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1. Introduction46

In this article, we consider algorithms for solving smooth optimization prob-47

lems, possibly with simple constraints or structured nonsmooth regularizers. One48

such canonical formulation is49

(1.0.1) min
x∈Rn

f(x),50

where f : Rn → R has at least Lipschitz continuous gradients. Additional as-51

sumptions about f, such as convexity and Lipschitz continuity of the Hessian, are52

introduced as needed. Another formulation we consider is53

(1.0.2) min
x∈Rn

f(x) + λψ(x),54

where f is as in (1.0.1), ψ : Rn → R is a function that is usually convex and usually55

nonsmooth, and λ > 0 is a regularization parameter.1 We refer to (1.0.2) as a56

regularized minimization problem because the presence of the term involving ψ57

induces certain structural properties on the solution, that make it more desirable58

or plausible in the context of the application. We describe iterative algorithms59

that generate a sequence {xk}k=0,1,2,... of points that, in the case of convex objective60

functions, converges to the set of solutions. (Some algorithms also generate other61

“auxiliary” sequences of iterates.)62

We are motivated to study problems of the forms (1.0.1) and (1.0.2) by their63

ubiquity in data analysis applications. Accordingly, Section 2 describes some64

canonical problems in data analysis and their formulation as optimization prob-65

lems. After some preliminaries in Section 3, we describe in Section 4 algorithms66

that take step based on the gradients ∇f(xk). Extensions of these methods to67

1A set S is said to be convex if for any pair of points z ′,z ′′ ∈ S, we have that αz ′+(1−α)z ′′ ∈ S for
all α ∈ [0, 1]. A function φ : Rn→ R is convex if φ(αz ′+(1−α)z ′′) 6 αφ(z ′)+ (1−α)φ(z ′′)
for all z ′,z ′′ in the (convex) domain of φ and all α ∈ [0, 1].
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the case (1.0.2) of regularized objectives are described in Section 5. Section 6 de-68

scribes accelerated gradient methods, which achieve better worst-case complexity69

than basic gradient methods, while still only using first-derivative information.70

We discuss Newton’s method in Section 7, outlining variants that can guarantee71

convergence to points that approximately satisfy second-order conditions for a72

local minimizer of a smooth nonconvex function.73

1.1. Omissions Our approach throughout is to give a concise description of74

some of the most important algorithmic tools for smooth nonlinear optimization75

and regularized optimization, along with the basic convergence theory for each.76

(In any given context, we mean by “smooth” that the function is differentiable as77

many times as is necessary for the discussion to make sense.) In most cases, the78

theory is elementary enough to include here in its entirety. In the few remaining79

cases, we provide citations to works in which complete proofs can be found.80

Although we allow nonsmoothness in the regularization term in (1.0.2), we do81

not cover subgradient methods or mirror descent explicitly in this chapter. We82

also do not discuss stochastic gradient methods, a class of methods that is central83

to modern machine learning. All these topics are discussed in the contribution of84

John Duchi to the current volume [22]. Other omissions include the following.85

• Coordinate descent methods; see [47] for a recent review.86

• Augmented Lagrangian methods, including alternating direction meth-87

ods of multipliers (ADMM) [23]. The review [5] remains a good reference88

for the latter topic, especially as it applies to problems from data analysis.89

• Semidefinite programming (see [43, 45]) and conic optimization (see [6]).90

• Methods tailored specifically to linear or quadratic programming, such as91

the simplex method or interior-point methods (see [46] for a discussion of92

the latter).93

• Quasi-Newton methods, which modify Newton’s method by approximat-94

ing the Hessian or its inverse, thus attaining attractive theoretical and95

practical performance without using any second-derivative information.96

For a discussion of these methods, see [36, Chapter 6]. One important97

method of this class, which is useful in data analysis and many other98

large-scale problems, is the limited-memory method L-BFGS [30]; see also99

[36, Section 7.2].100

1.2. Notation Our notational conventions in this chapter are as follows. We101

use upper-case Roman characters (A, L, R, and so on) for matrices and lower-102

case Roman (x, v, u, and so on) for vectors. (Vectors are assumed to be column103

vectors.) Transposes are indicated by a superscript “T .” Elements of matrices and104

vectors are indicated by subscripts, for example, Aij and xj. Iteration numbers are105

indicated by superscripts, for example, xk. We denote the set of real numbers by106

R, so that Rn denotes the Euclidean space of dimension n. The set of symmetric107

real n× n matrices is denoted by SRn×n. Real scalars are usually denoted by108
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Greek characters, for example, α, β, and so on, though in deference to convention,109

we sometimes use Roman capitals (for example, L for the Lipschitz constant of110

a gradient). Where vector norms appear, the type of norm in use is indicated111

by a subscript (for example ‖x‖1), except that when no subscript appears, the112

Euclidean norm ‖ · ‖2 is assumed. Matrix norms are defined where first used.113

2. Optimization Formulations of Data Analysis Problems114

In this section, we describe briefly some representative problems in data anal-115

ysis and machine learning, emphasizing their formulation as optimization prob-116

lems. Our list is by no means exhaustive. In many cases, there are a number of117

different ways to formulate a given application as an optimization problem. We118

do not try to describe all of them. But our list here gives a flavor of the interface119

between data analysis and optimization.120

2.1. Setup Practical data sets are often extremely messy. Data may be misla-121

beled, noisy, incomplete, or otherwise corrupted. Much of the hard work in data122

analysis is done by professionals, familiar with the underlying applications, who123

“clean” the data and prepare it for analysis, while being careful not to change the124

essential properties that they wish to discern from the analysis. Dasu and John-125

son [19] claim out that “80% of data analysis is spent on the process of cleaning126

and preparing the data.” We do not discuss this aspect of the process, focusing in-127

stead on the part of the data analysis pipeline in which the problem is formulated128

and solved.129

The data set in a typical analysis problem consists of m objects:130

(2.1.1) D := {(aj,yj), j = 1, 2, . . . ,m},131

where aj is a vector (or matrix) of features and yj is an observation or label. (Each132

pair (aj,yj) has the same size and shape for all j = 1, 2, . . . ,m.) The analysis133

task then consists of discovering a function φ such that φ(aj) ≈ yj holds for134

most j = 1, 2, . . . ,m. The process of discovering the mapping φ is often called135

“learning” or “training.”136

The function φ is often defined in terms of a vector or matrix of parameters,137

which we denote by x or X. (Other notation also appears below.) With these138

parametrizations, the problem of identifying φ becomes a data-fitting problem:139

“Find the parameters x defining φ such that φ(aj) ≈ yj, j = 1, 2, . . . ,m in some140

optimal sense.” Once we come up with a definition of the term “optimal,” we141

have an optimization problem. Many such optimization formulations have objec-142

tive functions of the “summation” type143

(2.1.2) LD(x) :=

m∑
j=1

`(aj,yj; x),144

where the jth term `(aj,yj; x) is a measure of the mismatch between φ(aj) and145

yj, and x is the vector of parameters that determines φ.146
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One use of φ is to make predictions about future data items. Given another147

previously unseen item of data â of the same type as aj, j = 1, 2, . . . ,m, we148

predict that the label ŷ associated with â would be φ(â). The mapping may also149

expose other structure and properties in the data set. For example, it may reveal150

that only a small fraction of the features in aj are needed to reliably predict the151

label yj. (This is known as feature selection.) The function φ or its parameter x152

may also reveal important structure in the data. For example, X could reveal a153

low-dimensional subspace that contains most of the aj, or X could reveal a matrix154

with particular structure (low-rank, sparse) such that observations of X prompted155

by the feature vectors aj yield results close to yj.156

Examples of labels yj include the following.157

• A real number, leading to a regression problem.158

• A label, say yj ∈ {1, 2, . . . ,M} indicating that aj belongs to one of M159

classes. This is a classification problem. We have M = 2 for binary classifi-160

cation and M > 2 for multiclass classification.161

• Null. Some problems only have feature vectors aj and no labels. In this162

case, the data analysis task may consist of grouping the aj into clusters163

(where the vectors within each cluster are deemed to be functionally sim-164

ilar), or identifying a low-dimensional subspace (or a collection of low-165

dimensional subspaces) that approximately contains the aj. Such prob-166

lems require the labels yj to be learned, alongside the function φ. For167

example, in a clustering problem, yj could represent the cluster to which168

aj is assigned.169

Even after cleaning and preparation, the setup above may contain many com-170

plications that need to be dealt with in formulating the problem in rigorous math-171

ematical terms. The quantities (aj,yj) may contain noise, or may be otherwise172

corrupted. We would like the mapping φ to be robust to such errors. There may173

be missing data: parts of the vectors aj may be missing, or we may not know all174

the labels yj. The data may be arriving in streaming fashion rather than being175

available all at once. In this case, we would learn φ in an online fashion.176

One particular consideration is that we wish to avoid overfitting the model to177

the data set D in (2.1.1). The particular data set D available to us can often be178

thought of as a finite sample drawn from some underlying larger (often infinite)179

collection of data, and we wish the function φ to perform well on the unobserved180

data points as well as the observed subset D. In other words, we want φ to181

be not too sensitive to the particular sample D that is used to define empirical182

objective functions such as (2.1.2). The optimization formulation can be modified183

in various ways to achieve this goal, by the inclusion of constraints or penalty184

terms that limit some measure of “complexity” of the function (such techniques185

are called generalization or regularization). Another approach is to terminate the186

optimization algorithm early, the rationale being that overfitting occurs mainly in187

the later stages of the optimization process.188
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2.2. Least Squares Probably the oldest and best-known data analysis problem is189

linear least squares. Here, the data points (aj,yj) lie in Rn ×R, and we solve190

(2.2.1) min
x

1
2m

m∑
j=1

(aTj x− yj)
2 =

1
2m
‖Ax− y‖2

2,191

whereA is the matrix whose rows are aTj , j = 1, 2, . . . ,m and y = (y1,y2, . . . ,ym)T .192

In the terminology above, the function φ is defined by φ(a) := aTx. (We could193

also introduce a nonzero intercept by adding an extra parameter β ∈ R and194

defining φ(a) := aTx+ β.) This formulation can be motivated statistically, as a195

maximum-likelihood estimate of x when the observations yj are exact but for196

i.i.d. Gaussian noise. Randomized linear algebra methods for large-scale in-197

stances of this problem are discussed in Section 5 of the lectures of Drineas and198

Mahoney [20] in this volume.199

Various modifications of (2.2.1) impose desirable structure on x and hence on200

φ. For example, Tikhonov regularization with a squared `2-norm, which is201

min
x

1
2m
‖Ax− y‖2

2 + λ‖x‖
2
2, for some parameter λ > 0,202

yields a solution x with less sensitivity to perturbations in the data (aj,yj). The203

LASSO formulation204

(2.2.2) min
x

1
2m
‖Ax− y‖2

2 + λ‖x‖1205

tends to yield solutions x that are sparse, that is, containing relatively few nonzero206

components [42]. This formulation performs feature selection: The locations of207

the nonzero components in x reveal those components of aj that are instrumental208

in determining the observation yj. Besides its statistical appeal — predictors that209

depend on few features are potentially simpler and more comprehensible than210

those depending on many features — feature selection has practical appeal in211

making predictions about future data. Rather than gathering all components of a212

new data vector â, we need to find only the “selected” features, since only these213

are needed to make a prediction. The LASSO formulation (2.2.2) is an important214

prototype for many problems in data analysis, in that it involves a regularization215

term λ‖x‖1 that is nonsmooth and convex, but with relatively simple structure216

that can potentially be exploited by algorithms.217

2.3. Matrix Completion Matrix completion is in one sense a natural extension218

of least-squares to problems in which the data aj are naturally represented as219

matrices rather than vectors. Changing notation slightly, we suppose that each220

Aj is an n× p matrix, and we seek another n× p matrix X that solves221

(2.3.1) min
X

1
2m

m∑
j=1

(〈Aj,X〉− yj)2,222

where 〈A,B〉 := trace(ATB). Here we can think of the Aj as “probing” the un-223

known matrix X. Commonly considered types of observations are random linear224
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combinations (where the elements of Aj are selected i.i.d. from some distribution)225

or single-element observations (in which each Aj has 1 in a single location and226

zeros elsewhere). A regularized version of (2.3.1), leading to solutions X that are227

low-rank, is228

(2.3.2) min
X

1
2m

m∑
j=1

(〈Aj,X〉− yj)2 + λ‖X‖∗,229

where ‖X‖∗ is the nuclear norm, which is the sum of singular values of X [39].230

The nuclear norm plays a role analogous to the `1 norm in (2.2.2). Although the231

nuclear norm is a somewhat complex nonsmooth function, it is at least convex, so232

that the formulation (2.3.2) is also convex. This formulation can be shown to yield233

a statistically valid solution when the true X is low-rank and the observation ma-234

trices Aj satisfy a “restricted isometry” property, commonly satisfied by random235

matrices, but not by matrices with just one nonzero element. The formulation is236

also valid in a different context, in which the true X is incoherent (roughly speak-237

ing, it does not have a few elements that are much larger than the others), and238

the observations Aj are of single elements [10].239

In another form of regularization, the matrix X is represented explicitly as a240

product of two “thin” matrices L and R, where L ∈ Rn×r and R ∈ Rp×r, with241

r� min(n,p). We set X = LRT in (2.3.1) and solve242

(2.3.3) min
L,R

1
2m

m∑
j=1

(〈Aj,LRT 〉− yj)2.243

In this formulation, the rank r is “hard-wired” into the definition of X, so there is244

no need to include a regularizing term. This formulation is also typically much245

more compact than (2.3.2); the total number of elements in (L,R) is (n + p)r,246

which is much less than np. A disadvantage is that it is nonconvex. An active247

line of current research, pioneered in [9] and also drawing on statistical sources,248

shows that the nonconvexity is benign in many situations, and that under certain249

assumptions on the data (Aj,yj), j = 1, 2, . . . ,m and careful choice of algorithmic250

strategy, good solutions can be obtained from the formulation (2.3.3). A clue to251

this good behavior is that although this formulation is nonconvex, it is in some252

sense an approximation to a tractable problem: If we have a complete observation253

of X, then a rank-r approximation can be found by performing a singular value254

decomposition of X, and defining L and R in terms of the r leading left and right255

singular vectors.256

2.4. Nonnegative Matrix Factorization Some applications in computer vision,257

chemometrics, and document clustering require us to find factors L and R like258

those in (2.3.3) in which all elements are nonnegative. If the full matrix Y ∈ Rn×p259

is observed, this problem has the form260

min
L,R
‖LRT − Y‖2

F, subject to L > 0, R > 0.261
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2.5. Sparse Inverse Covariance Estimation In this problem, the labels yj are262

null, and the vectors aj ∈ Rn are viewed as independent observations of a ran-263

dom vector A ∈ Rn, which has zero mean. The sample covariance matrix con-264

structed from these observations is265

S =
1

m− 1

m∑
j=1

aja
T
j .266

The element Sil is an estimate of the covariance between the ith and lth elements267

of the random variable vector A. Our interest is in calculating an estimate X of268

the inverse covariance matrix that is sparse. The structure of X yields important269

information about A. In particular, if Xil = 0, we can conclude that the i and270

l components of A are conditionally independent. (That is, they are independent271

given knowledge of the values of the other n− 2 components of A.) Stated an-272

other way, the nonzero locations in X indicate the arcs in the dependency graph273

whose nodes correspond to the n components of A.274

One optimization formulation that has been proposed for estimating the in-275

verse sparse covariance matrix X is the following:276

(2.5.1) min
X∈SRn×n, X�0

〈S,X〉− log det(X) + λ‖X‖1,277

where SRn×n is the set of n× n symmetric matrices, X � 0 indicates that X is278

positive definite, and ‖X‖1 :=
∑n
i,l=1 |Xil| (see [17, 25]).279

2.6. Sparse Principal Components The setup for this problem is similar to the280

previous section, in that we have a sample covariance matrix S that is estimated281

from a number of observations of some underlying random vector. The princi-282

pal components of this matrix are the eigenvectors corresponding to the largest283

eigenvalues. It is often of interest to find sparse principal components, approxi-284

mations to the leading eigenvectors that also contain few nonzeros. An explicit285

optimization formulation of this problem is286

(2.6.1) max
v∈Rn

vTSv s.t. ‖v‖2 = 1, ‖v‖0 6 k,287

where ‖ · ‖0 indicates the cardinality of v (that is, the number of nonzeros in v)288

and k is a user-defined parameter indicating a bound on the cardinality of v. The289

problem (2.6.1) is NP-hard, so exact formulations (for example, as a quadratic290

program with binary variables) are intractable. We consider instead a relaxation,291

due to [18], which replaces vvT by a positive semidefinite proxy M ∈ SRn×n:292

(2.6.2) max
M∈SRn×n

〈S,M〉 s.t. M � 0, 〈I,M〉 = 1, ‖M‖1 6 ρ,293

for some parameter ρ > 0 that can be adjusted to attain the desired sparsity. This294

formulation is a convex optimization problem, in fact, a semidefinite program-295

ming problem.296

This formulation can be generalized to find the leading r > 1 sparse principal297

components. Ideally, we would obtain these from a matrix V ∈ Rn×r whose298
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columns are mutually orthogonal and have at most k nonzeros each. We can299

write a convex relaxation of this problem, once again a semidefinite program, as300

