . . . , b � be the set of currently open bins of ALG. If ALG never
puts an item into a bin from P � then at some point all bins of {b � , . . . , b � } \P �

are filled and a new bin, say bin j, must be opened by ALG by putting the
new item into bin j. But at this moment bin j satisfies satisfies n(j) = 1,
f(j) = B − 1 and hence n(j) + f(j) = B ≥ (s − 1)q which gives (8.4).

Since the adversary started the phase with all bins empty and during the
current phase we have given no more than (s−1)q colors, the adversary can
assign the items to bins such that no bin contains more than s − 1 different
colors (we will describe below how this is done precisely). Notice that due
to our stopping criterions from above (Case 1 and Case 2) it might be the
case that in fact we have presented less than (s − 1)q colors so far.

In the sequel we imagine that each currently open bin of the adversary
has an index x, where 1 ≤ x ≤ q. Let ϕ : C � → {1, . . . , q} be any mapping
of the colors from C � to the offline bin index such that |ϕ � � ({x})| ≤ s − 1 for
j = 1, . . . , q. We imagine color c � to “belong” to the bin with index ϕ(c �)
even if no item of this color has been presented (yet). For those items pre-
sented already in Phase k, each item with color c � goes into the currently
open bin with index ϕ(c �). If there is no open bin with index ϕ(c �) when
the item arrives a new bin with index ϕ(c �) is opened by the adversary to
accommodate the item.

� 	 � ��
 	 � 	 � � � 	

≤
� �

≤
� �

≤
� �

Colors
�
� from phase �

� 	 � � � 	

index 1 index 2 index �

Organization of
the adversary bins.

Our goal now is to clear all open offline bins so that we can start a new
phase. During our clearing loop the offline bin with index x might be closed
and replaced by an empty bin multiple times. Each time a bin with index x

is replaced by an empty bin, the new bin will also have index x. The bin
with index x receives a color not in ϕ � � ({x}) at most once, ensuring that the
optimum offline cost still remains bounded from above by s. The clearing
loop works as follows:

1. (Start of clearing loop iteration) Choose a color c∗ ∈ C � which is not
contained in any bin from Q. If there is no such color, goto the “good
end” of the clearing loop (Step 4).

2. Let F ≤ qB denote the current total empty space in the open offline
bins. Present items of color c∗ until one of the following things hap-
pens:

Case (a): At some point in time ALG puts the `th item with color c∗ into

� �ALG

adversary

c∗

� � � ∗ 	

Case (a): ALG puts
an item into a

bin j ∈ Q.
a bin j ∈ Q for some 1 ≤ ` < F. Notice that the number of different
colors in j increases. Let

Q ′ := Q \ {b ∈ Q : n(b) < n(j)},

150 CHAPTER 8 ONLINE BIN COLORING

in other words, we remove all bins b from Q which currently have less
than n(j) colors. This guarantees that

(8.5) min� ∈ � ′
n(b) > min� ∈ �

n(b) ≥ min P � .

The adversary puts all ` items with color c∗ into bins with index ϕ(c∗).
Notice that during this process the open bin with index ϕ(c∗) might
be filled up and replaced by a new empty bin with the same index.

Set Q := Q ′ and go to the start of the next clearing loop iteration
(Step 1). Notice that the number of colors from C � which are not con-
tained in Q decreases by one, but min � ∈ � n(b) increases.

Case (b): F items of color c∗ have been presented, but ALG has not put
any of these items into a bin from Q.

In this case, the offline adversary processes these items differently
from Case (a): The F items of color c∗ are used to fill up the exactly F

empty places in all currently open offline bins. Since up to this point,
each offline bin with index x had received colors only from the s−1 el-
ement set ϕ � � ({x}), it follows that no offline bin has contained more
than s different colors.

� �ALG

adversary �

c∗

Case (b): ALG puts
none of the F items
into a bin from Q.

We close the clearing loop by proceeding as specified at the “standard
end” (Step 3).

3. (Standard end of clearing loop iteration)

In case we have reached this step, we are in the situation that all offline
bins have been cleared (we can originate only from Case (b) above).
We set P � ��� := Q and end the clearing loop and the current Phase k.

4. (Good end of clearing loop iteration)

Stop the current phase and issue additional requests such that all of-
fline bins are closed without increasing the offline cost. After this, end
the sequence.

We analyze the different possible endings of the clearing loop. First we
show that in case of a “good end” we have successfully constructed a suffi-
ciently bad sequence for ALG.

Claim 8.14 If the clearing loop finishes with a “good end”, then one bin in Q

contains at least (s − 1)q different colors.

Proof: If the clearing loop finishes with a “good end”, then we have reached
the point that all colors from C � are contained in a bin from Q. Before the
first iteration, exactly one color from C � was contained in Q. The number of

8.4 A GENERAL LOWER BOUND FOR DETERMINISTIC ALGORITHMS 151

colors from C � which are contained in bins from Q can only increase by one
(which is in Case (a) above) if min � ∈ � n(b) increases. Hence, if all colors
from C � are contained in bins from Q, min � ∈ � n(b) must have increased
(s − 1)q − 1 times, which implies min � ∈ � n(b) = (s − 1)q. In other words,
one of ALG’s bins in Q contains at least (s − 1)q different colors. 2

What happens if the clearing loop finishes with a “standard end”?

Claim 8.15 If the clearing loop of Phase k completes with a “standard end”, then
min P � ��� > min P � or |P � � � | > |P � |.

Before we prove Claim 8.15, let us show how this claim implies the result
of the lemma. Since the case |P � ��� | > |P � | can happen at most q ′ times, it
follows that after at most q ′ phases, min P � must increase. On the other
hand, since min P � never decreases by our construction and the offline cost
always remains bounded from above by s, after at most q(s−1)q ′ phases we
must be in the situation that min P � ≥ (s−1)q, which implies a “good end”.
Since in each phase at most (s − 1)q new colors are used, it follows that our
initial set C of (s − 1)

�
q
�
q ′ colors suffices to construct the sequence σALG � � .

Clearly, the length of σALG � � can be bounded by a constant L independent of
ALG and K.

Proof of Claim 8.15 Suppose that the sequence (8.3) given at the beginning
of the phase was ended because Case 1 occurred, i.e., ALG put one of the new
items into a bin from P � . In this case min � ∈ � n(b) > min P � . Since during
the clearing loop min � ∈ � n(b) can never decrease and P � ��� is initialized with
the result of Q at the “standard end” of the clearing loop, the claim follows.

The remaining case is that the sequence (8.3) was ended because of a
Case 2-situation. Then |Q| = |P � ∪ {j}| for some j /∈ P � and hence |Q| > |P � |.
During the clearing loop Q can only decrease in size if min � ∈ � n(i) increases.
It follows that either |P � ��� | = |P � |+ 1 or min P � � � > min P � which is what we
claimed. 2

This completes the proof of Lemma 8.13. 2

As an immediate consequence of Lemma 8.13 we obtain the following
lower bound result for the competitive ratio of any deterministic algorithm:

Theorem 8.16 Let B, q, s ∈ N such that s ≥ 1 and the inequality B/q ≥ s − 1

holds. No deterministic algorithm for OLBCP � � � can achieve a competitive ratio less
than � � �

� ·q. Consequently, the competitive ratio of any deterministic algorithm for

fixed B and q is at least
(

1 −
�� � �

)

q. In particular, for the general case with no
restrictions on the relation of the capacity B to the number of bins q, there can be no
deterministic algorithm for OLBCP � � � that achieves a competitive ratio less than q.

All of the above claims remain valid, even if the online algorithm is allowed to
use an arbitrary (but fixed) number q ′ ≥ q of open bins. 2

152 CHAPTER 8 ONLINE BIN COLORING

8.5 A General Lower Bound for Randomized
Algorithms

In this section we show lower bounds for the competitive ratio of any ran-
domized algorithm against an oblivious adversary for the OLBCP � � � .

