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Quality improvement (QI) projects are an integral part of today’s radi-
ology practice, helping identify opportunities for improving outcomes 
by refining work processes. QI projects are typically driven by outcome 
measures, but the data can be difficult to interpret: The numbers tend 
to fluctuate even before a process is altered, and after a QI intervention 
takes place, it may be even more difficult to determine the cause of such 
vacillations. Control chart analysis helps the QI project team identify 
variations that should be targeted for intervention and avoid tampering 
in processes in which variation is random or harmless. Statistical control 
charts make it possible to distinguish among random variation or noise 
in the data, outlying tendencies that should be targeted for future inter-
vention, and changes that signify the success of previous intervention. 
The data on control charts are plotted over time and integrated with 
various graphic devices that represent statistical reasoning (eg, control 
limits) to allow visualization of the intensity and overall effect—nega-
tive or positive—of variability. Even when variability has no substantial 
negative effect, appropriate intervention based on the results of control 
chart analysis can help increase the efficiency of a process by optimizing 
the central tendency of the outcome measure. Different types of control 
charts may be used to analyze the same outcome dataset: For example, 
paired charts of individual values (x) and the moving range (mR) allow 
robust and reliable analyses of most types of data from radiology QI 
projects. Many spreadsheet programs and templates are available for use 
in creating x-mR charts and other types of control charts. Supplemental 
material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148 
/rg.327125713/-/DC1.
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Introduction
Quality improvement (QI) projects are an in-
tegral part of contemporary radiology practice. 
Radiologists conduct QI projects to add value 
and safety to their practice, as well as to satisfy 
regulatory requirements: The completion of QI 
projects is a requirement for maintenance of cer-
tification by the American Board of Radiology; in 
addition, the Joint Commission, an independent 
organization that certifies hospitals and health-
care programs, requires that hospitals conduct QI 
projects for accreditation (1–5).

QI projects commonly involve the study of 
processes, analysis of data, and introduction of 
process change through intervention. A major 
challenge to the accurate analysis of outcome 
data is the random variation that is inherent in 
virtually all processes. Since random variation 
causes the observed results to fluctuate even 
without any intervention, how can we be certain 
that divergence in outcome data represents true 
change and not random variation due to com-
mon causes? Control charts provide a means 
for answering that question. Control charts are 
an important component in the statistical pro-
cess control methods used in manufacturing to 
monitor, improve, and predict performance and 
reduce random variations (6). Control charts are 
analytic tools that allow a visual distinction be-
tween meaningful change and random variation 
or “noise” in a process by comparing the actual 
distribution patterns of outcome data with stan-
dardized distribution patterns derived from prob-
ability statistics (6).

Although control charts are practical, easy to 
interpret, and ideally suited for use in the kinds 
of QI projects commonly undertaken by radiolo-
gists, they are still generally underused in radiol-
ogy. Their use is seldom reported in the literature 
(7,8) and rarely described in published guidelines 
for performing radiology QI projects (9). This 
underuse could be due in part to an overall lack 
of familiarity with the principles underlying their 
creation and interpretation.

This article provides guidance for preparing 
and using control charts to analyze and manage 
key processes affecting the quality of radiology 
services. First, the conceptual basis, historical 
origins, and anatomy of control charts are out-
lined, and the advantages of their use are briefly 
described. Next, the type of variation present in 

a process, the type of process, and the type of 
outcome data are discussed with regard to their 
bearing on the creation of particular types of 
control charts for specific analyses. The principles 
that govern control chart creation and analysis 
are explained and illustrated with examples from 
QI projects relevant to radiology.

Conceptual Basis  
for Control Chart Analysis

Among the many different methods of statistical 
analysis available, radiologists are probably most 
familiar with classic hypothesis-testing methods 
learned in statistics courses, such as the c2 and 
Student t tests, which are performed to deter-
mine whether the averages for two compared 
groups are similar or different. Although these 
hypothesis-testing methods are standard in sci-
entific research, they are of limited use when an-
alyzing QI processes because the time element is 
not captured in the analysis, and the conclusions 
drawn by comparing the values from one point 
in time with those from another time point may 
be misleading. Control charts show changes in 
outcome measures over time and thereby offer a 
clear advantage over classic methods of statisti-
cal analysis. For example, hypothesis testing of 
data collected during a QI project in pediatric 
radiology showed a substantial difference be-
tween the numbers of computed tomographic 
(CT) scans performed in children before and 
after implementation of Image GentlyTM guide-
lines (Fig 1a), a finding that might have led to 
the conclusion that the QI intervention was 
responsible for the difference. However, when 
the project team reviewed control charts on 
which the data were visually linked with the 
time points at which they were obtained, it be-
came obvious that the decline in the number of 
pediatric CT scans actually preceded the Image 
Gently implementation (Fig 1b). 

