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Abstract: I develop an analytic integrated assessment model of climate change. The paper

closes a gap between complex numeric models used in policy advising and stylized models

built for analytic insight. The climate component contains an explicit carbon cycle, the

CO2 radiative forcing equation, and a atmosphere-ocean temperature dynamics. Economic

production relies on various clean and dirty, and potentially scarce energy sources. I derive a

closed-form solution of the optimal carbon tax and the welfare implications from uncertainty

over the carbon cycle and the climate’s sensitivity to CO2. The formula pinpoints the

different contributions from social preference, production, damages, and temperature and

carbon dynamics. I discuss unforeseen persistent shocks to the system (vector autoregressive

uncertainty) as well as epistemological uncertainty such as a Bayesian learning. The analysis

employs non-logarithmic risk attitude and distinguishes risk aversion from a decision maker’s

propensity to smooth consumption over time.
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1 Introduction

Much of the policy advice provided by climate economists uses complex numeric models

that are conceived as black boxes by outsiders. Analytic models provide qualitative insight,

but usually lack the detail needed for a quantitative understanding of climate policy. This

paper helps to bridge the two approaches, introducing an analytic model that has the same

structure and descriptive power as numeric integrated assessment models (IAMs) used in

policy advising. The closed-form expressions identify and quantify the different contributions

to the optimal carbon tax and measure the cost of global warming and the benefit of carbon

sequestration.

Despite several decades of research, the future temperature response to emissions remains

largely uncertain. I explore the welfare implications of uncertainty over the carbon cycle

and over the temperature response to a given carbon concentration (climate sensitivity). I

equip the model with general non-logarithmic risk attitude and use Epstein-Zin-Weil (EZW)

preferences to disentangle risk attitude and consumption smoothing incentives. I discuss

persistent shocks to the climate dynamics (vector autoregressive uncertainty) as well as

epistemological uncertainty such as a Bayesian learning.

Numeric deterministic climate models, including DICE, FUND, PAGE, WHITCH,

MERGE, REMIND, and IMAGE, provide quantitative policy recommendations. Recent

stochastic numeric climate models study a combination of uncertainty, learning, and catas-

trophic irreversibility, using either discounted expected utility or EZW preferences.1 A few

stylized analytic models address specific questions, e.g., the choice of taxes versus quotas

(Newell & Pizer 2003, Karp & Zhang 2006). Recently, Golosov et al. (2014) developed an

analytically tractable IAM that combines an explicit model of the energy sectors with a

linear impulse response of economic production to carbon emissions. Gerlagh & Liski (2012)

introduce an additional delay accounting for the missing temperature equations, improve

the calibration of the impulse response function, and introduce β, δ discounting. In trib-

ute to the pioneering work by Golosov, Hassler, Krusell, Tsyvinski, Gerlagh, and Liski, I

call the model in this paper GAUVAL, taking the ith letter of the ith author. Anderson

et al. (2014) employ a (slightly simplified) version of the Golosov et al. (2014) framework to

analyze robust control.2

1Notable work addresses climate and growth uncertainty in dynamic programming implementations of
the DICE model (Kelly & Kolstad 1999, Kelly 2005, Leach 2007, Heutel 2011, Fischer & Springborn 2011,
Traeger 2012b, Lemoine & Traeger 2014, Jensen & Traeger 2014, Cai et al. 2012, Lontzek et al. 2012, Kelly
& Tan 2013). In addition, deterministic models are employed to simulate the consequences of given policies
using a Monte-Carlo averaging of sensitivity runs (Richels et al. 2004, Hope 2006, Nordhaus 2008, Dietz 2009,
Anthoff et al. 2009, Ackerman et al. 2010, Interagency Working Group on Social Cost of Carbon 2010, Pycroft
et al. 2011, Kopp et al. 2012).

