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Introduction 
 
Graphenes are 2-D graphite layers a few monolayer thick. They comprise of hexagonal 
layers of C atoms arranged in honey-comb lattice. The existence of graphene as a single 
2-D layer is a cause of amazement for many theoreticians as it has been believed for long 
that single layers of 2-D structures of this kind cannot exist, on account of  being 
thermodynamically unstable. They suggested that the thermal fluctuations in low-
dimensional crystal lattices would give rise to divergent contributions and the 
displacement of the atom will become comparable with the atomic distances at finite 
temperatures and the structure will be lost. The reason for the existence of these 2-D 
layers of graphene is suggested to be some kind of 3-D warping which increases the 
elastic energy of the graphene but reduces the thermal fluctuation energy and above a 
certain temperature the total free energy can be minimized [1]. 
 

 
             Fig1.1.The first brillouin zone of the 2-Dimensional graphene 

 

 
            Fig1.2.The lattice structure of 2-D graphene with a and b primitive translation vectors and t1, t2, t3 connect 

the nearest C atoms. 
 
On account of their 2-D lattice structure they exhibit strange quantum mechanical and     
electronic properties. The low energy electrons (close to K and K’ points as shown in 
Fig1.1.) inside the graphene behave as relativistic particles as is shown by their 
conciliation with the Dirac equation for relativistic particles. It has been rendered 
possible to imitate the quantum relativistic phenomena. Once the dispersion relation for 
graphene is obtained it becomes simpler to see the origin of these unique properties of 
graphene. Besides graphene exhibit strange quantum Hall Effect explained in terms of 
Berry’s phase and which serves to give more insight into the electronic structure of 
graphene. 
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The dispersion relation for graphene is derived using the nearest neighbor tight binding 
model. The approach uses the Bloch type of wave function and the mutual interaction 
between the nearest neighbors to arrive at the following relation. 
 

23
( ) 1 4cos cos 4cos

2 2 2

x y x
o

ak ak ak
E k γ± = ± + +  

 
From the equation one can see that  E(K) = E(K’) = 0. Also near the K and  K’ points, we 
have. 
                                              E(K + k) = E(K’+ k) = γ(kx

2+ky
2)1/2 

 
This linear relationship between E and k in the vicinity of the points K and K’ gives rise 
to relativistic nature of charge carriers in this region and decides the peculiar properties of 
graphene.  Further description of electron behavior close to these points is given by the 
effective-mass equation or the k.p approximation model which furnishes the following 
Dirac equation in the region given by |k|a0<<1 where a0 is the lattice parameter and γ  is 
proportional to the strength of interaction between nearest neighbors. 

 

0
0

0

x y

x y

k ik
H a

k ik
γ

− 
=  + 

  

 
            The project aims at investigating the unconventional electronic and structural properties 

of 2-dimensional lattice graphene. The known properties of graphene will be understood 
and explored further taking references from the existing literature through the simulation 
procedures as well as through experiments.  

 
2.   Analysis of graphene wavefunction & dispersion relation 
 
 In this section we present the result of simulations of the band diagram and the 
wavefunction of graphene 2-D lattice as a first step towards understanding its peculiar 
electronic properties. The simulation for the same is first performed for a 1-D lattice 
suitably modified to 2-D rectangular lattice and then for a hexagonal graphene lattice by 
the applicable translation of unit lattice vectors.  
 
2.1  2-D rectangular lattice 
 
We begin with the analysis of 2-D periodic lattice obeying Bloch periodicity equation. 
The wavefunctions as well as the periodic lattice potential is expanded as a 2-D Fourier 
series [2].  

,

,

,

,
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                                  (2.1&2.2) 
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 from which the corresponding coefficients of the Fourier series can be found out to be 
                                

                                                   ,
0

1
( , )x y

x y

a iG x iG y
G GU e U x y dxdy

a
− −= ∫                        (2.3) 

 
when we embed this solution in the Schrödinger equation  

2

( , ) ( , ) ( , ) ( , )
2

x y U x y x y E x y
m

ψ ψ ψ− ∇ + =h
                           (2.4) 

 
we obtain the following eigen value equation 

 
2

2 2
, ' * ,

'

( ) ( ) 0
2

x y x yx x k G k G G G k G k G

G

k G k G E c U c
m

− − − − −
 

− − + − − + = 
 

∑
h

            (2.5) 

The eigen value solution of the resulting 3-D matrix equation directly yields the E-k 
dispersion relationship as shown in Fig2.1.1. The code for the same is provided in A.1.  
Once the linear coefficients c(i,j) are calculated from the matrix equation by calculating 
its eigen values, the wavefunction Ψ(x,y) can be readily calculated by inserting into the 
equation. The code for the same is provided in A.2. 
                                                  

                                 
,

( , ) (p,q) exp( )
p q

x y c iqx ipyψ = +∑             (2.1.1) 

 
Fig2.1.1. The x and the y axis plotting the k values         Fig 2.1.2  showing plot of the wavefunction Ψ(k,x) 
have been made dimensionless by multiplication           as a function of x and y for a given value of k. The  
with a factor of a/pi. Along the edges one can see a        lobes show the sinusoidal variation between two 
parabolic E-k relationship as expected for a 2D               lattice points.   
rectangular lattice. 
  
2.2 Graphene (Hexagonal lattice) 
In this section the results for the 2D simulations of rectangular lattice have been scaled to 
a hexagonal lattice by transferring the axes in the basis space of hexagonal lattice defined 
by the unit lattice vectors a1 & a2 and the vectors K1 & K2 in the reciprocal lattice space 
as shown in Fig2.2.1 
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           (2.2.1) 

                                            (2.2.2) 
 

 
 
Fig2.2. 1.The unit cells of the crystal lattice are overlaid with the first Brillouin zone of the reciprocal 
lattice. Notice that the first Brillouin zone is scaled and rotated by 90o 
 
Using the LCAO method, the wavefunction of a unit lattice can be written as a linear 
combination of atomic orbitals [3-4] belonging to the C atoms comprising the unit cell as 
shown in Fig2.2.2. 
 
                                       1 1 1 2 2 2( ) ( ) ( )r R c r R c r Rφ φ φ− = − + −                           (2.2.3) 
 
The wavefunction of the entire lattice will assume the Bloch form according to the 
following equation                                                    

                                        
1

| exp( . ) | R

R

ik R
N

ψ φ>= >∑                                          (2.2.4) 
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Fig2.2.2 showing the component wave functions of py orbitals corresponding to the A & B carbon atoms 
comprising a unit cell. The nearest neighbors shown by R+a1,R-a1,R+a2,R-a2 are considered in the 
approximation 
 
Next we consider the interaction of this unit cell with the lattice.  
 
                                                  | |H Eψ ψ>= >                                                         (2.2.5) 
 
If we consider each orbital individually, we get 

                                                     
1 1

2 2

| | | |

| | | |

H E

H E

φ ψ φ ψ
φ ψ φ ψ

< >=< >
< >=< >

                                    (2.2.6)             

                                    1 1
1

| | exp( . ) | | R

R

H ik R H
N

φ ψ φ φ< >= < >∑                        (2.2.7) 

Here we make a tight binding approximation where the influence of non-neighboring 
atoms is overlooked.  
                   

1 1 1 1 1

2 1 2 1 1 1 2 1 2

| | exp( .0) | | exp( . ) | |

exp( . ) | | exp( . ) | | exp( . ) | |

R R a

R a R a R a

N H ik H ik a H

ik a H ik a H ik a H

φ ψ φ φ φ φ
φ φ φ φ φ φ

−

− − −

< >= < > + < >
+ < > + − < > + − < >
                                                                                                                             …..  (2.2.8) 
                
After some simplification we arrive at the following equations 
 

                                      
1 2 1 2

2 1 1 2

( ) (1 exp( . ) exp( . ) 0

( ) (1 exp( . ) exp( . ) 0

c E c ik a ik a

c E c ik a ik a

α β
α β

− + + − + − =
− + + − + − =

                  (2.2.9) 

 
where α, β are overlap and hopping interaction respectively defined as  
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                                                       for n=1, 2.                           (2.2.10) 
The above equation can be put in matrix form as  

1 2 1

1 2 2

(1 exp( . ) exp( . ))
0

(1 exp( . ) exp( . ))

E ik a ik a c

ik a ik a E c

α β
β α

− + − + −  
=  + − + − −  

                                      

 
2.2.1 Graphene band structure 
 
By solving the above matrix for its eigen values the E-k dispersion relationship for the 
graphene is readily obtained. The matlab-code for the same is in A.3.                       
                  

          
 Fig2.2.1a. showing the linear E-k band relationship                   Fig2.2.1b. showing the contour plot of E-k 
near the edges                                                                                diagram.                                                                
 
 
Thus we can see for a given value of k, there are two possible energy values forming 
conduction and valence band. The two bands touch each other at the K and K’ points 
making graphene a zero band gap semiconductor. In the proximity of K and K’ points the 
E-k diagram is linear whose Hamiltonian can be modeled as  

                                                              
| |

2 f

h
vε

π
= k

 

where vf is the Fermi energy of the electron which is of the order of 106 m/s. The E-k 
relation for the charge carriers in an ordinary conductor is given by  

                                                              
2 2

2

h

m
ε

π
= k

 

The charge carriers in graphene thus mimic relativistic particles traveling at an effective 
speed of light following the Dirac equation. The mass of such carriers effectively 
vanishes around the valley points and thus they can rightly be called massless Dirac 
particles.      
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2.3.1 Graphene wavefunction 
 
From the matrix equation, obtained by applying tight-bonding approximation on 
graphene unit lattice one can compute the linear coefficients c1 and c2 which describe the 
ratio in which the py orbital corresponding to A and B atom influence the wavefunction. 
Done in A.3.  
 
 

       
 
       Fig2.3.1a. shows a contour plot of  the wavef      Fig2.3.1b.contour plot of the wavefunction due to sub-lat 
         -unction due to sub-lattice A in the k- space.      –tice B in the k space. 
 
 
      As shown in figure the individual wavefunctions of the sub-lattices A & B are conjugate 

of each other and together they produce a uniform probability density function around the 
corners of the hexagonal ring.  
 

 
3. Analysis of graphene ribbons 
 
So far the analysis has been done making approximations valid for infinite lattices, but 
the real solid-state devices that will be built out of graphene will be finite-sized and the 
electronic properties of the graphene will be modified under the influence of finite-size 
effects. The finite size effects will be exhibited in the quantized eigen states obtained 
from solving the problem within the legitimate boundary conditions. In this section we 
will see the finite size effects of graphene  lattice on its electronic properties. As a result 
of finite size of lattice the continuum in conduction band gives way to confined states. 

 
 An additional quantization condition is introduced in the wavefunction calculation and          
the tight-binding approximation does not remain valid uniformly at all lattice points. It 
has  
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two distinct edges armchair and zig-zag differentiated by the arrangement of A & B type 
of atoms as shown in Fig3.1. The confinement along these edges results in different band 
structures which we will be explained in the later sections. 
                     

 
Fig3.1. The Zigzag edge comprises a single sublattice type whereas the armchair comprises both the sub-
lattice types.  
 
One can see from the Fig3.1. that the zigzag edge shown as dark circles in figure  
alternate  in only a particular type of lattice atom i.e. to say that the wavefunction 
component due to the sub-lattice B vanishes completely at the zigzag edge. On the other 
hand, in the armchair edge which is lying perpendicular to the zigzag edge alternates in A 
and B type of atom. The boundary condition in this case thus will be satisfied by 
assuming that the two sub-lattices of graphene have equal weightings along the 
terminating edge .  
 
