
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 9, November-December 2005

Cite this article as follows: Donald G. Firesmith: “Quality Requirements Checklist”, in Journal of
Object Technology, vol. 4, no. 9 November - December 2005, pp. 31 - 38, http://www.jot.fm/issues/
issue_2005_11/column4

Quality Requirements Checklist
Donald Firesmith, Software Engineering Institute, U.S.A.

Abstract
On an individual requirement by requirement basis, quality requirements are typically
much more important than functional requirements because they most strongly drive the
architecture of software-intensive systems. Thus, it is how well the quality requirements
are engineered and implemented that tends to determine the success or failure of
mission critical systems. Yet, missing or poorly specified quality requirements can all too
commonly be identified during effective evaluations of the requirements specifications
and the resulting architectures. This column provides a short checklist for use during the
engineering and evaluation of quality requirements to help the requirements team
develop better quality requirements and to help evaluators of these requirements
identify defects in the associated requirements specifications.

1 THE CRITICALITY OF QUALITY REQUIREMENTS

A great deal of formal and anecdotal evidence exists that the typical quality of actual
requirement specifications today is embarrassingly poor. In practice, far too many
requirements are ambiguous, incomplete, infeasible, unverifiable, inadequately
prioritized, and mutually inconsistent [Firesmith 2003a]. In fact, this poor quality of
individual requirements and the requirements specifications that document them is a
primary reason why so many projects continue to fail [Standish 1994]. Because so many
requirements defects remain in requirements specifications after they have been reviewed
and approved, clearly the current approaches as applied in practice being used to develop
and review requirements are seriously inadequate to discover and correct these defects.

2 A MAJOR WAY QUALITY REQUIREMENT DEFECTS ARE
CURRENTLY IDENTIFIED

Unfortunately, the poor quality of the requirements is typically not recognized during
requirements engineering and the evaluation of requirements specifications. Due to
inadequate customer organization (e.g., the Government or commercial market)
experience, training and tool support, the stakeholder (e.g., business, user) requirements
typically contain large numbers of defects. These requirements may be internally

http://www.jot.fm
http://www.jot.fm/issue/issue_2005_11/column4
http://www.jot.fm/issue/issue_2005_11/column4

 QUALITY REQUIREMENTS CHECKLIST

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

reviewed, but most defects are not found. These stakeholder requirements are then passed
on to the development organization (e.g., prime contractor or internal IT), which derives
system-level technical requirements. For similar reasons, these technical requirements are
typically of poor quality, and a great many defects are not identified when the
requirements specifications are duly evaluated during peer-level and more formal
milestone reviews. This process continues down the system logical architecture from
system to subsystems to subsubsystems and from prime contractors to subcontractors and
integrated product teams (IPTs) who are responsible for implementing the allocated
requirements. Although many defects are identified and fixed during this process of
derivation and evaluation, a vast number of requirements errors still slip through the
requirements engineering process into the architecture, design, and implementation.

While this passing on of requirements defects is true of all types of requirements, it is
especially true of quality requirements. Unfortunately, quality requirements are the
primary drivers of the system and subsystem architectures. Only when it becomes time to
technically evaluate these architectures does the dismal quality of the quality
requirements become obvious. Because quality requirements are the primary drivers of
the architecture, an effective architecture assessment must evaluate the architecture
against its support (or lack of support) for these architecturally-significant drivers.
Because the requirements specifications tend to be extremely week when it comes to
properly specifying quality requirements, the assessors of the architecture often find that
they cannot properly evaluate the architecture because they do not have adequate
requirements against which to assess it. In fact, because assessors of the architecture are
so used to dealing with requirements specifications that do not contain adequate
architecturally-significant quality requirements, they have been forced out of self defense
to take on some of the responsibilities of the requirements team. They have been forced
to develop architectural assessment methods that begin with some kind of identification
and derivation of these quality requirements.

For example, it is largely because requirements teams have consistently failed to
adequately specify the quality requirements that Software Engineering Institute (SEI)
architects have developed the Quality Attribute Workshop (QAW) to identify and
document these critical architectural drivers [SEI 2005]. It is also a major reason why the
SEI’s ATAM method begins with steps designed to ensure that the architecturally-
significant quality factors against which to assess the architecture exist [Clements 2002].
But while such approaches are sufficient to enable an assessment of the architecture to
take place, they do not replace proper requirements engineering nor are proper quality
requirements needed by other stakeholders (e.g., designers, implementers, and testers)
specified.

As one small step towards ensuring the early existence of adequate quality
requirements, this column presents a short checklist of questions to be answered during
requirements engineering and the associated evaluations of the requirements.

