
15/02/2018, 19*12Heuristic Analysis

Page 1 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

Heuristic Analysis for an Air Cargo Problem

Problem Scenario

The present project consist on an Air Cargo transport system, where several cargo wants to be moved
from one city to another city's airport, having several planes to achieve it.

To do so, we implement a planning search agent to solve the problem with different approaches.

In a regular search algorithm, like for the adversarial search in the Isolation game, the problem-solving
agent deals with atomic representation of states and thus needs good domain-specific heuristics to
perform well. With first-order-logic we can build domain-independent heuristics based on the logical
structure of the problem.

To measure the performance, we first run the already studied uninformed non-heuristic search
algorithms. The caractheristics that makes this algorithms uninformed, is the fact that they do not have
any information about the states beyond that the one provided in the problem definition. Therefore, they
can only 'ask' if each new state that the algorithm creates is the goal or not, and act in consequence by
stopping if it is the goal, or creating new states if it is not.

An automatic domain-independent heristics with A* that searches on top o a planning graph has been
created to compare the search efficiency agains the previously explained methods.

STATES AND ACTION SCHEMA

15/02/2018, 19*12Heuristic Analysis

Page 2 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

Planning Domain Definition Language - PDDL - allows to performe a factored representation of the
world in which a state is represented by a collection of variables. This way, 4 things needs to be defined
in the search problem:

The initial state
The actions that are available in the state
The result of applying the action
The goal state

The actions are described by a set of Action schemas that implicitly define the ACTIONS(s) and
RESULT(s,a) functions needed to do a problem-solving search. Actions schemas are a lifted (from
propositional logic to first-order-logic) representation that describes an action based on the
preconditions for that action to occur, and the effects that action will produce. The action-schema for our
current problem are the action of loading/unloading a cargo into a plane, and the plane to fly:

Action(Load(c, p, a),
 PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
 EFFECT: ¬ At(c, a) ∧ In(c, p))
Action(Unload(c, p, a),
 PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
 EFFECT: At(c, a) ∧ ¬ In(c, p))
Action(Fly(p, from, to),
 PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
 EFFECT: ¬ At(p, from) ∧ At(p, to))

As we said, we also need the Initial and Goal state for each of the 3 different problems proposed by
Udacity, increasing the complexity:

Problem 1: 2 cargos, 2 cities, 2 planes

Init(At(C1, SFO) ∧ At(C2, JFK)
 ∧ At(P1, SFO) ∧ At(P2, JFK)
 ∧ Cargo(C1) ∧ Cargo(C2)
 ∧ Plane(P1) ∧ Plane(P2)
 ∧ Airport(JFK) ∧ Airport(SFO))
Goal(At(C1, JFK) ∧ At(C2, SFO))

Problem 2: 3 cargos, 3 cities, 3 planes

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(C3, ATL)
 ∧ At(P1, SFO) ∧ At(P2, JFK) ∧ At(P3, ATL)
 ∧ Cargo(C1) ∧ Cargo(C2) ∧ Cargo(C3)
 ∧ Plane(P1) ∧ Plane(P2) ∧ Plane(P3)
 ∧ Airport(JFK) ∧ Airport(SFO) ∧ Airport(ATL))
Goal(At(C1, JFK) ∧ At(C2, SFO) ∧ At(C3, SFO))

Problem 3: 4 cargos, 4 cities, 4 planes

15/02/2018, 19*12Heuristic Analysis

Page 3 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(C3, ATL) ∧ At(C4, ORD)
 ∧ At(P1, SFO) ∧ At(P2, JFK)
 ∧ Cargo(C1) ∧ Cargo(C2) ∧ Cargo(C3) ∧ Cargo(C4)
 ∧ Plane(P1) ∧ Plane(P2)
 ∧ Airport(JFK) ∧ Airport(SFO) ∧ Airport(ATL) ∧ Airport(ORD))
Goal(At(C1, JFK) ∧ At(C3, JFK) ∧ At(C2, SFO) ∧ At(C4, SFO))

Search Results

In this link (https://en.wikiversity.org/wiki/Search_techniques) there is a complete description of the
search algorithm that had been used in this problem. The search algorithms code has been taken from
the well known book: "Artificial Intelligence, a modern approach". The search algorithms can be divided
into two subgroups:

Uninformed Search

Uninformed search, also called blind search, is a class of general purpose search algorithms that operate
in a brute-force way. These algorithms can be applied to a variety of search problems, but since they
don't take into account the target problem.