Walter Shewhart (1891–1967), a physicist 
working for Bell Telephone Laboratories (now 
AT&T), invented control charts to help engi-
neers produce telephone components that were 
of uniform quality. Shewhart theorized that to 
improve the quality of a process, one must con-
trol variation. His approach to statistical analy-
sis was pragmatic and simple: He reduced all 
process variations to two types, and he created 
charts that would allow the detection of the type 
of variation occurring in a process. Shewhart 
further categorized processes into two funda-
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mental types based on the type of variation oc-
curring in them. Effective management of pro-
cess improvement is simplified by understanding 
and responding to the fundamental type of pro-
cess represented by the outcome data on a con-
trol chart. This conceptual framework consti-
tutes the central theoretical basis of what is now 
known as statistical process control (6,10,11). 
Widely accepted in manufacturing, the use of 
control charts has expanded in recent years to 
the field of healthcare (12,13). For example, 
the Joint Commission (1) uses control charts to 
analyze performance in hospitals. Most QI pro-
cesses that require data analysis, including those 
in radiology, are amenable to Shewhart’s simple 
but powerful charting techniques. 

There are many types of control charts from 
which to choose. The selection of an appropriate 
chart template for a specific QI analysis is facili-
tated by a straightforward characterization of key 
elements in a process: the type of variation pres-

ent (either random and due to common causes, 
or due to “special” causes), the current state of 
the process (either in or out of statistical control), 
and the process outcome that is being measured 
(either a variable or an attribute).

Identifying the Cause of  
Variation: Common or Special?
Variation is inherent in all processes, and under-
standing and managing variation is key for achiev-
ing control over a process. Shewhart distinguished 
between two types of variation: variation due 
to common causes and variation due to special 
causes (6,13). Common cause–related variations 
are random and lead to outcome measures that are 
within a predictable distance from the mean. An 
example of a common cause variation is interob-
server variability, which is encountered in routine 
radiology practices such as repeat measurements 
of the size of a lymph node: No two such mea-
surements are ever exactly the same. By contrast, 
special cause–related variations reflect extraneous 
or assignable effects that are unlikely to be due to 
chance alone. For instance, a sudden increase in 

Figure 1. Charts of statistical results 
from an Image Gently QI project show the 
importance of including the time element 
in the outcome analysis. (a) Box plots 
show the numbers of pediatric CT scans 
performed during two periods of data 
collection, before and after the implemen-
tation of the QI initiative. Results of stan-
dard hypothesis testing showed a signifi-
cant difference in the average values (data 
points on center lines) collected during the 
two periods. (b) Control chart incorporat-
ing the time of data collection shows that 
the decline in the number of pediatric CT 
scans actually began before day 12, when 
the QI initiative was implemented. The 
effect of the project was therefore difficult 
to determine. LCL = lower control limit, 
UCL = upper control limit.
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the number of missed appointments (“no-shows”) 
on a heavy snow day is unlikely to be due to 
chance. Many other terms can be used to describe 
these two types of variation (Table 1).

Neither type of variation is intrinsically good or 
bad. However, recognition of the type of variation 
occurring in a process can provide insight into its 
origin and proper management. Control charts 
combine outcome data with information about 
the time points of measurement and the statistical 
framework in a simple visual display that facili-
tates the detection of variations that are related to 
special causes. A set of “special cause rules” de-
veloped by Shewhart and others is helpful for dis-
tinguishing between special and common causes 
when analyzing control charts (see the section on 
“Guidelines for Analyzing Charts”).

Assessing the Stability of the  
Process: In or Out of Statistical Control?
Shewhart described two categories of processes: 
those that are within statistical control and those 
that are outside statistical control. The distinc-
tion is based on the presence or absence of spe-
cial cause signals. When special cause signals are 
detected in outcome data, the process is unpre-
dictable, unstable, and out of statistical control. 
By contrast, only common cause–related varia-
tions are found in a process that is predictable, 
stable, and in statistical control. A baseline as-
sessment of the stability of a process is helpful 
not only for understanding and managing pres-
ent variability but also for predicting the future 
performance of the process.

