
  

WLAN-based Real-time Asset Tracking System in 
Healthcare Environments  

Jong-Hoon Youna, Hesham Alia, Hamid Sharifb, Jitender Deogunc, Jason Uherb, Steven H. Hinrichsd  

aDept. of Computer Science., Univ. of Nebraska-Omaha, Omaha, NE 68182 
bDept. of Computer Electronics & Engineering, Univ. of Nebraska-Lincoln, Lincoln, Nebraska 68588 

cDept. of Computer Science & Engineering, Univ. of Nebraska-Lincoln, Lincoln, Nebraska 68588 
dDept. of Pathology and Microbiology, Univ. of Nebraska-Medical Center, Omaha, Nebraska 68198 

 
           
Abstract: In the busy and crowded environment of health 
care, accurate location information of mobile medical 
devices and personnel (e.g. patients or physicians) is often 
a major challenge. In this paper, we present a real-time 
asset tracking system deployed within a hospital clinic 
setting, which tracked a set of mobile assets using small Wi-
Fi tags. The deployed system utilized radio signals received 
from wireless access points to estimate location of tagged 
assets. The system performed with resolution of within 1.5 
meters, which is an acceptable range in such an 
environment. We developed a web-based graphical 
interface and a data management system which was 
capable of tracking and reporting status of an asset and 
providing an alert signal when it moved out of a designated 
area. Additionally, detailed logs of asset tracking 
information were available for archival purposes.  
This deployment demonstrates the feasibility of a Wi-Fi 
based positioning system in dynamic medical environments. 
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I. INTRODUCTION 

One of the defining trends of the 1990’s was the 
explosive growth of mobile devices and wireless 
technologies. However, the penetration of these 
technologies into a number of domains has been limited. 
One of the domains in which the integration has been 
particularly slow is the medical domain.  This can be 
attributed to perceived lack of high levels of reliability, 
security, and performance. This in turn, has prevented high 
performance wireless networks from replacing traditional 
networks in critical medical applications.  

In hospitals and health care facilities, there are a 
number of problems which can be solved effectively and 
efficiently by wireless networking technology. A related 
study estimated that as many as 98,000 people die in the 
U.S. hospitals each year due to medical errors [1]. The 
number of casualties caused by medical errors can be 
substantially reduced by a system that will provide medical 
personnel with accurate medical information. For example, 
a wireless network can be deployed for detecting conflicts 

while administering medication to patients. This can be 
achieved by having each patient wear a wireless tag that 
carries private medical information which helps avoid 
medication errors. 

This paper presents a Wi-Fi based, real-time, asset 
tracking system based on measurement of the strength of 
radio signals from at least three Wi-Fi access points. The 
pilot system, deployed in a clinic environment, provided the 
location of assets as well as alerts when an asset moved out 
of a pre-defined area. The rest of this paper is structured as 
follows: Section II surveys related work; Section III 
discusses the development of Wi-Fi based tracking system 
deployed for real-time asset tracking in hospital 
environments; Section IV presents experimental results of 
the deployed tracking system; and concluding remarks are 
presented in Section V. 
 

II. RELATED WORKS 

There are a number of indoor positioning systems in 
the literature. Among these systems, common positioning 
techniques include trilateration, multilateration, and 
location learning. 
• Trilateration uses range estimates of the distances 

between devices and calculates positions of target 
devices using geometric identities and known locations 
of other devices. Distances can be estimated with time of 
arrival (TOA), or loss in signal strength. With TOA, two 
devices must be synchronized, and messages between the 
devices are time stamped upon sending and receiving in 
order to calculate propagation delay. The known 
propagation delays of signals in a particular medium 
allows the devices to estimate distance.  

• Mutlilateration uses time difference of arrival (TDOA) 
estimates in which several reference devices measure the 
difference in arrival times of signals. Round-trip time can 
be used when synchronization is not possible. For 
triangulation, the angle of arrival (AOA) of a signal is 
measured using several antennas, and then geometric 
identities are used for estimating position.  

• Location learning makes no range or angle measurements, 
but merely correlates the properties of newly received 
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signals with data available on previously observed 
signals at known locations. 

The basic techniques listed above can be used with a 
variety of signal types in wireless systems. In the remainder 
of this section, we briefly review the research in application 
of these techniques to Wireless Local Area Network 
(WLAN), wireless sensor, ultra-wide band (UWB), and 
RFID systems. 