(2.6.3) max
M∈SRn×n

〈S,M〉 s.t. 0 �M � I, 〈I,M〉 = 1, ‖M‖1 6 ρ .301

A more compact (but nonconvex) formulation is302

max
F∈Rn×r

〈S, FFT 〉 s.t. ‖F‖2 6 1, ‖F‖2,1 6 R̄,303

where ‖F‖2,1 :=
∑n
i=1 ‖Fi·‖2 [15]. The latter regularization term is often called304

a “group-sparse” or “group-LASSO” regularizer. (An early use of this type of305

regularizer was described in [44].)306

2.7. Sparse Plus Low-Rank Matrix Decomposition Another useful paradigm307

is to decompose a partly or fully observed n × p matrix Y into the sum of a308

sparse matrix and a low-rank matrix. A convex formulation of the fully-observed309

problem is310

min
M,S

‖M‖∗ + λ‖S‖1 s.t. Y =M+ S,311

where ‖S‖1 :=
∑n
i=1
∑p
j=1 |Sij| [11, 14]. Compact, nonconvex formulations that

allow noise in the observations include the following:

min
L,R,S

1
2
‖LRT + S− Y‖2

F (fully observed)

min
L,R,S

1
2
‖PΦ(LRT + S− Y)‖2

F (partially observed),

where Φ represents the locations of the observed entries of Y and PΦ is projection312

onto this set [15, 48].313

One application of these formulations is to robust PCA, where the low-rank314

part represents principal components and the sparse part represents “outlier”315

observations. Another application is to foreground-background separation in316

video processing. Here, each column of Y represents the pixels in one frame of317

video, whereas each row of Y shows the evolution of one pixel over time.318

2.8. Subspace Identification In this application, the aj ∈ Rn, j = 1, 2, . . . ,m are319

vectors that lie (approximately) in a low-dimensional subspace. The aim is to320

identify this subspace, expressed as the column subspace of a matrix X ∈ Rn×r.321

If the aj are fully observed, an obvious way to solve this problem is to perform322

a singular value decomposition of the n×m matrix A = [aj]
m
j=1, and take X to323

be the leading r right singular vectors. In interesting variants of this problem,324

however, the vectors aj may be arriving in streaming fashion and may be only325

partly observed, for example in indices Φj ⊂ {1, 2, . . . ,n}. We would thus need to326

identify a matrix X and vectors sj ∈ Rr such that327

PΦj(aj −Xsj) ≈ 0, j = 1, 2, . . . ,m.328

The algorithm for identifying X, described in [1], is a manifold-projection scheme329

that takes steps in incremental fashion for each aj in turn. Its validity relies on330
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incoherence of the matrix X with respect to the principal axes, that is, the matrix331

X should not have a few elements that are much larger than the others. A local332

convergence analysis of this method is given in [2].333

2.9. Support Vector Machines Classification via support vector machines (SVM)
is a classical paradigm in machine learning. This problem takes as input data
(aj,yj) with aj ∈ Rn and yj ∈ {−1, 1}, and seeks a vector x ∈ Rn and a scalar
β ∈ R such that

aTj x−β > 1 when yj = +1;(2.9.1a)

aTj x−β 6 −1 when yj = −1.(2.9.1b)

Any pair (x,β) that satisfies these conditions defines a separating hyperplane in334

Rn, that separates the “positive” cases {aj |yj = +1} from the “negative” cases335

{aj |yj = −1}. (In the language of Section 2.1, we could define the function336

φ as φ(aj) = sign(aTj x− β).) Among all separating hyperplanes, the one that337

minimizes ‖x‖2 is the one that maximizes the margin between the two classes,338

that is, the hyperplane whose distance to the nearest point aj of either class is339

greatest.340

We can formulate the problem of finding a separating hyperplane as an opti-341

mization problem by defining an objective with the summation form (2.1.2):342

(2.9.2) H(x,β) =
1
m

m∑
j=1

max(1 − yj(a
T
j x−β), 0).343

Note that the jth term in this summation is zero if the conditions (2.9.1) are344

satisfied, and positive otherwise. Even if no pair (x,β) exists with H(x,β) = 0,345

the pair (x,β) that minimizes (2.1.2) will be the one that comes as close as possible346

to satisfying (2.9.1), in a suitable sense. A term λ‖x‖2
2, where λ is a small positive347

parameter, is often added to (2.9.2), yielding the following regularized version:348

(2.9.3) H(x,β) =
1
m

m∑
j=1

max(1 − yj(a
T
j x−β), 0) +

1
2
λ‖x‖2

2.349

If λ is sufficiently small (but positive), and if separating hyperplanes exist, the350

pair (x,β) that minimizes (2.9.3) is the maximum-margin separating hyperplane.351

The maximum-margin property is consistent with the goals of generalizability352

and robustness. For example, if the observed data (aj,yj) is drawn from an353

underlying “cloud” of positive and negative cases, the maximum-margin solution354

usually does a reasonable job of separating other empirical data samples drawn355

from the same clouds, whereas a hyperplane that passes close by several of the356

observed data points may not do as well (see Figure 2.9.4).357

The problem of minimizing (2.9.3) can be written as a convex quadratic pro-358

gram — having a convex quadratic objective and linear constraints — by intro-359

ducing variables sj, j = 1, 2, . . . ,m to represent the residual terms. Then,360
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.

Figure 2.9.4. Linear support vector machine classification, with
one class represented by circles and the other by squares. One
possible choice of separating hyperplane is shown at left. If the
observed data is an empirical sample drawn from a cloud of un-
derlying data points, this plane does not do well in separating
the two clouds (middle). The maximum-margin separating hy-
perplane does better (right).

min
x,β,s

1
m

1T s+
1
2
λ‖x‖2

2,(2.9.5a)

subject to sj > 1 − yj(a
T
j x−β), sj > 0, j = 1, 2, . . . ,m,(2.9.5b)

where 1 = (1, 1, . . . , 1)T ∈ Rm.361

Often it is not possible to find a hyperplane that separates the positive and362

negative cases well enough to be useful as a classifier. One solution is to trans-363

form all of the raw data vectors aj by a mapping ζ into a higher-dimensional364

Euclidean space, then perform the support-vector-machine classification on the365

vectors ζ(aj), j = 1, 2, . . . ,m.366

The conditions (2.9.1) would thus be replaced by

ζ(aj)
Tx−β > 1 when yj = +1;(2.9.6a)

ζ(aj)
Tx−β 6 −1 when yj = −1,(2.9.6b)

leading to the following analog of (2.9.3):367

(2.9.7) H(x,β) =
1
m

m∑
j=1

max(1 − yj(ζ(aj)
Tx−β), 0) +

1
2
λ‖x‖2

2.368

When transformed back to Rm, the surface {a | ζ(a)Tx− β = 0} is nonlinear and369

possibly disconnected, and is often a much more powerful classifier than the370

hyperplanes resulting from (2.9.3).371

We can formulate (2.9.7) as a convex quadratic program in exactly the same372

manner as we derived (2.9.5) from (2.9.3). By taking the dual of this quadratic373

program, we obtain another convex quadratic program, in m variables:374

(2.9.8) min
α∈Rm

1
2
αTQα− 1Tα subject to 0 6 α 6

1
λ

1, yTα = 0,375

where376

Qkl = ykylζ(ak)
Tζ(al), y = (y1,y2, . . . ,ym)T , 1 = (1, 1, . . . , 1)T ∈ Rm.377
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Interestingly, problem (2.9.8) can be formulated and solved without any explicit378

knowledge or definition of the mapping ζ. We need only a technique to define the379

elements ofQ. This can be done with the use of a kernel function K : Rn×Rn → R,380

where K(ak,al) replaces ζ(ak)Tζ(al) [4, 16]. This is the so-called “kernel trick.”381

(The kernel function K can also be used to construct a classification function382

φ from the solution of (2.9.8).) A particularly popular choice of kernel is the383

Gaussian kernel:384

K(ak,al) := exp(−‖ak − al‖2/(2σ)),385

where σ is a positive parameter.386

2.10. Logistic Regression Logistic regression can be viewed as a variant of bi-387

nary support-vector machine classification, in which rather than the classification388

function φ giving a unqualified prediction of the class in which a new data vector389

a lies, it returns an estimate of the odds of a belonging to one class or the other.390

We seek an “odds function” p parametrized by a vector x ∈ Rn as follows:391

(2.10.1) p(a; x) := (1 + exp(aTx))−1,392

and aim to choose the parameter x so that

p(aj; x) ≈ 1 when yj = +1;(2.10.2a)

p(aj; x) ≈ 0 when yj = −1.(2.10.2b)

(Note the similarity to (2.9.1).) The optimal value of x can be found by maximizing393

a log-likelihood function:394

(2.10.3) L(x) :=
1
m

 ∑
j:yj=−1

log(1 − p(aj; x)) +
∑
j:yj=1

logp(aj; x)

 .395

We can perform feature selection using this model by introducing a regularizer396

λ‖x‖1, as follows:397

(2.10.4) max
x

1
m

 ∑
j:yj=−1

log(1 − p(aj; x)) +
∑
j:yj=1

logp(aj; x)

− λ‖x‖1,398

where λ > 0 is a regularization parameter. (Note that we subtract rather than add399

the regularization term λ‖x‖1 to the objective, because this problem is formulated400

as a maximization rather than a minimization.) As we see later, this term has401

the effect of producing a solution in which few components of x are nonzero,402

making it possible to evaluate p(a; x) by knowing only those components of a403

that correspond to the nonzeros in x.404

An important extension of this technique is to multiclass (or multinomial) lo-405

gistic regression, in which the data vectors aj belong to more than two classes.406

Such applications are common in modern data analysis. For example, in a speech407

recognition system, the M classes could each represent a phoneme of speech, one408

of the potentially thousands of distinct elementary sounds that can be uttered by409
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humans in a few tens of milliseconds. A multinomial logistic regression problem410

requires a distinct odds function pk for each class k ∈ {1, 2, . . . ,M}. These func-411

tions are parametrized by vectors x[k] ∈ Rn, k = 1, 2, . . . ,M, defined as follows:412

413

(2.10.5) pk(a;X) :=
exp(aTx[k])∑M
l=1 exp(aTx[l])

, k = 1, 2, . . . ,M,414

where we define X := {x[k] |k = 1, 2, . . . ,M}. Note that for all a and for all415

k = 1, 2, . . . ,M, we have pk(a) ∈ (0, 1) and also
∑M
k=1 pk(a) = 1. The operation416

in (2.10.5) is referred to as a “softmax” on the quantities {aTx[l] | l = 1, 2, . . . ,M}.417

If one of these inner products dominates the others, that is, aTx[k] � aTx[l] for418

all l 6= k, the formula (2.10.5) will yield pk(a;X) ≈ 1 and pl(a;X) ≈ 0 for all l 6= k.419

In the setting of multiclass logistic regression, the labels yj are vectors in RM,420

whose elements are defined as follows:421

(2.10.6) yjk =

{
1 when aj belongs to class k,

0 otherwise.
422

Similarly to (2.10.2), we seek to define the vectors x[k] so that

pk(aj;X) ≈ 1 when yjk = 1(2.10.7a)

pk(aj;X) ≈ 0 when yjk = 0.(2.10.7b)

The problem of finding values of x[k] that satisfy these conditions can again be423

formulated as one of maximizing a log-likelihood:424

(2.10.8) L(X) :=
1
m

m∑
j=1

[
M∑
`=1

yj`(x
T
[`]aj) − log

(
M∑
`=1

exp(xT[`]aj)

)]
.425

“Group-sparse” regularization terms can be included in this formulation to se-426

lect a set of features in the vectors aj, common to each class, that distinguish427

effectively between the classes.428

2.11. Deep Learning Deep neural networks are often designed to perform the429

same function as multiclass logistic regression, that is, to classify a data vector a430

into one of M possible classes, where M > 2 is large in some key applications.431

The difference is that the data vector a undergoes a series of structured transfor-432

mations before being passed through a multiclass logistic regression classifier of433

the type described in the previous subsection.434

The simple neural network shown in Figure 2.11.1 illustrates the basic ideas.435

In this figure, the data vector aj enters at the bottom of the network, each node in436

the bottom layer corresponding to one component of aj. The vector then moves437

upward through the network, undergoing a structured nonlinear transformation438

as it moves from one layer to the next. A typical form of this transformation,439

which converts the vector al−1
j at layer l− 1 to input vector alj at layer l, is440

alj = σ(W
lal−1
j + gl), l = 1, 2, . . . ,D,441
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output nodes

input nodes

hidden layers

Figure 2.11.1. A deep neural network, showing connections be-
tween adjacent layers.

where Wl is a matrix of dimension |alj |× |al−1
j | and gl is a vector of length |alj |, σ442

is a componentwise nonlinear transformation, and D is the number of hidden layers,443

defined as the layers situated strictly between the bottom and top layers. Each444

arc in Figure 2.11.1 represents one of the elements of a transformation matrix Wl.445

