
 IV&V Australia
The independent software testing specialists

Software Unit Testing Page 1 of 4
 IV&V Australia Pty Ltd, 1997

rparkin@ivvaust.com.au

Software Unit Testing
Rodney Parkin, IV&V Australia

This paper is an overview of software unit testing. It defines unit testing, and discusses many of the issues which
must be addressed when planning for unit testing. It also makes suggestions for appropriate levels of formality and
thoroughness of unit testing on typical development projects.

What is “Unit Testing”?
The software literature (notably the military
standards) define a unit along the lines of the
smallest collection of code which can be
[usefully] tested. Typically this would be a
source file, a package (as in Ada), or a non-trivial
object class. A hardware development analog
might be a PC board.

Unit Testing is just one of the levels of testing
which go together to make the “big picture” of
testing a system. It complements integration and
system level testing. It should also complement
(rather than compete with) code reviews and
walkthroughs.

Unit testing is generally seen as a “white box”
test class. That is, it is biased to looking at and
evaluating the code as implemented, rather than
evaluating conformance to some set of
requirements.

Why is it important?
For any system of more than trivial complexity, it
is highly inefficient and ineffective to test the
system solely as a “big black box”. Any attempt
to do so quickly gets lost in a mire of
assumptions and potential interactions. The only
viable approach is to perform a hierarchy of tests,
with higher level tests assuming “reasonable and
consistent behaviour” by the lower level
components, and separate lower level tests to
demonstrate these assumptions.

It would be infeasible to test a space shuttle as a
system if you had to simultaneously question the
design of every electrical component. It is
similarly infeasible to test a large software
system as a whole if you have to simultaneously
question whether every line of code, every “if
statement”, was correctly written.

Boris Beizer has defined a progression of levels
of sophistication in software testing. At the
lowest level, testing is considered no different to
debugging. At the higher levels, testing becomes
a mindset which aims to maximise the system
reliability. His approach stresses that you should

“test” in the way which returns the greatest
reliability improvement for resources spent rather
than mindlessly performing some “theoretically
neat” collection of tests.

Experience has shown that unit-level testing (and
reviewing) is very cost effective. It provides a
much greater reliability improvement for
resources expended than system level testing. In
particular, it tends to reveal bugs which are
otherwise insidious and are often catastrophic −
like the strange system crashes that occur in the
field when something unusual happens.

What should it cover?
Just as a system needs to be designed before it
can be effectively implemented, so too must the
system test strategy be designed before it is
implemented. At the same time as the system
concepts are emerging and an architecture is
being worked out, a “test strategy” must also be
developed.

The test strategy should identify the totality of
testing which will be applied to the system −
what types of testing will be performed, and how
they will contribute to the overall quality and
reliability of the product. A good test strategy
will clearly scope each class of test and assign
responsibility for it. Typically an organisation
will have some standard conventions to follow,
but each project must identify aspects of the
system which are critical or problematical, and
clearly identify the how these will be tested and
by whom. Ultimately the Project Plan (or some
form of Master Test Plan) for each project will
define what needs to be covered by unit testing
on that project. This type of information works
well presented in a checklist.

Usually unit testing is primarily focused on the
implementation − Does the code implement what
the designer intended? For each conditional
statement, is the condition correct? Do all the
special cases work correctly? Are error cases
correctly detected?
However many systems have some high-level
requirements which are difficult to adequately
test at a system level, and it is common to

 IV&V Australia
The independent software testing specialists

Software Unit Testing Page 2 of 4
 IV&V Australia Pty Ltd, 1997

rparkin@ivvaust.com.au

identify these as additional test obligations at the
unit-test level. An example is detailed signal
processing algorithms. These may be fully
specified at the system functional requirements
level, but it may be most efficient to test the
details of the processing at the unit-test level,
with system-level testing being confined to
testing the gross flow of data through the system.

Who should do it?
Because unit testing is primarily focussed on the
implementation, and requires an understanding of
the design intent, it is much more efficiently done
by the designers rather than by independent
testers.