Theorem 8.17 Let B, q, s ∈ N such that s ≥ 1 and the inequality B/q ≥ s − 1

holds. Then no randomized algorithm for OLBCP � � � can achieve a competitive ratio
less than � � �

� · q against an oblivious adversary.
In particular for fixed B and q, the competitive ratio against an oblivious adver-

sary is at least
(

1 −
�� � �

)

q.
All of the above claims remain valid, even if the online algorithm is allowed to

use an arbitrary (but fixed) number q ′ ≥ q of open bins.

Proof: Let A := { ALG � : y ∈ Y } be the set of deterministic algorithms for
the OLBCP � � � . We will show that there is a probability distribution X over
a certain set of request sequences { σ � : x ∈ X } such that for any algorithm
ALG � ∈ A

E
�

[ALG � (σ�)] ≥ (s − 1)q,

and, moreover,
E

�

[OPT(σ �)] ≤ s.

The claim of the theorem then follows by Yao’s Principle.
Let us recall the essence of Lemma 8.13. The lemma establishes the

existence of a finite color set C and a constant L such that for a fixed C-
configuration K, any deterministic algorithm can be “fooled” by one of at
most |C|

�

sequences. Since there are no more than |C|
� �

configurations, a
fixed finite set of at most N := |C|

�
� � �

sequences Σ = {σ � , . . . , σ � } suffices
to “fool” any deterministic algorithm provided the initial configuration is
known.

Let X be a probability distribution over the set of finite request sequences

{ σ � � , σ � � , . . . , σ � � : k ∈ N, 1 ≤ i � ≤ N }

such that σ � � is chosen from Σ uniformly and independently of all previous
subsequences σ � � , . . . , σ � � 	 � . We call subsequence σ � � the kth phase.

Let ALG � ∈ A be arbitrary. Define ε � by

ε � := Pr
�

[

ALG � has at least one bin with
at least (s − 1)q colors during Phase k

]

.

The probability that ALG � has one bin with at least (s − 1)q colors on any
given phase is at least 1/N, whence ε � ≥ 1/N for all k. Let

p � := Pr
� [

ALG � (σ � � . . . σ � �
	 � σ � �) ≥ (s − 1)q
]

.

8.6 REMARKS 153

Then the probabilities p � satisfy the following recursion:

p � = 0(8.6)
p � = p � � � + (1 − p � � �)ε �(8.7)

The first term in (8.7) corresponds to the probability that ALG � has already
cost at least (s − 1)q after Phase k − 1, the second term accounts for the
probability that this is not the case but cost at least (s − 1)q is achieved in
Phase k. By construction of X, these events are independent. Since ε � ≥ 1/N

we get that

(8.8) p � ≥ p � � � + (1 − p � � �)/N.

It is easy to see that any sequence of real numbers p � ∈ [0, 1] satisfying (8.6)
and (8.8) must converge to 1. Hence, also the expected cost E

�

[ALG � (σ �)]

converges to (s − 1)q. On the other hand, the offline costs remain bounded
by s by the choice of the σ � � according to Lemma 8.13. 2

8.6 Remarks

We have studied the online bin coloring problem OLBCP, which was mo-
tivated by applications in a robotized assembly environment. The investi-
gation of the problem from a competitive analysis point of view revealed a
number of oddities. A natural greedy-type strategy (GREEDYFIT) achieves
a competitive ratio strictly worse than arguably the most stupid algorithm
(ONEBIN). Moreover, no algorithm can be substantially better than the triv-
ial strategy (ONEBIN). Even more surprising, neither randomization nor “re-
source augmentation” helps to overcome the Ω(q) lower bound on the com-
petitive ratio. This is in contrast to [PK95, PS � 97] where the concept of re-
source augmentation was applied successfully to scheduling problems. In-
tuitively, the strategy GREEDYFIT should perform well “on average” (which
was confirmed in preliminary experiments with random data, see [Höf01]).

Advertisement for
greeting cards by

Herlitz.
An open problem remains the existence of a deterministic (or random-

ized) algorithm which achieves a competitive ratio of q (matching the lower
bound of Theorems 8.16 and 8.17). However, the most challenging issue
raised by our work seems to be an investigation of OLBCP from an average-
case analysis point of view.

Table 8.1 provides an overview over the results obtained in this chapter.

154 CHAPTER 8 ONLINE BIN COLORING

Problem Competitive Ratios Lower Bounds

OLBCP ONEBIN: min{2q − 1, B}

(Theorem 8.11)
GREEDYFIT: min{3q, B}

(Corollary 8.4)

deterministic algorithms:
(

1 − q
B+q

)

q

(Theorem 8.16)

randomized algorithms:
(

1 − q
B+q

)

q

(Theorem 8.17)

Table 8.1: Results for the OLBCP.

Conclusions

We have investigated a number of online problems from a theoretical point
of view. Competitive analysis has been one of the main tools for deriving
worst-case bounds on the performance of algorithms. Even for seemingly
easy online optimization problems such as the online traveling salesman
problem on the non-negative part of the real line, whose offline version is
trivial to solve, competitive analysis has lead to mathematical problems that
are surprisingly difficult.

To vanquish the pessimism of competitive analysis we have investigated
modifications and alternatives for analyzing online algorithms. We showed
that in case of the online traveling salesman problem a natural restriction
of the power of the offline adversary leads to algorithms with improved
performance in comparison to a “fair adversary”.

For the minimization of the flow times in online dial-a-ride problems
competitive analysis was not able to deliver any decision support. All on-
line algorithms are equally bad from a competitive analysis point of view.
We introduced the new concept of reasonable load which enables us to dis-
tinguish certain algorithms and to prove performance bounds on the maxi-
mal respective average flow time.

A further shortcoming of competitive analysis is that it does not take
into account the real-time requirements that are present in many real-world
systems. Our study of online dial-a-ride problems naturally lead to offline
dial-a-ride problems. Instances of these offline problems have to be solved
repeatedly by all our competitive algorithms. The investigation of offline
dial-a-ride problems resulted in efficient (polynomial time) algorithms and
approximation algorithms with provable performance guarantees. These
algorithms are fast enough to be used under real-time requirements.

It would be bold to claim that the methods and results presented in this
thesis have immediate impact to real-world applications. Real-world sys-
tems are far more complex than the elementary problems presented here. A
rigorous (competitive) analysis seems to be out of reach in most cases.

Nevertheless the analysis of elementary problems should lead the right
way: it is possible to get an idea about what kind of strategies are promis-
ing for real-world systems and why. For instance, the concept of reasonable
load was motivated by simulation experiments [GH � 99, GH � 00], where a

156 CHAPTER 9 CONCLUSIONS

“stable behavior” of the IGNORE-strategy could be observed. In turn, fur-
ther experimental work [Glü00] indicates that algorithms which perform
well under reasonable load in theory also exhibit a good performance in
practice.

So, is there hope for the persons standing in front of the elevator from
the introduction? The answer is: it depends! If you have one cleanly de-
fined objective, such as the makespan or the maximum flow time, then this
thesis contains algorithms which are theoretically “bullet proof” and also
perform well in experiments (see [GH � 99, GH � 00, Glü00, Hau99] for simu-
lation studies).

But there are a few hitches. If you do not have a single objective but aim
at minimizing a number of antagonistic objective function simultaneously,
these algorithms are not able to provide you with an answer (yet).

Finally, no algorithm can keep the maximal dissatisfaction of the passen-
gers (the maximal flow time) bounded if zillions of people keep on request-
ing transportation. If the load is unreasonable, the only reasonable way out
seems to be to install a second, third and fourth elevator—or just a single
mirror. Experiments show that people estimate their waiting times to be
much shorter if they can watch themselves in a mirror while waiting!

Notation

This chapter is intended mainly as a reference for the notation used in this
thesis and the foundations this work relies on. We assume that the reader
is familiar with elementary graph theory, graph algorithmic concepts, and
combinatorial optimization as well as with basic results from complexity
theory. For detailed reviews we refer the reader to monographs and text-
books which are listed at the end of this chapter.