We define a0
j to be the “raw” input vector aj, and let aDj be the vector formed446

by the nodes at the topmost hidden layer in Figure 2.11.1. Typical forms of the447

function σ include the following, acting identically on each component t ∈ R of448

its input vector:449

• Logistic function: t→ 1/(1 + e−t);450

• Hinge loss: t→ max(t, 0);451

• Bernoulli: a random function that outputs 1 with probability 1/(1 + e−t)452

and 0 otherwise.453

Each node in the top layer corresponds to a particular class, and the output of454

each node corresponds to the odds of the input vector belonging to each class. As455

mentioned, the “softmax” operator is typically used to convert the transformed456

input vector in the second-top layer (layer D) to a set of odds at the top layer. As-457

sociated with each input vector aj are labels yjk, defined as in (2.10.6) to indicate458

which of the M classes that aj belongs to.459

The parameters in this neural network are the matrix-vector pairs (Wl,gl),460

l = 1, 2, . . . ,D that transform the input vector aj into its form aDj at the topmost461

hidden layer, together with the parameters X of the multiclass logistic regression462

operation that takes place at the very top stage, where X is defined exactly as463

in the discussion of Section 2.10. We aim to choose all these parameters so that464

the network does a good job on classifying the training data correctly. Using the465

notation w for the hidden layer transformations, that is,466

(2.11.2) w := (W1,g1,W2,g2, . . . ,WD,gD),467
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and defining X := {x[k] |k = 1, 2, . . . ,M} as in Section 2.10, we can write the loss468

function for deep learning as follows:469

(2.11.3) L(w,X) :=
1
m

m∑
j=1

[
M∑
`=1

yj`(x
T
[`]a

D
j (w)) − log

(
M∑
`=1

exp(xT[`]a
D
j (w))

)]
.470

Note that this is exactly the function (2.10.8) applied to the output of the top471

hidden layer aDj (w). We write aDj (w) to make explicit the dependence of aDj472

on the parameters w of (2.11.2), as well as on the input vector aj. (We can view473

multiclass logistic regression (2.10.8) as a special case of deep learning in which474

there are no hidden layers, so that D = 0, w is null, and aDj = aj, j = 1, 2, . . . ,m.)475

Neural networks in use for particular applications (in image recognition and476

speech recognition, for example, where they have been very successful) include477

many variants on the basic design above. These include restricted connectivity478

between layers (that is, enforcing structure on the matrices Wl, l = 1, 2, . . . ,D),479

layer arrangements that are more complex than the linear layout illustrated in480

Figure 2.11.1, with outputs coming from different levels, connections across non-481

adjacent layers, different componentwise transformations σ at different layers,482

and so on. Deep neural networks for practical applications are highly engineered483

objects.484

The loss function (2.11.3) shares with many other applications the “summation”485

form (2.1.2), but it has several features that set it apart from the other applications486

discussed above. First, and possibly most important, it is nonconvex in the param-487

eters w. There is reason to believe that the “landscape” of L is complex, with the488

global minimizer being exceedingly difficult to find. Second, the total number489

of parameters in (w,X) is usually very large. The most popular algorithms for490

minimizing (2.11.3) are of stochastic gradient type, which like most optimization491

methods come with no guarantee for finding the minimizer of a nonconvex func-492

tion. Effective training of deep learning classifiers typically requires a great deal493

of data and computation power. Huge clusters of powerful computers, often us-494

ing multicore processors, GPUs, and even specially architected processing units,495

are devoted to this task. Efficiency also requires many heuristics in the formula-496

tion and the algorithm (for example, in the choice of regularization functions and497

in the steplengths for stochastic gradient).498

3. Preliminaries499

We discuss here some foundations for the analysis of subsequent sections.500

These include useful facts about smooth and nonsmooth convex functions, Tay-501

lor’s theorem and some of its consequences, optimality conditions, and proximal502

operators.503

In the discussion of this section, our basic assumption is that f is a mapping504

from Rn to R ∪ {+∞}, continuous on its effective domain D := {x | f(x) < ∞}.505

Further assumptions of f are introduced as needed.506
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3.1. Solutions Consider the problem of minimizing f (1.0.1). We have the fol-507

lowing terminology:508

• x∗ is a local minimizer of f if there is a neighborhood N of x∗ such that509

f(x) > f(x∗) for all x ∈ N.510

• x∗ is a global minimizer of f if f(x) > f(x∗) for all x ∈ Rn.511

• x∗ is a strict local minimizer if it is a local minimizer on some neighborhood512

N and in addition f(x) > f(x∗) for all x ∈ N with x 6= x∗.513

• x∗ is an isolated local minimizer if there is a neighborhood N of x∗ such that514

f(x) > f(x∗) for all x ∈ N and in addition, N contains no local minimizers515

other than x∗.516

3.2. Convexity and Subgradients A convex set Ω ⊂ Rn has the property that517

(3.2.1) x,y ∈ Ω ⇒ (1 −α)x+αy ∈ Ω for all α ∈ [0, 1].518

We usually deal with closed convex sets in this article. For a convex set Ω ⊂ Rn519

we define the indicator function IΩ(x) as follows:520

IΩ(x) =

{
0 if x ∈ Ω
+∞ otherwise.

521

Indicator functions are useful devices for deriving optimality conditions for con-522

strained problems, and even for developing algorithms. The constrained opti-523

mization problem524

(3.2.2) min
x∈Ω

f(x)525

can be restated equivalently as follows:526

(3.2.3) min f(x) + IΩ(x).527

We noted already that a convex function φ : Rn → R∪ {+∞} has the following528

defining property:529

(3.2.4)
φ((1 −α)x+αy) 6 (1 −α)φ(x) +αφ(y), for all x,y ∈ Rn and all α ∈ [0, 1].530

The concepts of “minimizer” are simpler in the case of convex objective func-531

tions than in the general case. In particular, the distinction between “local” and532

“global” minimizers disappears. For f convex in (1.0.1), we have the following.533

(a) Any local minimizer of (1.0.1) is also a global minimizer.534

(b) The set of global minimizers of (1.0.1) is a convex set.535

If there exists a value γ > 0 such that536

(3.2.5) φ((1 −α)x+αy) 6 (1 −α)φ(x) +αφ(y) −
1
2
γα(1 −α)‖x− y‖2

2537

for all x and y in the domain of φ and α ∈ [0, 1], we say that φ is strongly convex538

with modulus of convexity γ.539

We summarize some definitions and results about subgradients of convex func-540

tions here. For a more extensive discussion, see [22].541
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Definition 3.2.6. A vector v ∈ Rn is a subgradient of f at a point x if542

f(x+ d) > f(x) + vTd. for all d ∈ Rn.543

The subdifferential, denoted ∂f(x), is the set of all subgradients of f at x.544

Subdifferentials satisfy a monotonicity property, as we show now.545

Lemma 3.2.7. If a ∈ ∂f(x) and b ∈ ∂f(y), we have (a− b)T (x− y) > 0.546

Proof. From the convexity of f and the definitions of a and b, we deduce that547

f(y) > f(x) +aT (y− x) and f(x) > f(y) + bT (x− y). The result follows by adding548

these two inequalities. �549

We can easily characterize a minimum in terms of the subdifferential.550

Theorem 3.2.8. The point x∗ is the minimizer of a convex function f if and only if551

0 ∈ ∂f(x∗).552

Proof. Suppose that 0 ∈ ∂f(x∗), we have by substituting x = x∗ and v = 0 into553

Definition 3.2.6 that f(x∗ + d) > f(x∗) for all d ∈ Rn, which implies that x∗ is a554

minimizer of f.555

The converse follows trivially by showing that v = 0 satisfies Definition 3.2.6556

when x∗ is a minimizer. �557

The subdifferential is the generalization to nonsmooth convex functions of the558

concept of derivative of a smooth function.559

Theorem 3.2.9. If f is convex and differentiable at x, then ∂f(x) = {∇f(x)}.560

A converse of this result is also true. Specifically, if the subdifferential of a561

convex function f at x contains a single subgradient, then f is differentiable with562

gradient equal to this subgradient (see [40, Theorem 25.1]).563

3.3. Taylor’s Theorem Taylor’s theorem is a foundational result for optimization564

of smooth nonlinear functions. It shows how smooth functions can be approxi-565

mated locally by low-order (linear or quadratic) functions.566

Theorem 3.3.1. Given a continuously differentiable function f : Rn → R, and given567

x,p ∈ Rn, we have that568

f(x+ p) = f(x) +

∫1

0
∇f(x+ ξp)Tpdξ,(3.3.2)

f(x+ p) = f(x) +∇f(x+ ξp)Tp, some ξ ∈ (0, 1).(3.3.3)

If f is twice continuously differentiable, we have569

∇f(x+ p) = ∇f(x) +
∫1

0
∇2f(x+ ξp)pdξ,(3.3.4)

f(x+ p) = f(x) +∇f(x)Tp+ 1
2
pT∇2f(x+ ξp)p, for some ξ ∈ (0, 1).(3.3.5)
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We can derive an important consequence of this theorem when f is Lipschitz570

continuously differentiable with constant L, that is,571

(3.3.6) ‖∇f(x) −∇f(y)‖ 6 L‖x− y‖, for all x,y ∈ Rn.572

We have by setting y = x+ p in (3.3.2) and subtracting the term ∇f(x)T (y− x)573

from both sides that574

f(y) − f(x) −∇f(x)T (y− x) =
∫1

0
[∇f(x+ ξ(y− x)) −∇f(x)]T (y− x)dξ.575

By using (3.3.6), we have

[∇f(x+ ξ(y− x)) −∇f(x)]T (y− x) 6 ‖∇f(x+ ξ(y− x)) −∇f(x)‖‖y− x‖

6 Lξ‖y− x‖2.

By substituting this bound into the previous integral, we obtain576

(3.3.7) f(y) − f(x) −∇f(x)T (y− x) 6 L
2
‖y− x‖2.577

For the remainder of Section 3.3, we assume that f is continuously differ-578

entiable and also convex. The definition of convexity (3.2.4) and the fact that579

∂f(x) = {∇f(x)} implies that580

(3.3.8) f(y) > f(x) +∇f(x)T (y− x), for all x,y ∈ Rn.581

We defined “strong convexity with modulus γ” in (3.2.5). When f is differentiable,582

we have the following equivalent definition, obtained by rearranging (3.2.5) and583

letting α ↓ 0.584

(3.3.9) f(y) > f(x) +∇f(x)T (y− x) + γ

2
‖y− x‖2.585

By combining this expression with (3.3.7), we have the following result.586

Lemma 3.3.10. Given convex f satisfying (3.2.5), with ∇f uniformly Lipschitz continu-587

ous with constant L, we have for any x,y that588

(3.3.11)
γ

2
‖y− x‖2 6 f(y) − f(x) −∇f(x)T (y− x) 6 L

2
‖y− x‖2.589

For later convenience, we define a condition number κ as follows:590

(3.3.12) κ :=
L

γ
.591

When f is twice continuously differentiable, we can characterize the constants γ592

and L in terms of the eigenvalues of the Hessian ∇f(x). Specifically, we can show593

that (3.3.11) is equivalent to594

(3.3.13) γI � ∇2f(x) � LI, for all x.595

When f is strictly convex and quadratic, κ defined in (3.3.12) is the condition596

number of the (constant) Hessian, in the usual sense of linear algebra.597

Strongly convex functions have unique minimizers, as we now show.598

Theorem 3.3.14. Let f be differentiable and strongly convex with modulus γ > 0. Then599

the minimizer x∗ of f exists and is unique.600
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Proof. We show first that for any point x0, the level set {x | f(x) 6 f(x0)} is closed601

and bounded, and hence compact. Suppose for contradiction that there is a se-602

quence {x`} such that ‖x`‖ →∞ and603

(3.3.15) f(x`) 6 f(x0).604

By strong convexity of f, we have for some γ > 0 that605

f(x`) > f(x0) +∇f(x0)T (x` − x0) +
γ

2
‖x` − x0‖2.606

By rearranging slightly, and using (3.3.15), we obtain607

γ

2
‖x` − x0‖2 6 −∇f(x0)T (x` − x0) 6 ‖∇f(x0)‖‖x` − x0‖.608

By dividing both sides by (γ/2)‖x` − x0‖, we obtain ‖x` − x0‖ 6 (2/γ)‖∇f(x0)‖609

for all `, which contradicts unboundedness of {x`}. Thus, the level set is bounded.610

Since it is also closed (by continuity of f), it is compact.611

Since f is continuous, it attains its minimum on the compact level set, which is612

also the solution of minx f(x), and we denote it by x∗. Suppose for contradiction613

that the minimizer is not unique, so that we have two points x∗1 and x∗2 that614

minimize f. Obviously, these points must attain equal objective values, so that615

f(x∗1) = f(x∗2) = f∗ for some f∗. By taking (3.2.5) and setting φ = f∗, x = x∗1 ,616

y = x∗2 , and α = 1/2, we obtain617

f((x∗1 + x∗2)/2) 6
1
2
(f(x∗1) + f(x

∗
2)) −

1
8
γ‖x∗1 − x∗2‖2 < f∗,618

so the point (x∗1 + x∗2)/2 has a smaller function value than both x∗1 and x∗2 , contra-619

dicting our assumption that x∗1 and x∗2 are both minimizers. Hence, the minimizer620

x∗ is unique. �621

3.4. Optimality Conditions for Smooth Functions We consider the case of a622

smooth (twice continuously differentiable) function f that is not necessarily con-623

vex. Before designing algorithms to find a minimizer of f, we need to identify624

properties of f and its derivatives at a point x̄ that tell us whether or not x̄ is a625

minimizer, of one of the types described in Subsection 3.1. We call such properties626

optimality conditions.627

A first-order necessary condition for optimality is that∇f(x̄) = 0. More precisely,628

if x̄ is a local minimizer, then ∇f(x̄) = 0. We can prove this by using Taylor’s629

theorem. Supposing for contradiction that ∇f(x̄) 6= 0, we can show by setting630

x = x̄ and p = −α∇f(x̄) for α > 0 in (3.3.3) that f(x̄ − α∇f(x̄)) < f(x̄) for all631

α > 0 sufficiently small. Thus any neighborhood of x̄ will contain points x with a632

f(x) < f(x̄), so x̄ cannot be a local minimizer.633

If f is convex, as well as smooth, the condition ∇f(x̄) = 0 is sufficient for x̄ to be634

a global solution. This claim follows immediately from Theorems 3.2.8 and 3.2.9.635