Categorizing the  
Data: Variable or Attribute?
Outcome measures analyzed in a QI project 
can be categorized as either variable data or at-
tribute data. The type of data determines which 
control chart is most appropriate for the analysis 
(Tables 2, 3).

Table 1 
Glossary of Statistical Terms Relating to Process Control

Term Synonyms Definition

Autocorrelation … Interdependence of observations in a time series, 
with resultant clustering of data (tendency for 
high values to follow high values and low values 
to follow low values)

Common cause–related variation Routine variation, random 
variation, noise, unassign-
able variation, predictable 
variation

Inherent variation due to random fluctuations in 
a process; all variation in a process that is stable 
and predictable is due to common causes

Control limits Natural process limits Limits computed from collected data to allow 
the differentiation of predictable variation from 
unpredictable variation

Process in statistical control Predictable process, process in 
control, stable process

A process in which only common cause–related 
variation occurs and in which 99% of the pro-
cess measures are within control limits

Process out of statistical control Unpredictable process, pro-
cess out of control, unstable 
process

A process in which both special cause– and com-
mon cause–related variations are detectable by 
using Shewhart’s rules

Special cause–related variation Exceptional variation, assign-
able variation

New, unexpected, or previously overlooked signal 
not explained by chance alone

Statistical control chart Process behavior chart, 
Shewhart chart, control 
chart

Shows trends in outcome measures over time; 
helps distinguish between variations due to 
common causes and those due to special causes

Statistical process control Method of continuous im-
provement

Method of process improvement based on analy-
ses of variation and control charts

Tampering … Changing a process in which only common cause–
related variation occurs



RG  •  Volume 32  Number 7  Cheung et al  2117

Table 2 
Control Charts for Analyzing Variable Data

Control  
Chart Type Description of Uses and Limitations

Sample  
Size

Examples of  
Appropriate Outcome Measures

x (I) Is used to assess variability of individual 
values, commonly in combination with 
the moving range; all special cause rules 
are applicable

1 Number of MR imaging examinations 
performed per shift, patients’ wait 
time in minutes

mR (moving 
range)

Is used to monitor variation by plotting 
the difference between two consecutive 
measurements over time; is never used 
in isolation; only special cause rule 1 is 
applicable

1 Number of MR imaging examinations 
performed per shift, patients’ wait 
time in minutes

x-mR Is used to assess process stability by visual-
izing the difference between individual 
values and that between ranges of val-
ues; all special cause rules are applicable 
to x, but only rule 1 is applicable to mR

1 Number of MR imaging examinations 
performed per shift, patients’ wait 
time in minutes

x
_
 (average) Is used to plot the mean value for a sample 

with more than one measurement; is 
never used in isolation; all special cause 
rules are applicable

>1 Daily average turnaround time for 
emergency department “wet reads,” 
weekly average access times (inter-
val between time of appointment 
request and time of appointment) 
for MR imaging examinations

R (range) Is used to plot the range for a sample; is 
never used in isolation; all special cause 
rules are applicable

2–9 Daily average turnaround time for 
emergency department wet reads, 
weekly average access times (inter-
val between time of appointment 
request and time of appointment) 
for MR imaging examinations

x
_
-R Is used to assess process stability by visual-

izing the difference between sample av-
erages and that between sample ranges; 
all special cause rules are applicable to 
both x

_ 
and R

2–9 Daily average turnaround time for 
emergency department wet reads, 
weekly average access times (inter-
val between time of appointment 
request and time of appointment) 
for MR imaging examinations

S (sigma, stan-
dard devia-
tion)

Is used to show the square root of variance 
(ie, s or SD) for a sample; is never used 
in isolation; all special cause rules are 
applicable

>10 Daily average turnaround time for 
emergency department wet reads, 
weekly average access times (inter-
val between time of appointment 
request and time of appointment) 
for MR imaging examinations

x
_
-S Is used to visualize the difference between 

averages and SD or s levels for multiple 
samples; all special cause rules are ap-
plicable to both x

_
 and S

>10 Daily average turnaround time for 
emergency department wet reads, 
weekly average access times (inter-
val between time of appointment 
request and time of appointment) 
for MR imaging examinations

G (geometric 
distribution)

Is used for the analysis of rare events 
separated by time intervals that have a 
geometric distribution

>1 Days between infections after imaging-
guided steroid injections into joints

Note.—Variable data are quantitative values expressed on a continuous scale with a single unit of measure. MR = 
magnetic resonance, SD = standard deviation.
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Variable data are measures that can be repre-
sented on a continuous scale representing all pos-
sible values. Examples of variable data are weight, 
height, CT radiation dose, wait time, and patient 
satisfaction scores. These data are expressed as 
numbers of units, such as milligrays for CT dose 
index (ie, CTDI) or minutes for wait time.