VOL. 4, NO.9 JOURNAL OF OBJECT TECHNOLOGY 33

3 CHECKLIST

During my many years of industry experience engineering and evaluating requirements
specifications, I have found the following checklist of questions useful. I recommend that
they be considered during the engineering and evaluation of the quality requirements:

Requirements Identification

• Have the quality requirements been elicited from an appropriate sample of all
legitimate stakeholders?
⎯ Were the requirements elicited from all critically-important stakeholders?
⎯ Were all types of stakeholders used as sources of the requirements?
⎯ Were the stakeholders questioned a representative sample of all stakeholders?
⎯ Was the sampling of stakeholders large enough to be statistically valid?

• Have relevant laws, regulations, and standards been used as sources of quality
requirements?

Requirements Analysis

Unlike functional requirements where a single analysis technique (e.g., use case
modeling) can be performed to identify essentially all requirements, the same analysis is
not appropriate for all quality requirements. For example, such hazard analysis techniques
as fault tree analysis (FTA), event tree analysis (ETA), failure modes and effects analysis
(FMEA) is appropriate for safety requirements [Leveson1995], but not appropriate for
performance and reliability requirements.

• Has each quality requirement been analyzed using an appropriate analysis
technique (e.g., hazard analysis for safety requirements, performance modeling
for performance requirements)?

• Have the appropriate analysis techniques been used to the right level of detail?
• Has a sufficient number of techniques been used? For example, fault tree analysis

and event tree analysis are not redundant but rather complementary.

Types of Quality Requirements

• Quality Model. Has an appropriate quality model been used as a basis for
identifying the types of quality requirements?

• Standard. Was the quality model taken from an international standard, national
standard, military standard, industry standard or was it an ad hoc quality model
developed specifically for the endeavor?

• Completeness. Was the quality model sufficiently complete to capture all
relevant types of quality requirements?

 QUALITY REQUIREMENTS CHECKLIST

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

• Quality Factors or Subfactors. Were the quality requirements only based on
quality factors (e.g., performance) or were quality subfactors (e.g., jitter, response
time, schedulability, and throughput) used to identify subtypes of quality
requirements.

Structure of Quality Requirements

As documented in figure 1, a quality model defines the meaning of quality for a system.
The quality requirements of a system are related to the quality model that is used to
define the meaning of quality for that system. Specifically, each quality requirement
specifies that the system under development shall achieve a minimum amount of some
quality factor or subfactor defined by the quality model. This common purpose and
relationship to quality models imply that no matter what quality factors they address, all
quality requirements should have roughly the same structure and contents. As illustrated
in figure 2, each quality requirement should consist of the following three parts:

• Quality Criterion. The heart of each quality requirement is a quality criterion
that mandates that the system shall exhibit a single aspect of quality of the system.
The actual criterion is system-specific, but it describes a general type of quality as
defined in the associated quality model.

• Condition(s). Each quality requirement should typically also include an
appropriate set of one or more conditions that specify under which circumstances
the quality criterion shall hold. Usually if the conditions are not explicitly listed,
the quality criterion is interpreted to apply under all conditions. However, the
quality criterion may not be appropriate during system start-up, system-shutdown,
or during degraded modes of operation. Perhaps the criterion is only appropriated
during certain normal modes of operation such as aircraft taxiing, takeoff,
climbing, cruising, decent, landing. A great many quality requirements are
incomplete because they lack appropriate conditions.

• Threshold. All quality requirements are scalar in that they require a specific
minimum amount of some quality factor. Quality requirements therefore should
include a required threshold on some appropriate scale of measurement. Without
the threshold, the requirement does not specify how much quality is good enough
and therefore tends to be an unfeasible goal rather than a true requirement.

VOL. 4, NO.9 JOURNAL OF OBJECT TECHNOLOGY 35

Figure 1: Quality Model

Figure2: Quality Requirements

Evaluate each quality requirement against the follow criteria to ensure it has a proper
content and form:

• Quality Criterion. Does each quality requirement include a well-defined,
cohesive, system-specific quality criterion that adequately describes a single
required aspect of the system in terms of an appropriate quality factor or one of its
quality subfactors?

 QUALITY REQUIREMENTS CHECKLIST

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

• Goals as Requirements. Is each quality requirement more than merely a
statement that the system shall have the property of the quality factor or
subfactor? For example, “The system shall be safe.” Such statements are
infeasible goals rather than verifiable requirements.

• Scale with Threshold. Is each quality requirement scalar in the sense that it has
an associated mandatory threshold that specifies exactly how much of the quality
factor or subfactor is necessary? Is the threshold well defined in terms of an
associated scale of measurement? Is the scale of measurement appropriate for the
quality criterion?

• Conditions. Does each quality requirement include one or more conditions that
describe when the quality criterion must hold? If a quality criterion does not have
any associated condition, must the quality criterion hold under all conditions (e.g.,
system startup, system shutdown, degraded mode)? Have all system modes and
states been considered when determining the scope of applicability of the quality
requirement?

