
 | JANUARY 2014 | WWW.usenix.org	 PAGE 5

Code Review for System Administrators
E l i z a b e t h K r u m b a c h J o s e p h

Over the past year, OpenStack [1] has seen fast-paced adoption by
major vendors and a staggering growth in its developer community
from companies around the world. As a result, the relatively new

cloud platform has become quite the popular topic throughout the open source
community. The infrastructure used to manage the growth of the project
over this time has had to handle this load, while still managing to review
and test the code going into the project. In this article, I’ll look at how code
review practices for OpenStack can be applied to system administration.

The infrastructure [2][3] for the OpenStack project is fully open source and managed by
a geographically distributed team of systems administrators from multiple companies who
are responsible for the installation and maintenance of the tools used by the OpenStack
project. This infrastructure includes the full code review and continuous integration
system, plus wiki, pastebin, etherpad, chat bots, and other tools used by project members on
a day to day basis. A major boon to the ability for all of us to collaborate effectively is by not
only imposing review upon code going into OpenStack itself, but also to all the configura-
tion files and code that we deploy in production for the infrastructure.

The code review and continuous integration system used in OpenStack is built with the
needs of OpenStack in mind. OpenStack is essentially a big project made up of many
smaller projects that operate largely independently within the OpenStack umbrella. Each
project has different team leads, core contributors, and reviewers. As such, the system
needed extensive integration testing as part of what is tested before code is committed to
the git repositories. We’re using Gerrit [4] for the front end code review mechanism and
Jenkins [5] as our continuous integration server that launches tests. To glue these together,
we use a test worker distributor, Gearman [6], to hand things off to our Jenkins servers.
We use a couple other tools to manage the queuing of testing and merging of code (Zuul [7]),
and to manage the pool of machines used to do tests (Nodepool [8]), both of which are open
source and were developed by the infrastructure team.

Systems administration does not typically need the same kinds of tests that fully inte-
grated code within OpenStack does. Instead, sysadmins on my team use this same system,
but we have set up a series of checks to run against all changes to our config files and other
code that the team checks in, including:

◆◆ flake8 (running pep8 and pyflakes) for our Python scripts

◆◆ puppet parser validate & puppet-lint against any changes in Puppet

◆◆ XML syntax checking on some XML files where the structure is known

These checks are run as soon as we submit a code or configuration change into the code
review system, giving the system administrator feedback within a few minutes about
whether their code has passed these basic tests. We regularly assess this list, improve it

Elizabeth Krumbach Joseph
is an Automation and Tools
Engineer at HP working on the
OpenStack Infrastructure team.
She is also a member of the

Ubuntu Community Council, one of the two
governing bodies of the Ubuntu Project, and on
the Board of Directors for Partimus.org, a non-
profit in the San Francisco Bay area providing
Linux-based computers to schools in need.
lyz@princessleia.com

References
[1] OpenStack:
http://www.openstack.org/

[2] OpenStack infrastructure:
http://ci.openstack.org/

[3] OpenStack infrastructure code
repository: https://git.openstack.
org/cgit/openstack-infra

[4] Gerrit: https://code.google.
com/p/gerrit/

[5] Jenkins: http://jenkins-ci.org/

[6] Gearman: http://gearman.org/

[7] Zuul: http://ci.openstack.org/
zuul/

[8] Nodepool: http://ci.openstack.
org/nodepool.html

http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://gearman.org/
http://gearman.org/
http://gearman.org/
http://gearman.org/
http://gearman.org/
http://gearman.org/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html

 | JANUARY 2014 | WWW.usenix.org	 PAGE 6

Code Review for System Administrators

and add more when we expand the types of code or configura-
tion files we are submitting so that we get as much benefit as
possible from automated tests.

Next the changes are reviewed by contributors to the infra-
structure team. As an open source project team, we allow
anyone to do basic code reviews, but restrict the higher levels
of approval to core project members who have a history of being
trustworthy and providing a high level of code review expertise.

This human element of the system is perhaps the most valuable
part of having a code review process for system administrators.
The process provides an opportunity to have multiple eyes on
even simple changes before submitting something that could
possibly impact hundreds of active developers from dozens of
different companies. A single system administrator is no lon-
ger responsible for applying a change. Instead, a team collab-
oratively reviews and approves it. This collaboration can make
for a lower stress, higher reward work environment.