Informed Search

If information is available about the problem this could guide the search. Information is put in an
evaluation function f(n) to be able to give a value to each state. Sometimes a heuristic function h(n) is
used to guess the value if the information isn't perfect.

To run our search algorithms on the different problems we have to run the file run_search.py to which we
can pass the parameteres included in that file as:

https://en.wikiversity.org/wiki/Search_techniques

15/02/2018, 19*12Heuristic Analysis

Page 4 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

PROBLEMS = [["Air Cargo Problem 1", air_cargo_p1],
 ["Air Cargo Problem 2", air_cargo_p2],
 ["Air Cargo Problem 3", air_cargo_p3]]
SEARCHES = [["breadth_first_search", breadth_first_search, ""],
 ['breadth_first_tree_search', breadth_first_tree_search, ""
],
 ['depth_first_graph_search', depth_first_graph_search, ""],
 ['depth_limited_search', depth_limited_search, ""],
 ['uniform_cost_search', uniform_cost_search, ""],
 ['recursive_best_first_search', recursive_best_first_search
, 'h_1'],
 ['greedy_best_first_graph_search', greedy_best_first_graph_
search, 'h_1'],
 ['astar_search', astar_search, 'h_1'],
 ['astar_search', astar_search, 'h_ignore_preconditions'],
 ['astar_search', astar_search, 'h_pg_levelsum'],
]

Uninformed Search

Uninformed Search algorithms
def tree_search(problem, frontier):
 frontier.append(Node(problem.initial))
 while frontier:
 node = frontier.pop()
 if problem.goal_test(node.state):
 return node
 frontier.extend(node.expand(problem))
 return None

def graph_search(problem, frontier):
 frontier.append(Node(problem.initial))
 explored = set()
 while frontier:
 node = frontier.pop()
 if problem.goal_test(node.state):
 return node
 explored.add(node.state)
 frontier.extend(child for child in node.expand(problem)
 if child.state not in explored and
 child not in frontier)
 return None

The algorithms used following this approach are the following:

15/02/2018, 19*12Heuristic Analysis

Page 5 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

Breadth First Search

def breadth_first_tree_search(problem):
 return tree_search(problem, FIFOQueue())

Breadth First Tree Search

def breadth_first_search(problem):
 node = Node(problem.initial)
 if problem.goal_test(node.state):
 return node
 frontier = FIFOQueue()
 frontier.append(node)
 explored = set()
 while frontier:
 node = frontier.pop()
 explored.add(node.state)
 for child in node.expand(problem):
 if child.state not in explored and child not in fronti
er:
 if problem.goal_test(child.state):
 return child
 frontier.append(child)
 return None

Depth First Graph Search

def depth_first_graph_search(problem):
 return graph_search(problem, Stack())

Depth Limited Search

15/02/2018, 19*12Heuristic Analysis

Page 6 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

def depth_limited_search(problem, limit=50):
 def recursive_dls(node, problem, limit):
 if problem.goal_test(node.state):
 return node
 elif limit == 0:
 return 'cutoff'
 else:
 cutoff_occurred = False
 for child in node.expand(problem):
 result = recursive_dls(child, problem, limit - 1)
 if result == 'cutoff':
 cutoff_occurred = True
 elif result is not None:
 return result
 return 'cutoff' if cutoff_occurred else None
 return recursive_dls(Node(problem.initial), problem, limit)

Uniform Cost Search

def uniform_cost_search(problem):
 return best_first_graph_search(problem, lambda node: node.path
_cost)

Recursive Best First Search

15/02/2018, 19*12Heuristic Analysis

Page 7 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

def recursive_best_first_search(problem, h=None):
 h = memoize(h or problem.h, 'h')

 def RBFS(problem, node, flimit):
 if problem.goal_test(node.state):
 return node, 0 # (The second value is immaterial)
 successors = node.expand(problem)
 if len(successors) == 0:
 return None, infinity
 for s in successors:
 s.f = max(s.path_cost + h(s), node.f)
 while True:
 # Order by lowest f value
 successors.sort(key=lambda x: x.f)
 best = successors[0]
 if best.f > flimit:
 return None, best.f
 if len(successors) > 1:
 alternative = successors[1].f
 else:
 alternative = infinity
 result, best.f = RBFS(problem, best, min(flimit, alter
native))
 if result is not None:
 return result, best.f

 node = Node(problem.initial)
 node.f = h(node)
 result, bestf = RBFS(problem, node, infinity)
 return result