A. Wireless LAN Based Systems 

Because the environments in which WLANs are 
deployed often contain obstacles such as walls and furniture, 
the use of RF properties for ranging becomes difficult. For 
this reason, localization in WLANs often relies on learning 
techniques.  

One WLAN based tracking system is the RADAR 
indoor tracking system developed at Microsoft Research. 
RADAR is a learning-based approach which can use 
existing WLAN infrastructures. Localization and tracking 
with RADAR consists of two phases: a reference signature 
collection phase and an online estimation phase. During the 
signature collection phase, a user with a laptop clicks his or 
her perceived location on a map interface and records the 
signal strength of all access points within range. After 
collecting a sufficiently large database of reference signals, 
location can then be estimated in the online phase by taking 
the geographic centroid of the locations of the k nearest (in 
terms of signal-strength space) reference signatures [1]. The 
same process may be used with other traditional machine 
learning algorithms and has been studied on Artificial 
Neural Networks [2, 3], Bayesian techniques, and Markov 
models [7, 6]. Variants of the RADAR system are available 
from commercial vendors such as PanGo [11] and Ekahau 
[4]. 

B. Wireless Sensor Based Systems 

MoteTrack [9] is a sensor based system which runs on 
802.15.4 based motes but uses a process based on RADAR. 
With MoteTrack, the environment must be equipped with 
several fixed sensor motes as the existing LAN 
infrastructure cannot be used. Reference signature 
collection and the online estimation operate as in RADAR, 
but MoteTrack has been altered to run in a distributed 
manner. Moreover, MoteTrack is robust, and takes into 
consideration the possibility of beacon node failure. Finally, 
the learning algorithm has been improved to adaptively 
select the number of reference signatures used for 
localization based on the density of reference signatures 
available in a particular area.  

MoteTrack has the advantage of being entirely based 
on RF signals and needs relatively fewer beacon nodes to 
cover a large area of a building even with many obstacles. 
However, it also has a disadvantage that it requires 
significantly more configuration prior to deployment.  

C. Ultrawideband (UWB) Systems 

Gezici et. al. discussed many of the positioning 
techniques described above in the context of UWB systems 
in which high bandwidths offer potentially high ranging 
accuracy. They note that the antenna arrays required for 
AOA make it unsuitable for UWB, but consider ranging 
with time-based measurements and signal strength 
measurements. They found that the best results can be 
obtained with hybrid schemes employing TDOA and TOA 
both with signal strength measurements [5].  

Young et. al. noted that the high bandwidth of UWB 
systems allow for high time resolution leading to a natural 
advantage with TDOA localization. They present methods 
for overcoming the inherent distortion problems with UWB 
antenna responses, amplification, and filtering in an indoor 
multipath environment [14].  

Zetik et. al. also approached UWB localization using 
TDOA. They conducted experiments in both the active and 
passive setting with custom designed SiGe circuit 
architecture. With their system, they were able to achieve a 
localization accuracy on the order of one centimeter [15]. 

D. RFID-Based Systems 

Location determination using RFID tags is a difficult 
problem because tags have extremely limited computational 
ability to assist the application and a very short read range. 
Active tags contain a battery and generally have longer 
ranges than passive tags which do not. The simplest 
approach to localizing tags is to use the proximity with 
readers. The limited reading range can be used to estimate 
the location of a tag based on the location of a reader [12]. 
Some systems like the Ferret localization system use 
several readings over time to narrow down the actual 
position of tags [8]. Nara et. al. proposed a scheme for 
estimating the location of an RFID tag by building sensors 
which measure the spatial gradient of electronic fields 
created by the tags [10]. Experiments were conducted 
showing the feasibility of the approach, but it has not been 
implemented on a large scale. 
 

III. Real-Time Asset Tracking System 

In the dynamic environment of health care, mobile 
assets such as infusion pumps and wheelchairs are 
continuously relocated throughout a hospital, and hundreds 
or even thousands of patients and support staff are moving 
through a hospital at any time. In such a dynamic 
atmosphere, the accurate positioning of a particular mobile 
medical device or a patient is often a challenging problem. 
Therefore, in order to accommodate for lost or misplaced 
assets, hospitals usually acquire or lease more medical 
devices than they need, and often valuable time and 
resources are wasted for finding them.  