A.1 Basics

By R (Q, Z, N) we denote the set of real (rational, integral, natural) numbers.
The set N of natural numbers does not contain zero. R

�
� (Q �

� , Z
�

�) denotes
the nonnegative real (rational, integral) numbers.

The rounding of real numbers x ∈ R
�

� is denoted by the notation bxc :=

max{ n ∈ N ∪ {0} : n ≤ x } and dxe := min{ n ∈ N : n ≥ x }.
By 2

� we denote the power set of a set S, which is the set of all subsets of
set S (including the empty set ∅ and S itself).

A.2 Sets and Multisets

A multiset Y over a ground set U, denoted by Y < U, can be defined as a multiset
mapping Y : U → N, where for u ∈ U the number Y(u) denotes the multi-
plicity of u in Y. We write u ∈ Y if Y(u) ≥ 1. If Y < U then X < Y denotes a
multiset over the ground set { u ∈ U : Y(u) > 0 }.

If Y < U and Z < U are multisets over the same ground set U, then we
denote by Y + Z their multiset union, by Y − Z their multiset difference and by multiset union

multiset differenceY ∩ Z their multiset intersection, defined for u ∈ U by

multiset
intersection

(Y + Z)(u) = Y(u) + Z(u)

(Y − Z)(u) = max{Y(u) − Z(u), 0}

(Y ∩ Z)(u) = min{Y(u), Z(u)}.

The multiset Y < U is a subset of the multiset Z < U, denoted by Y ⊆ Z,
if Y(u) ≤ Z(u) for all u ∈ U. For a weight function c : U → R the weight

158 APPENDIX A NOTATION

of a multiset Y < U is defined by c(Y) :=
∑

	 ∈ � c(u)Y(u). We denote the
cardinality of a multiset Y < U by |Y| :=

∑
	 ∈ � Y(u).

Any (standard) set can be viewed as a multiset with elements of multi-
plicity 0 and 1. If X and Y are two standard sets with X ⊆ Y and X 6= Y, then
X is a proper subset of Y, denoted by X ⊂ Y. Two subsets X � ⊆ Y, X � ⊆ Y of aproper subset
standard set Y form a partition of Y, if Y = X � ∪ X � and X � ∩ X � = ∅.

partition

A.3 Analysis and Linear Algebra

References: [Rud76]

A metric space (X, d) consists of a nonempty set X and a distance functionmetric space

distance function
or metric d : X × X→ R

�
� which satisfies the following three conditions:

metric (i) d(x, y) > 0 if x 6= y; d(x, x) = 0;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

Inequality (iii) is called the triangle inequality. An example of a metric spacetriangle inequality
is the set R

�
endowed with the Euclidean metric which for vectors x =

(x � , . . . , x�) ∈ R
�

and y = (y � , . . . , y�) ∈ R
�

is defined by

d(x, y) :=

(�
∑

� ���
(x � − y �)

�

) ��� �

.

This metric space is usually referred to as the Euclidean space.Euclidean space
A path in a metric space (X, d) is a continuous function γ : [0, 1]→ X. The

path
path γ is called rectifiable, if for all dissections 0 = t � < t � < · · · < t � = 1 of

rectifiable the interval [0, 1] the sum

�∑

� ���
d(γ(t �), γ(t � � �))

is bounded from above. The supremum of the sums, taken over all dissec-
tions, is then referred to as the length of the path γ.length

A.4 Growth of Functions

References: [CLR90, AHU74]

Let g be a function from N to N. The set O(g(n)) contains all those func-O(g(n))

A.5 PARTICULAR FUNCTIONS 159

tions f : N→ N with the property that there exist constants c > 0 and n � ∈ N

such that f(n) ≤ c · g(n) for all n ≥ n � . A function f belongs to the set
Ω(g(n)), if and only if g(n) ∈ O(f(n)). The notation f(n) ∈ Θ(g(n)) meansΩ(g(n))

Θ(g(n))
that f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)). Finally, we write f(n) ∈ o(g(n)),
if lim

� � �
f(n)/g(n) = 0. o(g(n))

A.5 Particular Functions

We use log � to denote the logarithm function to the basis of a. We omit the logarithm
basis in the case of a = 2 for the sake of convenience. By ln n we denote the
natural logarithm of a positive number n, that is, ln n := log � n. natural logarithm

A.6 Probability Theory

References: [Fel68, Fel71, MR95]

A probability space (Ω, F, Pr) consists of a σ-field (Ω, F) with a probability probability space
measure Pr defined on it. When specifying a probability space, F may be
omitted which means that the σ-field referred to is (Ω, 2

�

).
In this thesis we are mainly concerned with the case that Ω is either the

the set of real numbers R or an interval contained in R. In this context a
density function is a non-negative function p : R → R

�
� whose integral, ex- density function

tended over the real numbers, is unity, that is
∫ � �
� � p(x) dx = 1. The density

corresponds to the probability measure Pr, which satisfies

Pr [x ∈ (−∞, t]] =

∫ �

� �
p(x) dx.

A.7 Graph Theory

References: [Har72, AMO93]

A mixed graph G = (V, E, R) consists of a set V of vertices (or nodes), a mixed graph

vertices/nodes
set E of undirected edges, and a multiset R of directed arcs. We usually denote

undirected edges

directed arcs

by n := |V |, m � := |E| and m � := |R| the number of vertices, edges and arcs,
in G respectively. Throughout the thesis we assume that V , E, and R are all
finite. If R = ∅, we briefly write G = (V, E) and call G an undirected graph
(or simply graph) with vertex set V and edge set E. If E = ∅, we refer to
G = (V, R) as a directed graph with vertex set V and arc (multi-) set R. undi-

rected/directed
graph

160 APPENDIX A NOTATION

Each undirected edge is an unordered pair [u, v] of distinct vertices u 6=
v. The edge [u, v] is said to be incident to the vertices u and v. Each arc is anincident
ordered pair (u, v) of vertices which is incident to both u and v. We refer to
vertex u as the source of arc (u, v) and to vertex v as its target. The arc (u, v)source/target
emanates from vertex u and terminates at vertex v. An arc (u, v) is incident
to both vertices u and v. The arc (u, v) is an outgoing arc of node u and an
incoming arc of vertex v. We call two vertices adjacent, if there is an edge orincom-

ing/outgoing
arc

adjacent

an arc which is incident with both of them.
Two arcs are called parallel arcs if they refer to copies of the same ele-

parallel

ment (u, v) in the multiset R. Arcs (u, v) and (v, u) are termed anti-parallel

anti-parallel

or inverse. We write (u, v) �
�
:= (v, u) to denote an inverse arc to (u, v). For a

inverse

set R of arcs we denote by R � � the set R � � := { r �
�
: r ∈ R }.

Let G = (V, E, R) be a mixed graph. A graph H = (V
�
, E

�
, R

�
) is a

subgraph of G if V
�

⊆ V , E
�

⊆ E and R
�
⊆ R. For a multiset X < E + R

subgraph
we denote by G[X] the subgraph of G induced by X, that is, the subgraph of G

subgraph of G

induced by X

consisting of the arcs and edges in X together with their incident vertices. A
subgraph of G induced by vertex set X ⊆ V is a subgraph with node set X and
containing all those edges and arcs from G which have both endpoints in X.

For v ∈ V we let R� be the set of arcs in R emanating from v. The outdegree
outdegree

of a vertex v in G, denoted by deg
� �
(v), equals the number of arcs in G leav-

ing v. Similarly, the indegree deg � �
(v) is defined to be the number of arcs en-indegree

tering v. If X < R, we briefly write deg
��
(v) and deg ��

(v) instead of deg
� �

�
�

� (v)

and deg � �
�

�

� (v). The degree of a vertex v in an undirected graph G = (V, E) is
defined to be the number of edges incident with v.