Greedy Best First Graph Search

15/02/2018, 19*12Heuristic Analysis

Page 8 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

def best_first_graph_search(problem, f):
 f = memoize(f, 'f')
 node = Node(problem.initial)
 if problem.goal_test(node.state):
 return node
 frontier = PriorityQueue(min, f)
 frontier.append(node)
 explored = set()
 while frontier:
 node = frontier.pop()
 if problem.goal_test(node.state):
 return node
 explored.add(node.state)
 for child in node.expand(problem):
 if child.state not in explored and child not in fronti
er:
 frontier.append(child)
 elif child in frontier:
 incumbent = frontier[child]
 if f(child) < f(incumbent):
 # del frontier[incumbent]
 frontier.append(child)
 return None

Based on Udacity advice somo of the algorithms were not run because of a long execution time:

For poblem 2 Breadth Dirst Tree Search, Depth Limited Search and Recursive Best Search
For problem 3: Breadth First Tree Search, Depth Limited Search, Uniform Cost Search, and
Recursive Best First Search.

Results can be stored running the next commands:

python run_search.py -p 1 -s 1 2 3 4 5 6 7 >> problem1_uninformed.txt
python run_search.py -p 2 -s 1 3 5 7 >> problem2_uninformed.txt
python run_search.py -p 3 -s 1 3 5 7 >> problem3_uninformed.txt

Problem 1

Search Strategy Optimal Path
Length

Execution
Time (s)

Node
Expansions

Goal
Tests

New
Nodes

Breadth First Search Yes 6 0.034 43 56 180

Breadth First Tree Search Yes 6 1.045 1458 1459 5960

Depth First Graph Search No 12 0.009 12 13 48

Depth Limited Search No 50 0.089 101 271 414

15/02/2018, 19*12Heuristic Analysis

Page 9 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

Uniform Cost Search Yes 6 0.038 55 57 224

Recursive Best First
Search Yes 6 3.084 4229 4230 17029

Greedy Best First Graph
Search Yes 6 0.01 7 9 29

Problem 2

Search Strategy Optimal Path
Length

Execution
Time (s)

Node
Expansions

Goal
Tests

New
Nodes

Breadth First Search Yes 9 12.847 3343 4609 30509

Breadth First Tree Search -- -- -- -- -- --

Depth First Graph Search No 575 4.055 582 583 5211

Depth Limited Search -- -- -- -- -- --

Uniform Cost Search Yes 9 18.379 4853 4855 44041

Recursive Best First
Search -- -- -- -- -- --

Greedy Best First Graph
Search Yes 9 1.47 399 401 3617

Problem 3

Search Strategy Optimal Path
Length

Execution
Time (s)

Node
Expansions

Goal
Tests

New
Nodes

Breadth First Search Yes 12 74.815 14663 18098 129631

Breadth First Tree Search -- -- -- -- -- --

Depth First Graph Search No 596 4.511 627 628 5176

Depth Limited Search -- -- -- -- -- --

Uniform Cost Search Yes 12 92.658 18223 18225 159618

Recursive Best First
Search -- -- -- -- -- --

Greedy Best First Graph
Search No 22 28.939 5578 5580 49150

Analysis

If we consider the most important point to reach the optimal solution within the constraint of 10 minutes,
only Breadth First Search and Uniform Cost Search algorithms perform that well.

15/02/2018, 19*12Heuristic Analysis

Page 10 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

However, Depth First Graph Search seems to be the fastest (despite for the problem 2 Greedy Best First
Graph Search performed amazingly fast) and also seems to need the least number of node expansions
i.e. less memory use. However, it didn't find the optimal path at any of the problems.

Therefore, we can only keep Depth First Search and Uniform Cost Search as they are the only ones
which always find the optimal path, and between this two, Depth First Search performs a little bit
better than Uniform Cost Search in the three cases.

Only in the cases where the optimal path is not the criteria to determine which algorithm to use, the
Greedy Best First Graph Search will be the best choice. It's execution time is more than aceptable and it
only didn’t find the optimal path in the most complex problem (3). It did find 22 instead of 12, which is
not that bad if the look at Depth First Graph which is the fastest but found a path of length 596.