2Anderson et al. (2014) use a linear relation between the economic growth rate, temperature increase, and
cumulative historic emissions, and combine the simpler analytic model with a more complex numeric IAM for
quantitative simulation. The assumption that temperatures respond linear to cumulative emissions is based
on the scientific literature’s finding that the medium to long-term temperature response in (deterministic)
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GAUVAL is the first closed-form IAM incorporating a full climate change model com-

prising (i) a standard carbon cycle model, (ii) the physical non-linearity in the response of

radiative forcing to atmospheric CO2 accumulation (“greenhouse effect”), and (iii) a model

of the atmosphere-ocean temperature dynamics. I derive general conditions under which

such a model solves in closed form, and I show that its calibration tracks the climate system

at least as well as the wide-spread DICE model. As compared to its analytic predecessors,

the full climate model allows me a state of the art model calibration of climate dynamics.

The model structure allows me to separate tax and welfare contributions from carbon dy-

namics and temperature dynamics, two major research areas of climate change science. I

show that the payoffs to a better understanding of the temperature dynamics (for given

CO2 concentrations) is much higher than the payoff from reducing the uncertainty over the

carbon flows.

The logarithmic utility function employed in these analytic IAMs is a reasonable approx-

imation to the intertemporal substitutability of consumption.3 However, the implied unit

elasticity largely understates risk aversion. In particular, logarithmic risk aversion in GAU-

VAL’s predecessors implies the absence of any welfare impact of a mean-preserving spread

– a serious short-coming considering that numeric and stylized models generally find uncer-

tainty to be highly relevant. I introduce non-logarithmic risk attitude and EZW preferences

to improve the market calibration of the economic model, leading to non-trivial uncertainty

implications while retaining analytic tractability.4 In a world of uncertainty, analytic mod-

els have an additional advantage: they overcome the curse of dimensionality plaguing the

numeric stochastic dynamic programming implementations of IAMs.

Notable pioneering work delivering general analytic insights in stylized integrated as-

sessment models under non-trivial risk-attitude or robust control include, Hennlock (2009),

Valentini & Vitale (2014), Jensen & Traeger (2014), Anderson et al. (2014), some of which

contain as well more complex numeric quantification. These papers emphasize the relevance

of carefully integrating risk and its evaluation into IAMs. The present paper distinguishes

itself by delivering general quantitative closed-form expressions for the welfare loss under

risk, and by using a full-blown IAM that explicitly models transient temperature dynamics,

radiative forcing, and the carbon cycle in the same way as the standard numeric IAMs used

in policy advising.

climate models is approximately proportional to cumulative historic emissions (Allen et al. 2009, Matthews
et al. 2009).

3Historically, most assessments of the intertemporal elasticity were (at times significantly) smaller than
unity. Over the recent years, many studies measured intertemporal elasticities of substitution larger than
unity, in particular, when disentangling intertemporal sustainability from risk aversion. A value of unity lies
well within the reasonable range of estimates, see Bansal et al. (2012) for a detailed review.

4The discounted expected utility standard model assumes that aversion to risk and to deterministic
consumption change over time are governed by the curvature of the same utility function and, thus, coincide.
This entanglement is not a consequence of the common rationality assumptions and challenged by market
observations (see section 2.5).
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Figure 1: The structure of GAUVAL and most Integrated Assessment Models. Solid boxes charac-
terize the model’s state variables, dashed boxes are flows, and dashed arrows mark choice variables.

2 The Model

GAUVAL’s structure follows that of most IAMs (Figure 1). Labor, capital, and technology

create production that is either consumed or invested. Production relies on energy inputs

which cause emissions. Emissions accumulate in the atmosphere, cause radiative forcing

(greenhouse effect), and increase global temperature(s), which has a negative repercussion

on production. This section introduces the basic model governing the economy, the energy

sector, and the climate system. It derives the necessary and sufficient assumptions to solve

the model in closed form, discusses the underlying calibration, and introduces preferences

that disentangle risk aversion from intertemporal consumption smoothing.

2.1 The Economy

Utility is logarithmic and the social planner’s time horizon is infinite. I assume a stable

population normalized to unity, but the approach generalizes to a population weighted sum

of logarithmic per capita consumption with population growth. Gross production derives,

in Cobb-Douglas form, from technology level A0,t, capital Kt, the energy composite Et, and

the amount of labor N0,t employed in the final consumption good sector

Yt = A0,tK
κ
t N

1−κ−ν
0,t Eν

t .