3.1 Confinement along zigzag direction 
 
Here we see the quantum mechanical treatment of the graphene monolayer confined 
along the direction perpendicular to the zigzag edge. We assume the coordinates axis to 
be placed so that the the zigzag edge lies along the y direction whereas the confinement is 
along the x direction. Consider a nano-ribbon of length L cut along the zigzag edge of 
graphene. Let the edge lying at x=0 comprise only B type of atoms and the edge along the  
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x = L comprises A type in our subsequent treatment. Then the boundary condition 
becomes [5]. 
                               ( 0) ' ( 0) ( ) ' ( ) 0A A B Bx x x L x Lφ φ φ φ= = = = = = = =                   (3.1.1) 
 
The two functions Φ and Φ’ correspond to the K and K’ points respectively.  As stated 
earlier the states at the K and K’ valley though qualitatively the same, are nonetheless 
inequivalent. The states differing in the location of K valleys are further subdivided by 
the A and B sub-lattice types. The Dirac equation inherently comprises of two orthogonal 
states known as Dirac spinors. In the case of Dirac particle graphene, these two spinors 
are contributed by the A and B sub-lattices and result in the Dirac like Hamiltonian of the 
single layer graphene. The rest of the tight-binding approximation will remain valid and 
we arrive at the following quantization condition. Consideration confinement along the x-
axis, for each value of ky . The 4- component graphene Hamiltonian is given as derived 
before 

                               

0 0 0

0 0 0
0

0 0 0

0 0 0

x y

x y

x y

x y

k ik
k ikH a

k ik
k ik

γ

 
 
 
 
 
 
 
 
 

+
−=

− +
− −                                      

(3.1.2) 

 

The associated wavefunction will be a 4-component eigen vector ' 'K K K K
A B A Bψ ψ ψ ψ                               

where the subscript stands for the sub-lattice component of the wavefunction around the 
valley represented in the superscript. From the Hamiltonian it is clear that there is no 
interaction between the eigen-vector components belonging to different valleys. For the 
sake of simplification we therefore split the 4X4 Hamiltonian in two 2X2 eigen value 
equations. 
 

      0
0

0

K K
x y A A

K K
x y

B B

k ik
a

k ik

ψ ψ
γ ε

ψ ψ
   + 

=       −    
 ,   

' '

0
' '

0

0

K K
x y A A

K K
x y

B B

k ik
a

k ik

ψ ψ
γ ε

ψ ψ
   − + 

=       − −    
 

 
We now solve the above Hamiltonian for the K valley and the treatment of the other will 
be followed similarly. Solving the above Hamiltonian we obtain the following coupled 
linear differential equations. 

                                               

0

0

( )

( )

K K
x y B A

K K
x y A B

a k ik

a k ik

γ ε
γ ε

+ Ψ = Ψ

− Ψ = Ψ                                                 
(3.1.3) 

 
The equations can be decoupled easily to obtain the plane wave solutions along the x as 
well as y direction. The new set of equation thus becomes 
 

                               

2 2 2
0

2 2 2
0

( )( )

( )( )

K K
x y x y A A

K K
x y x y B B

a k ik k ik

a k ik k ik

γ ε
γ ε

+ − Ψ = Ψ

− + Ψ = Ψ                                                
(3.1.4) 
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The xk  and the yk operators are known to commute for this case yielding [ xk yk ]=0.  
 

                      [ ] / / / /x yk k v i i i i
x y y x

   ∂ ∂ ∂ ∂   = − − − − −      ∂ ∂ ∂ ∂      
h h h h                   (3.1.5) 

 

                                    
2 2

1/ 1/ 0
x y y x

   ∂ ∂= − + =   ∂ ∂ ∂ ∂   
h h

                                     
 

 
The result zero comes from the following property that holds for the continuous 
functions. 

2 2

y x x y

∂ ∂=
∂ ∂ ∂ ∂

 

 
Making use of the above fact, we can know  solve our equations as follows. 
 

[ ]

2 2 2
0

2 2 2
0

2 2 2
0

( )

( [ ] )

( )

K K
x x y x x y y y A A

K K
x x x y x y y y A A

K K
x x x y y y A A

a k k ik k ik k k k

a k k i k k k k k k

a k k i k k k k

γ ε

γ ε

γ ε

+ − + Ψ = Ψ

− − + Ψ = Ψ

− + Ψ = Ψ
 

 
Making the substitution from above, this becomes 
 

2 2 2
0

2 2 2
0 / / / /

2 2 2 2
0 2

2 2 2

( ) K K
x x y y A A

K K
i i i i A Ax x y y

K K
A A

a k k k k

a

a

x y

γ ε

γ ε

γ ε

    ∂ ∂ ∂ ∂   − − − − −    ∂ ∂ ∂ ∂      

+ Ψ = Ψ

Ψ = Ψ

 ∂ ∂+ Ψ = Ψ ∂ ∂ 

h h h h

h

 

Similar equation will be obtained for the B sub-lattice component K
BΨ . Besides one can 

directly see the linear Dirac E-k relation from the above equation. 

                                   ( )
2 2

02 2 2
2

x y
a

k k
γε = +
h

 ,    ( )0a
k

γε = ±
h                                   (3.1.6)

 

The above equation can be solved by the method of separation of variables where we will 
assume a solution of the form X(x).Y(y). Substituting this for K

AΨ  we get  

2 2 2 2
0 2

2 2 2
( ) ( )

a Y X X Y
X x Y y

x y

γ ε ∂ ∂+ = ∂ ∂ h
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Dividing the whole equation by X(x).Y(y) we obtain 
 

2 2 2 2

2 2 2 2
0

1 1X X Y

X x Y y a

ε
γ

∂ ∂+ =
∂ ∂

h
 

 
We have a relation of the form  f(x) + g(y) = constant. Or in other terms the equation can 
be expressed as F(x)=G(y). Clearly the LHS and RHS are independent of each other as x 
and y are independent variables. The solution therefore exists only for the case f(x) = 
constant and g(y) = constant. The equation now becomes 
 

            
2

2
2

1
( )

X
k x

X x

∂ =
∂

 ,    
2

2
2

1
( )

X Y
k y

Y y

∂ =
∂

 such that  
2 2

2 2
2 2

0
( ) ( )k x k y

a

ε
γ

+ = h
 

 
The solutions given by plane wave equations of the form ( )

0( ) ik x xX x X e−=   ,   
( )

0( ) ik y yY y Y e−=  seem to fit the physical picture quite well. For an infinite size lattice the 
wavefunction  is a sinusoidal function of the space coordinates. The solution vector thus 
becomes of the following form 
  

                                                  

( ) ( )
0 0

' ( ) ( )
0 0

K ik x x ik y y
A

K ik x x ik y y
A

X Y e

X Y e

− −

− −

Ψ =

Ψ =                                             (3.1.7)
 

The remaining two components can be derived from these equations that we have 
encountered before 

0

' '
0

( )

( )

K K
x y A B

K K
x y B A

a k ik

a k ik

γ ε
γ ε

− − Ψ = Ψ

+ Ψ = Ψ
 

 

 
For the case of finite sized lattices however, this plane wave solution is no more valid as 
it clearly fails to satisfy the boundary conditions. We will therefore look at the other 
solutions of the above equations in X(x) and Y(y). In the case, where the confinement is 
made along the x-direction the Y(y) retains the same ( )ik y ye  behavior.  Let’s begin with 
the most general solution of X(x). 
 

                                  
( ) ( )

1 2( ) ik x x ik x xX x X e X e−= +  for K
Aψ                                           (3.1.8) 

 
Now apply the boundary conditions for the zigzag edges, which require that the 
wavefunction for one sublattice vanishes completely at both the valleys [7] i.e. 

 

                  
' '( 0) ( 0) ( ) ( ) 0K K K K

A A B Bx x x L x Lψ ψ ψ ψ= = = = = = = =                             (3.1.9) 
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Applying the ( 0)A xψ = =0 && ( )B x Lψ = =0 condition we get,  the following bounds on 

1X  and 2X . 
1 2 0X X+ =  

 
Now from K

Aψ  we try to construct K
Bψ  using the following linear differential equation. 

0( ) K K
x y A Ba k ikγ ε− − Ψ = Ψ  which can be expanded into  

                           

                         0( / / ) K K
A Ba i i

x y
γ ε∂ ∂+ Ψ = Ψ

∂ ∂
h h

          
                                             (3.1.10) 

( )( ) ( ) ( )
0 1 2( / / ) *K ik x x ik x x ik y y

B a i i X e X e e
x y

ε γ − −∂ ∂Ψ = + +
∂ ∂

h h                                       (3.1.11) 

 
( ) ( ) ( ) ( ) ( )

0 1 2 1 2( ( ) ( ) ( ) ( ) )*K ik x x ik x x ik x x ik x x ik y y
B a ik x X e ik x X e k y X e k y X e eε γ − − − −Ψ = − + − −  

( ) ( ) ( ) ( ) ( )
0 1 2 1 2( ) ( ( ) ( ) ( ) ( ) ) * 0K ik x L ik x L ik x L ik x L ik y y

B x L a ik x X e ik x X e k y X e k y X e eε γ − − −Ψ = = − + − − =  

……(3.1.12) 

( ) ( )( ) ( )
1 2( ) ( ) ( ) ( ) 0ik x L ik x Le ik x k y X e ik x k y X−− − + − =  which yield the following relation 

using  1 2 0X X+ =  
 

                                                 

2 ( )( ) ( )

( ) ( )
ik x Lik x k y

e
ik x k y

− =
+                                                 (3.1.13)

 

 
The above equation sums up the quantization condition for the zigzag nano-ribbon of 
graphene. The real solution of k(x) exists for selective values of k(y) which gives rise to 
the k(y) vs. k(x) curve and from there the e vs. k(y) curve symmetric about the k(x)-k(y) 
plane given as below  

                                           
( )

2 2
02 2 2

2
( ) ( )

a
k x k y

γε = +
h                                              (3.1.14) 

The above plot has been obtained by finding the roots k(x) of the above equation for the 
input values k(y). The different sets of roots have then be plotted to give the branched 
structure of E-k diagram as shown in Fig.3.1.2. The code for the same is in A.5. The 
corresponding wave functions  KAψ , K

Bψ . 

 

                         
{ }

( )
0 0

sin( ( ) )
* e

( )cos( ( )) ( )sin( ( ))

K
A ik y y

K
B

k x x
X Yi

k x k x k y k x

ψ
ψ ε

−
    =    ± − +           (3.1.15)

 

 
Here the value k(x) actually splits as k(x,n) to form various energy levels at the same 
value of k(y). The index n represents the number of nodes along the x-axis in the wave  
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function solution. The wavefunction for the zigzag edge for the states closest to the zero 
energy solution has been plotted in Fig.3.1.1. Plotted using the code in A.6. 

      
Fig3.1.1. Probability density variation between the two           Fig3.1.2 E-k(y) quantization resulting from 
similar type of atoms along a zigzag edge superposed              the confinement along the x-direction of a  
 on the lattice structure                                                               zigzag edge. 
 
 
 
3.2 Confinement along armchair direction 
 
The other prominent edge type seen in the hexagonal structure of graphene is the 
armchair edge in which the A and B sub-lattice atoms alternate along the edge. The atoms 
at the rightmost edge are at a distance of L+a/2 from the atoms at the leftmost edge. The 
appropriate boundary conditions therefore are [4]. 
 

 ( ')( 0 / 2)
0 0

( 0) '( 0)

( / 2) '( / 2) i K K L a

x x

x L a x L a e

ψ ψ
ψ ψ − +

= = =
= + = = +            (3.2.1)

 

 
which suggest equal mixing of the wavefunction of the two sub-lattices at the edges. 
Applying the above boundary conditions, we obtain from the previous Hamiltonian 
equation  

                                                  
'

'

( 0) ( 0)

( 0) ( 0)

K K
A A

K K
B B

x x

x x

ψ ψ
ψ ψ

= = =

= = =
                                             (3.2.2) 

 
The axis has again been adjusted such that the armchair edge lies along the y-axis 
whereas the confinement is along the x-direction.  
 
Let us now begin with the following general solution as before. 
 