A second-order necessary condition for x̄ to be a local solution is that ∇f(x̄) = 0636

and ∇2f(x̄) is positive semidefinite. The proof is by an argument similar to that637

of the first-order necessary condition, but using the second-order Taylor series ex-638

pansion (3.3.5) instead of (3.3.3). A second-order sufficient condition is that∇f(x̄) = 0639
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and ∇2f(x̄) is positive definite. This condition guarantees that x̄ is a strict local640

minimizer, that is, there is a neighborhood of x̄ such that x̄ has a strictly smaller641

function value than all other points in this neighborhood. Again, the proof makes642

use of (3.3.5).643

We call x̄ a stationary point for smooth f if it satisfies the first-order necessary644

condition ∇f(x̄) = 0. Stationary points are not necessarily local minimizers. In645

fact, local maximizers satisfy the same condition. More interestingly, stationary646

points can be saddle points. These are points for which there exist directions u647

and v such that f(x̄ + αu) < f(x̄) and f(x̄ + αv) > f(x̄) for all positive α suffi-648

ciently small. When the Hessian ∇2f(x̄) has both strictly positive and strictly649

negative eigenvalues, it follows from (3.3.5) that x̄ is a saddle point. When ∇2f(x̄)650

is positive semidefinite or negative semidefinite, second derivatives alone are in-651

sufficient to classify x̄; higher-order derivative information is needed.652

3.5. Proximal Operators and the Moreau Envelope Here we present some anal-653

ysis for analyzing the convergence of algorithms for the regularized problem654

(1.0.2), where the objective is the sum of a smooth function and a convex (usually655

nonsmooth) function.656

We start with a formal definition.657

Definition 3.5.1. For a closed proper convex function h and a positive scalar λ,658

the Moreau envelope is659

(3.5.2) Mλ,h(x) := inf
u

{
h(u) +

1
2λ
‖u− x‖2

}
=

1
λ

inf
u

{
λh(u) +

1
2
‖u− x‖2

}
.660

The proximal operator of the function λh is the value of u that achieves the infi-661

mum in (3.5.2), that is,662

(3.5.3) proxλh(x) := arg min
u

{
λh(u) +

1
2
‖u− x‖2

}
.663

From optimality properties for (3.5.3) (see Theorem 3.2.8), we have664

(3.5.4) 0 ∈ λ∂h(proxλh(x)) + (proxλh(x) − x).665

The Moreau envelope can be viewed as a kind of smoothing or regularization666

of the function h. It has a finite value for all x, even when h takes on infinite667

values for some x ∈ Rn. In fact, it is differentiable everywhere, with gradient668

∇Mλ,h(x) =
1
λ
(x− proxλh(x)).669

Moreover, x∗ is a minimizer of h if and only if it is a minimizer of Mλ,h.670

The proximal operator satisfies a nonexpansiveness property. From the opti-671

mality conditions (3.5.4) at two points x and y, we have672

x− proxλh(x) ∈ λ∂(proxλh(x)), y− proxλh(y) ∈ λ∂(proxλh(y)).673

By applying monotonicity (Lemma 3.2.7), we have674

(1/λ)
(
(x− proxλh(x)) − (y− proxλh(y))

)T
(proxλh(x) − proxλh(y)) > 0,675
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Rearranging this and applying the Cauchy-Schwartz inequality yields

‖proxλh(x) − proxλh(y)‖
2 6 (x− y)T (proxλh(x) − proxλh(y))

6 ‖x− y‖ ‖proxλh(x) − proxλh(y)‖,

from which we obtain ‖proxλh(x) − proxλh(y)‖ 6 ‖x− y‖, as claimed.676

We list the prox operator for several instances of h that are common in data677

analysis applications. These definitions are useful in implementing the prox-678

gradient algorithms of Section 5.679

• h(x) = 0 for all x, for which we have proxλh(x) = 0. (This observation is680

useful in proving that the prox-gradient method reduces to the familiar681

steepest descent method when the objective contains no regularization682

term.)683

• h(x) = IΩ(x), the indicator function for a closed convex set Ω. In this684

case, we have for any λ > 0 that685

proxλIΩ(x) = arg min
u

{
λIΩ(u) +

1
2
‖u− x‖2

}
= arg min

u∈Ω

1
2
‖u− x‖2,686

which is simply the projection of x onto the set Ω.687

• h(x) = ‖x‖1. By substituting into definition (3.5.3) we see that the mini-688

mization separates into its n separate components, and that the ith com-689

ponent of proxλ‖·‖1
(x) is690 [

proxλ‖·‖1
(x)
]
i
= arg min

ui

{
λ|ui|+

1
2
(ui − xi)

2
}

.691

We can thus verify that692

(3.5.5) [proxλ‖·‖1
(x)]i =


xi − λ if xi > λ;

0 if xi ∈ [−λ, λ];

xi + λ if xi < −λ,

693

an operation that is known as soft-thresholding.694

• h(x) = ‖x‖0, where ‖x‖0 denotes the cardinality of the vector x, its number695

of nonzero components. Although this h is not a convex function (as696

we can see by considering convex combinations of the vectors (0, 1)T and697

(1, 0)T in R2), its proximal operator is well defined, and is known as hard698

thresholding:699

[proxλ‖·‖0
(x)]i =

{
xi if |xi| >

√
2λ;

0 if |xi| <
√

2λ.
700

As in (3.5.5), the definition (3.5.3) separates into n individual components.701

3.6. Convergence Rates An important measure for evaluating algorithms is the702

rate of convergence to zero of some measure of error. For smooth f, we may be703

interested in how rapidly the sequence of gradient norms {‖∇f(xk)‖} converges704

to zero. For nonsmooth convex f, a measure of interest may be convergence to705
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zero of {dist(0,∂f(xk))} (the sequence of distances from 0 to the subdifferential706

∂f(xk)). Other error measures for which we may be able to prove convergence707

rates include ‖xk − x∗‖ (where x∗ is a solution) and f(xk) − f∗ (where f∗ is the708

optimal value of the objective function f). For generality, we denote by {φk} the709

sequence of nonnegative scalars whose rate of convergence to 0 we wish to find.710

We say that linear convergence holds if there is some σ ∈ (0, 1) such that711

(3.6.1) φk+1/φk 6 1 − σ, for all k sufficiently large.712

(This property is sometimes also called geometric or exponential convergence, but713

the term linear is standard in the optimization literature, so we use it here.) It714

follows from (3.6.1) that there is some positive constant C such that715

(3.6.2) φk 6 C(1 − σ)k, k = 1, 2, . . . .716

While (3.6.1) implies (3.6.2), the converse does not hold. The sequence717

φk =

{
2−k k even

0 k odd,
718

satisfies (3.6.2) with C = 1 and σ = .5, but does not satisfy (3.6.1). To distinguish719

between these two slightly different definitions, (3.6.1) is sometimes called Q-720

linear while (3.6.2) is called R-linear.721

Sublinear convergence is, as its name suggests, slower than linear. Several
varieties of sublinear convergence are encountered in optimization algorithms
for data analysis, including the following

φk 6 C/
√
k, k = 1, 2, . . . ,(3.6.3a)

φk 6 C/k, k = 1, 2, . . . ,(3.6.3b)

φk 6 C/k
2, k = 1, 2, . . . ,(3.6.3c)

where in each case, C is some positive constant.722

Superlinear convergence occurs when the constant σ ∈ (0, 1) in (3.6.1) can be723

chosen arbitrarily close to 1. Specifically, we say that the sequence {φk} converges724

Q-superlinearly to 0 if725

(3.6.4) lim
k→∞φk+1/φk = 0.726

Q-Quadratic convergence occurs when727

(3.6.5) φk+1/φ
2
k 6 C, k = 1, 2, . . . ,728

for some sufficiently large C. We say that the convergence is R-superlinear if729

there is a Q-superlinearly convergent sequence {νk} that dominates {φk} (that is,730

0 6 φk 6 νk for all k). R-quadratic convergence is defined similarly. Quadratic731

and superlinear rates are associated with higher-order methods, such as Newton732

and quasi-Newton methods.733

When a convergence rate applies globally, from any reasonable starting point,734

it can be used to derive a complexity bound for the algorithm, which takes the735



Stephen J. Wright 23

form of a bound on the number of iterations K required to reduce φk below736

some specified tolerance ε. For a sequence satisfying the R-linear convergence737

condition (3.6.2) a sufficient condition for φK 6 ε is C(1 − σ)K 6 ε. By using the738

estimate log(1 − σ) 6 −σ for all σ ∈ (0, 1), we have that739

C(1 − σ)K 6 ε ⇔ K log(1 − σ) 6 log(ε/C) ⇐ K > log(C/ε)/σ.740

It follows that for linearly convergent algorithms, the number of iterations re-741

quired to converge to a tolerance ε depends logarithmically on 1/ε and inversely742

on the rate constant σ. For an algorithm that satisfies the sublinear rate (3.6.3a), a743

sufficient condition for φK 6 ε is C/
√
K 6 ε, which is equivalent to K > (C/ε)2,744

so the complexity is O(1/ε2). Similar analyses for (3.6.3b) reveal complexity of745

O(1/ε), while for (3.6.3c), we have complexity O(1/
√
ε).746

For quadratically convergent methods, the complexity is doubly logarithmic747

in ε (that is, O(log log(1/ε))). Once the algorithm enters a neighborhood of qua-748

dratic convergence, just a few additional iterations are required for convergence749

to a solution of high accuracy.750

4. Gradient Methods751

We consider here iterative methods for solving the unconstrained smooth prob-752

lem (1.0.1) that make use of the gradient ∇f (see also, [22] which describes sub-753

gradient methods for nonsmooth convex functions.) We consider mostly methods754

that generate an iteration sequence {xk} via the formula755

(4.0.1) xk+1 = xk +αkd
k,756

where dk is the search direction and αk is a steplength.757

We consider the steepest descent method, which searches along the negative758

gradient direction dk = −∇f(xk), proving convergence results for nonconvex759

functions, convex functions, and strongly convex functions. In Subsection 4.5, we760

consider methods that use more general descent directions dk, proving conver-761

gence of methods that make careful choices of the line search parameter αk at762

each iteration. In Subsection 4.6, we consider the conditional gradient method for763

minimization of a smooth function f over a compact set.764

4.1. Steepest Descent The simplest stepsize protocol is the short-step variant765

of steepest descent. We assume here that f is differentiable, with gradient ∇f766

satisfying the Lipschitz continuity condition (3.3.6) with constant L. We choose767

the search direction dk = −∇f(xk) in (4.0.1), and set the steplength αk to be the768

constant 1/L, to obtain the iteration769

(4.1.1) xk+1 = xk −
1
L
∇f(xk), k = 0, 1, 2, . . . .770

To estimate the amount of decrease in f obtained at each iterate of this method,771

we use Taylor’s theorem. From (3.3.7), we have772

(4.1.2) f(x+αd) 6 f(x) +α∇f(x)Td+α2 L

2
‖d‖2,773
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For x = xk and d = −∇f(xk), the value of α that minimizes the expression on the774

right-hand side is α = 1/L. By substituting these values, we obtain775

(4.1.3) f(xk+1) = f(xk − (1/L)∇f(xk)) 6 f(xk) − 1
2L
‖∇f(xk)‖2.776

This expression is one of the foundational inequalities in the analysis of optimiza-777

tion methods. Depending on the assumptions about f, we can derive a variety of778

different convergence rates from this basic inequality.779

4.2. General Case We consider first a function f that is Lipschitz continuously780

differentiable and bounded below, but that need not necessarily be convex. Using781

(4.1.3) alone, we can prove a sublinear convergence result for the steepest descent782

method.783

Theorem 4.2.1. Suppose that f is Lipschitz continuously differentiable, satisfying (3.3.6),784

and that f is bounded below by a constant f̄. Then for the steepest descent method with785

constant steplength αk ≡ 1/L, applied from a starting point x0, we have for any integer786

T > 1 that787

min
06k6T−1

‖∇f(xk)‖ 6
√

2L[f(x0) − f(xT )]

T
6

√
2L[f(x0) − f̄]

T
.788

Proof. Rearranging (4.1.3) and summing over the first T − 1 iterates, we have789

(4.2.2)
T−1∑
k=0

‖∇f(xk)‖2 6 2L
T−1∑
k=0

[f(xk) − f(xk+1)] = 2L[f(x0) − f(xT )].790

(Note the telescoping sum.) Since f is bounded below by f̄, the right-hand side is791

bounded above by the constant 2L[f(x0) − f̄]. We also have that792

min
06k6T−1

‖∇f(xk)‖ =
√

min
06k6T−1

‖∇f(xk)‖2 6

√√√√ 1
T

T−1∑
k=0

‖∇f(xk)‖2.793

The result is obtained by combining this bound with (4.2.2). �794

This result shows that within the first T − 1 steps of steepest descent, at least795

one of the iterates has gradient norm less than
√

2L[f(x0) − f̄]/T , which repre-796

sents sublinear convergence of type (3.6.3a). It follows too from (4.2.2) that for f797

bounded below, any accumulation point of the sequence {xk} is stationary.798

4.3. Convex Case When f is also convex, we have the following stronger result799

for the steepest descent method.800

Theorem 4.3.1. Suppose that f is convex and Lipschitz continuously differentiable, sat-801

isfying (3.3.6), and that (1.0.1) has a solution x∗. Then the steepest descent method with802

stepsize αk ≡ 1/L generates a sequence {xk}∞k=0 that satisfies803

(4.3.2) f(xT ) − f∗ 6
L

2T
‖x0 − x∗‖2.804
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Proof. By convexity of f, we have f(x∗) > f(xk) +∇f(xk)T (x∗ − xk), so by substi-
tuting into (4.1.3), we obtain for k = 0, 1, 2, . . . that

f(xk+1) 6 f(x∗) +∇f(xk)T (xk − x∗) − 1
2L
‖∇f(xk)‖2

= f(x∗) +
L

2

(
‖xk − x∗‖2 −

∥∥∥∥xk − x∗ − 1
L
∇f(xk)

∥∥∥∥2
)

= f(x∗) +
L

2

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
.

By summing over k = 0, 1, 2, . . . , T − 1, and noting the telescoping sum, we have

T−1∑
k=0

(f(xk+1) − f∗) 6
L

2

T−1∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
=
L

2

(
‖x0 − x∗‖2 − ‖xT − x∗‖2

)
6
L

2
‖x0 − x∗‖2.

Since {f(xk)} is a nonincreasing sequence, we have, as required,805

f(xT ) − f(x∗) 6
1
T

T−1∑
k=0

(f(xk+1) − f∗) 6
L

2T
‖x0 − x∗‖2 . �806

4.4. Strongly Convex Case Recall that the definition (3.3.9) of strong convexity807

shows that f can be bounded below by a quadratic with Hessian γI. A strongly808

convex f with L-Lipschitz gradients is also bounded above by a similar quadratic809

(see (3.3.7)) differing only in the quadratic term, which becomes LI. From this810

“sandwich” effect, we derive a linear convergence rate for the gradient method,811

stated formally in the following theorem.812

Theorem 4.4.1. Suppose that f is Lipschitz continuously differentiable, satisfying (3.3.6),813

and strongly convex, satisfying (3.2.5) with modulus of convexity γ. Then f has a unique814

minimizer x∗, and the steepest descent method with stepsize αk ≡ 1/L generates a se-815

quence {xk}∞k=0 that satisfies816

f(xk+1) − f(x∗) 6
(

1 −
γ

L

)
(f(xk) − f(x∗)), k = 0, 1, 2, . . . .817

Proof. Existence of the unique minimizer x∗ follows from Theorem 3.3.14. Min-
imizing both sides of the inequality (3.3.9) with respect to y, we find that the
minimizer on the left side is attained at y = x∗, while on the right side it is
attained at x−∇f(x)/γ. Plugging these optimal values into (3.3.9), we obtain

min
y
f(y) > min

y
f(x) +∇f(x)T (y− x) + γ

2
‖y− x‖2

⇒ f(x∗) > f(x) −∇f(x)T
(

1
γ
∇f(x)

)
+
γ

2

∥∥∥∥ 1
γ
∇f(x)

∥∥∥∥2

⇒ f(x∗) > f(x) −
1

2γ
‖∇f(x)‖2.