The aggregate energy input Et is a function

Et = g(Et(At,Nt)) (1)

of I ∈ N different energy sources, whose production levels Ei,t are collected in the vector

Et ∈ IRI
+. These decomposed energy inputs are produced using technologies At ∈ IRI

+ and

labor input levels Nt ∈ IRI
+. Total labor supply is normalized to unity,

∑I

i=0 Ni,t = 1. The
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first Id energy sources are fossil fuel based and emit CO2 (“dirty”). I measure these energy

sources in units of their carbon content. Their extraction is costly, they are potentially

scarce, and I denote this subset of energy inputs by the vector Ed

t
∈ IRId

+ . Total emissions

from production
∑Id

i=1 Ei,t. Renewable energy sources, labeled Id+1 to I, are costly but not

scarce and their production does not emit CO2 (“clean”).

For example, Golosov et al. (2014) suggest three energy sectors. Oil is scarce and ex-

tracted freely. Coal and a renewable aggregate are produced linearly using technology Ai,t

and labor inputs Ni,t: Ei,t = Ai,tNi,t. These energy sources transform into the energy com-

posite used in final production under constant elasticity of substitution Et =
(∑3

i=1 αiE
s
i,t

) 1
s .

More generally, the present model can take detailed account of different renewable and non-

renewable energy sources. Substitutability can be limited between liquid fuels and electric

energy sources, but highly substitutable between coal and renewable electricity sources.

Given present issues with the volatility of renewable electricity production and limitations

in storage, the substitutabilities can change over time. For the purpose of the present paper,

I only assume a system of energy sectors of the general form (1) that is sufficiently smooth

and well-behaved to let the value function converge and to avoid boundary solutions.5

The dirty fossil fuel energy sources are (potentially) scarce and their resource stock in

the ground Rd

t
∈ IRId

+ follows the equation of motion

Rt+1 = Rt −Ed
t ,

together with the non-negativity constraint Rt ≥ 0 and the initial boundary condition

R0 ∈ IRId

+ given. The next section explains how the energy sector’s carbon emissions increase

the global atmospheric temperature T1,t measured as the increase over the preindustrial

temperature level. This temperature increase causes damages, which destroy a fraction

Dt(T1,t) of production, Dt(0) = 0. Proposition 1 in section 2.3 characterizes the class of

damage functions Dt(T1,t) that permit an analytic solution of the model.

Following Golosov et al.’s (2014) assumption of full depreciation in the second period,

the capital stock’s equation of motion becomes

Kt+1 = Yt[1−Dt(T1,t)]− Ct . (2)

The model’s time step of 10 years makes the capital depreciation assumption more reasonable

than it might appear: instead of an annual decay that leaves some 30%-40% after 10 years,

the model utilizes all of the capital after 10 years, and none after 20 years. Appendix

A extends the model to allow for more sophisticated capital persistence by interacting an

exogenous capital growth rate approximation with capital depreciation. This step enables

GAUVAL to match the empirical capital accumulation and it makes the representative agent

aware of the additional investment payoff from higher capital persistence. The extension does

5A sufficient but not necessary condition are smoothness, interior solutions for the controls, and convexity
of the energy production set.
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not affect the equations describing the optimal carbon tax or the welfare equations. The

crucial implication of equation (2), as well as the empirically better founded extension in

Appendix A, is that the investment rate will be independent of the system state.

2.2 The Climate System

The energy sector’s CO2 emissions enter the atmosphere and, thus, the carbon cycle. In

addition to these emissions from fossil fuel burning, we emit CO2 through land conversion,

forestry, and agriculture. I denote these additional anthropogenic emission by Eexo
t and

follow the wide-spread integrated assessment model DICE in treating Eexo
t as exogenous.