                             ( ) ( )

1 2( ) ik x x ik x xX x X e X e−= +  for K
Aψ  

 
corresponding to which we already obtained 
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( ) ( ) ( ) ( ) ( )
0 1 2 1 2( ( ) ( ) ( ) ( ) )*K ik x x ik x x ik x x ik x x ik y y

B a ik x X e ik x X e k y X e k y X e eε γ − − − −Ψ = − + − −  

  
Similarly we assume a solution for 'K

Aψ  but with k(x) replaced by –k(x) as in the 

Hamiltonian of the K’ valley. 
                                   
                               ( ) ( )

1 2( ) ik x x ik x xX x X e X e−= +  for 'K
Aψ                                             (3.2.3) 

 
corresponding to which we will obtain for the B sublattice 
 

' ( ) ( ) ( ) ( ) ( )
0 1 2 1 2( ( ) ( ) ( ) ( ) )*K ik x x ik x x ik x x ik x x ik y y

B a ik x X e ik x X e k y X e k y X e eε γ − −Ψ = − − −    (3.2.4) 

 
 Applying the boundary conditions we now obtain in terms of equating 'K

BΨ = K
BεΨ ,we 

obtain the following condition 
 

1 2 1 2( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))k x ik y X k x ik y X k x ik y X k x ik y X− + + + = − + − +             (3.2.5) 

 
which implies 2 0X =  implying the following wavefunction vectors 
 

                                                 

( )

1
' ( )

K ik x x
B

K ik x x
B

e
X

e

ψ
ψ −

   
=     

                                        (3.2.6) 

 

Now if we apply the 2nd boundary condition at x=L we obtain the discretisation of k(x) 
as shown  

                      
' ( ')( 0/ 2)

0 0( / 2) ( / 2)K K i K K L a
B Bx L a x L a eψ ψ − += + = = +                          (3.2.7) 

 

                        
2 ( )( 0 / 2) ( ')( 0 / 2)ik x L a i K K L ae e+ − +=                                                    (3.2.8) 

which gives us                            

                                                 
0 0

2
( , )

/ 2 3

n
k x n

L a a

π π= +
+                                            (3.2.9)

 

 
So here we see unlike zigzag edge there is no dependence of k(x) on k(y). On the other 
hand we see that the value k(x)=0 will be achievable only for cases where L, the 
confinement length along the x-axis is of the particular form 
 

                                                                0
(3 1)

2

n
L a

−=
                                           (3.2.10)

 

Depending upon this width, the ribbon might be insulating or conducting. In general for a 
length L=(3n +1) the armchair nano-ribbon is conducting and insulator otherwise. The 
energy also varies discontinuously with the nano-ribbon width. The electronic properties 
of armchair nano-ribbons depend strongly on their width as shown by the E-k  
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relationship for two distinct values of L as shown in Fig.3.2.1&Fig.3.2.2. The matlab 
codes for the same are in A.7 and A.8. 

 
Fig3.2.1 For a different length L a non-metallic              Fig.3.2.2A metallic behavior through a Dirac point  
 behavior is seen for confinement along an arm               is seen for an arm chair of a given edge. 
-chair edge. 
 
One sees that between the x-axis points x=0 and x=L lying along the confined edge, there 
is a propagation constant of  K∆  as can be seen from the eqn 3.2.1. Note that we have 
assumed ribbon to be extending infinitely along the y-axis with armchair configuration on 
the edge. In an armchair nano-ribbon, the intermixing of  the two valley states result in a 
certain oscillation of wavefunction with period related to ∆K given by 2Π/∆ as can be 
seen in simulation results in Fig.3.2.2. Plotted in Fig.3.2.3, Fig.3.2.4 are two 
wavefunctions with different values of Length L of the nano-ribbon. 

 
Fig.3.2.3 ΨB  congruent to ΨA is plotted for a length              Fig3.2.4The wavefunction shows fluctuation in   
L=25a. In this case the E-k diagram shows the presence        accordance with the period expected for the  
of Dirac points which implies no effect of confinement         valley mixing that were introduced to meet 
and the wavefunction is non-fluctuating.                                 the boundary conditions. 
 

4. Application  of perpendicular magnetic field  
 
In this section we consider, how the behavior of the graphene changes under the 
influence of a perpendicularly applied magnetic field. In the presence of a magnetic field, 
the free pi- electrons of graphene start executing a cyclotron motion perpendicular to the 
direction of applied field. For our case we apply a constant magnetic field along the z  
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direction which will consequently result in the in plane cyclotron motion of electrons. 
The B filed can be translated to the magnetic vector potential A [6-11].  
 

                                                    
^

B z X A= ∇
ur

                                                               (4.1) 

resulting in the in-plane and components ,x yA A  of A. The effect of these components in 
the Hamiltonian of the graphene can be included by making the Peirels substitution. 

 

                                        .p p i A→ + ∇                                                                      (4.2) 

 

Beginning from the Maxwell’s equation 
A

t
ε φ∂= − − ∇

∂
 along with the equation of 

motion of a charged particle in the magnetic field ( * )F e v Bε= + one arrives at the above 
substitution. For our case , we assume the y-component  of the magnetic vector potential 
to be 0 which leaves us with the following expression for A(y). 
 

                                                                 *yA B x=                                                       (4.3) 

 
Making the substitution mentioned above we arrive at these augmented expressions for 

xp  and yp .  

                                                 

x

y

i
x

i eBx
x

κ

κ

∂= −
∂
∂= − +
∂

h

h

                                                          (4.4)

 

These expressions will be substituted in the previous Hamiltonian to arrive at the 
graphene Hamiltonian in the presence of magnetic field. The rest of the treatment will 
also follow the same.  

                              

0 0 0

0 0 0
0

0 0 0

0 0 0

x y

x y

x y

x y

i
a iH

i
i

κ κ
γ κ κ

κ κ
κ κ

 
 
 
 
 
 
  
 

+
−= − +

− −
h

                                  (4.5)

 

 
Note however that unlike in the previous case where [ ] 0x yk k = , the product ( )x yπ π  

does not commutes to zero in this case. The solution of the equations therefore will not 
follow the same course. 
 
 

            [ ]x yκ κ = / / / /i i eBx i eBx i
x y y x

   ∂ ∂ ∂ ∂   − − − − − − −      ∂ ∂ ∂ ∂      
h h h h
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2 2 ( )
1/ 1/

( )

i eBx ieBx

x y y x x x

ieB ieB i eBx

x x

ieB

   ∂ ∂ ∂ ∂   = − + + −       ∂ ∂ ∂ ∂ ∂ ∂      

∂ ∂   = + −   ∂ ∂   

=

h h
h h

h h h

h                                   (4.6)

 

 
On the contrary one can by doing another simplistic substitution sees that the new 
Hamiltonian is in agreement with the Hamiltonian of the simple harmonic oscillator. Lets 
define the new operators as follows [6]. 

                                                     
( )

( )
2

2

x y

x y

l
a i

l
a i

κ κ

κ κ

+ = −

= +
                                                    (4.7)

 

where l is defined as 
eB

l
c

= . The wavefunction equations for KAψ , K
Bψ   derived earlier 

can now be written making use of the notation as follows 

                                        

2 2
0 2

2

2 2
0 2

2

2

2

K K
A A

K K
B B

a
aa

l

a
a a

l

γ ε

γ ε

+

+

Ψ = Ψ

Ψ = Ψ

                                                          (4.8)

 

and similar equations for K’ points. Besides, we have the following linear equations. 
 

                                

K K
A B

K K
B A

a

a

ε

ε

+Ψ = Ψ

Ψ = Ψ                      

' '

' '

K K
A B

K K
B A

a

a

ε

ε+

− Ψ = Ψ

− Ψ = Ψ

                                (4.9)

 

for the K and the K’ valleys respectively. Now we work out the analogy of this system 
with the Hamiltonian of the harmonic oscillator problem. The Harmonic oscillator 
Hamiltonian is given by the following equation  

                                         

1

2
H aaω + = − 

 
h

                                                               (4.10)
 

        
where the operators are such that 
 
 
 



 21 

________________________________________________________________________ 
 

                                           

^ ^

^ ^

( )

( )

a x i p

a x i p

α β

α β+

= +

= −                                                                 (4.11) 
 

We first seek to find the similarity between the operators defined as above for the 
Harmonic oscillator problem, with the similar operators defined for our magnetic field 
problem. For the case above we calculate the commutation product of the constituent 
operators x and p. 

^ ^

/ /x p ix i x
x x

∂ ∂     = − +     ∂ ∂     
h h  

                                         
/ /ix i x

x x

i

∂ ∂   = − + +   ∂ ∂   

=

h h

h                                               (4.12)

 

On the other side, the commutation product of the component operators of the a, a(+) 
operators defined for our problem is  

                                                [ ]x y
ieBκ κ =
h

 

i.e. to say                               [ ]
^ ^

0x y c x yκ κ  =                                                         (4.13)
 

Hence we see that the a, a(+) operators occurring in the eigen value equation of harmonic 
oscillator problem and graphene in magnetic field problem are rather similar in 
construction The observation made above quite strengthens our proposition that the two 
problems bear semblance with each other. In the treatment that follows we try to solve 
the problem at hand by making use of the known solutions of the harmonic oscillator 
problem.   
 
Now let’s quickly go through various aspects of the harmonic oscillator solution. The 
eigen value equation is given by  

                                                  

1
( )

2
H nψ ω ψ= +h

                                                     (4.14)
 

which can be expanded as ( )
2 2

aa n
ωψ ωψω ψ ωψ+ + = +h h

h h   which simplifies to the 

following result ( )HOaa nψ ψ+ =  where the subscript HO stands for the a,a(+) operators 

in simple harmonic oscillator problem. We can now make use of this result for solving 

our equation 
2 2

0 2
2

2 K K
A A

a
aa

l

γ ε+Ψ = Ψ .  The effect of the operator composition a,a(+) will 

be similar as in the case of HO problem thus rendering the following solution. 
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2 2
0

1
2

2
( )

a
H aa

l

γψ ψ+=
                                          (4.15)

 

                                                      
2 2

0
1

2

2n a
H

l

γψ ψ 
=  
                                               (4.16)

 

The RHS however for our case is not the energy eigen value rather it is a square of it 
giving a square root dependence of energy on the level n. 
 

                                                         

2 2
0 2

2

2
n n

n a

l

γ ψ ε ψ 
≡ 

                                            (4.17)
 

                                                        

0
2n

a
n

l

γε = ±
                                                  (4.18)

 

The solution that we have derived above is the Landau level solution [12-16] applicable 
to the systems subjected to a magnetic field. The index n stands for the nth Landau level. 
The corresponding functions nψ  are the nth harmonic oscillator functions. One can see 
from the solution that it has a degeneracy of two for each index n. These two states 
physically correspond to the particle and the hole state The lowest Landau level (n=0) 
however does not possess any degeneracy. It is this property which lead to the 
observation of a novel type of Quantum Hall Effect in graphene [12].  For these levels, 
the particle-hole conjugate of the wavefunctions are themselves. 
 
The above solution is for K

Aψ . The rest of the three components can be derived by making 

use of the coupled equations. 
                                                       K K

A Ba ε+Ψ = Ψ
                                        (4.19)

 

Now, we make use of another result from the harmonic oscillator problem. The a(+) 
operator defined in the problem actually acts as an annihilation operator i.e. to say it takes 
a particle in nth state to the (n-1) the state.  
                                                       1'n na c ψ+

−Ψ =                                                        (4.20) 

which tells us that , , 1
K K
A n A na c+

−Ψ = Ψ . From which one can assign KBΨ  the following 

solution. 

                                                         , 1''K K
B A na c+

−Ψ = Ψ
                                                 (4.21)

 

 
The other components can be assigned a similar solution as follows. 
 

                                                          

'

'
1

'

''

HOK
nA

K HO
B n

c

c

ψ
ψ −

   −Ψ
=      Ψ                                                (4.22)
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There is one thing however that we have overlooked in the above treatment. In the 
corresponding treatment of the a,a(+) operators for the two problems we make the 
following transformation. 

^ ^

xx p→  

                                                             
^ ^

yp p→                                                    (4.23) 

 
Corresponding to this transformation, there is a translation of the axis along the x-
direction which can be incorporated in our solution by making the following substitution. 