A subset C of the vertices of an undirected graph G = (V, E) such that
every pair of vertices is adjacent is called a clique of size |C| in the graph G.clique
A graph G whose vertex set forms a clique is said to be a complete graph.

complete graph
A path P in an undirected graph G = (V, E) is defined to be an alternat-

path ing sequence p = (v � , e � , v � , . . . , e � , v � � �) of nodes v � ∈ V and edges e � ∈ E,
where for each triple (v � , e � , v � � �) we have e � = (v � , v � ���). We use equiva-
lently the alternative notation P = (v � , v � , . . . , v � ���) and P = (e � , e � , . . . , e �)

when the meaning is clear. For directed graphs G = (V, R), edges are re-
placed by arcs, and we require r � = (v � , v � ���) and r � ∈ R∪R � � for each triple.
If the stronger condition r � ∈ R holds, the path is called directed.

For mixed graphs, we define a walk which traverses arbitrarily edges andwalk
directed arcs. An oriented walk is a “directed version” of a walk in the senseoriented walk
that for any two consecutive vertices v � and v � ��� we require that either x � is
an undirected edge [v � , v � ���] between v � and v � ��� or a directed arc (v � , v � ���)

from v � to v � � � .
If all nodes of the path or walk are pairwise different (without consider-

ing the pair v � , v � � �), the path or walk is called simple. A path or walk with
coincident start and endpoint is closed. A closed and simple path or walk

A.8 THEORY OF COMPUTATION 161

is a cycle. An Eulerian cycle in a directed graph G = (V, R) is a directed cy- cycle

Eulerian cycle
cle which contains (traverses) every arc from R exactly once. The directed
graph G is called Eulerian if it contains an Eulerian cycle. A Hamiltonian path
Hamiltonian cycle) is a simple path (cycle) which touches every vertex in a Hamiltonian

path/cycledirected (or undirected) graph.
A mixed graph G = (V, E, R) is connected (strongly connected), if for every connected

strongly connected
pair of vertices u, v ∈ V with u 6= v there is an walk (oriented walk) from u

to v in G. A (strongly) connected subgraph of G which is maximal with
respect to set inclusion is called (strongly) connected component of G.

A tree is a connected graph that contains no cycle. A node in a tree is tree
called a leaf if its degree equals 1, and an inner node otherwise. A spanning leaf

inner node
tree of a graph G is a tree which has the same vertex set as G.

A Steiner tree with respect to a subset K of the vertices of an undirected
graph G, is a tree which is a subgraph of G and whose vertex set includes K.
The vertices in K are called terminals.

A directed in-tree rooted at o ∈ V is a subgraph of a directed graph H =

(V, A) which is a tree and which has the property that for each v ∈ V it
contains a directed path from v to o.

Additional definitions to the basic ones presented above will be given in
the respective contexts.

A.8 Theory of Computation

References: [GJ79, Pap94, GLS88, CLR90]

Model of Computation

The Turing machine [GJ79] is the classical model of computation that was Turing machine
used to define the computational complexity of algorithms. However, for
practical purposes it is fairly more convenient to use a different model. In
the random access machine or RAM model [Pap94, MR95] we have a machine RAM model
which consists of an infinite array of registers, each capable of containing
an arbitrarily large integer, possibly negative. The machine is capable of
performing the following types of operations involving registers and main
memory: input-output operations, memory-register transfers, indirect ad-
dressing, arithmetic operations and branching. The arithmetic operations
permitted are addition, subtraction, multiplication and division of numbers.
Moreover, the RAM can compare two numbers and evaluate the square root
of a positive number.

There are two types of RAM models used in literature. In the log-cost
RAM the execution time of each instruction takes time proportional to log-cost RAM
the encoding length, i.e. proportional to the logarithm of the size of its

162 APPENDIX A NOTATION

operands, whereas in the unit-cost RAM each instruction can be accom-unit-cost RAM
plished in one time step. A log-cost RAM is equivalent to the Turing ma-
chine under a polynomial time simulation [Pap94]. In contrast, in general
there is no polynomial simulation for a unit-cost RAM, since in this model
we can compute large integers too quickly by using multiplication. How-
ever, if the encoding lengths of the operands occurring during the run of
an algorithm on a unit-cost RAM are bounded by a polynomial in the en-
coding length of the input, a polynomial time algorithm on the unit-cost
RAM will transform into a polynomial time algorithm on a Turing machine
[GLS88, Pap94]. This argument remains valid in the case of nondeterminis-
tic programs.

For convenience, we will use the general unit-cost RAM to analyze the
running time of our algorithms. This does not change the essence of our
results, because the algorithms in which we are interested involve only op-
erations on numbers that are not significantly larger than those in the input.

Computational Complexity

Classical complexity theory expresses the running time of an algorithm in
terms of the “size” of the input, which is intended to measure the amount of
data necessary to describe an instance of a problem. The running time of an
algorithm on a specific input is defined to be the sum of times taken by each
instruction executed. The worst case time complexity or simply time complexityworst case time

complexity of an algorithm is the function T(n) which is the maximum running time
taken over all inputs of size n (cf. [AHU74, GJ79, GLS88]).

An alphabet Σ is a nonempty set of characters. By Σ∗ we denote the setalphabet
of all strings over Σ including the empty word. We will assume that every
problem Π has an (encoding independent) associated function length : D � →
N, which is polynomially related to the input lengths that would result from
a “reasonable encoding scheme”. Here, D � ⊆ Σ∗ is the set of instances of theencoding scheme
problem Π, expressed as words over the alphabet Σ. For a more formal treat-
ment of the input length and also of the notion of a “reasonable encoding
scheme” we refer to [GJ79].

A decision problem is a problem where each instance has only one of twodecision problem
outcomes from the set {yes, no}. For a nondecreasing function f : N → N

the deterministic time complexity class DTIME(f(n)) consists of the decisionDTIME(f(n))

problems for which there exists a deterministic Turing machine deciding
the problem in O(f(n)) time. Its nondeterministic counterpart NTIME(f(n))NTIME(f(n))

is defined analogously. The most important complexity classes with respect
to this thesis are

P :=

�
⋃

� ���
DTIME(n

�
) and NP :=

�
⋃

� ���
NTIME(n

�
) .

A.8 THEORY OF COMPUTATION 163

Suppose we are given two decision problems Π and Π ′. A polynomial
time transformation is an algorithm t which, given an encoded instance I of polynomial time

transformationΠ, produces in polynomial time an encoded instance t(I) of Π ′ such that the
following holds: For every instance I of Π, the answer to Π is “yes” if and
only if the answer to the transformation t(I) (as an instance of Π ′) is “yes”. A
decision problem Π is called NP-complete if Π ∈ NP and every other decision NP-complete
problem in NP can be transformed to Π in polynomial time.

To tackle also optimization problems rather than just decision problems
it is useful to extend the notion of a transformation between problems. In-
formally, a polynomial time Turing reduction (or just Turing reduction) from a polynomial time

Turing reductionproblem Π to a problem Π ′ is an algorithm ALG, which solves Π by using a
hypothetical subroutine ALG’ for solving Π ′ such that if ALG’ were a polyno-
mial time algorithm for Π ′, then ALG would be a polynomial time algorithm
for Π. More precisely, a polynomial time Turing reduction from Π to Π ′

is a deterministic polynomial time oracle Turing machine (with oracle Π ′)
solving Π.

An optimization problem Π is called NP-hard (“at least as difficult as NP-hard
any problem in NP”), if there is an NP-complete decision problem Π ′ such
that Π ′ can be Turing reduced to Π. Results from complexity theory (see
e.g. [GJ79]) show that such an NP-hard optimization problem can not be
solved in polynomial time unless P = NP.

Bibliography

[ABF96] B. Awerbuch, Y. Bartal, and A. Fiat, Distributed paging for general networks, Pro-
ceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,
1996, pp. 574–583.

[AC � 86] F. Afrati, C. Cosmadakis, C. Papadimitriou, G. Papageorgiou, and N. Pa-
pakostantinou, The complexity of the traveling repairman problem, Informatique
Theorique et Applications 20 (1986), no. 1, 79–87.

[AC � 99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi, Complexity and approximation. combinatorial optimization problems and
their approximability properties, Springer, 1999.