Attribute data are counts of similar or dichoto-
mized outcomes or events. Examples of attribute 
data include the number of late arrivals versus 
that of on-time arrivals, cases with allergic reac-
tion versus those without allergic reaction, cases 
with complications versus uncomplicated cases, 
and inappropriate examinations versus appropri-
ate examinations. Attribute data that are counts 
of similar outcomes or events are expressed as 
whole numbers; those that are counts of dichoto-
mized events are expressed as proportions or 
percentages.

Attribute data can be further subdivided into 
two categories: defectives (ie, counts of dichoto-
mized outcomes) and defects (ie, counts of a spe-
cific outcome or event that is negative or substan-
dard). An example of a defective is a missed ap-

pointment: The patient either shows up or misses 
the appointment. By contrast, more than one de-
fect may contribute to an undesirable outcome or 
event: For example, imaging of the wrong patient, 
wrong body part, and wrong side are all defects 
resulting from identification errors that might 
occur in the same hospital admission, affecting 
the same patient. For this reason, when defects 
are expressed as a proportion or percentage, the 
numerator (eg, the number of all identification 
errors) is not always a subset of the denominator 
(eg, the total number of patients admitted) and 
may exceed it.

Anatomy of Control Charts
A control chart is a graphic display of data 
points (plotted on the x-axis) collected at regu-
lar intervals in time (plotted on the y-axis) and 
includes statistics-based components allowing a 
visual assessment of the relations between indi-
vidual data points (Fig 2). The center line on a 
control chart indicates the average of the collect-
ed data points. The UCL and LCL denote the 
boundaries within which 99% of the data points 
will be found when the limits are set at a dis-
tance of 3s (ie, 3 standard deviations) from the 

Table 3 
Control Charts for Analyzing Attribute Data

Control  
Chart Type Description of Uses and Limitations

Sample  
Size

Examples of Appropriate 
Outcome Measures

p (proportion  
or percent 
defective)

Is used to plot counts of defective outcomes (ie, 
defectives*) as a proportion or percentage of total 
outcomes, or to plot dichotomous outcomes that 
either meet or fail to meet the standard, within a 
specified time period of measurement; the formu-
las used to calculate control limits are based on 
the assumption of a binomial distribution of the 
data

Unequal Proportion of inappropriate 
imaging examinations per 
100 imaging examinations 
performed each month

NP (number 
defective)

Is used to plot the number of defective outcomes (ie, 
defectives*); assumes a binomial distribution of 
the data

Equal Count of late arrivals per 
100 appointments

U (unequal  
areas of op-
portunity)

Is used to plot counts of defects† or events with a 
specific outcome that is negative or substandard; 
counts may be given as a proportion or percent-
age; assumes a Poisson distribution of the data

Unequal Proportion of patient 
identification errors per 
calendar month

C (constant  
area of op-
portunity)

Is used to plot counts of defects† as a proportion or 
percentage of total outcome; assumes a Poisson 
distribution of the data; is similar to the U chart, 
except that the denominator is constant

Equal Proportion of findings that 
are nonroutine per 100 
CT examinations

*Defectives are counts of dichotomized outcomes (outcomes that either meet or fail to meet the desired standard). 
†Defects are counts of substandard events contributing to a specific undesirable outcome. More than one defect 
may occur in the same sample or affect the same patient. When counts of defects are expressed as a proportion or 
percentage, the numerator (eg, number of identification errors of any type—wrong patient, wrong side, or wrong 
body part—occurring each month) is not necessarily a subset of the denominator (eg, the number of imaging 
examinations per month) and therefore may exceed it.
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mean and when the data are normally distrib-
uted. The choice of a 3s limit is a practical one 
that is designed to strike a balance between the 
likelihood of a type I error (ie, concluding that 
there is a special cause when none is present) 
and that of a type II error (ie, concluding that 
there is no special cause when one is present). 
Furthermore, the UCL and LCL represent the 
limits of expected performance measures in a 
stable process, before any change is introduced.

