
Specifying Data Sharing Agreements

Vipin Swarup, Len Seligman, and Arnon Rosenthal
The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102

{swarup, seligman, arnie}@mitre.org

Abstract

When consumers build value-added services on top of
data resources they do not control, they need to manage
their information supply chains to ensure that their data
suppliers produce and supply required data as needed. Pro-
ducers also need to manage their information supply chains
to ensure that their data is disseminated and protected ap-
propriately. In this paper, we present a novel model for data
sharing agreements that supports a wide variety of data
sharing policies. The model is based on distributed tem-
poral logic (DTL) predicates that are expressed over events
in dataflow graphs. A dataflow graph’s nodes are principals
with local stores, and its edges are (typed) channels along
which data flows. We illustrate the model via examples and
discuss the kinds of analyses enabled by the model.

1 Introduction

Service Level Agreements (SLAs) are used by organi-
zations to express obligations and expectations regarding
service-level parameters. For instance, for network provider
services, SLAs describe obligations over parameters such as
availability, latency, throughput, packet loss, etc. Similarly,
for data sharing services that focus on the sharing of in-
formation, SLAs can describe a variety of obligations over
parameters such as the above.

However, there are several key aspects of data sharing
services that are not addressed by traditional SLAs that fo-
cus on functional business services. First, data sharing obli-
gations may require a provider to actively engage in actions
that result in wider sharing of its data. These obligations
may include parameters such as data freshness and qual-
ity, regular update dissemination, etc. Second, data sharing
obligations may require a data recipient to further share the
data, share derivatives of the data, or share audit records
of actions that it invoked on the data. Third, obligations
may restrict what the recipient may do with the data, e.g.,

whether the recipient can print a document. Finally, data
objects subsume other data objects and this property can be
exploited—e.g., an agreement about European Union per-
sons’ data is relevant to a demand for German persons’ data.

Currently, data sharing obligations between large orga-
nizations are captured in text documents called Memoranda
of Understanding (MOUs) or Memoranda of Agreement
(MOAs). Current practice is to use textual memoranda, an
approach with several disadvantages. First, there is little
help for the writers, so important sharing issues are often
omitted. Second, the documents are typically filed away in
a drawer and seldom used thereafter. Third, it is hard to pro-
vide automated support for reasoning about the contents of
textual memoranda.

In this paper, we present a model for data sharing agree-
ments (DSAs) that encode data sharing obligations. We
focus on obligations about data stores and data flows, al-
though the model can be extended to express obligations
about the collection and processing of data, the use of data
by parties, etc. We represent data stores as collections of
typed values, dataflows as data streams between principals,
and obligations as temporal constraints on data store and
data stream events. Our model was developed by studying
several real-world Memoranda of Agreements (MOAs) that
are used by large U.S. government organizations to capture
data sharing obligations.

The full version of this paper [6] contains a specifica-
tion language based on the model described here, as well
as example specifications of DSAs that are motivated by
real-world MOAs. It also contains a detailed comparison
with related work and highlights how our model improves
on previous approaches.

2 Data Sharing Agreements (DSAs)

DSAs share many aspects of SLAs, for instance, de-
scriptions of the parties to the agreements, availability
constraints, and temporal constraints like agreement life-
times [3]. They also inherit from the general notion of

mastro
Text Box
Approved for Public Release; Distribution Unlimited
Case # 06-0130

agreements, that a party may incur obligations in return for
benefits. For example, a consumer may promise to pay
cash, to refrain from certain activities (e.g., non-compete
agreements), or even to supply the consumer’s own infor-
mation to competitors. However, the primary purpose of
DSAs is to capture data sharing clauses including descrip-
tions of the data being shared, and obligations that constrain
both the providers and consumers of the data and the data
flows among them. The data may be described using stan-
dard techniques such as relational schema, XML schemas
or DTDs, or object classes and we do not elaborate on the
data model here.

Obligations on data providers can concern both the need
to send certain data (which the provider must then produce
or acquire) and the quality of what is sent. They include re-
cency constraints (data will reflect real world events, or data
updates will be forwarded, with specified promptness or pe-
riodicity); visibility constraints (access will be provided to
specified data views); and quality constraints (shared data
will be of specified freshness, accuracy, precision, etc.).