[ACM98] S. Albers, M. Charikar, and M. Mitzenmacher, Delayed information and action in
on-line algorithms, Proceedings of the 30th Annual ACM Symposium on the The-
ory of Computing, 1998, pp. 416–425.

[Ada96] S. Adams, The Dilbert principle, HarperCollins, New York, 1996.

[AF � 94] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo, Serving request
with on-line routing, Proceedings of the 4th Scandinavian Workshop on Algo-
rithm Theory, Lecture Notes in Computer Science, vol. 824, July 1994, pp. 37–48.

[AF � 95] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo, Competitive
algorithms for the traveling salesman, Proceedings of the 4th Workshop on Algo-
rithms and Data Structures, Lecture Notes in Computer Science, vol. 955, Au-
gust 1995, pp. 206–217.

[AF � 01] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo, Algorithms for
the on-line traveling salesman, Algorithmica 29 (2001), no. 4, 560–581.

[AG � 98] N. Ascheuer, M. Grötschel, S. O. Krumke, and J. Rambau, Combinatorial online op-
timization, Proceedings of the International Conference of Operations Research
(OR’98), Springer, 1998, pp. 21–37.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer
algorithms, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts,
1974.

166 BIBLIOGRAPHY

[AK88] M. J. Atallah and S. R. Kosaraju, Efficient solutions to some transportation problems
with applications to minimizing robot arm travel, SIAM Journal on Computing 17
(1988), no. 5, 849–869.

[AK99] S. Arora and G. Karakostas, Approximation schemes for minimum latency problems,
Proceedings of the 31st Annual ACM Symposium on the Theory of Computing,
1999, pp. 688–693.

[AKR00] N. Ascheuer, S. O. Krumke, and J. Rambau, Online dial-a-ride problems: Mini-
mizing the completion time, Proceedings of the 17th International Symposium on
Theoretical Aspects of Computer Science, Lecture Notes in Computer Science,
vol. 1770, Springer, 2000, pp. 639–650.

[Alb93] S. Albers, The influence of lookahead in competitive paging algorithms, Proceedings
of the 1st Annual European Symposium on Algorithms, Lecture Notes in Com-
puter Science, vol. 726, Springer, 1993, pp. 1–12.

[Alb97] S. Albers, Better bounds for online scheduling, Proceedings of the 24th Annual
ACM Symposium on the Theory of Computing, 1997, pp. 130–139.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Networks flows, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1993.

[BC � 94] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Su-
dan, The minimum latency problem, Proceedings of the 26th Annual ACM Sym-
posium on the Theory of Computing, 1994, pp. 163–171.

[BDB � 94] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson, On the power
of randomization in on-line algorithms, Algorithmica 11 (1994), 2–14.

[BEY98] A. Borodin and R. El-Yaniv, Online computation and competitive analysis, Cam-
bridge University Press, 1998.

[BI � 91] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality
of reference, Proceedings of the 23th Annual ACM Symposium on the Theory of
Computing, 1991, pp. 249–259.

[BI � 95] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality
of reference, Journal of Computer and System Sciences 50 (1995), 244–258.

[BK � 96] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson, Adver-
sarial queueing theory, Proceedings of the 23rd Annual ACM Symposium on the
Theory of Computing, 1996, pp. 376–385.

[BK � 01] M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie, The online-TSP against
fair adversaries, Informs Journal on Computing 13 (2001), no. 2, 138–148, A pre-
liminary version appeared in the Proceedings of the 4th Italian Conference on

BIBLIOGRAPHY 167

Algorithms and Complexity, 2000, vol. 1767 of Lecture Notes in Computer Sci-
ence.

[Bro79] D. J. Brown, A lower bound for on-line one-dimensional bin packing algorithms, Tech-
nical Report R-864, Coodinated Science Lab, University of Illinous at Urbana-
Champaign, 1979.

[CGJ97] E. G. Coffman, M. R. Garey, and D. S. Johnson, Approximation algorithms for bin
packing: a survey, In Hochbaum [Hoc97].

[Chr76] N. Christofides, Worst-case analysis of a new heuristic for the traveling salesman
problem, Tech. report, Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, PA, 1976.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms, MIT
Press, 1990.

[CP � 96] S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein,
Improved scheduling algorithms for minsum criteria, Proceedings of the 23rd In-
ternational Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science, vol. 1099, Springer, 1996, pp. 646–657.

[CR98] M. Charikar and B. Raghavachari, The finite capacity dial-A-ride problem, Proceed-
ings of the 39th Annual IEEE Symposium on the Foundations of Computer Sci-
ence, 1998.

[CVW97] B. Chen, A. P. A. Vestjens, and G. J. Woeginger, On-line scheduling of two-machine
open shops where jobs arrive over time, Journal of Combinatorial Optimization 1
(1997), 355–365.

[CW98] J. Csirik and G. J. Woeginger, On-line packing and covering problems, In Fiat and
Woeginger [FW98].

[DGS98] D. R. Dooley, S. A. Goldman, and S. D. Scott, TCP dynamic acknowledgement delay:
Theory and practice, Proceedings of the 30th Annual ACM Symposium on the
Theory of Computing, 1998, pp. 389–398.

[dP01] W. E. de Paepe, Personal communication, June 2001.

[DST87] M. Dror, H. Stern, and P. Trudeau, Postman tour on a graph with precedence relation
on the arcs, Networks 17 (1987), 283–294.

[EN � 99] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger, Randomized on-line
scheduling on two uniform machines, Proceedings of the 10th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1999, pp. 317–326.

168 BIBLIOGRAPHY

[Fel68] W. Feller, An introduction to probability theory and its applications, 3 ed., vol. 1, John
Wiley & Sons, Inc., 1968.

[Fel71] W. Feller, An introduction to probability theory and its applications, 2 ed., vol. 2, John
Wiley & Sons, Inc., 1971.

[FG93] G. N. Frederickson and D. J. Guan, Nonpreemptive ensemble motion planning on a
tree, Journal of Algorithms 15 (1993), no. 1, 29–60.

[FHK78] G. N. Frederickson, M. S. Hecht, and C. E. Kim, Approximation algorithms for some
routing problems, SIAM Journal on Computing 7 (1978), no. 2, 178–193.

[FS01] E. Feuerstein and L. Stougie, On-line single server dial-a-ride problems, Theoretical
Computer Science (2001), To appear.

[FW98] A. Fiat and G. J. Woeginger (eds.), Online algorithms: The state of the art, Lecture
Notes in Computer Science, vol. 1442, Springer, 1998.

[GH � 99] M. Grötschel, D. Hauptmeier, S. O. Krumke, and J. Rambau, Simulation studies
for the online dial-a-ride problem, Preprint SC 99-09, Konrad-Zuse-Zentrum für
Informationstechnik Berlin, March 1999.

[GH � 00] M. Grötschel, D. Hauptmeier, S. O. Krumke, and J. Rambau, Simulation stud-
ies for the online control of an automated pallet transportation system, Presented at
Odysseus 2000 First International Workshop on Freight Transportation and Lo-
gistics, Chania, Crete, Grece, May 2000, 2000.

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability (a guide to the theory
of NP-completeness), W.H. Freeman and Company, New York, 1979.

[GK96] M. Goemans and J. Kleinberg, An improved approximation ratio for the minimum
latency problem, Proceedings of the 7th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 1996, pp. 152–158.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial
optimization, Springer-Verlag, Berlin Heidelberg, 1988.

[Glü00] B. Glück, Online-Steuerungen automatischer Transportsysteme bei vertretbarer Belas-
tung, Diplomarbeit, Technische Universität Berlin, 2000, in German.

[Gra66] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical
Journal 45 (1966), 1563–1581.

[Gra69] Ronald L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on
Applied Mathematics 17 (1969), 263–269.

[Gua98] D. J. Guan, Routing a vehicle of capacity greater than one, Discrete Applied Mathe-
matics 81 (1998), no. 1, 41–57.

BIBLIOGRAPHY 169

[Har72] F. Harary, Graph theory, Addison-Wesley Publishing Company, Inc., 1972.