The formulas used to calculate the UCL and 
LCL are specific to the chart type. If the calcu-
lated limits are unrealistic, they must be reset: 
For example, in an assessment of radiology report 
turnaround times, a calculated LCL with a nega-
tive value must be reset to zero.

Guidelines for Selecting  
Appropriate Chart Types

Control charts are used both to perform an initial 
assessment of the state of a process and to moni-
tor the effect of subsequent QI interventions in 
the process. Different types of control charts may 
be needed, depending on the specific goal of the 
analysis and the outcome measures selected for as-
sessment. Different types of charts are constructed 
to represent different types of data and different 
subgroup (sample) sizes or numbers of observa-
tions represented by each data point. Each type of 
control chart is based on specific statistical formu-
las and assumptions about the distribution of data 
points (1,6,11,13) (Tables 2, 3; Fig 3).

Figure 2. Control chart from a QI project 
to improve turnaround time (TAT) in the 
reading of emergency department radio-
graphs shows the five components of all sta-
tistical control charts: the outcome measure 
on the y-axis; the time point of data col-
lection on the x-axis; the average of all col-
lected measurements, which is represented 
by the center line; the UCL, which is set at 
3s above the mean; and the LCL, which is 
set at 3s below the mean. Note the special 
cause signal (red square), a single outlier 
beyond the UCL, on day 20.

Figure 3. Flow-
chart shows decision-
making steps in the 
selection of appropri-
ate chart types for 
data analysis in a QI 
project. The term 
sample size refers to 
the denominator 
when the outcome 
measure is a propor-
tion. (Adapted and 
reprinted, with per-
mission, from refer-
ence 13.)
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Figure 4. These principles help guide the selection of 
appropriate chart types for analyzing outcome measures 
in a QI project.

Other considerations also may influence chart 
selection (Fig 4). In general, charts of continu-
ous data (ie, variable data) are more powerful 
than charts of attribute data and therefore are 
preferred for process analysis. For example, al-
though counts of “late arrival” are considered 
attribute data because the patient is either on 
time or late, “late arrivals” could be quantified 
not only as an absolute number or proportion 
but also in relation to a continuous variable such 
as time. Recording patients’ arrival times so as to 
allow calculation of the time lost to arrival delays 
could result in an outcome measure substantially 
different from that produced by recording the 
mere number or percentage of late arrivals; for 
example, the effect on the process when 50% of 
patients arrive 2 minutes late can be expected to 
differ greatly from the effect when 50% of pa-
tients arrive 30 minutes late.

It is sometimes necessary to use more than 
one chart type to unearth special cause–related 
signal in a dataset. However, time may be needed 
to master the nuances of different chart types so 
as to select the optimal combination for analyzing 
a specific outcome measure. In the interim, it is 
appropriate to rely primarily on the x-mR chart 
for most analyses. This general-purpose chart is 
easy to use and robust to departures from nor-
mality in data distribution (14).

Chart Types for  
Analyzing Continuous Data
Charts of x, x

_
, mR, R, and S are used to moni-

tor both the average for, and variability across, 
sampled values. The x (or individual values) 
chart is used to analyze samples that cannot be 
subdivided, such as the number of MR imag-
ing cases per month (n = 1). The x

_
 (or averages) 

chart facilitates monitoring of the outcome when 
each collected data point represents the average 
of multiple measurements. For instance, during 
a study of the daily report turnaround time for 
a period of 14 days, five random measurements 
might be collected daily; in this case, the total 
number of data points on the chart is 14, and 
the sample size (ie, n) is five. The mR (or moving 
range) chart allows monitoring of variability in 
a process by plotting the difference between two 

successive observations over time. The S (stan-
dard deviation, or sigma) chart allows visualiza-
tion of the extent of the data spread or deviation 
from the mean. The R (range) chart depicts the 
difference between the largest and smallest obser-
vations in a subgroup or sample over time.

Control charts of different types are often 
paired for process analysis: For example, an x 
chart might be combined with an mR chart to 
allow a comparison of variability in individual 
measurements (n = 1) at different time points. An 
x
_
 chart might be paired with an S chart to facili-

tate analyses in which each data point represents 
a large number of measurements (n ≥ 10); or for 
data subgroups of two to nine, an x

_
 chart might be 

coupled with an R chart. 