 

                                                              
2

yx x k l→ −                                                  (4.24) 

 
Along the y axis, there is no component of the magnetic field vector A and the y 
component of the total wave-function retains its plane wave nature of the form ( )ik y ye .  
 
4.1 Confinement in the presence of magnetic field (Zigzag edge) 
 
Now we confine our system along one of the axis(x) such that the zigzag edge lies along 
the infinite axis(y). We assume x to be varying from –X/2 to X/2. We can apply the same 
boundary conditions that were there in the graphene ribbon in the absence of magnetic 
field which will alter our present wavefunctions [7].  
 
The wavefunctions that we have derived above are Hermite polynomials (solution of the 
Harmonic oscillator) which include a term of the form 

                                                           

2

2e
x

x
γ

ψ α
2

−
( )                                                     (4.25) 

which implies that these functions are peaked around x=0. Following from which we can 
see that the wavefunctions in our case i.e.  

                                                 

2 2( )
2 2e

x kyl

yx k l
γ

ψ α
2 −−

( − )                                               (4.26) 

are peaked around the zeros of ( 2
yx k l− ) . Consequently we obtain the following 

condition 
/ 2 / 2yL x k l L− < − <  

which can be further generalized to 
2/ 2 ( ) / 2yL K k l L− < + <  

 
thus  a bound arises on the values of k(y) which is decided by the x-extension of the 
sample. The boundary condition has become for this case 

K
B

K'
B

( 0) 0

( 0) 0

x

x

ψ
ψ

= =

= =
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and similarly for the other edge. But our solutions derived in the previous section have a 
non-vanishing component at x=0. To fix this thing up, we add a small perturbation 
function to our obtained solutions. Redefine the original functions as follows  

 

                                              
2

n( ) ( )* x)K
yBnew x x k lψ ψ ω= − (                                     (4.27) 

 
Such that the function w(x) �0 as x�0 and the function stays close to unity at higher 
values of x. A good choice of such a function could be  

-x)=(1-e )xλω(                                                    (4.28) 

with vanishing value at x=0 and a relatively slow dependence on x at points away from 
the x=0 boundary. This function carefully incorporates our physical situation. Thus we 
have 

                                          
2 2( ) / 2 x( ) (1 )yx k l

new x e e λψ α − − −−                                                 (4.29) 
which under certain approximation becomes 

                                                     
2 2 2( ( ) ) / 2( ) yx k l l

new x e λψ α −− −
                                             (4.30) 

Corresponding to the change in the wavefunction, there will be a perturbation term in the 
Hamiltonian which will likewise effect the E-k behavior [6] in the proximity of the edge 
as shown in Fig4.1.1 &  Fig4.1.2. The corresponding matlab codes are in A.8 and A.9 
respectively. 

 
Fig4.1.1 Spectrum for the K valley, the n=0 Landau             Fig4.1.2 Spectrum for the K’ valley, the zeroth  
Level becomes a dipersionless mode near the edge.              Landau level gives rise to two branches of dis 
                                                                                -persing edge states. 
 
Let us now define a new Hamiltonian H(edge) close to the edges which will operate on 
the wavefunction composed above to yield new eigen values . 
 
4.2 Confinement in the presence of magnetic field (Armchair edge) 
 
Now we study the confinement  along the armchair. The terminating edge of the armchair 
nano-ribbon comprise of alternating A, B atoms. Hence the wave function should have an 
equal contribution from both the sub-lattices at the armchair edges which extend along 
the y-axis of our nano-ribbon.  The boundary condition as already stated before is 
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'

'

( 0) ( 0)

( 0) ( 0)

K K
A A

K K
B B

x x

x x

ψ ψ
ψ ψ

= = =

= = =                                              (4.2.1)
 

       
Now we have to alter our obtained wavefunctions so as to include the effect of above 
boundary conditions. If we revert back to our coupled equations 

 

                                                  

0

' '
0

( )

( )

K K
x y B A

K K
x y B A

a k ik

a k ik

γ ε
γ ε

+ Ψ = Ψ

− Ψ = Ψ                                          (4.2.2)
 

 
we see that the effect of the above boundary condition is to add this constraint on the 
linear derivates of the A-sublattice components.  
 

                       (4.2.3) 

 
Similar analysis following from the second coupled equation yields 

                                        

' '
'

'
' '

'
' '( 0)
( 0) ( 0)

K K
KB B
A

K
K KB

y B A

K
K KB

y B A

i
x y

k
x

x
k x x

x

α

α

α

∂Ψ ∂Ψ− + = Ψ
∂ ∂

∂Ψ− + Ψ = Ψ
∂

∂Ψ =− + Ψ = = Ψ =
∂                       (4.2.4)

 

 
 
Now, noting the fact that yk (K)= yk (K’) (from the Hamiltonian it is quite evident), we 
can arrive at the following condition. 
 

                                                

'( 0) ( 0)K K
B Bx x

x x

∂Ψ = ∂Ψ =− =
∂ ∂                                      (4.2.5)

 

 
Now, we will deal with the situation by combining the two functions above in a single 
function as follows  

        ) ( ) ( )K K
B Bx x x x xξ θ ψ θ ψ( = ( ) + − (− )                                  (4.2.6)       

 

( 0)
( 0) ( 0)

K K
KB B
A

K
K KB

y B A

K
K KB

y B A

i
x y

k
x

x
k x x

x

α

α

α

∂Ψ ∂Ψ+ = Ψ
∂ ∂

∂Ψ + Ψ = Ψ
∂

∂Ψ = + Ψ = = Ψ =
∂
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where ( )xθ  is the step function, 1 for x>0, -1 for x<0 [6]. Now we look at the 

dependence of , 'K K
Bψ  on various parameters and the same dependence will be reflected in 

( )xξ  after making some adjustments. 

                                

[ ]

2 2 2
0

2 2 2 2 2
0

2
2 2 2

0
2

2
2 2 2 2

0
2

( )( )

( ( ) )

( )

/ ( )

K K
x y x y B B

K K
x y y xx y B B

K K
x y y B B

K K
y B B

a i i

a i

a i k eBx
x

a eB k eBx
x

γ π π π π ε
γ π π π π π π ε

γ π π ε

γ ε

− + Ψ = Ψ

+ − + Ψ = Ψ

 ∂ + + − Ψ = Ψ ∂ 

 ∂ − + − Ψ = Ψ ∂ 
h

    

      (4.2.7) 

Then substitute for B in terms of 2l  to obtain 
 

                               
2 2

2 2 2
2 2 2

0
1/ ( / ) K K

y B Bl k x l
x a

ε
γ

 ∂ − + − Ψ = Ψ ∂     
(4.2.8) 

We obtain the counterpart of this equation for 'K
Bψ . Now we look at our equation of )xξ (  

which becomes        

'

0
)

0

K
B

K
B

x x
x

x x

ψξ
ψ
 ( ) >

( =  (− ) <    
        (4.2.9) 

which now can be substituted by KB xψ ( ) , 'K
B xψ (− )  to give the following equation in )xξ (  

 
2 2

2 2 2
2 2 2

0
1/ ( | | / ) ) )yl k x l x x

x a

εξ ξ
γ

 ∂ − + − ( = ( ∂            
(4.2.10) 

 
We can make the function )xξ ( obey the Schrödinger equation if we define a potential 
function U(x) as follows. 

( )
2

2 2 2
2

2
( ) | | / 1/ (-x)

2
y

l
U x x l k l

l
θ = − − + 

     
(4.2.11) 

                                          
 The corresponding Schrödinger equation will be  
 

                                        
2

( ) )= ' )U x x x
x

ψ ε ψ2∂ − + ( ( ∂     
(4.2.12) 

 
This double well potential as depicted in the potential function U(x) is as shown in 
Fig.4.2.1(A.11). There will actually be a hybridization corresponding to each of the 
Landau level, there will be  a state corresponding to the left well as well as the right well. 
The particles lying in the left well which is minimized at  a higher energy than the right 
well have higher energy eigen values for the  Landau levels. As a result of the above  
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equation a perturbation term is added in the Hamiltonian around the edge states resulting 
in the E-k diagram shown in Fig.4.2.2(A.12).  

  
Fig4.2.1split potential function U(x) for an armchair           Fig4.2.2 the armchair boundary condition enha- 
Edge.                                                                        -nces the K, K’ splitting in two edge modes. 
 
 
 
 
 

3. Bilayer graphene 
 
In this section we add an extra dimension to our analysis of graphene. We add another 
layer to the existing hexagonal plane. The two layers will try to align themselves with 
respect to each other in a lattice such as to minimize their potential energy in a closed 
packed arrangement. The hexagonal layer of spheres have a tendency to align themselves 
in a closed packed ABAB type arrangement where A atom of one layer fits in between 
the three B type atoms from the other layer as shown in Fig.5.1.Thus the bilayer graphene 
exhibits an ABAB type hexagonal close packing between the two layers. 
 
 Addition of another layer to graphene, gives rise to newer interactions in the model 
resulting from the inter-plane interactions. In this analysis we are going to refer to the 
unit cell atoms as A and B for one of the layer and A’’ and B’’ for the 2nd layer.  Also in 
the hexagonal packing arrangement we assume that B’’ atoms in the 2nd layer lie above 
the A atoms in first layer as shown in Fig.5.1 thus forming the A-B’’ dimer state. Such a 
dimer state results from some specific inter-molecular interactions between the two 
species. In the case of graphene the dimer state is confirmed experimentally by a fair 
estimate of the binding distance between the two atoms obtained using a planar 
functional model [22]. In addition to the in-plane interaction A-B we have A’’-B”, A-B’’, 
B-A’’ new interacting species in our model [15-18].              
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Fig5.1.bilayer structure where A,B are the atoms in the lower layer and A’’,B’’ are the atoms in the upper 
layer. 
The A’’-B’’ interaction refers to the interaction between the A & B type of atoms in the 
2nd layer quite analogous to the A-B type interaction in the bottom layer. Note that the 
fact that the A & B type of atoms are inequivalent is still preserved in the bilayer system 
as the unit cell construction still comprises of two atoms from a layer both of which bear 
an individual influence on the wavefunction at a nearby point. Now we analyze each of 
these interactions individually. The A-B interaction is similar as in our previous analysis 
given by the following Hamiltonian.  
 

                                     

0

0

x y
A B

x y

k ik
H

k ik
ν−

+ 
=  −                        (5.1) 

 
where ν  stands for the strength of the interaction A-B and is proportional to γa0  which in 
turn depends on t, the hopping parameter between the A and B atoms. Another A-B type 
interaction A’’-B’’ in the different plane will be similar. Next we consider the interaction 
between B-A’’. Note that this interaction is different from the A-B’’ interaction since the 
latter is a direct dimer state coupling between the two atoms, one located right on the top 
of the other. The former interaction on the other hand is an indirect interaction taking 
place between the layer of atoms following the same spatial arrangement as the A-B 
atoms but separated by a larger range. 

'' ''( )B A B A B Ar r z z− −= + −
r r r r

           
(5.2)

 

so that the equivalent a0 = rB-A becomes for this case   
' 2 2

0 0
a a c= +      

(5.3)
 

where c is the separation between the two layers. So that the unit vectors a1 and a2 can be 
modified as  
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^ ^ ^

' ' '

1 0 0

3 3

2 2
a a x a y= − + ,          

^ ^ ^
' ' '

2 0 0

3 3

2 2
a a x a y= +  

The set of reciprocal lattice vectors can then be generated as follows 
^ ^ ^

'

1 '

0

^ ^ ^
'

2 '

0

2 3 1

3 3

2 3 1

3 3

k x y
a

k x y
a

π

π

 
= − −  

 

 
= −  

 

 

We see that the k-space is contracted as a result of the lengthening of the vector a0. This 
inter-plane interaction therefore is only a weaker form of the intra-plane interaction A-B. 
Hence the resulting Hamiltonian is given by 
 

'' 3

0

0

x y

A B

x y

k ik
H

k ik
ν−

+ 
=  − 

     
(5.4)

 

 
where the constant ν 3  is a measure of the strength of the interaction between the two 
atoms ( 3 / 1ν ν << ). 