There are some theoretical arguments that it is
better for testing to be done independently.
However, in this case, the lost efficiency in
having an independent person understand the
code and understand the design issues strongly
outweighs any advantages. Beizer’s principal of
applying available resources in the most efficient
way applies. The benefits to be gained by
independence are achieved more easily in a
review or walkthrough forum.

What level of formality is required?
When considering the level of formality required
for unit testing, the sort of questions which arise
are: Do unit tests need a “pre-approved” test
protocol, or is it sufficient for them to be worked
out “as you go”? Is a formal report required? Do
QA need to be involved? Are all results
reviewed?

The level of formality required for unit testing
depends on your “customer” needs. Where
development is being done under a contract with
an external customer, or there are regulatory
requirements to be met, these my impose specific
standards on the project.

Where there are no specific requirements
imposed on the project, it becomes essentially a
tradeoff between project cost and risk. In fact,
the project may choose to keep the level of
testing in some areas quite informal, while other
are more formal.

These questions should be answered as part of
the test planning, and need to be documented in
the project test plan. In most cases there is little
advantage in requiring any more formality than is
required to ensure that adequate attention is being
applied to the task. This may need nothing more

than regular liaison and one-on-one review with
the tester’s team leader.

What type of documentation is
required?

Like the required level of formality, the
appropriate level of documentation for unit
testing varies from project to project, and even
within a project. There may be minimum
standards imposed by outside agencies, but
generally there are not.

The minimum requirements for the
documentation are:
• It must be reviewable. That is, the records

must be sufficient for others to review the
adequacy of the testing.

• It must be sufficient for the tests to be
repeatable. This is important for regression
testing - unless you are sure you can repeat a
test, you can never be sure if you have fixed
the cause of a test failure. Repeatability is
also important for analysing failures − both
failures during the initial testing, and
subsequent failures. Knowing exactly what
was and was not tested, and exactly what
passed and what failed during testing is an
invaluable aid in isolating difficult-to-
reproduce field failures. Repeatability not
only implies the need to record in reasonable
detail how the test is run and what data is
used, but also implies identification of the
version of code under test.

• The records must be archivable. That is, they
must be sufficiently well kept and identified
that they can be found if required, at a later
time (perhaps years later when analysing a
field failure).

For many organisations, separate unit test
documents are not produced. Typically unit
testing will be recorded in controlled lab-books,
or collected into project journals.

One approach which works well for software unit
testing is to use a source code listing with hand
annotations for the recording of tests. Test cases
and data are identified on the listing, with
markups showing which sections of code are
covered by which tests. Typically this listing will
be attached to a review sheet and a checklist of
unit testing requirements, and filed with the
project records.
The documentation method chosen may vary
depending on the criticality, complexity, or risk
associated with the unit. For example, in a
security-critical system, one or more units

 IV&V Australia
The independent software testing specialists

Software Unit Testing Page 3 of 4
 IV&V Australia Pty Ltd, 1997

rparkin@ivvaust.com.au

associated with the secure interface may be
required to have formally documented unit tests,
while the (non-security critical) bulk of the
system is much less formally documented. These
decisions need to be made early as part of the
initial project test planning and appropriately
recorded.

How “thorough” does it need to be?
In general terms, unit testing should provide
confidence that a unit does not have
unpredictable or inconsistent behaviour, and that
it conforms to all the “design assumptions” that
have been made about it. If this is achieved, then
higher-level testing can concentrate on
macroscopic properties of the system, rather than
having to iterate over numerous possibilities for
interaction at the lowest levels. In choosing tests,
the tester should consider whether it behaves in
the way the design assumes, whether it does this
over the full range of operational possibilities,
and whether there are any “special cases” in its
behaviour which are not visible at a higher level.
For each line of code, the tester should ask “does
it achieve what it was put here to do”?