[Hau99] D. Hauptmeier, Online algorithms for industrial transport systems, Diplo-
marbeit, Technische Universität Berlin, 1999, available for download at�����������	��
�
�
�
�������
���������� �!�"�$#$% �&�(')��#*��+,�-�".��$#(���!���-'/�102�,3�+-����04
��5��6 .

[HK � 99] D. Hauptmeier, S. O. Krumke, J. Rambau, and H.-C. Wirth, Euler is standing in
line, Proceedings of the 25th International Workshop on Graph-Theoretic Con-
cepts in Computer Science, Ascona, Switzerland, Lecture Notes in Computer
Science, vol. 1665, Springer, June 1999, Journal version to appear in Discrete Ap-
plied Mathematics, pp. 42–54.

[HKR00] D. Hauptmeier, S. O. Krumke, and J. Rambau, The online dial-a-ride problem
under reasonable load, Proceedings of the 4th Italian Conference on Algorithms
and Complexity, Lecture Notes in Computer Science, vol. 1767, Springer, 2000,
pp. 125–136.

[HKR01] D. Hauptmeier, S. O. Krumke, and J. Rambau, The online dial-a-ride problem un-
der reasonable load, Theoretical Computer Science (2001), A preliminary version
appeared in the Proceedings of the 4th Italian Conference on Algorithms and
Complexity, 2000, vol. 1767 of Lecture Notes in Computer Science.

[Hoc97] D. S. Hochbaum (ed.), Approximation algorithms for NP-hard problems, PWS Pub-
lishing Company, 20 Park Plaza, Boston, MA 02116–4324, 1997.

[Höf01] A. Höft, Online-Optimierung einer halbautomatischen Glückwunschkarten-
Kommissionierungsanlage, Diplomarbeit, Technische Universität Berlin, 2001, in
German.

[HS � 97] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, Scheduling to minimize aver-
age completion time: Off-line and on-line approximation algorithms, Mathematics of
Operations Research 22 (1997), 513–544.

[HSW96] L. Hall, D. B. Shmoys, and J. Wein, Scheduling to minimize average completion time:
Off-line and on-line algorithms, Proceedings of the 7thAnnual ACM-SIAM Sym-
posium on Discrete Algorithms, 1996, pp. 142–151.

[HT84] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors,
SIAM Journal on Computing 13 (1984), no. 2, 338–355.

[IKP92] S. Irani, A. Karlin, and S. Phillips, Strongly competitive algorithms for paging with
locality of reference, Proceedings of the 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms, 1992, pp. 228–236.

[Joh74] D. S. Johnson, Fast algorithms for bin packing, Journal of Computer and System
Sciences 8 (1974), 272–314.

170 BIBLIOGRAPHY

[Joh01] D. S. Johnson, A theoretician’s guide to the experimental anal-
ysis of algorithms, Preliminary partial draft available at URL:�����������	��
�
�

 � ��#$��3�� % ��
 3�����
 %��10 �

∼
�-# � ��� 3��5�(� #
 ����0 '

, 2001.

[JRR95] M. Jünger, G. Reinelt, and G. Rinaldi, Network Models, Handbooks in Opera-
tions Research and Management Science, ch. The traveling salesman problem,
Handbooks in Operations Research and Management Science, Elsevier Science
B. V., 1995.

[KdP � 01a] S. O. Krumke, W. E. de Paepe, D. Poensgen, and L. Stougie, News from the online
traveling repairman, Proceedings of the 26th International Symposium on Mathe-
matical Foundations of Computer Science, Lecture Notes in Computer Science,
vol. 2136, 2001, pp. 487–499.

[KdP � 01b] S. O. Krumke, W. E. de Paepe, L. Stougie, and J. Rambau, Online bincoloring,
Proceedings of the 9th Annual European Symposium on Algorithms, Lecture
Notes in Computer Science, vol. 2161, 2001, pp. 74–84.

[KM � 88] A. Karlin, M. Manasse, L. Rudolph, and D. D. Sleator, Competitive snoopy caching,
Algorithmica 3 (1988), 79–119.

[KP94] E. Koutsoupias and C. Papadimitriou, Beyond competitive analysis, Proceedings
of the 35th Annual IEEE Symposium on the Foundations of Computer Science,
1994, pp. 394–400.

[KRW00] S. O. Krumke, J. Rambau, and S. Weider, An approximation algorithm for the non-
preemptive capacitated dial-a-ride problem, Preprint 00-53, Konrad-Zuse-Zentrum
für Informationstechnik Berlin, March 2000.

[KTW96] H. Kellerer, Th. Tautenhahn, and G. J. Woeginger, Approximability and nonapprox-
imability results for minimizing total flow time on a single machine, Proceedings of
the 28th Annual ACM Symposium on the Theory of Computing, 1996, pp. 418–
426.

[Lia80] F. M. Liang, A lower bound for online bin packing, Information Processing Letters
10 (1980), 76–79.

[Lip99] M. Lipmann, The online traveling salesman problem on the line, Master’s thesis, De-
partment of Operations Research, University of Amsterdam, The Netherlands,
1999.

[LL74] J. W. S. Liu and C. L. Liu, Performance analysis of heterogenous multi-processor com-
putign systems, Computer architectures and networks (E. Gelenbe and R. Mahl,
eds.), North Holland, 1974, pp. 331–343.

BIBLIOGRAPHY 171

[Mot92] R. Motwani, Lecture notes on approximation algorithms: Volume I, Tech. Report CS-
TR-92-1435, Department of Computer Science, Stanford University, Stanford,
CA 94305-2140, 1992.

[MR95] R. Motwani and P. Raghavan, Randomized algorithms, Cambridge University
Press, 1995.

[Pap94] C. M. Papadimitriou, Computational complexity, Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1994.

[PK95] K. Pruhs and B. Kalyanasundaram, Speed is as powerful as clairvoyance, Proceed-
ings of the 36th Annual IEEE Symposium on the Foundations of Computer Sci-
ence, 1995, pp. 214–221.

[PS � 97] C. Phillips, C. Stein, E. Torng, and J. Wein, Optimal time-critical scheduling via
resource augmentation, Proceedings of the 29th Annual ACM Symposium on the
Theory of Computing, 1997, pp. 140–149.

[Ric91] M. B. Richey, Improved bounds for harmonic-based bin packing algorithms, Discrete
Applied Mathematics 34 (1991), 203–227.

[Rud76] W. Rudin, Principles of mathematical analysis, 3 ed., McGraw Hill, 1976.

[Sei00] S. Seiden, A guessing game and randomized online algorithms, Proceedings of the
32nd Annual ACM Symposium on the Theory of Computing, 2000, pp. 592–601.

[Sei01] S. Seiden, On the online bin packing problem, Proceedings of the 28th Interna-
tional Colloquium on Automata, Languages and Programming, Lecture Notes
in Computer Science, Springer, 2001.

[ST85] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules,
Communications of the ACM 28 (1985), no. 2, 202–208.

[SV88] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification and
parallelization, SIAM Journal on Computing 17 (1988), no. 6, 1253–1262.

[SWW95] D. B. Shmoys, J. Wein, and D. P. Williamson, Scheduling parallel machines on-line,
SIAM Journal on Computing 24 (1995), no. 6, 1313–1331.

[Tar77] R. E. Tarjan, Finding optimum branchings, Networks 7 (1977), 25–35.

[Vaz01] V. Vazirani, Approximation algorithms, Springer, 2001.

[Ves94] A. P. A. Vestjens, On-line machine scheduling, Ph.D. thesis, Eindhoven University
of Technology, Eindhoven, The Netherlands, 1994.

[Wei00] S. Weider, Steuerung von Mehrplatz-Aufzügen, Master’s thesis, Technische Uni-
versität Berlin, 2000.

Index

If there is more than one reference, the page number in boldface refers to the definition of the
entry.