Obligations on data consumers include usage controls
that enforce data provider protection policies (e.g., data will
not be copied, data will be deleted after 3 days, etc.); dis-
semination controls that enforce data provider sharing poli-
cies (e.g., original source will be credited, subsequent re-
search products based on the data will be shared back with
the data providers; providers will be notified of who has
accessed the data); and security constraints (e.g., providers
will be notified of security breaches in consumer networks).
Note that parties may be data consumers in one DSA, and
providers (e.g., of derived products) in another. Parties may
even be both data consumers and providers in the same DSA
(e.g., providers of logistical data and consumers of end-user
audit data).

All obligations may be conditional on events (e.g., re-
ceipt of a data object, detection of attack or compromise,
etc.) and state predicates (e.g., declaration of local emer-
gency, system failures, relationship among data values).
Further, data sharing agreements may include obligations
whose fulfillment depends on other DSAs or SLAs. For in-
stance, suppose that B is obliged to ensure that C receives
fresh and accurate data at regular intervals. In order to meet
this obligation, B might rely on DSAs with data suppliers
and SLAs with network providers. Finally, parties to a DSA
may agree to inherit obligations from other DSAs.

A DSA’s obligations impose global constraints on access
control policies of various parties, even in future states. The
exact nature depends on how the parties meet the obliga-
tions. For instance, suppose that a data recipient B is obli-
gated to share data updates back with the provider A. Then
either A must be given access rights to the data, or B must
allow release and create a process that pushes the update
notifications to A.

3 DSA Model

A DSA is an agreement between a set of principals re-
garding the sharing of data among themselves. In this con-
text, data sharing refers to the explicit flow of data from one
principal to another, and not to the subtler notions of infor-
mation flow or data inference. Hence, we model a DSA as
a set of predicates expressed over a dataflow graph whose
nodes are principals with local stores, and whose edges are
(typed) channels along which data flows.

Principals can be specified in well-understood ways and
include both simple principals (e.g., named individuals or
organizations) and compound principals (e.g., groups, roles,
etc.).

A DSA pertains to specific data schemas and data in-
stance sets. Data may be represented in any data model,
e.g., the relational data model, the XML data model, or the
object data model.

Each principal is associated with a local data store. A
data store is a function that maps (location) names to data
values. The data values may be data relations, data streams,
documents, objects, etc., depending on the underlying data
model.

Data resources describe the data to which a DSA per-
tains. A data resource is a tuple 〈rn, p,DV 〉, where rn is a
globally unique data resource name, p is the principal offer-
ing the data resource, and DV (i.e., a data view) is a set of
tuples 〈q, T 〉, where q is a query language expression over
p’s local data store and T is the type of the query’s result.
A data resource might describe both the data content that is
being shared, and metadata such as the sharing context and
attributes of principals.

A dataflow [4] F is a tuple 〈s, d, T 〉 where s and d are
principals and T is a type. F represents a data stream of
values of type T flowing from source s to destination d.
The source s can place value o of type T into the dataflow
stream (which we write as F.send(o), while the destination
principal d can read values from the stream (F.receive(o)).
The state of a dataflow F is a tuple state(F) = 〈f, r〉 where
f ∈ T ∗ is the sequence of values that have been placed in
the stream, and r ∈ T ∗ is the sequence of values that F ’s
destination principal has read from the stream. Data values
can include message identifiers to capture which values in
the stream have been received.

Obligations are expressed as formulae in Distributed
Temporal Logic (DTL) [1, 2] which is a generalization of
Linear Temporal Logic (LTL). Obligation formulae specify
properties of traces of dataflow events (sending and receiv-
ing data) and data store events (updating data stores). DTL
includes both past-time and future-time temporal operators
including Y (previous), P (sometime in the past), H (always
in the past), S (since), X (next), G (always), and U (weak
until). A DTL formula can refer to a specific principal’s lo-

e ::= c.src | c.dest | getloc(Q,x) | . . .
p ::= c.send(e) | c.rcv(e) | setloc(Q,x,e) | . . .
ψ ::= p | ψ and ψ | ψ or ψ | not ψ | ψ at Q |

(forall τ x) ψ | (exists τ x) ψ | if p then ψ |
ψ innext i | ψ until i | ψ until ψ |
ψ atnext i | ψ inprev i | ψ fromprev i |
ψ fromprev ψ | ψ atprev i | (ψ)

Figure 1. DSA Obligation Language Snippet

cal data space and hence can be true only for that specific
principal. Thus, the DTL formula @a[ψ] asserts that propo-
sition ψ holds in the local context of principal a.