Next we consider the direct inter-plane interaction resulting from the dimer state 
~
B A− .  

The interactions in this configuration can be expressed by the following Hamiltonian.  
 

1 1

''

1 1

0

0
B AH

ξ γ
ξ γ

−
 

=  − 
     (5.5) 

 
where the constant γ 1  is a measure of the coupling existing in the dimer state and ξ1  is 
just a symbol to account for later sign adjustments. This interaction is certainly stronger 
than the indirect interaction mentioned above. Now, we can pull together all these 
interactions to come up with a total Hamiltonian. We will disregard all other possible 
interactions.  

3

3

1 1

1 1

0 0

0 0

0 0

0 0

H

ν π νπ
ν π νπ

νπ ξ γ
νπ ξ γ

+

+

+

 
 
 =
 
  − 

   ,    
x y

x y

p ip

p ip

π
π +

= +
= −    (5.6)

 

 
The corresponding eigen value matrix of the above Hamiltonian comprise of the 
wavefunction vector [ ]'' ''B Bψ ψ ψ ψΑ Α  describing the amplitude of electron waves on 

these coupled nearby sites.  
 
 Another  thing that has not yet been taken into account is the  possible potential 
difference between the two layers. This difference might result due to some intrinsic  
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property or due to the system being subjected to an external electric field. We therefore 
include a term +u/2 for the top layer and –u/2 for the bottom layer in our interaction. 
 

3

3

1 1

1 1

/ 2 0

/ 2 0

0 / 2

0 / 2

u

u
H

u

u

ν π νπ
ν π νπ

νπ ξ γ
νπ ξ γ

+

+

+

 
 − =
 
  − −       (5.7)

 

   
Having obtained the above Hamiltonian we now try to find the energy eigen values of 
this system. One approach is to straight forwardly diagonalize the above matrix to obtain 
its eigen values. A matlab method was invoked (#n) to calculate the same. The equation 
was solved numerically to obtain the ε vs. k plot as shown in Fig.5.1. The eigen values of 
the above matrix comes out to be 

3

1/ 2
1/ 24 2 2 2 2 4 4 4

2 2 2 23 1 12
32 2 2 2

3 1
2 2 2 2 2 3

3 1 3 1 11

1
2 2 4 2 4

2 2

uu
ν π π ν π πξ γ ξ γν π π ν π π

ε ν π π ν ν γ
ξ γ ν π π ν π ν ξγ ν π ν ξ γ

+ +
+ +

+

+ +

   
  + − + + + = + + + ±   
    + +    

 

….(5.8) 
which can be simplified by making the following substitutions  

 
                                                          2 31,ξ ξ ξ= =  

                                           0π π ππ π π+ + +  = − =   

                                                          2 2 2
x yp p pππ + = + =  

                

2

2 2 4p p p

π π πππ π
ππ ππ

2 + + +

+ +

=
=
= =     (5.9)

 

 
let  cos sinp ipπ φ φ= + ,then 3 cos(3 ) sin(3 )p ipπ φ φ= + , similarly 

3

cos(3 ) sin(3 )p ipπ φ φ+ = +  which implies  
33 2 cos(3 )pπ π φ++ =     (5.10) 

 The equation above thus becomes 
 

1/ 24 4 2 2 2 4 4 4
2 2 2 432 1 1

32 2 2 2 2 2
3 1

2 2 2 2 2 3
3 11

1
2 2 4 2 4

2 2
2 cos(3 )

p p
p u pu

p

p p

ν ν ξ γ ξ γν ν
ε ν ν ν γ

ξ γ ν ν ν ξγ φ

  
 + − + + + = + + + ±   

  +  

 

…..(5.11) 
which can be further simplified to  
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1/ 22 2 2 2 2 222
2 2 2 2 2 2 2 2 2 33 3 11

3 3 1
( )

( ) 2 cos(3 )
4 2 2 4

pu
p p u p p

ν ν ν γγε ν ν γ ν ν ν ξγ φ
 −= + + + ± + + + + 
 

 

From the above equation we see that the energy is dependent on the phase φ  (in the 
momentum space) of the particle in addition to the magnitude of its momentum. The E-p 
diagram would therefore not be symmetric in the momentum space rather it will exhibit n 
nodes along the tangential direction. The value of n being decided by the no. of maximas 
of cos(3φ ) between 0 and 2pi. There are 3 such maximas occurring at 0, 2pi/3,4pi/3. The 
picture can be seen in Fig.5.2(A1.14). showing zeros at certain values of the phase in the 
p space. 
 
Also note that there are two value of energy e corresponding to the momentum vector p. 
One of these values (+ve sign) is higher than the other. And corresponding to these two 
values will be their negative counterparts that add up to the total of four eigen values as 
shown in Fig5.1(A1.13).This higher value results from the interaction taking place in 
B’’-A dimer state (strong overhead interaction). The low energy bands on the other hand 
will correspond to the –ve sign and corresponds to the weaker interactions. Here we 
  

       
 
Fig5.1 E-k band showing the 4-level degeneracy.           Fig5.2 contour plot of the E-k diagram shown on                        
                                                                           the left showing asymmetry in the tangent- 
                                                                           -ial direction. 
 
approximate the dispersion relation close in the low energy regime making use of the 
following…. 3ν ν<<  so that the terms including 3ν and its higher powers can be 
neglected. Also the energy range is chosen such that the | | uε > (inter-layer potential). 
Under these approximations we have  
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1/ 22 2 2

2 2 2 2 2 21 1

1/ 22 2 2 2 2
1

2 2
1 1

21/ 22 2 2
1

2
1

( )
( )

2 4

4 4
2 1

4

4
1 1

4

p p

p p

p

γ γε ν ν γ

γ ν ν
γ γ

γ ν
γ

−
 −= + − + 
 

  
 = + − +    

  
 = + −        

(5.12)
 

 
which yields the following low energy dispersion relation 
               

                                                
1/ 22 2

1
2
1

4
1 1

2

pγ νε
γ−

  
 = ± + −           (5.13) 

Now, if we look at the energy spectrum derived above for the (-ve) branch, we can infer 
in the high momentum regime approximates to a linear interpolation between E & p 
which translates to a quadratic spectrum at lower values of p. For large values of p, this 

becomes                                             
1 2 p

p
γ νε ν

γ
−

1

 = ± = ± 2  
   

(5.14)
 

and for smaller values this becomes  

                                                          
2

2 2 2 2
1 2 p pγ ν νε

γ γ
−

1 1

 
= ± = ± 2  

    
(5.15)

 

From this equation we can calculate the effective mass of for electrons following this 
equation (close to Fermi energy) from the definition 
 

/effm p
p

ε−∂=
∂      (5.16)

 

 
The effective mass then comes out to be  
 

1/ 22 2 2
1

2 2
1 1

1/ 22 2 2

2
1 1

1 4 8
. . 1 .

2 2

4 2
1 .

p p

p

p p

ε γ ν ν
γ γ

ν ν
γ γ

−

−

−

 ∂ = ± + ∂  

 
= ± + 

           (5.17)

 

 
 We know that for a 2-D gas the density N (of free charge carrier) is related to the phase 
space area as. Consider a two dimensional p-space with axes px and py. We want to 
calculate the number of allowable modes for a certain value of momentum p. That is we 
want to  calculate the number of modes lying within a rectangle of size px and py. 
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2

/

p
N

Area node
=        

(5.18)
 

The value Area/node can be found out by making use of the following quantization 
condition for confined modes as follows: 

                                   x
x

n
k

L

π= ,   y
y

n
k

L

π= ,    x
x

k
L

π∆ = ,    y
y

k
L

π∆ =       
(5.19)

 

correspondingly         x
x

p
L

π∆ = h
,    y

y
p

L

π∆ = h
,   from which the area of a solution in the p  

space can be calculated as                                                                                                       

                                                        

2

x y
x y

p p
L L

π 2

∆ ∆ = h

         
(5.20)

 

                                                         
2

x yp p
A

π 2

∆ ∆ = h
 

                                      
2 2

2 /x y

p p
N

p p Aπ 2= =
∆ ∆ h

, 
2

2
'

N p
N

A π 2= =
h

       
(5.21)

 

 
so that the m(eff) becomes 
 

1/ 22 2 2

2
1 1

4 2
1 .

N p

p

ε ν π ν
γ γ

−

−  ∂ = ± + ∂  
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1/ 22 2 2
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4 2
1 .

eff
p

m
N pν π ν

γ γ

−=
 

± + 
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2 2
1

2 2
1

4
1

2

Nγ ν π
ν γ

= ± +h

                          (5.22)
 

 
Thus, unlike the case of Dirac fermions in single layer graphene, the electrons in bilayer 
have a non-zero effective mass resulting from the low-energy interlayer interaction. This 
is one of the marked difference between single and bilayer graphene. We see that the 
mass is directly proportional to the free-carrier charge density inside the sample. As the 
doping concentration N increases, the resultant effective mass increases for values nearer 
to the center of Brillouin zone (low-energy values).  
 
For the time being, we will take the interlayer (u) potential to be zero as it will lie along 
the diagonal and will not alter our solution. We can set it to non-zero at a later stage in 
case it is required. Also we neglect the indirect interaction ( 3v ) taking place between  
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these two atoms as its magnitude is very small compared to the rest of the interactions γ  
andv . 
 
Now, we will try to model the Hamiltonian applicable for low-energy electrons which 
allows us to deal with the bilayer graphene in the low-energy regime. For this purpose we 
will need to extract out the terms corresponding to the low-energy interactions. That is, 
we concentrate on the interaction between A’’-B atoms by trying to project the 4X4 
matrix to a 2X2 inter-dependency matrix between these two electron wave functions i.e. 
we want to find a 2X2 matrix H’ such that it corresponds to the solution of following 
equations: 

                

^ ^

^ ^
'H

α β

γ δ

 
 =
  
 

       ,           

^ ^

''

^ ^

''

B A

B B

αψ βψ εψ

γ ψ δ ψ εψ

Α

Α

+ =

+ =
     

(5.23)
 

 
where we know that the diagonal terms corresponding to A-A and B-B index is zero 
since the potential of both the layers has been set to null. To achieve this goal we can 
directly expand the full 4X4 Hamiltonian H into four linear equations and bring it in the 
format desired as stated above. But this will rather be a cumbersome process, so we will 
make use of a more sophisticated technique of Green’s functions for solving our 
equations. Consider a differential equation of the form 

                                                        
^

( ) ( )L g x f x=          
(5.24)

 

where L is some linear operator, f is a known function and g is the function to be solved. 
The green function G  are defined for any linear operator L as follows 

      
^

( , ) )LG x s x sδ= ( −     
(5.25)

 

where 0( )x xδ −  is the Dirac delta function. Making use of the above we can now rewrite 
our equation as 

^

^ ^

( ) ( ) ) ( )

( ) ( ) ) ( ) ( ) ( )

LG x f s x s f s

L G x f s ds x s f s ds f x L g x

δ

δ

= ( −

= ( − = =∫ ∫
     

(5.26)
 

now since the operator L is linear and is a function of  x only, it can be brought out of the 
integral to yield the following result: 

( ) ( ) ( )g x G x f s ds= ∫        
(5.27)

 

which allows us to calculate the function g(x) in terms of the obtained function G(x). In 
our case all the elements of the Hamiltonian matrix are linear operators. Hence the Green 
function methodology is applicable. However we are interested only in the Green 
function in the low-energy region, we divide the system into 4-sub parts, corresponding 
to different interactions. Let 11H refer to the top-left block corresponding to the low-
energy inter-plane interaction in the complete Hamiltonian H derived above. Similarly  
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extract out 12, 21, 22H H H  and write down the above Hamiltonian in block matrix notation 
such that 
   

11 12

21 22

H H
H

H H

 
=  
           (5.28)

 

 
The corresponding Greens function G constructed as 
  

11 12

21 22

G G
G

G G

 
=  
 

,        (G H ε −1= − )        
(5.29)

 

 
is derived from the Hamiltonian H itself in a manner so that the block G11 can 
independently represent the interaction between the concerned wave functions as 
depicted in the total Hamiltonian H1[22]. This is achieved by including the effect of the 
remaining terms on the subject wave functions in the terms of G itself. We try to obtain 
the solution for the block G11. The method is as follows: (from definition) 
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1
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−
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1
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22 21

12 1111 22 12 21

1 G H

H GG G H H

−

−− −

− 
=  −−           (5.30)

 

so that we obtain  
 

1
22

11
1 1

21 1222 11

'

' '

G
G

G G H H

−

− −=
−

 

                     1
11 11 12 22 21' (1 ' ' )G G H G H −= −         

(5.31)
 

 
From above, by taking the matrix inverse, we get 111'G −  to be                     

 
                                                   1 1

11 11 12 22 21 11(1 ' ' ) 'G G H G H G− −= −              
(5.32)

 

 
Now we try to eliminate 11'G  from the above equation by substituting back in terms of 
H11( 

1

11 11'G H ε− = − ) 
1 1 1

11 11 11 11 12 22 21' ' ' 'G G G G H G H− − −= −  
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                                            1

11 11 12 22 21'G H H G Hε− + = −        
(5.33)

 

 
Now we expand 22 22(G H ε −1= − )  under the above mentioned assumptions on u and ν 3 . 
For the low energy band analysis we neglect powers of p greater than equal to 2. The 
obtained result is then substituted in the equation written above to obtain the Greens 
function G11. A matlab procedure was written to perform the above-mentioned matrix 
manipulations which yielded the following matrix for G11. 
 