Chart Types for  
Analyzing Attribute Data
The type of chart selected for the analysis of at-
tribute data is determined first by the type of data 
collected (eg, counts of defectives or defects) and 
then by the constancy of the subgroup size. The 
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Figure 5.  These steps are important when building 
and analyzing control charts.

p chart, in which the proportion is plotted on the 
y-axis against time on the x-axis, is the attribute 
chart most commonly used to analyze defectives. 
It is used when the subgroup size (the denomina-
tor used to calculate the proportion) varies over 
time. Thus, the p chart might be used to analyze 
the proportion of missed appointments when the 
total number of appointments (the denomina-
tor or subgroup) varies daily; by contrast, the NP 
chart would be selected for use when the outcome 
measure is the number of missed appointments 
per 100 examinations. U and C charts are used in 
a similar way to analyze counts of specific events 
(ie, defects): The U chart is used to analyze data 
for which the subgroup size varies over time, 
whereas the C chart is predicated on the assump-
tion of a constant subgroup size. For example, the 
C chart might be used to plot the proportion of all 
types of identification errors per 100 examinations 
performed during the period of analysis.

The statistical assumptions underlying the 
charting of attribute data (ie, binomial distribu-
tion for p and NP charts and Poisson distribu-
tion for U and C charts) could make the data 
analysis burdensome. By contrast, chart types 
that are designed for the analysis of variable 
data (eg, x charts) are more versatile and robust 
to departures from normal data distribution. If 
the data distribution is unknown and there is no 
time in which to test for normality and trans-
form skewed data to make the distribution more 
normal, the x-mR chart is an easy-to-use alter-
native to attribute charts.

Guidelines for Building Charts
Once the appropriate chart type is selected, the 
data are entered on a spreadsheet and control 
limits are calculated (Fig 5). The formulas for 
calculating control limits can be found in text-
books (14). A number of easy-to-use software 
tools (eg, Chartrunner, PQ Systems, Dayton, 
Ohio; Matlab, MathWorks, Natick, Mass; and 
Minitab Statistical Software, Minitab, State Col-
lege, Pa) are available for use in creating charts. 
The authors have used Excel add-ins (Microsoft, 
Redmond, Wash) to create their own chart tem-
plates. (Interested readers may obtain these tem-
plates from Y.Y.C.)

The commonly recommended number of data 
points to allow confident detection of special 
causes on an x-mR chart is 20 to 25 (10). Plots 
with fewer than 20 points might be somewhat use-
ful, but the outcome of an analysis based on such 
charts could be subject to an increased risk of a 
type II error, or false-negative result (ie, a special 
cause signal is present but overlooked). For p 
charts, the American Society for Testing and Ma-
terials has developed formulas for calculating opti-
mal subgroup sizes (ie, n) on the basis of the aver-
age percentage (ie, p

_
). The formula for calculating 

the minimal subgroup size is n > 4/p
_
 (15).

Guidelines for Analyzing Charts
Control chart analysis helps focus scarce re-
sources on variations for which there is evidence 
of special causes and helps avoid tampering in 
systems where random variation explains the 
observed difference. The goal of control chart 
analysis is to gain insight into the chain of events 
that caused the observed results and to use that 
insight to improve future system performance. 
Charts are analyzed visually for signals of special 
causes. The presence of a special cause signal 
characterizes the process as out of statistical con-
trol; the absence of such a signal means that the 
process is in statistical control.

Shewhart described a set of data distribution 
patterns that are unlikely to be seen in processes 
where variation is random and due to chance 
alone (6). Observation of any of these four pat-
terns or rules (Fig 6, rules 1–4) signals the likeli-
hood that a special cause is present and further 



2122 November-December 2012 radiographics.rsna.org

investigation into that cause is in order. In the first 
pattern (rule 1), an abrupt spike or drop-off is 
seen in the data, with one or more points beyond 
the UCL or LCL. In the second pattern (rule 2), 
small runs or shifts in direction are seen; and in 
the third (rule 3), a more consistent upward or 
downward trend is discernible. In the fourth pat-
tern (rule 4), the data points fluctuate, sawtooth-
like, between values above and below the mean.

Since these four patterns were first described 
by Shewhart, four additional patterns (Fig 7b) 
have been proposed, the observation of which 
may allow increased sensitivity in the detection 
of special causes (16). Rule 5 represents an inter-

mediate degree of process change in which two of 
three consecutive data points are outside the 2s 
limit and on the same side of the center line. Rule 
6 describes a minimal to moderate nonrandom 
disturbance in the process, with four of five con-
secutive data points outside the 1s limit and on 
the same side of the center line. Rule 7 represents 
an extended sawtooth-like pattern of fluctuation, 
with 15 or more consecutive points within the 
1s limits on both sides of the center line. Rule 8 
defines a pattern of wider divergence, with eight 
or more consecutive data points beyond the 1s 
limits on both sides of the center line.