Symbols
� � . 157�

���
� � . 101

≺ (source-order) . 99
b � c and d � e . 157
< (multiset) . 157
⊂, ⊆ . 158
ALG �

�
� , ALG

� �
� . 10� � � � , � � � � . 125� ��� � , � � � � . 21

� max . 25
� �

max . 25
deg

� � � � � , deg
	 � � � � . 160

�
-reasonable . 68

¯� � � � . 67� � � � � -reasonable . 68, 70
DTIME, NTIME . 163

��� . 97
� avg

� � � . 64
� max

� � � . 64
� � � � . 22�
∗ � � � � �

�
� . 29

LBflow . 134
log � . 159
˜
�
∗ � � � � �

�
� . 40� � . 130�

. 157
NTIME, DTIME . 163

� (origin) . 20
O � � � � � � ,

� � � � � � � , �
� � � � � � , 	 � � � � � � 159

OPT see optimal offline cost
OPT
 o

max

� � � . 67�
,
� �

,
� �� . 157�

,
� �

,
� �� . 157� -approximative . 17� offline . 67

�
	 �

. 160
� � . 160�
≤ � ,

�
 � ,
���

� . 21� � � � � � . 65� � � � � . 82
� � � � . 21	 � � � � � � , O � � � � � � ,

� � � � � � � , �
� � � � � � 159� 	 � � � . 160

� 	 � � � . 160� 	 � � � 	 � . 160

A
access graph . 16
adaptive adversary . 13

offline . 13
online . 13

adjacent . 160
adversary . 3, 12, 15

adaptive � . 13
offline . 13
online . 13

diffuse � . 16
fair � 6, 16, 47, 53, 52–61
oblivious � 12, 13–15, 28, 40, 65, 66, 81,

83, 86–88, 92, 152
statistical � . 16

ALG-COMBINE . 112, 112
ALG-COMBINE-T 113, 113–115
ALG-LA . 111, 110–112
ALG-LA-T . 113, 113–114
ALG-PATH . 106, 105–108
ALG-TSP . 108–109, 110
algorithm

approximation � 5, 17, 20, 34, 35,
37, 43, 64, 68, 70, 72, 82, 108–115,
124–135

competitive � 3, 12, 13
online � 2, 10, 12, 13
optimal offline � . 3
zealous � 49, 48–50, 55

alphabet . 162
analysis, competitive 3, 11–15
anti-parallel arcs . 160
approximation� algorithm . 5, 17, 20, 34, 35, 37, 43, 64,

68, 70, 72, 82, 108–115, 124–135� ratio . 5, 17
approximative . 17
arc

anti-parallel � s 160
directed � . 160
incoming � . 160
inverse � . 160
outgoing � . 160
parallel � s . 160
source of an � . 160
target of an � . 160

average flow time 63, 64, 66, 70, 72, 73

B
backbone of a caterpillar graph 115
balanced, degree- � 97, 106, 107, 111, 116, 117
balancing

load � . 17� set . 101, 102, 110
behavioral strategy . 10
bin � coloring problem, online . see OLBCP

index of a �140, 149� packing problem 138
BIPARTITE-STP . 116
bound

flow � . 134, 135
load � . 67, 68, 74

C
C-configuration 147, 147, 148, 152
card, greeting . 137
caterpillar graph 115, 121

backbone of a � 115
foot of a � . 115
hair of a � . 115

CDARP . 97, 124, 123–136
Chinese postman problem 96
Christofides’ algorithm 37, 109, 112
clique . 160
closed� makespan. 19, 25, 48, 118� path . 161� transportation schedule 21, 22� walk . 161
� max-OLDARP . 25, 39–44
� �

max-OLDARP 25, 27–39, 47, 48, 81
comparative� analysis . 15� ratio. 15
competitive� algorithm. 3, 12, 13� analysis . 3, 11–15� deterministic online algorithm. . . . 12� randomized online algorithm. 13� ratio. 12
complete graph . 160
completion time.64, 81, 82

sum of � s . 82
complexity classes . 163

174 INDEX

component, connected 106, 161
connected� and smooth metric space 20, 24� component 106, 161� graph . 161

strongly � graph. 107, 161
cost-OLDARP . 23
cover . 125
covering requests, number of 130
cut . 101
cycle . 161

≺-respecting Eulerian � . . 100, 102–105
Eulerian � 7, 95, 98, 161
Hamiltonian � 109, 161

D
DARP 95, 98, 98, 115, 123, 126
DARPopen . 118
degree . 160� -balanced . . 97, 106, 107, 111, 116, 117
�

-reasonable . 68� � � � � -reasonable . 68, 70
density function 83, 85, 159
deterministic� approximation algorithm 17� online algorithm 10, 12
dial-a-ride problem

offline � see DARP, SOURCE-DARP,
CDARP

online � . see OLDARP, � �max-OLDARP,
� max-OLDARP,

� � � � � -
OLDARP, � max-OLDARP, � avg-
OLDARP

diffuse adversary . 16
directed� arc . 160� graph . 159� in-tree 103, 105–107, 110, 161� path . 160
distribution

probability � . . 10, 13–16, 28, 65, 83, 86,
152

uniform � . 38, 91
downward requests . 124

E
edge, undirected . 160
element, maximal 103, 104, 107
elevator . 119, 123
encoding scheme . 162
end � point of a transportation schedule 22� time of a transportation schedule . 22
essential vertex . 100, 107
Euclidean� metric 28, 47, 49, 158� space . 20, 158
Eulerian

≺-respecting � cycle 100, 102–105� cycle 7, 95, 98, 161� graph 98, 101, 161

F
fair adversary 6, 16, 47, 53, 52–61

� avg-OLDARP . 65, 65–78
FIFO . 95
FIND-AND-PASTE 125, 126
FIND-DOWN-ARCS . 125
FIND-UP-ARCS . 125, 127
first-in-first-out . 95
flow � bound . 134, 135� time . 63, 64, 72

average ≈ 63, 64, 66, 70, 72, 73
maximal ≈ 63, 64, 69–78
sum of � s . 65

� max-OLDARP .65, 65–78
foot of a caterpillar graph 115
Fubini’s Theorem . 15

G
general strategy . 10
graph . 159

≺-Eulerian � 100, 102–105
caterpillar � 115, 121
complete � . 160
connected � . 161
directed � . 159
Eulerian � 98, 101, 161
mixed � . 159
undirected � . 159

GREEDY-INTERVAL . 88
GREEDYFIT 138, 140, 140–145, 153
greeting card . 137, 153

H
hair of a caterpillar graph 115
Hamiltonian� cycle . 109, 161� path . 31, 41, 161
HARMONIC � 1 . 139
HARMONIC � � . 139

I
IGNORE . . . 19, 27, 29, 32–33, 40, 42, 66, 68–71
in-tree, directed 103, 105–107, 110, 161
incident . 160
incoming arc . 160
indegree . 160
index of a bin . 140, 149
induced subgraph 109, 160
inequality, triangle 31, 36, 41, 96, 101, 158
inner node . 161
integer numbers . 157
INTERVAL . 88, 88–91
inverse arc . 160

K
� - � �max-OLDARP . 33, 37
� -OLDARP . 26

L
last arcs, set of .103, 107
latency . 81, 82
leaf . 161
length of a transportation schedule 22
LIST . 18

load � balancing . 17� bound . 67, 68, 74
reasonable � 16, 63, 66–78

logarithm . 159
natural � . 159

M
machine scheduling 19, 20, 26–27, 37
makespan . 3, 19, 25

closed � 19, 25, 48, 118
non-closed � 19, 118

maximal� element 103, 104, 107� flow time 63, 64, 69–78
metric

Euclidean � 28, 47, 49, 158� space5, 7, 19, 20, 23, 26, 27, 29, 33, 40,
44, 47, 49, 81, 83, 86, 95, 97, 115,
123, 158

connected and smooth ≈ 20, 24
≈ induced by a graph 20, 115
path in a ≈ 20, 24, 158

mixed� graph . 159� strategy . 10
model

sequence � . 2, 9
time stamp � . 2, 9

move, transportation . 22
MRIN . 51, 55
multiset . 96, 157

N
natural� logarithm . 159� numbers . 157
NEXTFIT . 139
non-closed makespan 19, 118
NP-completeness . 17, 163
NP-hardness . 163
NP and P . 163
number of covering requests 130
numbers . 157