Quality of Quality Requirements

Like other requirements, quality requirements should have certain characteristics:
• Is each quality requirement:

⎯ Mandatory:
− Not just an unintended architecture, design, or implementation constraint?
− Relevant?

⎯ Feasible given endeavor, technology, and physical limitations? Simple
statements of goals such as “The system shall be secure” or “The system shall
be reliable” are not good requirements because they are either infeasible
because no system is totally secure or reliable or else ambiguous because they
do not say how secure or reliable they need to be.

⎯ Scalable so that it is clear just how much quality is required?
⎯ Unambiguous so that all stakeholders and developers will interpret it the

same way?
⎯ Verifiable via testing, demonstration, inspection, etc?
⎯ Correct in that it meets some real need of the stakeholders?
⎯ Prioritized, so that it can be allocated to an appropriate build or release?
⎯ Traced to its source?

• Does each quality requirement have an associated:
⎯ Rationale?
⎯ Verification method?

VOL. 4, NO.9 JOURNAL OF OBJECT TECHNOLOGY 37

4 CONCLUSION

Because of the great importance of quality requirements as the primary drivers of the
architecture of software-intensive systems, it is critical that the requirements team
properly engineer them. Stakeholders of the system should not be complacent with the
current state of the practice, whereby almost all requirements specifications do not
contain many of the quality requirements that they should. Even those requirements that
are specified are highly likely to contain significant defects. Unfortunately, many of these
defects involving quality requirements are found only after the requirements have passed
their technical evaluations. It is often during architecture evaluations that the poor quality
of the quality requirements first becomes obvious when it is discovered that the
architecture cannot be properly evaluated against the architecturally-significant
requirements, which all too often have not been specified or else only been specified in
an ambiguous, unverifiable manner. This causes the evaluations to be postponed until
some of the quality requirements have been sufficiently identified to enable a
determination of the architecture’s support for them.

The problem does not require the development of totally new requirements
engineering methods. Instead, requirements teams must begin to turn the state of the art
into the state of the practice by actually using currently known methods and techniques.
This paper provided a brief checklist of questions for members of the requirements
evaluation team to ask the members of the requirements team. Checking the quality
requirements against these evaluation criteria will go a long way towards finding existing
defects and even eliminating defects from being introduced in the first place.

REFERENCES
[Clements 2002] Paul Clements, Rick Kazman, and Mark Klein, Evaluating Software

Architectures: Methods and Case Studies, Addison Wesley, 2002.

[Firesmith 2003a] Donald G. Firesmith: “Specifying Good Requirements”, in Journal
of Object Technology, vol. 2, no. 4, July-August 2003, pp. 77-87.
http://www.jot.fm/issues/issue_2003_07/column7

[Firesmith 2003b] Donald Firesmith: “Using Quality Models to Engineer Quality
Requirements”, in Journal of Object Technology, vol. 2, no. 5, September-
October 2003, pp. 67-75.
http://www.jot.fm/issues/issue_2003_09/column6

[Leveson 1995] Nancy Leveson, Safeware: System Safety and Computers, Addison
Wesley, 1995.

[SEI 2005] Software Engineering Instititue, Quality Attribute Workshop, 2005.
http://www.sei.cmu.edu/architecture/products_services/qaw.html

http://www.jot.fm/issues/issue_2003_07/column7
http://www.jot.fm/issues/issue_2003_09/column6
http://www.sei.cmu.edu/architecture/products_services/qaw.html

 QUALITY REQUIREMENTS CHECKLIST

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

[Standish 1994] The Standish Group International, Inc. The CHAOS Report, 1994.
http://www1.standishgroup.com/sample_research/chaos_1994_1.php

ACKNOWLEDGEMENTS

Many thanks go to my colleague Mary Ann Lapham, who reviewed this column and
provided helpful observations and recommendations.

Disclaimers
The Software Engineering Institute is a federally funded research and development center
sponsored by the U.S. Department of Defense.

The views and conclusions contained in this column are solely those of the author and
should not be interpreted as representing official policies, either expressed or implied, of
the Software Engineering Institute, Carnegie Mellon University, the U.S. Air Force, the
U.S. Department of Defense, or the U.S. Government.

About the author
Donald Firesmith is a senior member of the technical staff at the
Software Engineering Institute (SEI), where he helps the US
Government acquire large, complex, software-intensive systems.
Working in industrial software development since 1979, he has worked
primarily with object technology since 1984 and has written 5 books on
the subject. During the last four years, he has developed the world’s

largest (1,100+ webpage), free, and open source informational website of reusable
process engineering components. Based on the OPEN Process Framework (OPF), it is
located at http://www.opfro.org. Currently writing a book on the engineering of safety
requirements, he can be reached at dgf@sei.cmu.edu.

http://www1.standishgroup.com/sample_research/chaos_1994_1.php
http://www.opfro.org
mailto:dgf@sei.cmu.edu