All eight of these patterns or rules may be use-
ful for assessing patterns of variation on control 
charts designed for analysis of continuous data 

Figure 6. Shew-
hart’s rules for iden-
tifying special cause 
signals. These four 
rules may be used to 
analyze all control 
charts, with the ex-
ception of the moving 
range (ie, mR). To 
analyze mR charts, 
only rule 1 should 
be applied. (Adapted 
and reprinted, with 
permission, from ref-
erence 12.)
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(ie, x, x
_
, x

_
-R, and x

_
-S). However, as the number 

of rules applied increases, so does the number of 
false-positive special cause signals, and the use of 
just four or five rules (rules 1, 2, 5, and 6) may suf-
fice (14). Current guidelines recommend that only 

rule 1 be used in analyses of the moving range 
(mR) and that only rules 1–4 be used in analyses 
of attribute data (R, S, G, p, NP, U, and C).

Figure 7.  Additional 
rules for identifying 
special cause signals. 
Control chart “skel-
eton” (a) shows the 
common structural el-
ements of charts used 
to identify special 
cause signals when 
applying the four 
rules described in b: 
the outcome measure 
on the x-axis, the day 
or event number 
on the y-axis, and 
the s control limits 
above and below the 
average (center line). 
These four rules 
may be used to ana-
lyze charts of x, x

_
, 

R, and S. (Adapted 
and re printed, with 
permission, from 
reference 12.)
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Figure 8. Flowchart shows the steps involved in process analysis and management cycles completed at 
QI project baseline (white area at top) and after intervention (gray-shaded area). From left to right, these 
steps include control chart analysis, investigation of special cause signals, and appropriate action. Process 
change should be attempted only when the process is stable. − = Negative, + = positive, PDSA = plan-do-
study-act, an improvement strategy for retooling a process to achieve the desired outcome.

When charts are analyzed in pairs, the same 
special cause rules are applied to both charts. The 
only exception is in the analysis of paired x and 
mR charts: All eight rules are applicable to the 
analysis of x charts, but only rule 1 is applicable 
to the analysis of mR charts.

Management Strategies  
Based on the Type of Variation

Processes with outcome variability due to spe-
cial causes are managed differently from those 
in which variations are due to common causes 
alone. Since control charts help differentiate be-
tween these two types of variation, the analysis of 
control charts is central to the management of all 
stages of a QI project (Fig 8).

Management Options at  
Project Baseline (Precontrol Phase)
Before any change is introduced into a process, 
the baseline process must be stable so that the 
effect of the change can be readily separated from 
noise. All baseline data (optimally, 20 data points 
or more) should be analyzed to uncover special 
cause signals.

If special cause signals are seen on baseline 
control charts, the process is considered to be out 
of statistical control. The first step toward bring-
ing the baseline process into statistical control 
is to investigate the events leading to the special 
cause signal. In the data analysis for a QI project 
to decrease no-shows (see “Case 1” in Appendix 
E1 [online]), our team discovered special cause 
signals on control charts indicating that the base-
line process was unstable (Fig E1a [online]). We 
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then compared these signals with variables such 
as the day of the week and the referring clinic, 
uncovered a correlation, and devised a strategy 
for eliminating the apparent cause of the undesir-
able outcome. After intervening to stabilize the 
process, we collected and analyzed a new dataset. 
When the baseline process was in control as evi-
denced by a lack of special cause signal (Fig E1b 
[online]), the process was ready for improvement. 

The goal of our intervention in this case was 
to lower the center line (ie, the average number of 
no-shows) and narrow the distance between the 
UCL and LCL. An intervention in a process can 
be targeted at a single undesirable outcome (eg, 
implementation of automated reminder technol-
ogy to decrease no-shows); alternatively, the en-
tire process can be redesigned with the objective 
of increasing the reliability and predictability of a 
desirable outcome.

Management  
Options after Intervention
If the baseline process is in control, the effect of 
intervention can be detected on the control chart 
as a special cause signal (Fig E2a [online]). If 
the special cause signal indicates the desired out-
come, the intervention is successful and should 
be replicated and incorporated into the process. 
If the special cause signal indicates a negative 
outcome or inefficiency, the special cause must 
be investigated and the intervention revised 
appropriately.