To address the lack of visibility problem, we develop a 
reliable and cost-effective solution for tacking thousands of 
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medical personnel, devices and equipment which are 
constantly moving across a hospital. After surveying 
various  state-of-the-art wireless technologies for tracking, 
we conclude that WLAN-based tracking is the most cost-
effective solution for asset visibility solutions in healthcare 
environments. This is because state-of-the-art wireless 
tracking technologies, such as wireless sensors, RFID, and 
proprietary WLAN based-sensors, typically require a costly 
dedicated network infrastructure. However, an 802.11 
based tracking system can be deployed without significant 
additional costs since many hospitals are now rapidly 
deploying campus-wide 802.11 WLAN infrastructures. 
Therefore, a WLAN-based tracking approach would 
provide a tremendous opportunity for hospitals to take 
advantage of their wireless networks for asset tracking. 

We deployed a real-time asset visibility system 
based on existing 802.11 infrastructure designed to track a 
large number of small WLAN tags. The deployed system 
uses empirical measurements of radio signals received to 
estimate location. Our experimental test-bed was deployed 
in a specialty care hospital clinic environment. The facility 
provides services for a wide range of patients including 
medical procedures and medication infusion. The location 
was selected because it is a state-of-the-art facility that 
allows the clinicians and researchers to develop and test 
innovative practice models and systems. The test area 
included more than 60 rooms in an area of 63 meters x 46 
meters. There are four Cisco Aironet 1200 Series Access 
Points (APs), which are denoted by the black triangles in 
Figure 1.  These four APs form the backbone of the 
tracking system; their job include transmitting signal to the 
Wi-Fi tags for location estimation and delivering data 
messages from the tags to the location server.   

In order to determine the fine location using 
infrastructure wireless access points, we added six beacon 
APs. According to a recommendation from Cisco, a 
positioning system needs to receive a minimum of three 
strong and steady Received Signal Strength (RSS) 
measurements from APs to determine the fine location of 
Wi-Fi tags with room-level granularity. According to 
suggestion from Cisco’s wireless location appliance guide 
[16], approximately one access point should be placed 
every 17-20 meters, and so roughly one access point is 
needed every 230-450 square meters. Therefore, after 
surveying the signal strength over the entire floor and 
counting the number of steady RSS measurements, we 
proceeded to add six more beacon APs to overcome the 
lack of strong signals. The positions of six beacon APs are 
indicated by black squares in Figure 1. The additional 
beacons ensure the Wi-Fi tags will receive at least three 
good signals from either the backbone APs or beacon APs 
at any location on the map. Since the beacon APs do not 
need to be connected to the network infrastructure, there is 
no additional cabling cost for the beacon APs.  A beacon’s 
primary function is to transmit its Service Set Identifier 
(SSID) to the Wi-Fi tags for location estimation. 

 

 
Figure 1: Map of the floor plan of the test site. The black 
triangles show the locations of the four infrastructure APs. 
The black rectangles denote locations of additional beacon 
APs. 

 
The next step was the data collection phase. Once our 

APs were established, we began the data collection phase 
which records the RSS measurements from theses APs as a 
function of the mobile’s location and orientation. For each 
data collection, the relative two-dimensional location of 
each surveying point should be given by the data collector. 
According to our measurements, the RSS value at a given 
location varies significantly depending on the mobile’s 
orientation. Therefore, we collected RSS values in each of 
the four directions, north, south, east and west, at all 
physical locations on the floor. 

As shown in Figure 2, we first identified around 430 
data collection points over the floor, and then collected RSS 
measurements in each of the 4 directions at 430 distinct 
physical locations giving a total of over 1300 
measurements. After the data collection phase, the 
signatures were imported into the tracking server and 
processed to enhance the accuracy of location estimation. 

After constructing a database of RSS measurements, 
called signatures, along with their known 2-dimentional 
location and orientation, the system can estimate its 
position by comparing the difference between the measured 
RSS data and to the known signatures in the database. In 
other words, a mobile device takes a snapshot of RSS from 
visible APs, and compares it with signatures stored in the 
database.  

To reduce the computation cost,  the search is 
performed only on some portion of the RSS measurements 
in the database. If a mobile’s previous location lies at a 
point P, then the search space is limited to its neighboring 
points within the distance d from P. These neighboring 
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Figure 2: Locations of the RSS measurements   

 
points are grouped into clusters based on their physical 
closeness. For each cluster, the most probable location of 
the mobile node is calculated based on the Euclidean 
distance of RSS measurements. For example, the RSSI 
measurement (p1, p2, p3, p2,… , pk) at a point P and (s1, s2, 
s3,… , sk) at point S are the closest if the (p1 – s1 )2 + (p2 – 
s2 )2 + (p3 – s3 )2 + … + (pk – sk )2 is minimum. After a 
number of computations, the system chooses the location 
with the highest likelihood as the current estimate of the 
user’s location. 