 

      
( )

( )

2 2 2 2
1
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2 2 2 2 2
1

1
0 4

2
1

4 0
2

p
G

p

ν π ξ γ ν

ν π ξ γ ν

2+ 2

2

 − + 
=  
 − + 
 

     
(5.34)

 

 
The matrix obtained above is the solution matrix H’ we talked about earlier. The diagonal 
elements corresponding to the potential energy term are zero as expected whereas the off-
diagonal terms representing the interaction between A’’ and B bear an influence of both 
the inter-plane direct dimer interaction as well as the in-plane A-B interaction. We thus 
have H’ in the desired form 

                                                         

^ ^

^ ^
'H

α β

γ δ

 
 =
  
 

 

Further simplification can be done by substituting meff as derived in equation 5.22 for the 
constant term in the above matrix to obtain  

2

01
'

2 0eff
H

m

π
π

2+ 
= −  

 
         

(5.35)
 

We have thus arrived at a compact Hamiltonian which captures the properties of particles 
lying in the low energy band. Note, however that the notion of the sub-lattice in this 
system has now changed to the atom A from the lower layer and the atom B’’ from the 
2nd layer as opposed to A & B in the same layer in the single layer case.  
 
On the other hand if we consider the +ve sign in the obtained E-k in the eq.  we get an 
equation in E and p which is rather cumbersome to look at. We don’t concern ourselves 
with the high-energy bands corresponding to the +ve sign in this report. 
 
 
5.1 Magnetic field applied to a bilayer 
  
Now we apply a perpendicular magnetic field to the bilayer graphene. The conventions 
are similar as in previous analysis. As earlier the first step will be to do the Peierls  
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substitution in the p(y) operator giving to include eBx/c component. The eigen value 
equation for this case becomes  
 

             
2

2

2

effB

effA B
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π ψ εψ
π ψ εψ

2+
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= −
  ,               
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i
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= +
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,              
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y y
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π
π

=
= +     (5.1.1) 

 
Decoupling the above equations we obtain  

2 2 2

2 2 2

4

4

B eff

A eff B

m

m

π π ψ ε ψ

ππ ψ ε ψ

2

2

+
Α

+

=

=
      (5.1.2) 

Now let us look at the following simplification 
 
                                                ( )( )x y x yi iππ π π π π+ = + −  

        [ ]2 2
x yx y iπ π π π= + −             (5.1.3) 
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ieB
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π π

π π
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h

h

                      (5.1.4) 

similarly, 2 2
x y

eBπ π π π+ = + −
h

  so that we can make the following substitution  

     
2eBπ π ππ+ += +
h

              (5.1.5) 

in  2π π
2+ .       

                                                           2π π πππ π
2+ + +=  

                     

2

2
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eB

π π π π

ππ ππ ππ

+ +

+ + +

 = − 
 

= −

h

h

             (5.1.6) 

Now if we represent the operator composition ππ + by Htemp
 , we have our equation in the 

following form.  

22
4temp temp temp eff

eB
H H H mψ ε ψ2Α Α
 − =  h

       (5.1.7) 

 
The solution of the operator Htemp is already derived in the previous section so here we 
will directly use the following result. 

( ) ( )temp n nH x n xψ ωψ= h      (5.1.8) 
where ( )n xψ  is the nth Hermite polynomial. We will see that the solution for the above 
equation once again is similar to the Harmonic oscillator solution. So that if we apply 

( )n xψ  as an eigen function to the above Hamiltonian we get 
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( )2 2
temp temp temp n temp n n

eB eB
H H H H n nψ ωψ ωψ − = −  

h h
h h

 

                                        2 2 2 2
n n

eB
n nω ψ ωψ= −h h

h
      (5.1.9) 

Note that, we have earlier defined the equivalent ω as the cyclotron frequency of the 
motion of charged particle in a magnetic field , 2' 2 /eBω = h  for our situation . So the 
simplification becomes 

2 22
( 1) 'temp temp temp n n

eB
H H H n nψ ω ψ − = −  

h
h

       (5.1.10) 

From above we can derive the Landau level energy spectrum of the electrons in a bilayer 
graphene in the presence of a magnetic field.  
 

2 2 24 ( 1) '

'
( 1)

2

effm n n

n n
m

ε ω
ωε

2 = −

= ± −

h

h

 

                                                        ( 1) cn n ω= ± − h        (5.1.11) 

 
These levels have been plotted as shown in Fig5.1.1(A1.15). As is evident from the 
above relation the Landau energy level (resulting in the presence of magnetic field) in 
this case exhibit four-fold degeneracy for value of n greater than 2. The corresponding 
wavefunctions will be Hermite polynomials. If we now apply a magnetic field 
perpendicular to the bilayer plane,  it will result in producing a potential difference 
between the two layers. Adding the (u/2 term) back to the Hamiltonian, one can 
immediately see it will result in shifting the energy eigen values by a factor proportional 
to u as shown in Fig5.1.2.(A1.16) 

       
Fig5.1.1 showing E as a function of B for different         Fig5.1.2 .The reduction in gap b/w the electron and 
energy levels. Note that as B increases the gap b/w          the hole state (+/-) reducing as the strength of the  
the nth and the (n-1)th energy level increases.                  applied electric field increases. Different color  
                                                                                           corresponds to different values of  electric field E.  
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4. Summary 
 
To conclude we summarize the various results that have been obtained. As a first step, 
the conical dispersion relation of graphene single layer was established. This dispersion 
relation governs the unordinary electronic properties of graphene indicating the presence 
of low energy massless Dirac fermions near the K, K’ valley. The dispersion relation was 
then recalculated to include the effects of confinement of the lattice on its properties. 
Two-type of edge structures exist in graphene resulting from its asymmetric unit vectors. 
The confinements effects for the zigzag edge showed  a quantization in the band 
structure. A rather peculiar feature was observed for the case of arm-chair edge where the 
conducting properties of the layer were found to have a crisp dependence on the length Lx 
along the confined direction. Next we moved on to see the magnetic field effects on the 
graphene E-k characteristics for the infinite as well as the confined lattice. The magnetic 
field resulted in the Landau level quantization with a square root dependence of nth 
energy level on the integer n. In the presence of zigzag edge these states dispersed 
towards slightly higher energies near the edges which differed from the case of armchair 
edge where the dispersing edge states acquired a degeneracy of two near the edges. 
 
Finally we studied the bilayer graphene system wherein we find out more intriguing 
properties including a peculiar Landau level characterization and the ɸ dependence in the 
dispersion relation. We derived an effective two-dimensional Hamiltonian to describe the 
system at low energies as well. Further investigations can be done on the same for tilted 
magnetic field where the concern would be to study the effect of the in-plane component 
of the magnetic field. Besides the effects of transverse electric field on the energy 
spectrum can be done for both the single layer as well as bilayer.  Next stage could be 
device modeling out of the graphene layers requiring an analysis of graphene dot 
structures which would entail the electrostatic potential confinement of graphene 
electrons. 
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II. Experimental 
 
 
1. Introduction  
 
The determination and characterization of structure is a critical step in most solid-state 
research. Diffraction techniques using x-rays, neutrons or electron beam are widely 
employed to gain valuable information about materials at the atomic level. In this section 
we discuss the experimental aspects of graphene with respect to its synthesis from HOPG 
(Highly ordered pyrolitic graphite).The project aims at investigating and modeling the 
novel electronic properties of graphene and its synthesis from HOPG . In this part the 
TEM (Transmission Electron Microscopy) images of cleaved HOPG layers have been 
discussed in detail. A sample of HOPG was prepared by the process mentioned below. A 
sample of HOPG was prepared by the process mentioned below: 
   
1.1 Sample preparation 
 
The 5mm X 5mm HOPG sample was cleaved with the help of adhesive tapes and the 
obtained crystallites were dissolved in approximately 5ml ethanol solution. A perforated 
Cu substrate was then immersed in this solution. The solution was then sonicated to get 
deposition of HOPG flakes on the Cu substrate. A layer of size 2mm X 2mm was then 
deposited on to a carbonized Cu wafer to provide for the metallic contacts. The C coating 
was provided to act as an adhesive. 
 
1.2 HRTEM imaging of the sample 
 

The prepared HOPG sample on a Cu substrate was imaged using a HRTEM microscope. 
High Resolution Transmission Electron Microscopy (HRTEM) is an imaging mode of the 
transmission electron microscope (TEM) that allows the imaging of the crystallographic 
structure of a sample at an atomic scale. As opposed to conventional microscopy, 
HRTEM does not use amplitudes, i.e. absorption by the sample, for image formation. 
Instead, contrast arises from the interference in the image plane of the electron wave with 
itself. Due to our inability to record the phase of these waves, we generally measure the 
amplitude resulting from this interference, however the phase of the electron wave still 
carries the information about the sample and generates contrast in the image, thus the 
name phase-contrast microscopy. Each imaging electron interacts independently with the 
sample. Above the sample, the wave of an electron can be approximated as a plane wave 
incident on the sample surface. As it penetrates the sample, it is attracted by the positive 
atomic potentials of the atom cores, and channels along the atom columns of the 
crystallographic lattice. At the same time, the interaction between the electron wave in 
different atom columns leads to Bragg diffraction. The physics of electron scattering and 
electron microscope image formation are sufficiently well known to allow accurate 
simulation of electron microscope images. 
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1.3 Analysis of TEM images of HOPG 
 
The following images were obtained using HRTEM tip on the sample of size 2mm X 
2mm prepared on a Cu wafer. 
 

      
Fig1.3 a)Scale 200nm                                                    Fig1.3 b)Scale 200nm 

 
Low magnification TEM images showing the surface morphology of the prepared HOPG 
sample. The bending of the layers of graphene sheets can be seen at the edges. The layers 
are creased with many folds, pleats and wrinkles. In the central part there is a 
homogeneous region without any feature at all. This might be quite close to monolayer 
graphene as is evident from some of the electron diffraction images showing a single 
periodicity[22-23].  