The absence of a special cause signal also has 
more than one possible implication: The most 
obvious conclusion is that the intervention has 
had no effect. However, if the intervention has 
resulted in a more optimal center line and nar-
rower range between the UCL and LCL, then it 
has increased the reliability and predictability of 
the outcome, a beneficial effect (Fig E3 [online]). 

Limitations of  
Control Chart Analysis

The special cause rules invented by Shewhart 
to allow the detection of nonrandom variations 
have their basis in probability distribution theory. 
This theory, which is embodied graphically in 
the familiar bell curve, predicts that 68.26% of 
collected data points will be within the limits at 

1s from the mean, 95.44% will be within the 2s 
limits, and 99.73% will be within the 3s limits. 
Shewhart empirically selected 3s for calculating 
control limits because in the ideal situation only 
13.5 of 10,000 data points exceed those limits, 
and investigation into the causes of rare outliers 
is more efficient. However, these statistical pre-
dictions are based on the assumption of an ideal 
situation in which the data are normally distrib-
uted and the subgroups (samples) are indepen-
dent, with no relation or autocorrelation between 
adjacent data points; in reality, such assumptions 
rarely prove true. Shewhart recognized these 
constraints but argued that the control limits 
could still be useful, finding support in his own 
accumulated experience as well as in Chebyshev’s 
inequality theorem, which specifies that at least 
89% of observations will fall within 3s of the 
mean irrespective of the normality of their distri-
bution, with that proportion increasing to more 
than 99% when the distribution of observations 
approaches normality. Thus, Shewhart’s charts 
are robust to departures from normality.

This does not necessarily mean that QI teams 
should be unconcerned about whether the distri-
bution of their data approximates normality. The 
normality of distribution can easily be checked 
with graphic plots such as histograms and nor-
mal probability plots, the preparation of which is 
simplified by the inclusion of the necessary tools 
in most statistical software programs; when the 
distribution is skewed, the same software tools 
facilitate correction of nonnormality. To control 
for autocorrelation, one can vary the sampling 
interval (17).

In summary, it is not essential that the as-
sumptions of statistical models be met in order 
for nonrandom variations to be charted and 
detected. Statistical theory merely provides infor-
mation that is useful for the interpretation of data 
in ideal conditions. Effective charting depends 
on practical experience, a reasonable choice of 
parameters, and an understanding of the process 
that is to be assessed (13). Some types of control 
charts are particularly robust and therefore are 
useful even when ideal conditions are not met.
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Conclusions
Statistical control charts are powerful visual tools 
that combine graphic and statistical methods to 
facilitate monitoring and management of process 
outcomes. Visualization of the temporal relation-
ship between interventions and outcomes facili-
tates the differentiation of real effects from con-
founding random variations. Insights gained from 
the appropriate use of control charts can provide 
valuable guidance for process management. There 
are many different kinds of charts with a special-
ized purpose among which one may choose, but 
the general-purpose x-mR chart is robust and al-
lows reliable analysis of most data types collected 
in radiology QI projects. The management benefits 
long enjoyed by those in manufacturing who have 
made extensive use of control chart analysis are 
readily available to all clinical radiologists who are 
interested in conducting more efficient and more 
results-oriented QI projects.
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Page 2114
Control charts are analytic tools that allow a visual distinction between meaningful change and random 
variation or “noise” in a process by comparing the actual distribution patterns of outcome data with stan-
dardized distribution patterns derived from probability statistics (6). 

Page 2114
Control charts show changes in outcome measures over time and thereby offer a clear advantage over 
classic methods of statistical analysis.

Pages 2115
Variation is inherent in all processes, and understanding and managing variation is key for achieving control 
over a process. Shewhart distinguished between two types of variation: variation due to common causes and 
variation due to special causes (6,13). Common cause–related variations are random and lead to outcome 
measures that are within a predictable distance from the mean. [...] By contrast, special cause–related varia-
tions reflect extraneous or assignable effects that are unlikely to be due to chance alone.

Page 2121
Control chart analysis helps focus scarce resources on variations for which there is evidence of special 
causes and helps avoid tampering in systems where random variation explains the observed difference.

Page 2124
Processes with outcome variability due to special causes are managed differently from those in which 
variations are due to common causes alone.