26 Optimization Algorithms for Data Analysis

By rearrangement, we obtain818

(4.4.2) ‖∇f(x)‖2 > 2γ[f(x) − f(x∗)].819

By substituting (4.4.2) into our basic inequality (4.1.3), we obtain820

f(xk+1) = f

(
xk −

1
L
∇f(xk)

)
6 f(xk) −

1
2L
‖∇f(xk)‖2 6 f(xk) −

γ

L
(f(xk) − f∗).821

Subtracting f∗ from both sides of this inequality yields the result. �822

Note that After T steps, we have823

(4.4.3) f(xT ) − f∗ 6
(

1 −
γ

L

)T
(f(x0) − f∗),824

which is convergence of type (3.6.2) with constant σ = γ/L.825

4.5. General Case: Line-Search Methods Returning to the case in which f has826

Lipschitz continuous gradients but is possibly nonconvex, we consider algorithms827

that take steps of the form (4.0.1), where dk is a descent direction, that is, it828

makes a positive inner product with the negative gradient −∇f(xk), so that829

∇f(xk)Tdk < 0. This condition ensures that f(xk + αdk) < f(xk) for sufficiently830

small positive values of step length α — we obtain improvement in f by taking831

small steps along dk. (This claim follows from (3.3.3).) Line-search methods are832

built around this fundamental observation. By introducing additional conditions833

on dk and αk, that can be verified in practice with reasonable effort, we can estab-834

lish a bound on decrease similar to (4.1.3) on each iteration, and thus a conclusion835

similar to that of Theorem 4.2.1.836

We assume that dk satisfies the following for some η > 0:837

(4.5.1) ∇f(xk)Tdk 6 −η‖∇f(xk)‖‖dk‖.838

For the steplength αk, we assume the following weak Wolfe conditions hold, for
some constants c1 and c2 with 0 < c1 < c2 < 1:

f(xk +αkd
k) 6 f(xk) + c1αk∇f(xk)Tdk(4.5.2a)

∇f(xk +αkdk)Tdk > c2∇f(xk)Tdk.(4.5.2b)

Condition (4.5.2a) is called “sufficient decrease;” it ensures descent at each step of839

at least a small fraction c1 of the amount promised by the first-order Taylor-series840

expansion (3.3.3). Condition (4.5.2b) ensures that the directional derivative of f841

along the search direction dk is significantly less negative at the chosen steplength842

αk than at α = 0. This condition ensures that the step is “not too short.” It can843

be shown that it is always possible to find αk that satisfies both conditions (4.5.2)844

simultaneously.845

Line-search procedures, which are specialized optimization procedures for846

minimizing functions of one variable, have been devised to find such values effi-847

ciently; see [36, Chapter 3] for details.848

For line-search methods of this type, we have the following generalization of849

Theorem 4.2.1.850
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Theorem 4.5.3. Suppose that f is Lipschitz continuously differentiable, satisfying (3.3.6),851

and that f is bounded below by a constant f̄. Consider the method that takes steps of the852

form (4.0.1), where dk satisfies (4.5.1) for some η > 0 and the conditions (4.5.2) hold at853

all k, for some constants c1 and c2 with 0 < c1 < c2 < 1. Then for any integer T > 1,854

we have855

min
06k6T−1

‖∇f(xk)‖ 6

√
L

η2c1(1 − c2)

√
f(x0) − f̄

T
.856

Proof. By combining the Lipschitz property (3.3.6) with (4.5.2b), we have857

−(1 − c2)∇f(xk)Tdk 6 [∇f(xk +αkdk) −∇f(xk)]Tdk 6 Lαk‖dk‖2.858

By comparing the first and last terms in these inequalities, we obtain the following859

lower bound on αk:860

αk > −
(1 − c2)

L

∇f(xk)Tdk

‖dk‖2 .861

By substituting this bound into (4.5.2a), and using (4.5.1) and the step definition862

(4.0.1), we obtain863

(4.5.4)

f(xk+1) = f(xk +αkd
k) 6 f(xk) + c1αk∇f(xk)Tdk

6 f(xk) −
c1(1 − c2)

L

(∇f(xk)Tdk)2

‖dk‖2

6 f(xk) −
c1(1 − c2)

L
η2‖∇f(xk)‖2,

864

which by rearrangement yields865

(4.5.5) ‖∇f(xk)‖2 6
L

c1(1 − c2)η2

(
f(xk) − f(xk+1)

)
.866

The result now follows as in the proof of Theorem 4.2.1. �867

It follows by taking limits on both sides of (4.5.5) that868

(4.5.6) lim
k→∞ ‖∇f(xk)‖ = 0,869

and therefore all accumulation points x̄ of the sequence {xk} generated by the870

algorithm (4.0.1) have∇f(x̄) = 0. In the case of f convex, this condition guarantees871

that x̄ is a solution of (1.0.1). When f is nonconvex, x̄ may be a local minimum,872

but it may also be a saddle point or a local maximum.873

The paper [29] uses the stable manifold theorem to show that line-search gra-874

dient methods are highly unlikely to converge to stationary points x̄ at which875

some eigenvalues of the Hessian ∇2f(x̄) are negative. Although it is easy to con-876

struct examples for which such bad behavior occurs, it requires special choices of877

starting point x0. Possibly the most obvious example is where f(x1, x2) = x
2
1 − x

2
2878

starting from x0 = (1, 0)T , where dk = −∇f(xk) at each k. For this example, all879

iterates have xk2 = 0 and, under appropriate conditions, converge to the saddle880

point x̄ = 0. Any starting point with x0
2 6= 0 cannot converge to 0, in fact, it is easy881

to see that xk2 diverges away from 0.882
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4.6. Conditional Gradient Method The conditional gradient approach, often883

known as “Frank-Wolfe” after the authors who devised it [24], is a method for884

convex nonlinear optimization over compact convex sets. This is the problem885

(4.6.1) min
x∈Ω

f(x),886

(see earlier discussion around (3.2.2)), where Ω is a compact convex set and f887

is a convex function whose gradient is Lipschitz continuously differentiable in a888

neighborhood of Ω, with Lipschitz constant L. We assume that Ω has diameter889

D, that is, ‖x− y‖ 6 D for all x,y ∈ Ω.890

The conditional gradient method replaces the objective in (4.6.1) at each iter-
ation by a linear Taylor-series approximation around the current iterate xk, and
minimizes this linear objective over the original constraint set Ω. It then takes
a step from xk towards the minimizer of this linearized subproblem. The full
method is as follows:

vk := arg min
v∈Ω

vT∇f(xk);(4.6.2a)

xk+1 := xk +αk(v
k − xk), αk :=

2
k+ 2

.(4.6.2b)

The method has a sublinear convergence rate, as we show below, and indeed891

requires many iterations in practice to obtain an accurate solution. Despite this892

feature, it makes sense in many interesting applications, because the subproblems893

(4.6.2a) can be solved very cheaply in some settings, and because highly accurate894

solutions are not required in some applications.895

We have the following result for sublinear convergence of the conditional gra-896

dient method.897

Theorem 4.6.3. Under the conditions above, where L is the Lipschitz constant for ∇f on898

an open neighborhood of Ω and D is the diameter of Ω, the conditional gradient method899

(4.6.2) applied to (4.6.1) satisfies900

(4.6.4) f(xk) − f(x∗) 6
2LD2

k+ 2
, k = 1, 2, . . . ,901

where x∗ is any solution of (4.6.1).902

Proof. Setting x = xk and y = xk+1 = xk +αk(v
k − xk) in (3.3.7), we have903

(4.6.5)
f(xk+1) 6 f(xk) +αk∇f(xk)T (vk − xk) +

1
2
α2
kL‖v

k − xk‖2

6 f(xk) +αk∇f(xk)T (vk − xk) +
1
2
α2
kLD

2,
904

where the second inequality comes from the definition of D. For the first-order905

term, we have since vk solves (4.6.2a) and x∗ is feasible for (4.6.2a) that906

∇f(xk)T (vk − xk) 6 ∇f(xk)T (x∗ − xk) 6 f(x∗) − f(xk).907

By substituting in (4.6.5) and subtracting f(x∗) from both sides, we obtain908

(4.6.6) f(xk+1) − f(x∗) 6 (1 −αk)[f(x
k) − f(x∗)] +

1
2
α2
kLD

2.909
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We now apply an inductive argument. For k = 0, we have α0 = 1 and910

f(x1) − f(x∗) 6
1
2
LD2 <

2
3
LD2,911

so that (4.6.4) holds in this case. Supposing that (4.6.4) holds for some value of k,
we aim to show that it holds for k+ 1 too. We have

f(xk+1) − f(x∗)

6

(
1 −

2
k+ 2

)
[f(xk) − f(x∗)] +

1
2

4
(k+ 2)2 LD

2 from (4.6.6), (4.6.2b)

6 LD2
[

2k
(k+ 2)2 +

2
(k+ 2)2

]
from (4.6.4)

= 2LD2 (k+ 1)
(k+ 2)2

= 2LD2 k+ 1
k+ 2

1
k+ 2

6 2LD2 k+ 2
k+ 3

1
k+ 2

=
2LD2

k+ 3
,

as required. �912

5. Prox-Gradient Methods913

We now describe an elementary but powerful approach for solving the regu-914

larized optimization problem915

(5.0.1) min
x∈Rn

φ(x) := f(x) + λψ(x),916

where f is a smooth convex function, ψ is a convex regularization function (known917

simply as the “regularizer”), and λ > 0 is a regularization parameter. The tech-918

nique we describe here is a natural extension of the steepest-descent approach,919

in that it reduces to the steepest-descent method analyzed in Theorems 4.3.1 and920

4.4.1 applied to f when the regularization term is not present (λ = 0). It is useful921

when the regularizer ψ has a simple structure that is easy to account for explicitly,922

as is true for many regularizers that arise in data analysis, such as the `1 function923

(ψ(x) = ‖x‖1) of the indicator function for a simple set Ω (ψ(x) = IΩ(x)), such924

as a box Ω = [l1,u1]⊗ [l2,u2]⊗ . . .⊗ [ln,un]. For such regularizers, the proximal925

operators can be computed explicitly and efficiently.2926

Each step of the algorithm is defined as follows:927

(5.0.2) xk+1 := proxαkλψ(x
k −αk∇f(xk)),928

for some steplength αk > 0, and the prox operator defined in (3.5.3). By substitut-929

ing into this definition, we can verify that xk+1 is the solution of an approximation930

to the objective φ of (5.0.1), namely:931

(5.0.3) xk+1 := arg min
z
∇f(xk)T (z− xk) + 1

2αk
‖z− xk‖2 + λψ(z).932

2For the analysis of this section I am indebted to class notes of L. Vandenberghe, from 2013-14.
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One way to verify this equivalence is to note that the objective in (5.0.3) can be933

written as934
1
αk

{
1
2

∥∥∥z− (xk −αk∇f(xk))
∥∥∥2

+αkλψ(x)

}
,935

(modulo a term αk‖∇f(xk)‖2 that does not involve z). The subproblem objective936

in (5.0.3) consists of a linear term∇f(xk)T (z− xk) (the first-order term in a Taylor-937

series expansion), a proximality term 1
2αk
‖z− xk‖2 that becomes more strict as938

αk ↓ 0, and the regularization term λψ(x) in unaltered form. When λ = 0, we939

have xk+1 = xk − αk∇f(xk), so the iteration (5.0.2) (or (5.0.3)) reduces to the940

usual steepest-descent approach discussed in Section 4 in this case. It is useful941

to continue thinking of αk as playing the role of a line-search parameter, though942

here the line search is expressed implicitly through a proximal term.943

We will demonstrate convergence of the method (5.0.2) at a sublinear rate, for944

functions fwhose gradients satisfy a Lipschitz continuity property with Lipschitz945

constant L (see (3.3.6)), and for the constant steplength choice αk = 1/L. The proof946

makes use of a “gradient map” defined by947

(5.0.4) Gα(x) :=
1
α

(
x− proxαλψ(x−α∇f(x))

)
.948

By comparing with (5.0.2), we see that this map defines the step taken at iteration949

k:950

(5.0.5) xk+1 = xk −αkGαk(x
k) ⇔ Gαk(x

k) =
1
αk

(xk − xk+1).951

The following technical lemma reveals some useful properties of Gα(x).952

Lemma 5.0.6. Suppose that in problem (5.0.1), ψ is a closed convex function and that f953

is convex with Lipschitz continuous gradient on Rn, with Lipschitz constant L. Then for954

the definition (5.0.4) with α > 0, the following claims are true.955

(a) Gα(x) ∈ ∇f(x) + λ∂ψ(x−αGα(x)).956

(b) For any z, and any α ∈ (0, 1/L], we have that957

φ(x−αGα(x)) 6 φ(z) +Gα(x)
T (x− z) −

α

2
‖Gα(x)‖2.958

Proof. For part (a), we use the optimality property (3.5.4) of the prox operator,959

and make the following substitutions: x− α∇f(x) for “x”, αλ for “λ”, and ψ for960

“h” to obtain961

0 ∈ αλ∂ψ(proxαλψ(x−α∇f(x))) + (proxαλψ(x−α∇f(x)) − (x−α∇f(x)).962

We make the substitution proxαλψ(x− α∇f(x)) = x− αGα(x), using definition963

(5.0.4), to obtain964

0 ∈ αλ∂ψ(x−αGα(x)) −α(Gα(x) −∇f(x)),965

and the result follows when we divide by α.966

For (b), we start with the following consequence of Lipschitz continuity of ∇f,967

from Lemma 3.3.10:968

f(y) 6 f(x) +∇f(x)T (y− x) + L

2
‖y− x‖2.969
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By setting y = x−αGα(x), for any α ∈ (0, 1/L], we have970

(5.0.7)
f(x−αGα(x)) 6 f(x) −αGα(x)

T∇f(x) + Lα2

2
‖Gα(x)‖2

6 f(x) −αGα(x)
T∇f(x) + α

2
‖Gα(x)‖2.

971

(The second inequality uses α ∈ (0, 1/L].) We also have by convexity of f and ψ972

that for any z and any v ∈ ∂ψ(x−αGα(x) the following are true:973

(5.0.8)
f(z) > f(x) +∇f(x)T (z− x),

ψ(z) > ψ(x−αGα(x)) + v
T (z− (x−αGα(x))).

