
Security Testing Checklist for Web Application

I (Santhosh Tuppad – http://tuppad.com/blog/) have created the checklist
for security testing for web application. I have divided it into different
components like registration, password, security question and security
answer and others. For any discussion you might want to start on security
testing I recommend you to register at http://bangalorehackers.com/ and also
thought I would do a bit of marketing to http://softwaretestingnews.com/
which is a one stop shop for your software testing news.

Generic
 For All web pages which carry confidential data like password, Secret answer for

security question should be submitted via HTTPS(SSL).
 Password & security answer needs to be masked with input type = password.
 Server Side Validation for form. Use “Firebug” and “TamperData” to perform this

test (You can tamper for minimum length of password, set only new password
without old password >> You got to remove the old password element from
Firebug from the client-side and then submit it <<)

 Check for SQL Injection for any page in your application that accepts user-
supplied information to access a database.

o A login form, signup form, or “forgot password” form is a good start.
o A dynamic page that uses URL variables such as ID (product information

pages are good for this).
 Check for XSS by searching application for a page that takes user input and

outputs it directly to a webpage. Common examples: Forums, Comments, Wikis,
Review. Also, check for CSRF.

Password

 Set of rules for setting a password should be same across all the modules like
Registration form, Change password, and Forgot password. If these rules differ
than hacker might exploit it through brute force method.
Example: If the registration form does not validate for password minimum length
as 8 chars but while changing password from user profile it validates for
minimum length or vice versa. Now, as registration form accepts password which
are less than 8 chars it becomes easy for hacker to apply brute-force method.

 Password enforcement of alphabets + numeric + special characters should be
used in order to protect the account to a greater extent against brute force attack
mechanisms.

Forgot your password

 There need to be a restriction on number of forgot password requests sent per
day or in “X” hours interval or have a captcha so that automated requests are not
sent (To automate the requests you could use “ReloadEvery” add-on which is to
be used on http://example.com/user/forgot-password/)

 The URL has to expire on one use after being used to set new password.
 The token associated with the URL should not be guessable or there should be any

pattern which could be easily cracked.
 If the URL is not used within “X” hours then it has to expire (Example: Once the

URL is generated, if it is not used then it has to expire after “72 hours”)
 When new token is generated the old ones should expire even if they are not used.
 Example.com should not send the password via e-mails by resetting automatically.

There has to be URL which should be used by end-user to set new password of his
/ her choice.

 While typing secret answer in Forgot Password the secret answer needs to be
masked (Secret Answer is also part of authentication which is similar to
password, shoulder surfing or auto-complete stuff could be dangerous here
compromising the end-user account).

 Once the password is set, you might want to take end-user to logged in state or
requesting him / her to login now with the hyperlink (I, personally would
recommend taking to login page and requesting him / her to login with new
password)

Registration Form

 There needs to be a captcha so that spam bots do not register and spam in
discussion forums with illicit content which could be frustrating for your genuine
end-users.

 Tamper with the mandatory fields by trying to register without mandatory fields –
This is a server-side validation (Add-on on Mozilla Firefox – Tamper Data)
Example: Can anyone bypass acceptance of terms of conditions and proceed with
registration? This could be applied for all the forms and this test idea will not be
repeated in other forms.

Change Password

 Once the password is changed successfully. User should not be able to login again
with his old password & new password both.

 Login using the credentials on Mozilla Firefox | Login with the same credentials on
Google Chrome | Now, change password for the account in Google Chrome | After
this, refresh or try to navigate to some webpage which are allowed to be
navigated only by logged in end-users | Result: The end-user in Mozilla Firefox
web browser has to log out as he / she is in the session which has old password

Security Questions & Secret answer

 Frame the security question in such a fashion that they are not obvious to be
known (What's your pet's name? >> Now, is that secret and no wonder we see
such questions in famous web applications). It would be good if user is provided
with option of choosing customized security question.

 Secret / security answers should be stored in database as hashes and not plain
text.

Session Management

 User whose activity is idle for some time should be automatically logged out by
expiring his session. (Example: User has gone out to fresh room or to have some
snacks without logging out. Now, anyone can come to his system & see the user
account open & exploit user account.

 No confidential details like password should be saved in cookie.
 Check what information cookie carries & try to tamper with it using Mozilla add-

on Tamper Data.

Captcha
 Captcha characters should not be displayed in cyclic fashion.
 Captcha images should not be allowed to download at one time using add-on like

“DownThemAll”
 Use http://free-ocr.com/ to see if captcha could be deciphered.
 Every refresh of a webpage should display new captcha every time.
 Do not show the absolute path names of the captcha that is being displayed

because it is easy to put assertions identifying the URL and then entering the
according characters to pass the captcha.

 I personally insist on using Google reCaptcha for your web application because it
has not been cracked till date. There are many captcha third party services out
there but, I do not recommend those.

 Usage of question and answers type of captcha in textual format is good but, not
good enough.

This is a good checklist but, it could be made much better if you want to. I stop here
because I can go on and on generating the test ideas. You are free to use this checklist
for your project in your organization and share it with your colleagues owing credits
to me. To share this document here is the PDF document which you can download.