We have developed a Web-based Graphical User 
Interface (GUI) and added some useful functions to the 
GUI. The deployed GUI can provide the location of assets 
with sophisticated mapping, alerts when an asset moves out 
of a pre-described area, and has a multitude of reporting 
capabilities. The system consists of two key software 
components: a real-time positioning engine that calculates 
location of assets, and a Web-based GUI that manages 
system configuration, asset visibility, monitoring and 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reporting. The positioning engine is based on statistical 
modeling of received signal strengths and provides 
accuracy of up to 1 meter  on average.  The GUI 
provides a common-sense Web interface that makes it easy 
to find assets and improve everyday operations such as 
asset monitoring and notifications.  

Since this tracking system is fully software-based, it 
requires no proprietary network infrastructure. The 
advantages of the 802.11-based real-time tracking solutions 
are summarized below: 
• The system can efficiently locate an asset and reduce the 

likelihood of loss. 
• Hospitals can evaluate and improve the facility’s overall 

workflow and operational efficiency by monitoring the 
movement patterns of patients and staff through the 
facility. 

• The system can be extended to address crucial problems 
caused by patient movement. For example, hospital staff 
can receive an immediate alert if a patient enters an 
unauthorized area. 
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• Staff can be alerted when location-based events occur 
(e.g., wheelchairs exiting the floor or pumps remaining in 
a utility room for a week) 

 
IV. EXPERIMENTAL STUDY 

In this section, we present detailed experimental results 
of the Wi-Fi tracking system. Our goal of this study is to 
evaluate the accuracy of the system under a number of 
different Wi-Fi network configurations. We first assess the 
accuracy of the system as a function of the number of APs. 
Secondly, we study the relation between the AP layout and 
the location accuracy. The third experimental study is 
focused on the impact of noises on the accuracy.    

A. Impact of the number of Access Points 

First, we investigate how the accuracy of location 
estimation would be impacted as the number of APs. In this 
study, we pick 8 points in the floor and use these points to 
measure the Euclidean distance between the actual location 
and estimate point. Intuitively, the accuracy would be 
improved as the number of APs increases. The positions of 
ten APs and eight measurement points are shown in Fig. 3. 
 

 
 

Figure 3: The layout of APs 
 

We repeat every measure ten times for each point, and 
then calculate the mean value of the error distance. The 
averaged accuracy of the deployed system for each point is 
shown in Tables 1 and 2.  As we predicted, the error 
distance gradually decreases as the number of APs 
increases. We also conduct the same set of experiments 
with more than 10 APs. Although the level of accuracy 
slightly improves for more than 10 APs, we do not find 
significant improvement in the accuracy of the position 
estimation. Figure 4 shows the average error distances as a 
function of the number of APs. 

Table 1: Error distances in meters (up to 6 APs) 

Error distance (m) Measured 
Position 3 APs 4 APs 5 APs 6 APs 

#1 7.168 5.437 3.715 1.387 
#2 3.027 2.773 0.836 1.192 

#3 3.522 2.72 2.931 3.125 
#4 2.08 2.092 1.69 1.477 
#5 5.323 4.076 3.16 3.14 
#6 3.971 2.611 2.351 2.294 
#7 5.066 4.408 3.127 2.149 
#8 0.614 0.53 0.472 0.306 

Average 3.8464 3.0809 2.2853 1.8838 
 

Table 2: Error distances in meters (up to 10 APs) 

Error distance (m) Measured 
Position 7 APs 8 APs 9 APs 10 APs 

#1 1.693 1.16 0.813 0.781 
#2 2.285 1 1 0.851 
#3 1.048 2.047 1.972 1.174 
#4 2.543 0.873 0.784 0.674 
#5 2.253 1.9 1.876 1.78 
#6 1.953 1.732 1.756 1.247 
#7 0.245 2.5 1.396 0.807 
#8 1.642 0.136 0.123 0.102 

Average 1.693 1.4185 1.215 0.927 

 

 
Figure 4: Impact of the number of APs on error distance 

B. Impact of the AP layout 

In this sub-section, we show the results of another 
experimental study to evaluate the relation between the 
position of APs and the error distance of the deployed 
system. In a Wi-Fi based tracking system, the density and 
position of APs are very important factor in the level of 
accuracy.  Intuitively, APs staggered in a way that signals 
vary in each location, and preferably surround the 
deployment area, provide the greatest chance of achieving 
room-level positioning.  