974

From part (a) that v = (Gα(x) −∇f(x))/λ ∈ ∂ψ(x− αGα(x)). Making this choice975

of v in (5.0.8) and using (5.0.7) we have for any α ∈ (0, 1/L] that976

φ(x−αGα(x))

= f(x−αGα(x)) + λψ(x−αGα(x))

6 f(x) −αGα(x)
T∇f(x) + α

2
‖Gα(x)‖2 + λψ(x−αGα(x)) (from (5.0.7))

6 f(z) +∇f(x)T (x− z) −αGα(x)T∇f(x) +
α

2
‖Gα(x)‖2

+ λψ(z) + (Gα(x) −∇f(x))T (x−αGα(x) − z) (from (5.0.8))

= f(z) + λψ(z) +Gα(x)
T (x− z) −

α

2
‖Gα(x)‖2,

where the last equality follows from cancellation of several terms in the previous977

line. Thus (b) is proved. �978

Theorem 5.0.9. Suppose that in problem (5.0.1), ψ is a closed convex function and that f979

is convex with Lipschitz continuous gradient on Rn, with Lipschitz constant L. Suppose980

that (5.0.1) attains a minimizer x∗ (not necessarily unique) with optimal objective value981

φ∗. Then if αk = 1/L for all k in (5.0.2), we have982

φ(xk) −φ∗ 6
L‖x0 − x∗‖2

2k
, k = 1, 2, . . . .983

Proof. Since αk = 1/L satisfies the conditions of Lemma 5.0.6, we can use part (b)984

of this result to show that the sequence {φ(xk)} is decreasing and that the distance985

to the optimum x∗ also decreases at each iteration. Setting x = z = xk and α = αk986

in Lemma 5.0.6, and recalling (5.0.5), we have987

φ(xk+1) = φ(xk −αkGαk(x
k)) 6 φ(xk) −

αk
2
‖Gαk(x

k)‖2,988

justifying the first claim. For the second claim, we have by setting x = xk, α = αk,989

and z = x∗ in Lemma 5.0.6 that990

(5.0.10)

0 6 φ(xk+1) −φ∗ = φ(xk −αkGαk(x
k)) −φ∗

6 Gαk(x
k)T (xk − x∗) −

αk
2
‖Gαk(x

k)‖2

=
1

2αk

(
‖xk − x∗‖2 − ‖xk − x∗ −αkGαk(x

k)‖2
)

=
1

2αk

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
,

991
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from which ‖xk+1 − x∗‖ 6 ‖xk − x∗‖ follows.992

By setting αk = 1/L in (5.0.10), and summing over k = 0, 1, 2, . . . ,K − 1, we993

obtain from a telescoping sum on the right-hand side that994

K−1∑
k=0

(φ(xk+1) −φ∗) 6
L

2

(
‖x0 − x∗‖2 − ‖xK − x∗‖2

)
6
L

2
‖x0 − x∗‖2.995

By monotonicity of {φ(xk)}, we have996

K(φ(xK) −φ∗) 6
K−1∑
k=0

(φ(xk+1) −φ∗).997

The result follows immediately by combining these last two expressions. �998

6. Accelerating Gradient Methods999

We showed in Section 4 that the basic steepest descent method for solving1000

(1.0.1) for smooth f converges sublinearly at a 1/k rate when f is convex, and1001

linearly at a rate of (1 − γ/L) when f is strongly convex, satisfying (3.3.13) for1002

positive γ and L. We show in this section that by using the gradient information1003

in a more clever way, faster convergence rates can be attained.1004

The key idea is momentum. In iteration k of a momentum method, we tend to1005

continue moving along the previous search direction at each iteration, making a1006

small adjustment toward the negative gradient −∇f evaluated at xk or a nearby1007

point. (Steepest descent simply uses −∇f(xk) as the search direction.) Although1008

not obvious at first, there is some intuition behind the momentum idea. The step1009

taken at the previous iterate xk−1 was based on negative gradient information1010

at that iteration, along with the search direction from the iteration prior to that1011

one, namely, xk−2. By continuing this line of reasoning backwards, we see that1012

the previous step is a linear combination of all the gradient information that we1013

have encountered at all iterates so far, going back to the initial iterate x0. If this1014

information is aggregated properly, it can produce a richer overall picture of the1015

function than the latest negative gradient alone, and thus has the potential to1016

yield better convergence.1017

Sure enough, several intricate methods that use the momentum idea have been1018

proposed, and have been widely successful. These methods are often called accel-1019

erated gradient methods. A major contributor in this area is Yuri Nesterov, dating to1020

his seminal contribution in 1983 [33] and explicated further in his book [34] and1021

other publications. Another key contribution is [3], which derived an accelerated1022

method for the regularized case (1.0.2).1023

6.1. Heavy-Ball Method Possibly the most elementary method of momentum1024

type is the heavy-ball method of Polyak [37]; see also [38]. Each iteration of this1025

method has the form1026

(6.1.1) xk+1 = xk −αk∇f(xk) +βk(xk − xk−1),1027
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where αk and βk are positive scalars. That is, a momentum term βk(x
k − xk−1)1028

is added to the usual steepest descent update. Although this method can be ap-1029

plied to any smooth convex f (and even to nonconvex functions), the convergence1030

analysis is most straightforward for the special case of strongly convex quadratic1031

functions (see [38]). (This analysis also suggests appropriate values for the step1032

lengths αk and βk.) Consider the function1033

(6.1.2) min
x∈Rn

f(x) :=
1
2
xTAx− bTx,1034

where the (constant) Hessian A has eigenvalues in the range [γ,L], with 0 < γ 6 L.1035

For the following constant choices of steplength parameters:1036

αk = α :=
4

(
√
L+
√
γ)2

, βk = β :=

√
L−
√
γ√

L+
√
γ

,1037

it can be shown that ‖xk − x∗‖ 6 Cβk, for some (possibly large) constant C. We1038

can use (3.3.7) to translate this into a bound on the function error, as follows:1039

f(xk) − f(x∗) 6
L

2
‖xk − x∗‖2 6

LC2

2
β2k,1040

allowing a direct comparison with the rate (4.4.3) for the steepest descent method.1041

If we suppose that L� γ, we have1042

β ≈ 1 − 2
√
γ

L
,1043

so that we achieve approximate convergence f(xk) − f(x∗) 6 ε (for small pos-1044

itive ε) in O(
√
L/γ log(1/ε)) iterations, compared with O((L/γ) log(1/ε)) for1045

steepest descent — a significant improvement.1046

The heavy-ball method is fundamental, but several points should be noted.1047

First, the analysis for convex quadratic f is based on linear algebra arguments,1048

and does not generalize to general strongly convex nonlinear functions. Second,1049

the method requires knowledge of γ and L, for the purposes of defining parame-1050

ters α and β. Third, it is not a descent method; we usually have f(xk+1) > f(xk)1051

for many k. These properties are not specific to the heavy-ball method — some1052

of them are shared by other methods that use momentum.1053

6.2. Conjugate Gradient The conjugate gradient method for solving linear sys-1054

tems Ax = b (or, equivalently, minimizing the convex quadratic (6.1.2)) where A1055

is symmetric positive definite, is one of the most important algorithms in compu-1056

tational science. Though invented earlier than the other algorithms discussed in1057

this section (see [27]) and motivated in a different way, conjugate gradient clearly1058

makes use of momentum. Its steps have the form1059

(6.2.1) xk+1 = xk +αkp
k, where pk = −∇f(xk) + ξkpk−1,1060

for some choices of αk and ξk, which is identical to (6.1.1) when we define βk ap-1061

propriately. For convex, strongly quadratic problems (6.1.2), conjugate gradient1062

has excellent properties. It does not require prior knowledge of the range [γ,L] of1063
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the eigenvalue spectrum of A, choosing the steplengths αk and ξk in an adaptive1064

fashion. (In fact, αk is chosen to be the exact minimizer along the search direction1065

pk.) The main arithmetic operation per iteration is one matrix-vector multiplica-1066

tion involving A, the same cost as a gradient evaluation for f in (6.1.2). Most1067

importantly, there is a rich convergence theory, that characterizes convergence in1068

terms of the properties of the full spectrum of A (not just its extreme elements),1069

showing in particular that good approximate solutions can be obtained quickly1070

if the eigenvalues are clustered. Convergence to an exact solution of (6.1.2) in at1071

most n iterations is guaranteed (provided, naturally, that the arithmetic is carried1072

out exactly).1073

There has been much work over the years on extending the conjugate gradi-1074

ent method to general smooth functions f. Few of the theoretical properties for1075

the quadratic case carry over to the nonlinear setting, though several results are1076

known; see [36, Chapter 5], for example. Such “nonlinear” conjugate gradient1077

methods vary in the accuracy with which they perform the line search for αk in1078

(6.2.1) and — more fundamentally — in the choice of ξk. The latter is done in1079

a way that ensures that each search direction pk is a descent direction. In some1080

methods, ξk is set to zero on some iterations, which causes the method to take1081

a steepest descent step, effectively “restarting” the conjugate gradient method at1082

the latest iterate.1083

Despite these qualifications, nonlinear conjugate gradient is quite commonly1084

used in practice, because of its minimal storage requirements and the fact that1085

it requires only one gradient evaluation per iteration. Its popularity has been1086

eclipsed in recent years by the limited-memory quasi-Newton method L-BFGS1087

[30], [36, Section 7.2], which requires more storage (though still O(n)) and is1088

similarly economical and easy to implement.1089

6.3. Nesterov’s Accelerated Gradient: Weakly Convex Case We now describe1090

Nesterov’s method for (1.0.1) and prove its convergence — sublinear at a 1/k2
1091

rate — for the case of f convex with Lipschitz continuous gradients satisfying1092

(3.3.6). Each iteration of this method has the form1093

(6.3.1) xk+1 = xk −αk∇f
(
xk +βk(x

k − xk−1)
)
+βk(x

k − xk−1),1094

for choices of the parameters αk and βk to be defined. Note immediately the
similarity to the heavy-ball formula (6.1.1). The only difference is that the extrap-
olation step xk → xk + βk(x

k − xk−1) is taken before evaluation of the gradient
∇f in (6.3.1), whereas in (6.1.1) the gradient is simply evaluated at xk. It is con-
venient for purposes of analysis (and implementation) to introduce an auxiliary
sequence {yk}, fix αk ≡ 1/L, and rewrite the update (6.3.1) as follows:

xk+1 = yk −
1
L
∇f(yk),(6.3.2a)

yk+1 = xk+1 +βk+1(x
k+1 − xk), k = 0, 1, 2, . . . ,(6.3.2b)
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where we initialize at an arbitrary y0 and set x0 = y0. We define βk with reference1095

to another scalar sequence λk in the following manner:1096

(6.3.3) λ0 = 0, λk+1 =
1
2

(
1 +

√
1 + 4λ2

k

)
, βk =

λk − 1
λk+1

.1097

Since λk > 1 for k = 1, 2, . . . , we have βk+1 > 0 for k = 0, 1, 2, . . . . It also follows1098

from the definition of λk+1 that1099

(6.3.4) λ2
k+1 − λk+1 = λ2

k.1100

We have the following result for convergence of Nesterov’s scheme on general1101

convex functions. We prove it using an argument from [3], as reformulated in1102

[7, Section 3.7]. The analysis is famously technical, and intuition is hard to come1103

by. Some recent progress has been made in deriving algorithms similar to (6.3.2)1104

that have a plausible geometric or algebraic motivation; see [8, 21].1105

Theorem 6.3.5. Suppose that f in (1.0.1) is convex, with ∇f Lipschitz continuously1106

differentiable with constant L (as in (3.3.6)) and that the minimum of f is attained at x∗,1107

with f∗ := f(x∗). Then the method defined by (6.3.2), (6.3.3) with x0 = y0 yields an1108

iteration sequence {xk} with the following property:1109

f(xT ) − f∗ 6
2L‖x0 − x∗‖2

(T + 1)2 , T = 1, 2, . . . .1110

Proof. From convexity of f and (3.3.7), we have for any x and y that1111

(6.3.6)

f(y−∇f(y)/L) − f(x)

6 f(y−∇f(y)/L) − f(y) +∇f(y)T (y− x)

6 ∇f(y)T (y−∇f(y)/L− y) + L

2
‖y−∇f(y)/L− y‖2 +∇f(y)T (y− x)

= −
1

2L
‖∇f(y)‖2 +∇f(y)T (y− x).

1112

Setting y = yk and x = xk in this bound, we obtain1113

(6.3.7)

f(xk+1) − f(xk) = f(yk −∇f(yk)/L) − f(xk)

6 −
1

2L
‖∇f(yk)‖2 +∇f(yk)T (yk − xk)

= −
L

2
‖xk+1 − yk‖2 − L(xk+1 − yk)T (yk − xk).

1114

We now set y = yk and x = x∗ in (6.3.6), and use (6.3.2a) to obtain1115

(6.3.8) f(xk+1) − f(x∗) 6 −
L

2
‖xk+1 − yk‖2 − L(xk+1 − yk)T (yk − x∗).1116

Introducing notation δk := f(xk) − f(x∗), we multiply (6.3.7) by λk+1 − 1 and add
it to (6.3.8) to obtain

(λk+1 − 1)(δk+1 − δk) + δk+1

6 −
L

2
λk+1‖xk+1 − yk‖2 − L(xk+1 − yk)T (λk+1y

k − (λk+1 − 1)xk − x∗).
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We multiply this bound by λk+1, and use (6.3.4) to obtain

(6.3.9) λ2
k+1δk+1 − λ

2
kδk

6 −
L

2

[
‖λk+1(x

k+1 − yk)‖2 + 2λk+1(x
k+1 − yk)T (λk+1y

k − (λk+1 − 1)xk − x∗)
]

= −
L

2

[
‖λk+1x

k+1 − (λk+1 − 1)xk − x∗‖2 − ‖λk+1y
k − (λk+1 − 1)xk − x∗‖2

]
,

where in the final equality we used the identity ‖a‖2 + 2aTb = ‖a+ b‖2 − ‖b‖2.
By multiplying (6.3.2b) by λk+2, and using λk+2βk+1 = λk+1 − 1 from (6.3.3), we
have

λk+2y
k+1 = λk+2x

k+1 + λk+2βk+1(x
k+1 − xk)

= λk+2x
k+1 + (λk+1 − 1)(xk+1 − xk).

By rearranging this equality, we have1117

λk+1x
k+1 − (λk+1 − 1)xk = λk+2y

k+1 − (λk+2 − 1)xk+1.1118

By substituting into the first term on the right-hand side of (6.3.9), and using the1119

definition1120

(6.3.10) uk := λk+1y
k − (λk+1 − 1)xk − x∗,1121

we obtain1122

λ2
k+1δk+1 − λ

2
kδk 6 −

L

2
(‖uk+1‖2 − ‖uk‖2).1123

By summing both sides of this inequality over k = 0, 1, . . . , T − 1, and using λ0 = 0,1124

we obtain1125

λ2
TδT 6

L

2
(‖u0‖2 − ‖uT‖2) 6

L

2
‖x0 − x∗‖2,1126

so that1127

(6.3.11) δT = f(xT ) − f(x∗) 6
L‖x0 − x∗‖2

2λ2
T

.1128

A simple induction confirms that λk > (k+ 1)/2 for k = 1, 2, . . . , and the claim of1129

the theorem follows by substituting this bound into (6.3.11). �1130

6.4. Nesterov’s Accelerated Gradient: Strongly Convex Case We turn now to1131

Nesterov’s approach for smooth strongly convex functions, which satisfy (3.2.5)1132

with γ > 0. Again, we follow the proof in [7, Section 3.7], which is based on1133

the analysis in [34]. The method uses the same update formula (6.3.2) as in the1134

weakly convex case, and the same initialization, but with a different choice of1135

βk+1, namely:1136

(6.4.1) βk+1 ≡
√
L−
√
γ√

L+
√
γ

=

√
κ− 1√
κ+ 1

.1137

The condition measure κ is defined in (3.3.12). We prove the following conver-1138

gence result.1139

Theorem 6.4.2. Suppose that f is such that ∇f is Lipschitz continuously differentiable1140

with constant L, and that it is strongly convex with modulus of convexity γ and unique1141
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minimizer x∗. Then the method (6.3.2), (6.4.1) with starting point x0 = y0 satisfies1142

f(xT ) − f(x∗) 6
L+ γ

2
‖x0 − x∗‖2

(
1 −

1√
κ

)T
, T = 1, 2, . . . .1143

Proof. The proof makes use of a family of strongly convex functions Φk(z) de-
fined inductively as follows:

Φ0(z) = f(y
0) +

γ

2
‖z− y0‖2,(6.4.3a)

Φk+1(z) = (1 − 1/
√
κ)Φk(z)(6.4.3b)

+
1√
κ

(
f(yk) +∇f(yk)T (z− yk) + γ

2
‖z− yk‖2

)
.