Because unit testing is primarily implementation
driven, its thoroughness is usually measured by
code coverage. Tools are available which will
evaluate code coverage while tests are being run,
but generally someone familiar with the code,
while focussed on a particular unit, will find it
quite easy to determine the coverage of a
particular set of tests. Various “measures” of
coverage can be defined, such as “statement
coverage” (each statement executed at least
once), “decision coverage” (each conditional
statement executed at least once each way), and
so on.

Like documentation, the level of thoroughness
required for unit testing may depend on the
criticality, complexity, or risk associated with the
unit. For example, safety or security-critical
units may be subjected to much more extensive
unit testing than non-critical screen-formatting
code. Some projects use metrics such as McCabe
Cyclomatic Complexity to pre-determine the
appropriate level − units with a high complexity
are required to have a greater degree of testing.
Again a policy on test rigour needs to be
determined as part of the early project test
planning.

For typical projects, the usual standard is to aim
for “decision coverage”. That is, unit testing
must demonstrate correct operation over a range
of cases which require every statement to be

executed at least once, and every conditional
statement to go each way. In addition, all
“boundary cases” must be exercised. In actual
practice, 100% coverage can be surprisingly
difficult to achieve for well-written code. This is
because there will be code to protect against
“should not occur” scenarios, which can be very
awkward to exercise. A code coverage standard
may concede coverage of these cases so long as
they are adequately desk-reviewed.

What “test environment” should be
used?

As a general rule of thumb “the rest of the system
is the best test harness” for unit testing.
Performing unit tests in a system environment
maximises your likelihood of identifying
problems. On the other hand, the tester should
not allow this “rule” to limit or hinder their
testing. They should use the rest of the system to
generate and analyse test scenarios, but should
not feel constrained from intruding into the
system with debuggers, special test code, or other
aids.

Some people feel that for testing to be valid, it
must be performed on exactly the code to be
delivered, running exactly in its final
environment. Although this is appropriate for
final acceptance testing at the system level, it can
actually be counter-productive at the lower
levels. At the unit test level it is far preferable to
“put in some debug statements” to help perform a
particular test, than to avoid the test altogether in
a mistaken attempt to ensure fidelity.

It is often easy to make the system an almost
ideal test harness. For example, removing
restrictions on selectable system parameters when
in a “system test mode” may make it trivial to
force otherwise difficult “should not occur”
special cases. Providing a capability to inject
arbitrary byte sequence for internal messages
may be trivial to implement buy extremely useful
for testing. When considered early in the design
process, these sorts of capabilities are often
trivial to provide.

Conclusions
Software unit testing is an integral part of an
efficient and effective strategy for testing
systems. It is best performed by the designer of
the code under test.

The appropriate level of formality and
thoroughness of the testing will vary from project
to project, and even within a project depending

 IV&V Australia
The independent software testing specialists

Software Unit Testing Page 4 of 4
 IV&V Australia Pty Ltd, 1997

rparkin@ivvaust.com.au

on the criticality, complexity, and risk associated
with the unit. The policy in this regard should be
decided early in test planning, and documented,
usually in the Project Plan or separate Master
Test Plan.

In most cases it is acceptable to adopt an
approach which requires little documentation
overhead. However there are some basic
requirements which should always be met. In
particular it must be reviewable, repeatable, and
archivable. Commonly, unit testing will be
recorded in labbooks, or in hand-written notes on
code listings stored in the project journal, with
guidance provided by a checklist that identifies
the required unit testing activities.

Some issues which should be considered when
evaluating a unit testing strategy are:
• Has a policy with regards formality,

documentation, and coverage been
determined early enough in the project?

• Does it relate to other levels of testing to
give an efficient and effective overall
strategy?

• Have the needs of units which are
particularly critical, complex, or risky been
considered?

• Will the documentation be reviewable,
repeatable, and archivable?

Questions which should be considered when
evaluating unit testing for adequacy include:
• Have all statements been exercised by at

least one test?
• Has each conditional statement been

exercised at least once each way by the tests?
• Have all boundary cases been exercised?
• Were any design assumptions made about

the operation of this unit? Have the tests
demonstrated these assumptions?

• Have the tests exercised the unit over the full
range of operational conditions it is expected
to address?