The following tables show the error distances for 
different layout of the APs. In this experiment, only RSS 
values from the selected 4 APs are used to estimate the 
position of Wi-Fi tags. As you can see from the table, the 
selection of APs has a significant impact on the system 
accuracy. For examples, the accuracy of the last scenario 
which selects AP#4, AP#5, AP$9, and AP#10, are quite 
poor compared with the results of other scenarios. This is 
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because, with this AP layout, there are some spots where a 
tag cannot gather three or more consistent and strong RSS 
samples from the selected APs.   

 
Table 3: Error distance vs. AP layout (with 4 APs) 

(The position of APs are shown in Figure 3) 

Selected APs   Measured 
Position 1,2,3,4 2,3,6,7 1,2,6,10 4,5,9,10 

#1 5.437 0.967 1.923 2.58 
#2 2.773 1.992 7.302 7.323 
#3 2.72 2.418 1.674 16.375 
#4 2.092 1.858 2.456 2.35 
#5 4.076 1.525 3.282 27.817 
#6 2.611 5.325 1.228 1.339 
#7 4.408 2.658 2.845 4.254 
#8 0.53 14.965 2.565 30.369 

Average 3.0809 3.9635 2.909 11.551 

 

Figure 5: Distance vs. RSSI 

 

Figure 6: Error vs. RSSI 

C. Impact of the level of noises 

The first graph Figure 5 shows the RSSI from the 4 test 

APs at different distances.  This chart shows the values 
taken from just one day of measurement.  Our studies have 
shown that this data can vary greatly depending on a 
numerous factors including the building population, the 
internal and external temperatures of the building, and the 
presence of mobile objects like desks and tables.  The data 
below clearly shows the non-uniform nature of the RSSI 
value with respect to distance.  

Because of the unreliable nature of the RSSI shown by 
the graph, location based positioning can not rely on RSSI 
alone.  A significant amount of work must be put into 
tuning an RSSI based locating system, both in terms of site 
surveys and statistical modeling. After the system has been 
calibrated, the RSSI based systems can be very accurate.  
Figure 6 shows that position can be determined with an 
error of less than 1-2m even when the RSSI is extremely 
low, which usually only happens when the subject is 
extremely far from the AP.  For this data set, the accuracy 
begins to fall off at around 25m, which is at or beyond the 
usable range for typical WIFI systems indoors.  Even 
though the error stays fairly low, it is clearly inversely 
proportional to the RSSI from the AP, signifying that that in 
order to achieve the best accuracy, APs should be 
distributed fairly heavily if a high accuracy is required. 

   

V. CONCLUSIONS AND FUTURE WORK 

This project represents a significant contribution to an 
emerging research area--application of wireless 
communications in a healthcare environment. We have 
deployed a real-time mobile asset tracking system in a local 
hospital and evaluated the accuracy of the system under a 
number of different Wi-Fi network configurations. The 
positioning scheme is based on statistical modeling of 
strength of signals received   and provides accuracy of up to 
1 meter on average. We also have developed a Web-based 
GUI that enables us to find assets and improves everyday 
operations such as asset monitoring and notification. The 
system, investigated in this paper, demonstrates the 
feasibility of deploying a Wi-Fi based positioning scheme 
in dynamic medical environments.  

Although the positioning system developed was 
validated  for tracking only wheelchairs, the system is 
capable of tracking any equipment and personnel such as 
IV pumps, vital signs monitors, patients and medical staff 
that have 802.11- based tags,. During the normal use of the 
system, we have identified a few key issues that we plan to 
address our future research. First, once a wheelchair moves 
out of the site, the system cannot monitor it any more until 
it comes back to the site. Although we can retrieve the time 
and date at which the wheelchair exited, there is no 
information regarding who took the wheelchair out of the 
facility. Second, the current system lacks availability 
information. For example, we cannot tell whether a 
wheelchair is in use or not. In future, we plan to integrate a 
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pressure-sensitive or infrared sensor into Wi-Fi tags to 
provide the availability along with location of mobile assets. 
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