Each Φk(·) is a quadratic, and an inductive argument shows that ∇2Φk(z) = γI1144

for all k and all z. Thus, each Φk has the form1145

(6.4.4) Φk(z) = Φ
∗
k +

γ

2
‖z− vk‖2, k = 0, 1, 2, . . . ,1146

where vk is the minimizer of Φk(·) and Φ∗k is its optimal value. (From (6.4.3a),1147

we have v0 = y0.) We note too that Φk becomes a tighter overapproximation to f1148

as k→∞. To show this, we use (3.3.9) to replace the final term in parentheses in1149

(6.4.3b) by f(z), then subtract f(z) from both sides of (6.4.3b) to obtain1150

(6.4.5) Φk+1(z) − f(z) 6 (1 − 1/
√
κ)(Φk(z) − f(z)).1151

In the remainder of the proof, we show that the following bound holds:1152

(6.4.6) f(xk) 6 min
z
Φk(z) = Φ

∗
k, k = 0, 1, 2, . . . .1153

The upper bound in Lemma 3.3.10 for x = x∗ gives f(z) − f(x∗) 6 (L/2)‖z− x∗‖2.1154

By combining this bound with (6.4.5) and (6.4.6), we have1155

(6.4.7)

f(xk) − f(x∗) 6 Φ∗k − f(x
∗)

6 Φk(x
∗) − f(x∗)

6 (1 − 1/
√
κ)k(Φ0(x

∗) − f(x∗))

6 (1 − 1/
√
κ)k[(Φ0(x

∗) − f(x0)) + (f(x0) − f(x∗))]

6 (1 − 1/
√
κ)k

γ+ L

2
‖x0 − x∗‖2.

1156

The proof is completed by establishing (6.4.6), by induction on k. Since x0 = y0,
it holds by definition at k = 0. By using step formula (6.3.2a), the convexity
property (3.3.8) (with x = yk), and the inductive hypothesis, we have

(6.4.8) f(xk+1)

6 f(yk) −
1

2L
‖∇f(yk)‖2

= (1 − 1/
√
κ)f(xk) + (1 − 1/

√
κ)(f(yk) − f(xk)) + f(yk)/

√
κ−

1
2L
‖∇f(yk)‖2

6 (1 − 1/
√
κ)Φ∗k + (1 − 1/

√
κ)∇f(yk)T (yk − xk) + f(yk)/

√
κ−

1
2L
‖∇f(yk)‖2.
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Thus the claim is established (and the theorem is proved) if we can show that the1157

right-hand side in (6.4.8) is bounded above by Φ∗k+1.1158

Recalling the observation (6.4.4), we have by taking derivatives of both sides of1159

(6.4.3b) with respect to z that1160

(6.4.9) ∇Φk+1(z) = γ(1 − 1/
√
κ)(z− vk) +∇f(yk)/

√
κ+ γ(z− yk)/

√
κ.1161

Since vk+1 is the minimizer of Φk+1 we can set ∇Φk+1(v
k+1) = 0 in (6.4.9) to1162

obtain1163

(6.4.10) vk+1 = (1 − 1/
√
κ)vk + yk/

√
κ−∇f(yk)/(γ

√
κ).1164

By subtracting yk from both sides of this expression, and taking ‖ · ‖2 of both1165

sides, we obtain1166

(6.4.11)
‖vk+1 − yk‖2 = (1 − 1/

√
κ)2‖yk − vk‖2 + ‖∇f(yk)‖2/(γ2κ)

− 2(1 − 1/
√
κ)/(γ

√
κ)∇f(yk)T (vk − yk).

1167

By evaluating Φk+1 at z = yk, using both (6.4.4) and (6.4.3b), we obtain1168

(6.4.12)

Φ∗k+1 +
γ

2
‖yk − vk+1‖2

= (1 − 1/
√
κ)Φk(y

k) + f(yk)/
√
κ

= (1 − 1/
√
κ)Φ∗k +

γ

2
(1 − 1/

√
κ)‖yk − vk‖2 + f(yk)/

√
κ.

1169

By substituting (6.4.11) into (6.4.12), we obtain1170

(6.4.13)

Φ∗k+1 = (1 − 1/
√
κ)Φ∗k + f(y

k)/
√
κ+ γ(1 − 1/

√
κ)/(2

√
κ)‖yk − vk‖2

−
1

2L
‖∇f(yk)‖2 + (1 − 1/

√
κ)∇f(yk)T (vk − yk)/

√
κ

> (1 − 1/
√
κ)Φ∗k + f(y

k)/
√
κ

−
1

2L
‖∇f(yk)‖2 + (1 − 1/

√
κ)∇f(yk)T (vk − yk)/

√
κ,

1171

where we simply dropped a nonnegative term from the right-hand side to obtain1172

the inequality. The final step is to show that1173

(6.4.14) vk − yk =
√
κ(yk − xk),1174

which we do by induction. Note that v0 = x0 = y0, so the claim holds for k = 0.1175

We have1176

(6.4.15)

vk+1 − yk+1 = (1 − 1/
√
κ)vk + yk/

√
κ−∇f(yk)/(γ

√
κ) − yk+1

=
√
κyk − (

√
κ− 1)xk −

√
κ∇f(yk)/L− yk+1

=
√
κxk+1 − (

√
κ− 1)xk − yk+1

=
√
κ(yk+1 − xk+1),

1177

where the first equality is from (6.4.10), the second equality is from the inductive1178

hypothesis, the third equality is from the iteration formula (6.3.2a), and the final1179

equality is from the iteration formula (6.3.2b) with the definition of βk+1 from1180

(6.4.1). We have thus proved (6.4.14), and by substituting this equality into (6.4.13),1181
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we obtain that Φ∗k+1 is an upper bound on the right-hand side of (6.4.8). This1182

establishes (6.4.6) and thus completes the proof of the theorem. �1183

6.5. Lower Bounds on Rates The term “optimal” in Nesterov’s optimal method1184

is used because the convergence rate achieved by the method is the best possible1185

(possibly up to a constant), among algorithms that make use of gradient informa-1186

tion at the iterates xk. This claim can be proved by means of a carefully designed1187

function, for which no method that makes use of all gradients observed up to and1188

including iteration k (namely, ∇f(xi), i = 0, 1, 2, . . . ,k) can produce a sequence1189

{xk} that achieves a rate better than that of Theorem 6.3.5. The function proposed1190

in [32] is a convex quadratic f(x) = (1/2)xTAx− eT1 x, where1191

A =



2 −1 0 0 . . . . . . 0

−1 2 −1 0 . . . . . . 0

0 −1 2 −1 0 . . . 0
. . . . . . . . .

0 . . . 0 −1 2 −1

0 . . . 0 −1 2


, e1 =



1

0

0
...

0


.1192

The solution x∗ satisfies Ax∗ = e1; its components are x∗i = 1 − i/(n + 1), for1193

i = 1, 2, . . . ,n. If we use x0 = 0 as the starting point, and construct the iterate1194

xk+1 as1195

xk+1 = xk +

k∑
j=0

ξj∇f(xj),1196

for some coefficients ξj, j = 0, 1, . . . , k, an elementary inductive argument shows1197

that each iterate xk can have nonzero entries only in its first k components. It1198

follows that for any such algorithm, we have1199

(6.5.1) ‖xk − x∗‖2 >
n∑

j=k+1

(x∗j )
2 =

n∑
j=k+1

(
1 −

j

n+ 1

)2
.1200

A little arithmetic shows that1201

(6.5.2) ‖xk − x∗‖2 >
1
8
‖x0 − x∗‖2, k = 1, 2, . . . ,

n

2
− 1,1202

It can be shown further that1203

(6.5.3) f(xk) − f∗ >
3L

32(k+ 1)2 ‖x
0 − x∗‖2, k = 1, 2, . . . ,

n

2
− 1,1204

where L = ‖A‖2. This lower bound on f(xk) − x∗ is within a constant factor of1205

the upper bound of Theorem 6.3.5.1206

The restriction k 6 n/2 in the argument above is not fully satisfying. A more1207

compelling example would show that the lower bound (6.5.3) holds for all k, but1208

an example of this type is not currently known.1209
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7. Newton Methods1210

So far, we have dealt with methods that use first-order (gradient or subgra-1211

dient) information about the objective function. We have shown that such algo-1212

rithms can yield sequences of iterates that converge at linear or sublinear rates.1213

We turn our attention in this chapter to methods that exploit second-derivative1214

(Hessian) information. The canonical method here is Newton’s method, named1215

after Isaac Newton, who proposed a version of the method for polynomial equa-1216

tions in around 1670.1217

For many functions, including many that arise in data analysis, second-order1218

information is not difficult to compute, in the sense that the functions that we1219

deal with are simple (usually compositions of elementary functions). In compar-1220

ing with first-order methods, there is a tradeoff. Second-order methods typically1221

have local superlinear or quadratic convergence rates: Once the iterates reach a1222

neighborhood of a solution at which second-order sufficient conditions are sat-1223

isfied, convergence is rapid. Moreover, their global convergence properties are1224

attractive. With appropriate enhancements, they can provably avoid convergence1225

to saddle points. But the costs of calculating and handling the second-order infor-1226

mation and of computing the step is higher. Whether this tradeoff makes them1227

appealing depends on the specifics of the application and on whether the second-1228

derivative computations are able to take advantage of structure in the objective1229

function.1230

We start by sketching the basic Newton’s method for the unconstrained smooth1231

optimization problem min f(x), and prove local convergence to a minimizer x∗1232

that satisfies second-order sufficient conditions. Subsection 7.2 discusses perfor-1233

mance of Newton’s method on convex functions, where the use of Newton search1234

directions in the line search framework (4.0.1) can yield global convergence. Mod-1235

ifications of Newton’s method for nonconvex functions are discussed in Subsec-1236

tion 7.3. Subsection 7.4 discusses algorithms for smooth nonconvex functions1237

that use gradient and Hessian information but guarantee convergence to points1238

that approximately satisfy second-order necessary conditions. Some variants of1239

these methods are related closely to the trust-region methods discussed in Sub-1240

section 7.3, but the motivation and mechanics are somewhat different.1241

7.1. Basic Newton’s Method Consider the problem1242

(7.1.1) min f(x),1243

where f : Rn → R is a Lipschitz twice continuously differentiable function, where1244

the Hessian has Lipschitz constant M, that is,1245

(7.1.2) ‖∇2f(x ′) −∇2f(x ′′)‖ 6M‖x ′ − x ′′‖,1246

where ‖ · ‖ denotes the Euclidean vector norm and its induced matrix norm. New-1247

ton’s method generates a sequence of iterates {xk}k=0,1,2,....1248
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A second-order Taylor series approximation to f around the current iterate xk1249

is1250

(7.1.3) f(xk + p) ≈ f(xk) +∇f(xk)Tp+ 1
2
pT∇2f(xk)p.1251

When ∇2f(xk) is positive definite, the minimizer pk of the right-hand side is1252

unique; it is1253

(7.1.4) pk = −∇2f(xk)−1∇f(xk).1254

This is the Newton step. In its most basic form, then, Newton’s method is defined1255

by the following iteration:1256

(7.1.5) xk+1 = xk −∇2f(xk)−1∇f(xk).1257

We have the following local convergence result in the neighborhood of a point x∗1258

satisfying second-order sufficient conditions.1259

Theorem 7.1.6. Consider the problem (7.1.1) with f twice Lipschitz continuously differ-1260

entiable with Lipschitz constant M defined in (7.1.2). Suppose that the second-order suf-1261

ficient conditions are satisfied for the problem (7.1.1) at the point x∗, that is, ∇f(x∗) = 01262

and ∇2f(x∗) � γI for some γ > 0. Then if ‖x0 − x∗‖ 6 γ
2M , the sequence defined by1263

(7.1.5) converges to x∗ at a quadratic rate, with1264

(7.1.7) ‖xk+1 − x∗‖ 6 M
γ
‖xk − x∗‖2, k = 0, 1, 2, . . . .1265

Proof. From (7.1.4) and (7.1.5), and using ∇f(x∗) = 0, we have

xk+1 − x∗ = xk − x∗ −∇2f(xk)−1∇f(xk)

= ∇2f(xk)−1[∇2f(xk)(xk − x∗) − (∇f(xk) −∇f(x∗))].

so that1266

(7.1.8) ‖xk+1 − x∗‖ 6 ‖∇2f(xk)−1‖‖∇2f(xk)(xk − x∗) − (∇f(xk) −∇f(x∗))‖.1267

By using Taylor’s theorem (see (3.3.4) with x = xk and p = x∗ − xk), we have1268

∇f(xk) −∇f(x∗) =
∫1

0
∇2f(xk + t(x∗ − xk))(xk − x∗)dt.

By using this result along with the Lipschitz condition (7.1.2), we have1269

(7.1.9)

‖∇2f(xk)(xk − x∗) − (∇f(xk) −∇f(x∗))‖

=

∥∥∥∥∥
∫1

0
[∇2f(xk) −∇2f(xk + t(x∗ − xk)](xk − x∗)dt

∥∥∥∥∥
6
∫1

0
‖∇2f(xk) −∇2f(xk + t(x∗ − xk))‖‖xk − x∗‖dt

6

(∫1

0
Mtdt

)
‖xk − x∗‖2 = 1

2M‖x
k − x∗‖2.

1270

From the Weilandt-Hoffman inequality[28] and (7.1.2), we have that1271

|λmin(∇2f(xk)) − λmin(∇2f(x∗))| 6 ‖∇2f(xk) −∇2f(x∗)‖ 6M‖xk − x∗‖,1272
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where λmin(·) denotes the smallest eigenvalue of a symmetric matrix. Thus for1273

(7.1.10) ‖xk − x∗‖ 6 γ

2M
,1274

we have1275

λmin(∇2f(xk)) > λmin(∇2f(x∗)) −M‖xk − x∗‖ > γ−M γ

2M
>
γ

2
,1276

so that ‖∇2f(xk)−1‖ 6 2/γ. By substituting this result together with (7.1.9) into1277

(7.1.8), we obtain1278

‖xk+1 − x∗‖ 6 2
γ

M

2
‖xk − x∗‖2 =

M

γ
‖xk − x∗‖2,1279

verifying the local quadratic convergence rate. By applying (7.1.10) again, we1280

have1281

‖xk+1 − x∗‖ 6
(
M

γ
‖xk − x∗‖

)
‖xk − x∗‖ 6 1

2
‖xk − x∗‖,1282

so, by arguing inductively, we see that the sequence converges to x∗ provided1283

that x0 satisfies (7.1.10), as claimed. �1284

Of course, we do not need to explicitly identify a starting point x0 in the stated1285

region of convergence. Any sequence that approaches to x∗ will eventually enter1286

this region, and thereafter the quadratic convergence guarantees apply.1287

We have established that Newton’s method converges rapidly once the iterates1288

enter the neighborhood of a point x∗ satisfying second-order sufficient optimality1289

conditions. But what happens when we start far from such a point?1290

7.2. Newton’s Method for Convex Functions When the function f is convex as1291

well as smooth, we can devise variants of Newton’s method for which global1292

convergence and complexity results (in particular, results based on those of Sec-1293

tion 4.5) can be proved in addition to local quadratic convergence.1294

When f is strongly convex with modulus γ and satisfies Lipschitz continuity1295

of the gradient (3.3.6), the Hessian ∇2f(xk) is positive definite for all k, with1296

all eigenvalues in the interval [γ,L]. Thus, the Newton direction (7.1.4) is well1297

defined at all iterates xk, and is a descent direction satisfying the condition (4.5.1)1298

with η = γ/L. To verify this claim, note first1299

‖pk‖ 6 ‖∇2f(xk)−1‖‖∇f(xk)‖ 6 1
γ
‖∇f(xk)‖.1300

Then
(pk)T∇f(xk) = −∇f(xk)T∇2f(xk)−1∇f(xk)

6 −
1
L
‖∇f(xk)‖2

6 −
γ

L
‖∇f(xk)‖‖pk‖.