O
objective function . 24� for OLDARP . 23
oblivious adversary . 12, 13–15, 28, 40, 65, 66,

81, 83, 86–88, 92, 152
offline� dial-a-ride problem see DARP,

SOURCE-DARP, CDARP� instance 29, 37, 70� version of a request.67
offline cost, optimal . 3, 11
OLBCP . 139, 137–153
OLBCP ����� . 139
OLDARP . 20, 19–23

objective function for � 23
OLTRP . 81, 82, 87–92
OLTSP 5, 20, 22, 25, 25, 27, 28, 34, 37, 40,

47–61
ONEBIN 138, 145, 145–147, 153
online

175

� bin coloring problem see OLBCP� dial-a-ride problem see
OLDARP, � �max-OLDARP,
� max-OLDARP,

� � � � � -
OLDARP, � max-OLDARP, � avg-
OLDARP� player. 3, 12� traveling repairman problem see
OLTRP� traveling salesman problem see
OLTSP

online algorithm . 2, 10
competitive deterministic � 12
competitive randomized � 13
deterministic � 10, 12
randomized � . 10

OPT see optimal offline cost
optimal� offline algorithm 3� offline cost . 3, 11
OPTIMAL . 20
order, source � . 95, 99
oriented walk . 160
origin . 20
outdegree. 160
outgoing arc . 160

P
paging problem . 10, 15
P and NP . 163
parallel arcs. 160
partition . 158
path . 160

closed � . 161
directed � . 160
Hamiltonian � 31, 41, 161� in a metric space 20, 24, 158
rectifiable � . 24, 158
simple � . 123, 161

PENALTY-SOURCE-DARP 119, 119–121
performance . 17� ratio. 17
pigeon-hole principle 140
player, online . 3, 12
polynomial time� transformation 163� Turing reduction 163
postman, Chinese � problem 96
power set . 157
preemption . 21
prefix of a transportation schedule 24
probability� measure. 159� space . 159
probability distribution . 10, 13–16, 28, 65, 83,

86, 152
pure strategy . 10

Q
queuing theory . 64

R
RAM . 161

RANDINTERVAL . 91–92
random access machine 161
randomized� approximation algorithm 17� online algorithm 10
RANDSLEEP . 38, 38–39
ratio

approximation � 5, 17
comparative � . 15
competitive � . 12
performance � . 17

rational numbers . 157
real numbers . 157
real-time problem . 4
reasonable� load. 16, 63, 66–78� request sequence 68
rectifiable path . 24, 158
reduction

polynomial time Turing � 163
release� span . 67� time . 2, 21
REOPT . 20
repairman . 81
REPLAN . 4, 19, 29, 30–32, 40–42, 66, 73, 73–75
REPLAN � avg . 75, 75–77
REPLAN � max . 75, 77–78
request

downward � s . 124
offline version of a � 67
release time of a � 21� sequence . 2, 10� sequence, reasonable 68
source of a � . 21
target of a � . 21
upward � s . 124

request-answer game 9, 11, 23, 24
resource augmentation 16, 138, 153� -approximative . 17

S
schedule, transportation. 21, 22, 24
scheduling, machine 19, 20, 26–27, 37
segment . 125
sequence model . 2, 9, 18
set

balancing � 101, 102, 110
multiset . 157� of last arcs 103, 107
power � . 157
proper subset . 158

simple� path . 123, 161� walk . 161
SMARTSTART 19, 27, 34, 33–38, 40, 43, 66,

71–72
source� -order . 95, 99� of a request . 21� of an arc . 160
SOURCE-DARP99, 95–121, 123, 126
SOURCE-DARPopen . 118
space

Euclidean � . 20, 158
metric � 5, 7, 19, 20, 23, 26, 27, 29,

33, 40, 44, 47, 49, 81, 83, 86, 95, 97,
115, 123, 158

connected and smooth 20, 24
spanning tree . 161
stacker-crane-problem 96
starting� point of a transportation schedule 22� time of a transportation schedule . 22
statistical adversary . 16
Steiner tree . 116, 161
strategy

behavioral � . 10
general � . 10
mixed � . 10
pure � . 10

strongly connected 107, 161
subgraph . 160

induced � . 109, 160
sum � of completion times 82

� of flow times . 65� � � � � -OLDARP 81, 82, 83–92

T
target� of a request . 21� of an arc . 160
TCP acknowledgment 11
time

average flow � 63, 64, 66, 70, 72, 73
completion � 64, 81, 82
flow � . 72
maximal flow � 63, 64, 69–78

time stamp model . 2, 9
transformation, polynomial time 163
transportation� move. 22� schedule 21, 22, 24

closed ≈ . 21, 22
end point of a ≈ 22
end time of a ≈ 22
length of a ≈ . 22
prefix of a ≈ . 24
starting point of a ≈ 22
starting time of a ≈ 22

traveling� repairman problem see TRP

online ≈ see OLTRP� salesman problem see TSP

online ≈ see OLTSP

tree . 161
spanning � . 161
Steiner � . 116, 161

triangle inequality 31, 36, 41, 96, 101, 158
triviality barrier . 15
TRP . 81
TSP . 25, 96, 108, 109, 113
Turing� machine . 161, 162

� reduction . 163

176 INDEX

U
undirected� edge . 160� graph . 159
uniform distribution 38, 91
upward requests . 124

V
vertex . 159

essential � . 100, 107

W
walk . 160

closed � . 161
cost of a � . 97
oriented � . 160
simple � . 161

work-or-sleep 34, 34, 35, 37, 43, 71
WS . 58, 58–60

Y
Yao’s Principle . . 14, 15, 28, 40, 65, 83, 86–88,

152

Z
zealous algorithm 49, 48–50, 55

	Introduction
	Preliminaries
	What is an Online Problem?
	Competitive Analysis
	Extensions of Competitive Analysis
	Offline Computation and Approximation Algorithms

	Minimizing the Makespan in Online-Dial-a-Ride Problems
	Single-Server Dial-a-Ride-Problems
	Problem Definition
	Application to Machine Scheduling
	Lower Bounds
	Two Simple Strategies
	A Best-Possible Online-Algorithm
	A Simple Randomized Algorithm
	Extension to the Non-Closed Makespan
	Remarks

	Competing with a Fair Adversary in the Online-TSP
	Problem Definition
	Zealous Algorithms
	The Online-TSP on the Non-Negative Part of the Real Line
	Fair Adversaries
	Remarks

	Minimizing Flow Times and Waiting Times
	Problem Definition
	Lower Bounds
	Reasonable Load
	Bounds for the Flow Times
	A Disastrous Example for replan
	Replanning with a Different Objective
	Remarks

	Minimizing the Sum of Completion Times
	Problem Definition
	Lower Bounds
	A Deterministic Algorithm
	An Improved Randomized Algorithm
	Remarks

	Offline Dial-a-Ride Problems with Precedence Constraints
	Problem Definition
	Euler Cycles Respecting Source-Orders
	A Polynomial Time Algorithm on Paths
	An Approximation Algorithm for General Graphs
	Improved Approximation Algorithm on Trees
	Hardness Results
	Extensions
	Remarks

	A Capacitated Offline Dial-a-Ride Problem on Paths
	Problem Definition
	An Approximation-Algorithm
	Properties of the Subroutines
	Correctness and Running Time of the Algorithm
	Proof of Performance
	Remarks

	Online Bin Coloring
	Problem Definition
	The Algorithm greedyfit
	The Trivial Algorithm onebin
	A General Lower Bound for Deterministic Algorithms
	A General Lower Bound for Randomized Algorithms
	Remarks

	Conclusions
	Notation
	Basics
	Sets and Multisets
	Analysis and Linear Algebra
	Growth of Functions
	Particular Functions
	Probability Theory
	Graph Theory
	Theory of Computation

	Bibliography
	Index