Finally, a data sharing agreement DSA is a tuple
〈P, S,DS,DR,DF,O〉 where P is a set of principals (i.e.,
the parties referenced in the agreement), S ⊆ P is the set
of signatories of the agreement, DS is a function that maps
each principal in P to a data store (that represents the local
data store of the principal), DR is a set of data resources
that are views of the data stores in DS, DF is a set of
dataflows between principals in P , and O is a set of obli-
gations of principals in P. Note that only principals in S
are signatories of the DSA and hence have agreed to satisfy
those obligations that oblige them.

4 Examples

We now present several small examples of sharing obli-
gations that can be expressed in our model. These examples
are specified using our DSA language, a snippet of which is
presented in Figure 1. The full version of this paper [6]
describes our complete DSA specification language, and it
includes a specification of a DSA based on a real MOA
between large U.S. government organizations. For brevity,
we have taken significant liberty with the syntax here, e.g.,
by omitting certain clauses such as cancellation and penalty
clauses in obligations. Informally, c.src and c.dest are ex-
pressions that refer to the source and destination of channel
c respectively, while getloc(Q,x) denotes the value bound
to location x in Q’s data store. c.send(o) and c.rcv(o) are
predicates that hold if object o was just sent and received
(respectively) on channel c, while setloc(Q,x,e) is a pred-
icate that holds if Q’s data store was just updated to bind
location x to value e. We use syntactically sugared DTL
operators to express temporal conditions, e.g., φ innext t
specifies that φ must hold sometime in the next t timesteps.
Finally, φ at B specifies that φ must hold in the local state
of principal B.

In the examples below, let A, B, and C be principals; c1
be a channel (of type T) from A to B; c2 be a channel from
B to C; and c3 be a channel from B to A.

Responsive forwarding: B will send C on channel c2
each object it receives from A on channel c1 within
24 hours of receiving it:

(forall T o) if c1.rcv(o) then
(c2.send(o) innext 24 hrs

at B until 1/1/2007

Nondisclosure agreements: If B receives object o from A
on channel c1, then B will not thereafter send o to any
other principal for a year.

(forall T o) if c1.rcv(o) then
(forall Channel c) if (c.dest �= A) then

(not c.send(o) until 1 year)
at B until 1/1/2007

Usage notification: If B receives object o from A on chan-
nel c1, then for the next 365 days, B will notify A each
time B sends o to another principal. We construct the
notification object via an externally defined function
called “notify”.

(forall T o) if c1.rcv(o) then
(forall Channel c)

if (c.send(o) and c.dest �= A) then
c3.send(notify(B,c.dest,o)) innext 1 day

until 365 days
at B until 1/1/2007

Recurrence: A will send B the latest update to object o
every 24 hours.

if c1.send(o) then
c1.send(update(o)) innext 1 day

at A until 1/1/2007

Privacy: Privacy obligations may arise when a person or
an organization shares personal data with another or-
ganization. They may also arise when an organization
receives data about a human, imposed by government
(via laws) rather than the provider.1 The simple pri-
vacy obligation specified below asserts that A must
delete all personal information about B from location
x within one year of A’s storing it.

(forall T e) if setloc(A,x,e)
and (e.subject = B) then

setloc(A,x,null) innext 1 year
at A until 1/1/2007

1Some obligations (e.g., those imposed by law) are implicit—they are
not part of any explicit DSA even though the parties are obliged to satisfy
them. Such implicit obligations may be specified in our model although
they are not the focus of this paper.

The above examples can be combined to form complex
obligations. For instance, if B receives data O from A, then
B will not share O with foreign citizens, and will notify
A about US citizens who are shown the data. Furthermore,
even for US citizens, B will not reveal that A was the source.
Our model is quite powerful and can capture a wide variety
of such data sharing policies.