         
Fig1.4 a)scale 50 nm                                                       Fig1.4 b)scale 5 nm  
 
The images shown in Fig.2 were obtained at a higher resolution by zooming in on the 
edges seen in the images shown in Fig.1.3. In Fig1.4 a) layers can be seen sliding over 
the bottom most layer. The layered structure at the edge can be seen much more 
prominently in the image shown in Fig1.4 b) which is taken at a much smaller scale of 5 
nm, quite comparable with the graphene hexagonal lattice dimension of 2.5 A0 . 
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Fig1.5 a) scale 5 nm                                                              Fig1.5 b) scale 5nm 
 
Fig 1.5 shows unfiltered image of the surface seen at a scale of 5 nm. Although a high 
frequency noise blurs the raw image, some kind of lattice structure can be recognized in 
both images. The above images were then processed by applying auto-correlation on 
them. Auto-correlation is precisely the cross-correlation of a signal with itself. It is useful 
for finding repeating patterns in an image, such as determining the presence of a periodic 
signal which has been buried under noise, or identifying the missing fundamental 
frequency in an image implied by its harmonic frequencies. The auto-correlated images 
were then Fourier transformed to look for the periodicities present in the image. Fig 1.5a) 
and Fig.1.5b) shows the auto-correlated and the FFT of the above images. A lattice 
periodicity of 2.52 A0 and 1.17 A0 are seen. The former corresponds to one of the lattice 
parameters of the hexagonal C-C lattice. 

      .                                
Fig1.5a)Auto-correlation of image shown in Fig1.4       Fig1.5b)Fast Fourier Transform of the image  
 Auto-correlation enhances the periodic feature               shown in the left giving a blurred frequency  
-es by ignoring the noise in the image.                              spectrum 
 
The following images were obtained by zooming in on the area marked in blue circle in 
Fig1.1a).Observing carefully the first micrograph in Fig 1.6a) one can notice different 
domain boundaries in the polycrystalline structure. Some of these domains show a very 
precise periodic structure.  
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Fig1.6a) (scale  5 nm) micrograph of the surface        Fig1.6b) Auto-correlation on the part of the image   
showing different periodic and aperiodic domains.      1.6a) encircled in blue. 

 
                                                 Fig 1.6c) showing the FFT of the image obtained in 1.6b) 
 
Examination of Fig.1.6c) reveals 6 major spatial frequencies. These correspond to the 
following lattice parameters.  
 

Point # Lattice parameter 
(nm) 

1 0.061567 
2 0.04932 
3 0.059434 
4 0.317965 
5 1.04723 
6 0.260146 

 
 
Following FFT images were obtained by zooming in on different part of the images. 
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                                                Fig1.7a) FFT at different crystallite domains 

The corresponding lattice parameters come out to be .135, .127, 1.04, 1.04 nm for the 
shown images. The higher value lattice parameters might result from lattice imperfections 
like the stacking faults in HOPG or possibly due to random arrangement of layers. The 
periodicities of .26 nm and .135 nm are quite common along with weak higher order 
peaks. The periodicities reflected in the two bottom-most figures appear with almost 
same intensity in all the images. This is an indication of monolayer graphene since for  a 
2-D layer the obtained diffraction would be zero order, hence there would not be much 
alteration of the diffraction pattern for different incidence angle. This is not the case for a 
normal 3-D crystal where higher orders interfere with each other and the diffraction 
pattern varies with the angle of incidence. The experiment could be further modified to 
plot the intensity variation of the diffraction pattern with the tilt-angle. If a nominal TEM 
variation pattern is obtained, it would be a clear signature of the single layer graphene. 

 The idealized image of graphite surface is shown in Fig1.8. Green lattice corresponds to 
the top layer (A) and light green to next layer (B). Stacking sequence of HOPG is 
ABABAB,with periodicity of 1.42Å (C-C bond, blue cell) or the periodicity of the top 
layer alone. There is every third atom missing, so that primary cell is again hexagonal 
(red), but periodicity now 2.46Å.  

 
                                              
                                        Fig1.8. Graphite lattice structure 
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Summary & Future Work  
 
An attempt has been made to fabricate graphene on a Cu surface. HRTEM imaging had 
been used to analyze the obtained layers. While certain cues, hinting towards the 
presence of hexagonal lattice have been seen, no concrete evidence which signatures the 
presence of single graphene layer has been obtained. The work can be extended to 
theoretically simulate the electron diffraction of a single hexagonal layer which can be 
then be compared with the experimentally obtained electron micrograph. The simulation 
will need to take into account the realistic aspects of the process including substrate 
interference, electron beam energy range, corrugations on graphene surface to make the 
simulated patterns comparable with the HRTEM images. The obtained results might also 
find use in similar ultra-thin, transparent substrates. 
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Appendix ( Matlab codes) 
 
A.1 (bloch wave) 
 
a=2; 
b=1; 
nx=10; 
ny=10; 
n1=10; 
A=[]; 
m=[]; 
for k=1:ny 
for i=1:nx 
    for j=4:n1-4 
        m(((i-1)*10+j),((k-1)*10+j))= 1 ; 
    end 
end 
end 
for i = 1:nx*n1-4 
 for j= 1:ny*n1-4 
     Ax(i)=i; 
     Ay(j)=j; 
end 
end 
mesh(Ax,Ay,m) 
u=[]; 
 
 
for i=1:nx 
    for k=1:ny 
        sum=0; 
for j=1:n1 
    for l=1:n1 
    sum=sum + exp(complex(0,-i*2*pi/a*j/n1*a-
k*2*pi/b*l/n1*b))*m(j,l)*1/n1*a*1/n1*b; 
    end 
end 
u(i,k)=sum/(a*b); 
end 
end 
 
kix=2; 
kiy=2; 
m=9.109*10^(-31); 
h=1.05457266*10^(-34); 
%e=h^2*(ki*2*pi/a)^2/(2*m) 
e=1; 
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i=1; 
ct=0; 
     
    for j=1:nx 
        tex=h*h/(2*m)*(kix*2*pi/a-j*2*pi/a)^2 ; 
        %x(j,j)=tex; 
        for l=1:ny 
        tey=h*h/(2*m)*(kiy*2*pi/a-l*2*pi/b)^2 ; 
        x(j,l)=tey+tex; 
             
          for k=j+1:nx 
          x(j,l,k)=u(k-j,l); 
          end 
           
           for k=j+1:ny 
         x(i,,k)=u(k-j,l); 
          end 
        
           
    end 
 
     
for i=1:n-1 
    b(1,i)=x(i,n); 
end 
 
for i=1:n-1 
    for j=1:n-1 
        c(i,j)=x(i,j); 
    end 
end 
 
an=c/b; 
sm=0; 
n2=20; 
for i=1:n2 
    sm=0; 
for j=1:n-1 
    sm = sm + an(j,1)*exp(complex((i/n*a)*(ki-j)*2*pi/a)); 
end 
sm = sm - exp(complex((i/n*a)*(ki-n))); 
si(i)=sm; 
end 
     
 
for i=1:n2 
    d(i)=i/n2*a; 
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end 
 
scatter(d,real(si)) 
hold on 
plot(d,real(si)) 
 
A.2 (wavefunction) 
 
 Same as above take eigen vector instead of eigen value 
 
A.3 (graphene e-k) 
 
ans=[]*[]; 
a=1; 
v=1; 
n1=20; 
emax=10; 
emin=1; 
del=(emax-emin)/n1; 
gde=[]; 
gdk=[]; 
gde(1)= emin; 
nk=20; 
 
for k=2:n1 
    gde(k)=gde(k-1)+ del; 
end 
 
 
for x=1:nk 
    gk(x)=pi*(x-1)/(a*nk); 
end 
 
for x=1:nk 
    the=gk(x)*a/2; 
    for k = 1:n1 
        e=gde(k); 
        v=1; 
si=[]; 
dsi=[]; 
n=10; 
si(n)=1; 
dsi(n)=0; 
 
for i=1:n-1  
    si(i+n)=si(i+n-1)+a/(2*n)*dsi(i+n-1); 
    dsi(i+n)=dsi(i+n-1)-a/(2*n)*(e-v)*si(i+n-1); 
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    si(n-i)=si(-i+n+1)-a/(2*n)*dsi(-i+n+1); 
    dsi(n-i)=dsi(-i+n+1)+a/(2*n)*(e-v)*si(-i+n+1); 
end 
 
si1=[]; 
dsi1=[]; 
a=1; 
n=10; 
si1(n)=0; 
dsi1(n)=1; 
for i=1:n-1  
    si1(i+n)=si1(i+n-1)+a/(2*n)*dsi1(i+n-1); 
    dsi1(i+n)=dsi1(i+n-1)-a/(2*n)*(e-v)*si1(i+n-1); 
     
    si1(n-i)=si1(-i+n+1)-a/(2*n)*dsi1(-i+n+1); 
    dsi1(n-i)=dsi1(-i+n+1)+a/(2*n)*(e-v)*si1(-i+n+1); 
end 
 
sum=0; 
for i=1:2*n-1 
    sum=sum+(si(i)^2*a/(2*n)); 
end 
 
for i=1:2*n-1 
    si(i)=si(i)/sqrt(sum); 
end 
 
sum=0; 
for i=1:2*n-1 
    sum = sum+((si1(i))*(si1(i))*a/(2*n)); 
end 
 
for i=1:2*n-1 
    si1(i)=si1(i)/sqrt(sum); 
end 
 
for i=1:19 
    A(i)=i; 
end 
 
 
c2= si(1)*dsi1(1); 
c1= si1(1)*dsi(1); 
 
ans(x,k)=c1*(cos(the)^2)+ c2*(sin(the)^2); 
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    end 
end 
 
for i=1:nk 
    ge(i)=gde(1); 
    b=ans(i,1); 
    for j=1:n1 
        if(abs(ans(i,j))<b) 
            ge(i)=gde(j); 
            b=ans(i,j); 
        end 
    end 
    ge(nk+i)=ge(i); 
    gk(nk+i)=-gk(i); 
end 
          
 
 
 
scatter(gk,ge);close all; 
clear all; 
a=2; 
n=10; 
n1=10; 
A=[]; 
m=[]; 
 
for i=1:n 
    for j=4:n1-4 
        m((i-1)*10+j)= 1 ; 
    end 
end 
 
for i = 1:n*n1-4 
    A(i)=i/(n*n1-4)*a; 
end 
 
 
%plot(A,m) 
%hold on  
 
u=[];a=2; 
b=1; 
nx=10; 
ny=10; 
n1=10; 
A=[]; 
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m=[]; 
 
for k=1:ny 
for i=1:nx 
    for j=4:n1-4 
        m(((i-1)*10+j),((k-1)*10+j))= 1 ; 
    end 
end 
end 
 
for i = 1:nx*n1-4 
 for j= 1:ny*n1-4 
     Ax(i)=i; 
     Ay(j)=j; 
end 
end 
 
mesh(Ax,Ay,m) 
 
u=[]; 
 
 
for i=1:nx 
    for k=1:ny 
        sum=0; 
for j=1:n1 
    for l=1:n1 
    sum=sum + exp(complex(0,-i*2*pi/a*j/n1*a-
k*2*pi/b*l/n1*b))*m(j,l)*1/n1*a*1/n1*b; 
    end 
end 
u(i,k)=sum/(a*b); 
end 
end 
 
kix=2; 
kiy=2; 
m=9.109*10^(-31); 
h=1.05457266*10^(-34); 
%e=h^2*(ki*2*pi/a)^2/(2*m) 
e=1; 
i=1; 
ct=0; 
     
    for j=1:nx 
        tex=h*h/(2*m)*(kix*2*pi/a-j*2*pi/a)^2 ; 
        %x(j,j)=tex; 
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        for l=1:ny 
        tey=h*h/(2*m)*(kiy*2*pi/a-l*2*pi/b)^2 ; 
        x(j,l)=tey+tex; 
             
          for k=j+1:nx 
          x(j,l,k)=u(k-j,l); 
          end 
           
           for k=j+1:ny 
         x(i,,k)=u(k-j,l); 
          end 
        
           
    end 
 
     
for i=1:n-1 
    b(1,i)=x(i,n); 
end 
 
for i=1:n-1 
    for j=1:n-1 
        c(i,j)=x(i,j); 
    end 
end 
 
an=c/b; 
sm=0; 
n2=20; 
for i=1:n2 
    sm=0; 
for j=1:n-1 
    sm = sm + an(j,1)*exp(complex((i/n*a)*(ki-j)*2*pi/a)); 
end 
sm = sm - exp(complex((i/n*a)*(ki-n))); 
si(i)=sm; 
end 
     
 
for i=1:n2 
    d(i)=i/n2*a; 
end 
 
scatter(d,real(si)) 
hold on 
plot(d,real(si)) 
 