We can use the Newton direction in the line-search framework of Subsection 4.51301

to obtain a method for which xk → x∗, where x∗ is the (unique) global minimizer1302

of f. (This claim follows from the property (4.5.6) together with the fact that x∗ is1303

the only point for which ∇f(x∗) = 0.) We can even obtain a complexity result —1304

and O(1/
√
T) bound on min06k6T−1 ‖∇f(xk)‖— from Theorem 4.5.3.1305
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These global convergence properties are enhanced by the local quadratic con-1306

vergence property of Theorem 7.1.6 if we modify the line-search framework by1307

accepting the step length αk = 1 in (4.0.1) whenever it satisfies the weak Wolfe1308

conditions (4.5.2). (It can be shown, by again using arguments based on Taylor’s1309

theorem (Theorem 3.3.1), that these conditions will be satisfied by αk = 1 for all1310

xk sufficiently close to the minimizer x∗.)1311

Consider now the case in which f is convex and satisfies condition (3.3.6) but1312

is not strongly convex. Here, the Hessian ∇2f(xk) may be singular for some k, so1313

the direction (7.1.4) may not be well defined. However, by adding any positive1314

number λk > 0 to the diagonal, we can ensure that the modified Newton direction1315

defined by1316

(7.2.1) pk = −[∇2f(xk) + λkI]
−1∇f(xk),1317

is well defined and is a descent direction for f. For any η ∈ (0, 1) in (4.5.1),1318

we have by choosing λk large enough that λk/(L + λk) > η that the condition1319

(4.5.1) is satisfied too, so we can use the resulting direction pk in the line-search1320

framework of Subsection 4.5, to obtain a method that convergence to a solution1321

x∗ of (1.0.1), when one exists.1322

If, in addition, the minimizer x∗ is unique and satisfies a second-order suffi-1323

cient condition (so that ∇2f(x∗) is positive definite), then ∇2f(xk) will be positive1324

definite too for k sufficiently large. Thus, provided that η is sufficiently small,1325

the unmodified Newton direction (with λk = 0 in (7.2.1)) will satisfy the condi-1326

tion (4.5.1). If we use (7.2.1) in the line-search framework of Section 4.5, but set1327

λk = 0 where possible, and accept αk = 1 as the step length whenever it satisfies1328

(4.5.2), we can obtain local quadratic convergence to x∗, in addition to the global1329

convergence and complexity promised by Theorem 4.5.3.1330

7.3. Newton Methods for Nonconvex Functions For smooth nonconvex f, the1331

Hessian ∇2f(xk) may be indefinite for some k. The Newton direction (7.1.4)1332

may not exist (when ∇2f(xk) is singular) or it may not be a descent direction1333

(when∇2f(xk) has negative eigenvalues). However, we can still define a modified1334

Newton direction as in (7.2.1), which will be a descent direction for λk sufficiently1335

large, and thus can be used in the line-search framework of Section 4.5. For a1336

given η in (4.5.1), a sufficient condition for pk from (7.2.1) to satisfy (4.5.1) is that1337

λk + λmin(∇2f(xk))

λk + L
> η,1338

where λmin(∇2f(xk)) is the minimum eigenvalue of the Hessian, which may be1339

negative. The line-search framework of Section 4.5 can then be applied to ensure1340

that ∇f(xk)→ 0.1341

Once again, if the iterates {xk} enter the neighborhood of a local solution x∗1342

for which ∇2f(x∗) is positive definite, some enhancements of the strategy for1343

choosing λk and the step length αk can recover the local quadratic convergence1344

of Theorem 7.1.6.1345
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Formula (7.2.1) is not the only way to modify the Newton direction to ensure1346

descent in a line-search framework. Other approaches are outlined in [36, Chap-1347

ter 3]. One such technique is to modify the Cholesky factorization of ∇2(fk) by1348

adding positive elements to the diagonal only as needed to allow the factoriza-1349

tion to proceed (that is, to avoid taking the square root of a negative number),1350

then using the modified factorization in place of ∇2f(xk) in the calculation of the1351

Newton step pk. Another technique is to compute an eigenvalue decomposition1352

∇2f(xk) = QkΛkQ
T
k (where Qk is orthogonal and Λk is the diagonal matrix con-1353

taining the eigenvalues), then define Λ̃k to be a modified version of Λk in which1354

all the diagonals are positive. Then, following (7.1.4), pk can be defined as1355

pk := −QkΛ̃
−1
k Q

T
k∇f(x

k).1356

When an appropriate strategy is used to define Λ̃k, we can ensure satisfaction1357

of the descent condition (4.5.1) for some η > 0. As above, the line-search frame-1358

work of Section 4.5 can be used to obtain an algorithm that generates a sequence1359

{xk} such that ∇f(xk) → 0. We noted earlier that this condition ensures that all1360

accumulation points x̂ are stationary points, that is, they satisfy ∇f(x̂) = 0.1361

Stronger guarantees can be obtained from a trust-region version of Newton’s1362

method, which ensures convergence to a point satisfying second-order necessary1363

conditions, that is,∇2f(x̂) � 0 in addition to∇f(x̂) = 0. The trust-region approach1364

was developed in the late 1970s and early 1980s, and has become popular again1365

recently because of this appealing global convergence behavior. A trust-region1366

Newton method also recovers quadratic convergence to solutions x∗ satisfying1367

second-order-sufficient conditions, without any special modifications. (The trust-1368

region Newton approach is closely related to cubic regularization [26, 35], which1369

we discuss in the next section.)1370

We now outline the trust-region approach. (Further details can be found in1371

[36, Chapter 4].) The subproblem to be solved at each iteration is1372

(7.3.1) min
d
f(xk) +∇f(xk)Td+ 1

2
dT∇2f(xk)d subject to ‖d‖2 6 ∆k.1373

The objective is a second-order Taylor-series approximation while ∆k is the radius1374

of the trust region — the region within which we trust the second-order model1375

to capture the true behavior of f. Somewhat surprisingly, the problem (7.3.1) is1376

not too difficult to solve, even when the Hessian ∇2f(xk) is indefinite. In fact, the1377

solution dk of (7.3.1) satisfies the linear system1378

(7.3.2) [∇2f(xk) + λI]dk = −∇f(xk), for some λ > 0,1379

where λ is chosen such that ∇2f(xk)+ λI is positive semidefinite and λ > 0 only if1380

‖dk‖ = ∆k (see [31]). Solving (7.3.1) thus reduces to a search for the appropriate1381

value of the scalar λk, for which specialized methods have been devised.1382

For large-scale problems, it may be too expensive to solve (7.3.1) near-exactly,1383

since the process may require several factorizations of an n× n matrix (namely,1384

the coefficient matrix in (7.3.2), for different values of λ). A popular approach1385
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for finding approximate solutions of (7.3.1), which can be used when ∇2f(xk)1386

is positive definite, is the dogleg method. In this method the curved path traced1387

out by solutions of (7.3.2) for values of λ in the interval [0,∞) is approximated1388

by simpler path consisting of two line segments. The first segment joins 0 to1389

the point dkC that minimizes the objective in (7.3.1) along the direction −∇f(xk),1390

while the second segment joins dkC to the pure Newton step defined in (7.1.4). The1391

approximate solution is taken to be the point at which this “dogleg” path crosses1392

the boundary of the trust region ‖d‖ 6 ∆k. If the dogleg path lies entirely inside1393

the trust region, we take dk to be the pure Newton step. See [36, Section 4.1].1394

Having discussed the trust-region subproblem (7.3.1), let us outline how it can1395

be used as the basis for a complete algorithm. A crucial role is played by the ratio1396

between the amount of decrease in f predicted by the quadratic objective in (7.3.1) and1397

the actual decrease in f, namely, f(xk)− f(xk+dk). Ideally, this ratio would be close1398

to 1. If it is at least greater than a small tolerance (say, 10−4) we accept the step1399

and proceed to the next iteration. Otherwise, we conclude that the trust-region1400

radius ∆k is too large, so we do not take the step, shrink the trust region, and1401

re-solve (7.3.1) to obtain a new step. Additionally, when the actual-to-predicted1402

ratio is close to 1, we conclude that a larger trust region may hasten progress, so1403

we increase ∆ for the next iteration, provided that the bound ‖dk‖ 6 ∆k really is1404

active at the solution of (7.3.1).1405

Unlike a basic line-search method, the trust-region Newton method can “es-1406

cape” from a saddle point. Suppose we have ∇f(xk) = 0 and ∇2f(xk) indefinite1407

with some strictly negative eigenvalues. Then, the solution dk to (7.3.1) will be1408

nonzero, and the algorithm will step away from the saddle point, in the direc-1409

tion of most negative curvature for ∇2f(xk). Another appealing feature of the1410

trust-region Newton approach is that when the sequence {xk} approaches a point1411

x∗ satisfying second-order sufficient conditions, the trust region bound becomes1412

inactive, and the method takes pure Newton steps (7.1.4) for all sufficiently large1413

k so the local quadratic convergence that characterizes Newton’s method.1414

The basic difference between line-search and trust-region methods can be sum-1415

marized as follows. Line-search methods first choose a direction pk, then decide1416

how far to move along that direction. Trust-region methods do the opposite: They1417

choose the distance ∆k first, then find the direction that makes the best progress1418

for this step length.1419

7.4. A Cubic Regularization Approach Trust-region Newton methods have the1420

significant advantage of guaranteeing that any accumulation points will satisfy1421

second-order necessary conditions. A related approach based on cubic regulariza-1422

tion has similar properties, plus some additional complexity guarantees. Cubic1423

regularization requires the Hessian to be Lipschitz continuous, as in (7.1.2). It1424

follows that the following cubic function yields a global upper bound for f:1425

(7.4.1) TM(z; x) := f(x) +∇f(x)T (z− x) + 1
2
(z− x)T∇2f(x)(z− x) +

M

6
‖z− x‖3.1426
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Specifically, we have for any x that1427

f(z) 6 TM(z; x), for all z.1428

The basic cubic regularization algorithm starting from x0 proceeds as follows:1429

(7.4.2) xk+1 = arg min
z
TM(z; xk), k = 0, 1, 2, . . . .1430

The complexity properties of this approach were analyzed in [35], with variants1431

being studied in [26] and [12, 13]. Rather than present the theory for the method1432

based on (7.4.2), we describe an elementary algorithm that makes use of the ex-1433

pansion (7.4.1) as well as the steepest-descent theory of Subsection 4.1. Our algo-1434

rithm aims to identify a point that approximately satisfies second-order necessary1435

conditions, that is,1436

(7.4.3) ‖∇f(x)‖ 6 εg, λmin(∇2f(x)) > −εH,1437

where εg and εH are two small constants. In addition to Lipschitz continuity of1438

the Hessian (7.1.2), we assume Lipschitz continuity of the gradient with constant1439

L (see (3.3.6)), and also that the objective f is lower-bounded by some number f̄.1440

Our algorithm takes steps of two types: a steepest-descent step, as in Subsec-1441

tion 4.1, or a step in a negative curvature direction for ∇2f. Iteration k proceeds1442

as follows:1443

(i) If ‖∇f(xk)‖ > εg, take the steepest descent step (4.1.1).1444

(ii) Otherwise, if λmin(∇2f(xk)) < −εH, choose pk to be the eigenvector cor-1445

responding to the most negative eigenvalue of ∇2f(xk). Choose the size1446

and sign of pk such that ‖pk‖ = 1 and (pk)T∇f(xk) 6 0, and set1447

(7.4.4) xk+1 = xk +αkp
k, where αk =

2εH
M

.1448

If neither of these conditions hold, then xk satisfies the approximate second-order1449

necessary conditions (7.4.3), so we terminate.1450

For the steepest-descent step (i), we have from (4.1.3) that1451

(7.4.5) f(xk+1) 6 f(xk) −
1

2L
‖∇f(xk)‖2 6 f(xk) −

ε2
g

2L
.1452

For a step of type (ii), we have from (7.4.1) that1453

(7.4.6)

f(xk+1) 6 f(xk) +αk∇f(xk)Tpk +
1
2
α2
k(p

k)T∇2f(xk)pk +
1
6
Mα3

k‖p
k‖3

6 f(xk) −
1
2

(
2εH
M

)2
εH +

1
6
M

(
2εH
M

)3

= f(xk) −
2
3
ε3
H

M2 .

1454

By aggregating (7.4.5) and (7.4.6), we have that at each xk for which the condition1455

(7.4.3) does not hold, we attain a decrease in the objective of at least1456

min

(
ε2
g

2L
,

2
3
ε3
H

M2

)
.1457
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Using the lower bound f̄ on the objective f, we see that the number of iterations1458

K required must satisfy the condition1459

Kmin

(
ε2
g

2L
,

2
3
ε3
H

M2

)
6 f(x0) − f̄,1460

from which we conclude that1461

K 6 max
(

2Lε−2
g ,

3
2
M2ε−3

H

)(
f(x0) − f̄

)
.1462

We also observe that that the maximum number of iterates required to identify a1463

point at which only the approximate stationarity condition ‖∇f(xk)‖ 6 εg holds1464

is 2Lε−2
g (f(x0) − f̄). (We can just omit the second-order part of the algorithm.)1465

Note too that it is easy to devise approximate versions of this algorithm with simi-1466

lar complexity. For example, the negative curvature direction pk in step (ii) above1467

can be replaced by an approximation to the direction of most negative curvature,1468

obtained by the Lanczos iteration with random initialization.1469

In algorithms that make more complete use of the cubic model (7.4.1), the term1470

ε−2
g in the complexity expression becomes ε−3/2

g , and the constants are different.1471

The subproblems (7.4.1) are more complicated to solve than those in the simple1472

scheme above. Active research is going on into other algorithms that achieve1473

complexities similar to those of the cubic regularization approach. A variety of1474

methods that make use of Newton-type steps, approximate negative curvature di-1475

rections, accelerated gradient methods, random perturbations, randomized Lanc-1476

zos and conjugate gradient methods, and other algorithmic elements have been1477

proposed.1478

8. Conclusions1479

We have outlined various algorithmic tools from optimization that are useful1480

for solving problems in data analysis and machine learning, and presented their1481

basic theoretical properties. The intersection of optimization and machine learn-1482

ing is a fruitful and very popular area of current research. All the major machine1483

learning conferences have a large contingent of optimization papers, and there is1484

a great deal of interest in developing algorithmic tools to meet new challenges1485

and in understanding their properties. The edited volume [41] contains a snap-1486

shot of the state of the art circa 2010, but this is a fast-moving field and there have1487

been many developments since then.1488
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