5 Analyses

We sketch the kinds of analyses that are enabled by a
formal data sharing model. Tractability of some of these
analyses requires a data model with finite data types and a
tractable query language.

• What are my obligations to share my data with oth-
ers? E.g., to whom am I obligated to share California
customers’ data?

• What are other people’s obligations to share data with
me? E.g., who is obligated to supply me with data
about Massachusetts vendors?

• Which obligations will I be unable to satisfy? E.g.,
we had a tornado, and lost a houseful of medical data
in Kansas. E.g., we’re obliged to share all data with a
business partner but we receive product documentation
under a stringent nondisclosure agreement.

• Do I need a new DSA, or are my information needs al-
ready covered? What data can I rely on of the follow-
ing sort? What new DSA do I need to sign to receive
desired data?

• What actions must I take in order to meet all my obli-
gations? Can we automatically generate dataflows
from a DSA that satisfy the DSA’s dataflow obliga-
tions?

• I am considering (or have decided on) a change to
the data schema or to the frequency of data updates.
Which of my consumers are affected and what are my
obligations to them?

6 Conclusion

In this paper, we have presented a novel model for data
sharing agreements. The model is based on a dataflow graph
whose nodes are principals with local stores, and whose
edges are (typed) channels along which data flows. Data
sharing constraints are expressed as DTL predicates over
data stores and data flows. These constraints can include
both past events and future events, and may hold only at cer-
tain principals’ local states. To the best of our knowledge,
this is the first such model of data sharing agreements.

Our work has been motivated by several real-world data
sharing agreements (currently expressed as textual Memo-
randa of Agreement). Our full paper presents a DSA speci-
fication language and illustrates the power of our language
by expressing a sanitized fragment of a real MOA. Since our
language can be given a precise formal semantics, DSAs
specified in our language may be subject to a variety of au-
tomated analyses. Tractability of these analyses depends on
the properties of the underlying data model and DTL.

This work is an important first step towards our ulti-
mate goal of building a comprehensive technical infrastruc-
ture for data sharing agreements [5]. We are beginning to
develop a prototype platform that manages and enforces
DSAs. This platform will include wizards to assist in the
creation of comprehensive and consistent DSAs; reposito-
ries to assist in the lifecycle management of DSAs; agents to
monitor and enforce the terms of the DSAs, when possible;
and modules to provide automated analysis capabilities.

Note that obligations are binding on the obliged parties
and the parties may be subject to penalties for failing to
meet their obligations. Hence, obligation systems are sub-
ject to a variety of attacks by adversaries. Attacks include
creating obligations that are not undertaken by the obliged
principals, freeing principals from their obligations, causing
principals to violate their obligations, and preventing obli-
gation monitors from detecting violations of obligations.
Hence, a secure DSA system must protect against such at-
tacks while managing DSAs and monitoring for potential
violations of obligations.

References

[1] H.-D. Ehrich and C. Caleiro. Specifying communication in
distributed information systems. Acta Inf., 36(8):591–616,
2000.

[2] M. Hilty, D. Basin, and A. Pretschner. On obligations. In
10th European Symposium on Research in Computer Security
(ESORICS 2005), volume 3679 of Lecture Notes in Computer
Science, pages 98–117. Springer, 2005.

[3] A. Keller and H. Ludwig. The WSLA framework: Specify-
ing and monitoring service level agreements for web services.
Journal of Network and Systems Management, Special Issue
on E-Business Management, 11(1), March 2003.

[4] G. T. Leavens, T. Wahls, and A. L. Baker. Formal semantics
for SA style data flow diagram specification languages. In
Proceedings of the ACM Symposium on Applied Computing
(SAC), pages 526–532, 1999.

[5] L. Seligman, A. Rosenthal, and J. Caverlee. Data service
agreements: Toward a data supply chain. In Workshop on
Information Integration on the Web, at VLDB 2004, 2004.

[6] V. Swarup, L. Seligman, and A. Rosenthal. Specifying data
sharing agreements. MITRE Paper MP 06W0000065, The
MITRE Corporation, McLean, VA 22101, 2006.