 55 

 
for i=1:n 
    sum=0; 
for j=1: n1 
    sum=sum + exp(complex(0,-i*2*pi/a*j/n1*a))*m(j)*1/n1*a; 
end 
u(i)=sum/a; 
end 
 
ki=5; 
m=9.109*10^(-31); 
h=1.05457266*10^(-34); 
%e=h^2*(ki*2*pi/a)^2/(2*m) 
%e=1 
i=1; 
ct=0; 
     
    for j=1:n 
        te=h*h/(2*m)*(ki*2*pi/a-j*2*pi/a)^2 ; 
        cx=te; 
        ct=ct+1; 
        x(j,j)=cx; 
       for k=j+1:n 
          cx=u(k-j); 
          x(j,k)=cx; 
          ct=ct+1; 
       end 
    end 
     
[V,D] = eigs(x); 
e=D(3); 
 
 
 
sm=0; 
n2=100; 
for i=1:n2+1 
    sm=0; 
for j=1:n 
    sm = sm + V(20+j)*exp(complex(0,(((i-1)/n2*a)*(ki-
j)*2*pi/a))); 
end 
si(i)=sm; 
end 
     
 
for i=1:n2+1 
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    d(i)=(i-1)/n2*a; 
end 
 
scatter(d,real(si)) 
hold on 
plot(d,real(si)) 
 
A.4 (graphene wavefunction) 
 
clear all 
ab=1; 
a=[]; 
b=[]; 
d=[]; 
e=[]; 
n=100; 
c=1; 
al=1; 
be=1; 
si=[]; 
 
for i=1:n 
    for j=1:n 
aa(i)=i; 
bb(j)=j; 
a(c)=i/n*3*pi-3*pi/2; 
      b(c)=j/n*3*pi-3/2*pi; 
      
d(c)=sqrt(1+4*cos(a(c)/2)*cos(sqrt(3)*b(c)/2)+4*cos(a(c)/2)
*cos(a(c)/2)); 
      e(c)=-d(c); 
      cc(i,j)=d(c); 
      t1=1+exp(complex(0,-
a(c)*ab*1.732))+exp(complex(0,a(c)*ab*1.732/2-b(c)*1.5*ab)); 
      t2=1+exp(complex(0,a(c)*ab*1.732))+exp(complex(0,-
a(c)*ab*1.732/2+b(c)*1.5*ab)); 
      m=[al-d(c),be*t1;be*t2,al-d(c)]; 
      [k,h]=eigs(m); 
      c1(c)=k(1); 
      c2(c)=k(2); 
      si(i,j)= c1(c)*1 + c2(c)*2; 
      c=c+1; 
    end 
end 
 
    mesh(aa,bb,si) 
    %hold on 
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   % scatter3(a,b,d,1) 
    %hold on 
    %scatter3(a,b,e,1) 
 
A.5 (E-ky for zigzag edge) 
 
clear all 
close all 
a0=pi; 
n=100; 
l=14*1.732*a0; 
 
for j=1:5 
    for i=1:n 
    ky(i)=-2*pi/a0+4*i/n*pi/a0; 
    f=@(x)ky(i)-x./tan(14*1.732*x.*1) 
     
    kx(i,j)=fsolve(f,j/5); 
  
    e1(i,j)=sqrt(kx(i,j)^2+ky(i)^2); 
    e2(i,j)=-sqrt(kx(i,j)^2+ky(i)^2); 
    end 
end 
 
for j=1:5 
    for i=1:n 
    kx(i)=kx(100*(j-1)+i); 
    ee1(i)=e1(100*(j-1)+i); 
    ee2(i)=e2(100*(j-1)+i); 
    k(i)=sqrt(kx(i)^2+ky(i)^2); 
    end 
    plot(k,ee1) 
    hold on 
    plot(k,ee2) 
    hold on 
    plot(-k,ee1) 
    hold on 
    plot(-k,ee2) 
    hold on 
end 
 
 
A.6 
zigzag wave 
 
A.7(E-k armchair) 
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clear all; 
close all; 
n=100; 
n1=50; 
for j=1:5 
    for i=1:n 
        ky(i)=.9+.9*i/n; 
        e1(i)=sqrt(j-1); 
        e2(i)=-sqrt(j-1); 
        e11(i)=sqrt(j-1); 
        e22(i)=-sqrt(j-1); 
    end 
    
    for k=1:n1 
        ky(n+k)=1.8+k/n1*.3; 
        e1(n+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e2(n+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        if(j==1) 
        e11(n+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e22(n+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        else 
        e11(n+k)=e1(n)+4*(ky(n+k)-1.82)^2-.0004; 
        e22(n+k)=-(e1(n)+4*(ky(n+k)-1.82)^2-.0004); 
        end 
    end 
     
      for k=1:n1 
        ky(n+n1+k)=ky(1)-k/n1*.3; 
        e1(n+n1+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e2(n+n1+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        if(j==1) 
        e11(n+n1+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e22(n+n1+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        else 
        e11(n+n1+k)=e1(n)+4*(ky(n+k)-1.82)^2-.0004; 
        e22(n+n1+k)=-(e1(n)+4*(ky(n+k)-1.82)^2-.0004); 
        end 
    end 
    scatter(ky,e1) 
    hold on 
    scatter(ky,e2) 
    hold on 
    scatter(ky,e11) 
    hold on 
    scatter(ky,e22) 
    hold on 
end 
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A.8(Armchair edge 2) 
 
Same as above, change L as mentioned in the text. 
 
A.9 (zigzag edge in a magnetic field) 
 
clear all 
close all 
a=1.5; 
n=100; 
l=1; 
b=50; 
n1=0; 
for i=1:n 
    k(i)= (2*(n-n1-i))/n*a; 
end 
 
for i=1:n 
    %si(i)=((exp(k(i)-5))*(8*(k(i)-b)^3-12*(k(i)-b))); 
    si(i)=1/k(i)*exp(k(i))^2*(k(i)^2-4); 
end 
 
for i=1:n 
    si1(i)=si(n+1-i)+200; 
end 
 
plot(k,si1/900) 
hold on  
scatter(k,si1/900) 
 
A.10 (armchair edge in magnetic field)  
 
clear all; 
close all; 
n=100; 
n1=50; 
for j=1:5 
    for i=1:n 
        ky(i)=.9+.9*i/n; 
        e1(i)=sqrt(j-1); 
        e2(i)=-sqrt(j-1); 
        e11(i)=sqrt(j-1); 
        e22(i)=-sqrt(j-1); 
    end 
    
    for k=1:n1 
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        ky(n+k)=1.8+k/n1*.3; 
        e1(n+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e2(n+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        if(j==1) 
        e11(n+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e22(n+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        else 
        e11(n+k)=e1(n)+4*(ky(n+k)-1.82)^2-.0004; 
        e22(n+k)=-(e1(n)+4*(ky(n+k)-1.82)^2-.0004); 
        end 
    end 
     
      for k=1:n1 
        ky(n+n1+k)=ky(1)-k/n1*.3; 
        e1(n+n1+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e2(n+n1+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        if(j==1) 
        e11(n+n1+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e22(n+n1+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        else 
        e11(n+n1+k)=e1(n)+4*(ky(n+k)-1.82)^2-.0004; 
        e22(n+n1+k)=-(e1(n)+4*(ky(n+k)-1.82)^2-.0004); 
        end 
    end 
    scatter(ky,e1) 
    hold on 
    scatter(ky,e2) 
    hold on 
    scatter(ky,e11) 
    hold on 
    scatter(ky,e22) 
    hold on 
end 
 
A.11 (two well potential) 
close all 
clear all 
for i=1:100 
    x(i)=-1+i/100; 
    y(i)=.1+(x(i)+.5)^2; 
end 
%scatter(x,y) 
for i=1:100 
    x(100+i)=i/100; 
    y(100+i)=-.1+(x(100+i)-.5)^2; 
end 
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scatter(x,y) 
 
A.12 (armchair edge in magnetic field E-k) 
 
clear all; 
close all; 
n=100; 
n1=50; 
for j=1:5 
    for i=1:n 
        ky(i)=.9+.9*i/n; 
        e1(i)=sqrt(j-1); 
        e2(i)=-sqrt(j-1); 
        e11(i)=sqrt(j-1); 
        e22(i)=-sqrt(j-1); 
    end 
    
    for k=1:n1 
        ky(n+k)=1.8+k/n1*.3; 
        e1(n+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e2(n+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        if(j==1) 
        e11(n+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e22(n+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        else 
        e11(n+k)=e1(n)+4*(ky(n+k)-1.82)^2-.0004; 
        e22(n+k)=-(e1(n)+4*(ky(n+k)-1.82)^2-.0004); 
        end 
    end 
     
      for k=1:n1 
        ky(n+n1+k)=ky(1)-k/n1*.3; 
        e1(n+n1+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e2(n+n1+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        if(j==1) 
        e11(n+n1+k)=5*(ky(n+k)-ky(n))^2+e1(n); 
        e22(n+n1+k)=-5*(ky(n+k)-ky(n))^2-e1(n); 
        else 
        e11(n+n1+k)=e1(n)+4*(ky(n+k)-1.82)^2-.0004; 
        e22(n+n1+k)=-(e1(n)+4*(ky(n+k)-1.82)^2-.0004); 
        end 
    end 
    scatter(ky,e1) 
    hold on 
    scatter(ky,e2) 
    hold on 
    scatter(ky,e11) 
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    hold on 
    scatter(ky,e22) 
    hold on 
end 
 
A.13 (E-k bilayer) 
 
 u =.2;   
 v=8; 
 v3=.1*v; 
 si=-1;  
 y1=.39;  
 n=100; 
  
 for i=1:100 
     kx(i)=-pi+i/n*2*pi; 
     ky(i)=-pi+i/n*2*pi; 
 end 
  
 for i=1:100 
     for j=1:100 
       ki=complex(kx(i),ky(j)); 
       kki=complex(kx(i),-ky(j)); 
       mat=[u/2 v3*ki 0 v*kki; v3*kki -u/2 v*ki 0; 0 v*kki 
-u/2 si*y1; v*ki 0 si*y1 u/2 ]; 
       en=eigs(mat); 
       e(i,j)=abs(en(1)); 
     end 
 end 
 
 surf(kx,ky,e) 
 hold on 
 %surf(kx,ky,-e) 
 shading interp 
A.14 
 
Same as above (contour plot) 
 
A.15 
 
clear all 
close all 
for j=4:4 
    for i=1:50 
        b(i)=(i-1)/50*6; 
        e(i)=2*sqrt(j*j-j)*sqrt(b(i)); 
    end 
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    scatter(b,e) 
    hold on 
    scatter(b,-e) 
    hold on 
plot(b,e) 
    hold on 
    plot(b,-e) 
    hold on 
 
end 
 
j=3; 
for i = 1:50 
e(i)=2*sqrt(j*j-j)*sqrt(b(i)); 
end 
u=0; 
temp=e-u; 
e=30+temp; 
e1=30-temp; 
scatter(b,e) 
    hold on 
    scatter(b,e1) 
    hold on 
plot(b,e) 
    hold on 
    plot(b,e1) 
    hold on 
 
    j=2; 
for i = 1:50 
e(i)=2*sqrt(j*j-j)*sqrt(b(i)); 
end 
u=0; 
temp=e-u; 
e=50+temp; 
e1=50-temp; 
scatter(b,e) 
    hold on 
    scatter(b,e1) 
    hold on 
plot(b,e) 
    hold on 
    plot(b,e1) 
    hold on 
 
A.16 
Same as above with parameters changed as mentioned in text. 
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