As a distributed team, our review process gives us a great plat-
form for checking in a “Work in Progress” change that we can
actively collaborate on by commenting on the changes inside
the code review system. Also, team members have an opportu-
nity to see the solution that one of us came up with, and make
suggestions for tackling the issue in an entirely different way
now that we’ve seen how the proposed suggestion may work.
By having the proposed changes in front of us, we’re also able
to test code independently of the submitter before giving our
approval, which often catches edge cases that are found in our
varied personal test environments.

Because all of our changes go through code review, including
those from core contributors, there is little technical difference
between a submission provided by a new contributor or some-
one who has been with the project for a long time. Every review
is handled independently, and we have the same social require-
ments for accepting a change (two core reviewers should give
their approval). This also means that no one has the ability to
commit directly to the code repository. Changes by core mem-
bers, like those from anyone else, must pass syntax checking
and get reviews.

Once the code lands in our git repository, the Puppet master
picks it up and it is deployed automatically to the appropriate
servers. If the change is to code being run on a server, we use a
Puppet mechanism for handling code repositories that regu-
larly checks for updates in the repository and restarts services
on changes as needed.

All of these processes have trained members of the team to
be collaborative by default, an important thing for a dis-
tributed team or one that tends to have different systems
administrators focusing on different projects. This has helped

tremendously when the limitations for managing systems
completely through code review and code repositories are
considered.

The first obvious limitation is bootstrapping this process.
To get the process going, you need basic servers set up, and
when adding new servers to the infrastructure from our pool
of OpenStack-based virtual machines, there are still portions
we have not been able to automate completely. Also, there is the
handling of passwords, SSL keys, and other sensitive data that
cannot be made available generally to every member of the
project. These limitations are both handled by having a “root”
team that has access to creating new servers and to adding,
viewing, and manipulating the sensitive data.

We’ve also had to handle the inevitable problem that comes
up where you simply must log into a server for some reason.
Perhaps a MySQL database needs a manual edit, or the Puppet
agent running on the server has crashed. We may also need to
debug something, so shell access to browse logs and run diag-
nostic tools is essential. To handle this, root team members
have access to all the servers, and then access is granted on a
server by server basis to team members with expertise in work-
ing on specific applications in the infrastructure. We also run
public monitoring of our servers via Cacti and have a Puppet
dashboard so basic statistics about system resources and the
application of changes via Puppet can be tracked and reviewed
by any contributor.

Complicated upgrades or migrations also are difficult to man-
age through a code review system. In these cases, shell access
often is required, but our collaborative culture makes it so that
we’re always working together on these projects. Typically,
resolving these situations starts off in an online team meeting
in which we flesh out the migration plan in a collaborative edit-
ing tool (such as etherpad), then we schedule the maintenance
window when multiple team members will be available. Once
we get to the maintenance time, we work together on Internet
Relay Chat (IRC) to run through the list of tasks defined in the
etherpad and work together if anything goes awry.

There are also the inevitable emergencies that crop up from
time to time. In these cases, the root admins do have the ability
to log in and shut down the Puppet agent and make changes
manually to unblock us. The team has been disciplined so that
these incidents are rare, as we’d much rather fix it via a com-
mit, and followed up with as soon as the emergency has passed
and more core members are available to assess and perma-
nently solve the problem.

Fortunately these limitations are a small percentage of what
we encounter, and our primary contact with our systems on a
day to day basis is through the code review system. In addition
to public Cacti and Puppet dashboard that any contributor can

 | JANUARY 2014 | WWW.usenix.org	 PAGE 7

Code Review for System Administrators

access, we also are diligent about maintaining our team docu-
mentation for how we run and make changes to our various
services and make sure all our configurations and scripts are
browseable by contributors in our public git repository. This
makes it relatively easy for new contributors to join our team
and get up to speed with our full infrastructure, or simply make
a single change to address a pain point in our infrastructure,

from adding a new test to the continuous integration system to
adding a favicon to the project status page. Documentation also
allows our existing system administrators to focus on their
core skills and slowly get up to speed with other portions of the
infrastructure by reading documentation, doing reviews, and
watching other team members work.

USENIX is the first computing association to offer free and open
access to all of our conferences proceedings and videos. We
stand by our mission to foster excellence and innovation while
supporting research with a practical bias. Your membership fees
play a major role in making this endeavor successful.

www.usenix.org/membership

Please help us support open access.
Renew your USENIX membership

and ask your colleagues to join or renew today!

Do you know about the
USENIX Open Access Policy?