Informed Search with A*

As we have mentioned prevously, informed search uses domain-specific knowledge and can find the
solutions more efficiently thanks to knowledge.
3 different heuristics will be implemented for the A* algorithm.

def h_1(self, node: Node):
 # note that this is not a true heuristic
 h_const = 1
 return h_const

 def h_pg_levelsum(self, node: Node):
 '''
 This heuristic uses a planning graph representation of the prob
lem
 state space to estimate the sum of all actions that must be car
ried
 out from the current state in order to satisfy each individual
goal
 condition.
 '''
 # requires implemented PlanningGraph class
 pg = PlanningGraph(self, node.state)
 pg_levelsum = pg.h_levelsum()
 return pg_levelsum

 def h_ignore_preconditions(self, node: Node):
 '''
 This heuristic estimates the minimum number of actions that mus
t be
 carried out from the current state in order to satisfy all of t

15/02/2018, 19*12Heuristic Analysis

Page 11 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

he goal
 conditions by ignoring the preconditions required for an action
to be
 executed.
 '''
 # TODO implement (see Russell-Norvig Ed-3 10.2.3 or Russell-No
rvig Ed-2 11.2)
 # Bring the knowledge base of locial expressions
 kb = PropKB()
 # Add the possitive sentence of the current state
 kb.tell(decode_state(node.state, self.state_map).pos_sentence()
)

 count = 0
 # Iterate over all the goals in the problem
 for clause in self.goal:
 # If the goal is not already among the positive states - wh
ich means
 # we have no reach the goal yet - then increase the counter
 if clause not in kb.clauses:
 count += 1

 return count

Problem 1

Search Strategy Optimal Path
Length

Execution
Time (s)

Node
Expansions

Goal
Tests

New
Nodes

A* Search with h1 heuristic Yes 6 0.043 55 57 224

A* Search with Ignore
Preconditions heuristic Yes 6 0.039 41 43 170

A* Search with Level Sum
heuristic Yes 6 5.10 7 9 28

Problem 2

Search Strategy Optimal Path
Length

Execution
Time (s)

Node
Expansions

Goal
Tests

New
Nodes

A* Search with h1 heuristic Yes 9 18.371 4853 4855 44041

A* Search with Ignore
Preconditions heuristic Yes 9 6.270 1428 1430 13085

A* Search with Level Sum No 21 249.784 97 99 906

15/02/2018, 19*12Heuristic Analysis

Page 12 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

heuristic

--- This last one is raising an error ---

Problem 3

Search Strategy Optimal Path
Length

Execution
Time (s)

Node
Expansions

Goal
Tests

New
Nodes

A* Search with h1 heuristic Yes 12 91.983 18223 18225 159618

A* Search with Ignore
Preconditions heuristic Yes 12 27.898 5040 5042 44944

A* Search with Level Sum
heuristic No 21 333.905 71 73 687

--- This last one is raising an error ---

Analysis

The first and very important point of these approaches is that all of them led to the optimal path (except
level sum in problem 3 - level sum may have a implementation bug).

However, it is clear that Ignore Preconditions heuristic outperform the others if we look at the
execution time.

The Level Sum heuristic on the other hand has expanded way less nodes that the other heuristics. Then,
if memory usage is the main criteria, this would be the heuristic to use, with the disadvantage of being
vey slow. The low speed is a consequence of having to explore the graph and check in which level the
goal is.

Uninformed Search vs Informed Search

If we compare the winning strategy of each block:

Problem 1

Search Strategy Optimal Path
Length

Execution Time
(s)

Node
Expansions

Breadth First Search Yes 6 0.034 43

A* Search with Ignore Preconditions
heuristic Yes 6 0.039 41

Problem 2

15/02/2018, 19*12Heuristic Analysis

Page 13 of 13file:///Users/pablorr10/Downloads/Heuristic%20Analysis.html

Search Strategy Optimal Path
Length

Execution Time
(s)

Node
Expansions

Breadth First Search Yes 9 12.847 3343

A* Search with Ignore Preconditions
heuristic Yes 9 6.270 1428

Problem 3

Search Strategy Optimal Path
Length

Execution Time
(s)

Node
Expansions

Breadth First Search Yes 12 74.815 14663

A* Search with Ignore Preconditions
heuristic Yes 12 27.898 5040

It looks clear how A* outperforms Bread First Search, and clearer when the problem gains complexity.
This shows the benefits of informed search over uninformed search where the results are achieved
using less memory and in less time. Furthermore, informed search allows to customize a trade-off
between speed and memory by customizing the different heurisitics that can not be done with
uninformed search strategies.