Carbon released into the atmosphere does not decay, it only cycles through different carbon

reservoirs. Let M1,t denote the atmospheric carbon content and M2,t, ...,Mm,t, m ∈ N, the

carbon content of a finite number of non-atmospheric carbon reservoirs. These reservoirs

continuously exchange carbon. For example, uses two carbon reservoirs besides the atmo-

sphere: M2,t captures the combined carbon content of the upper ocean and the biosphere

(mostly plants and soil) and M3,t captures the carbon content of the deep ocean. Scientific

climate models generally use larger numbers of reservoirs. Let Mt denote the vector of the

carbon content in each reservoir and let the matrix Φ capture the transfer coefficients. Then

Mt+1 = ΦMt + e1(
∑Id

i=1 Ei,t + Eexo
t ) (3)

captures the carbon dynamics. The first unit vector e1 channels new emissions from fossil

fuel burning
∑Id

i=1 Ei,t and from land use change, forestry, and agriculture Eexo
t into the

atmosphere M1,t.

An increase in atmospheric carbon causes a change in our planet’s energy balance. In

equilibrium, the planet radiates the same amount of energy out into space that it receives

from the sun. Atmospheric carbon M1,t and other greenhouse gases (GHGs) “trap” some

of this outgoing infrared radiation, which causes the (additional, anthropogenic) radiative

forcing

Ft = η
log M1,t+Gt

Mpre

log 2
. (4)

The exogenous process Gt captures non-CO2 greenhouse gas forcing measured in CO2 equiv-

alents. There is no anthropogenic radiative forcing if Gt = 0 and M1,t is equal to the prein-

dustrial atmospheric CO2 concentration Mpre. We can think of radiative forcing as a small

flame turned on (or up) to heat a big pot of soup, our planet. The parameter η captures the

strength of this flame for a doubling of CO2 with respect to the preindustrial concentration

Mpre. Whereas radiative forcing is immediate, the planet’s temperature (the big pot of soup)

only reacts with delay. After several centuries, the new equilibrium6 temperature correspond-

6The conventional climate equilibrium incorporates feedback processes that take several centuries, but
excludes feedback processes that operate at even longer time scales, e.g., the full response of the ice sheets.
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ing to a new level of radiative forcing F new will eventually be T new
1,eq = s

η
F new = s

log
Mt+Gt
Mpre

log 2
.

The parameter s is known as climate sensitivity. It measures the medium to long-term

temperature response to a doubling of preindustrial CO2 concentrations. Its best estimates

lie currently around 3C, but the true temperature response to a doubling of CO2 is highly

uncertain.

Next period’s atmospheric temperature is determined by the present temperature in the

atmosphere and in the upper ocean as well as the prevailing radiative forcing. Next period’s

temperature change in the upper ocean is determined by the present temperature in the

atmosphere and the next lower ocean layer. I denote the temperature of a finite number of

ocean layers by Ti,t, i ∈ {2, ..., L}, L ∈ N. For notational convenience, I abbreviate the at-

mospheric equilibrium temperature corresponding to radiative forcing level Ft by T0,t =
s
η
Ft.

Then, next period’s temperature change in layer i ∈ {1, ..., L} is determined by the present

period’s temperature in the adjacent layers. Frequently, this heat exchange is modeled lin-

early, making Ti,t+1 a weighted arithmetic mean of Ti−1,t, Ti,t, and Ti+1,t. Anticipating that

the usual linear model defies an analytic solution to GAUVAL, I model next period’s temper-

ature as a generalized rather than arithmetic mean.7 I denote the generalized mean’s L×L

weight matrix by σ. In determining layer i’s next period temperature, The weights σi,i+1

and σi,i−1 in the equation of motion for temperature Ti,t+1 specify the weights given to the

temperature in the adjacent layers. As only adjacent layers affect next period’s temperature,

it is σi,j = 0 for j < i− 1 and j > i+ 1. The temperature persistence in a given ocean layer

i ∈ {2, ..., L − 1} is σi,i = 1 − σi,i−1 − σi,i+1 > 0. The lowest ocean layer only exchanges

heat with the next upper layer implying σL,L = 1− σL,L−1 > 0. In the atmospheric temper-

ature layer, the additional weight σforc = σ1,0 determines the heat change through radiative

forcing, and implies an atmospheric temperature persistence σ1,1 = 1 − σforc − σ1,2 > 0. I

denote the generalized mean describing the temperature adjustments of temperature layer i

by M
σ

i . The equations of motion for temperature are

Ti,t+1 = M
σ

i (Ti,t, wi−1Ti−1,t, w
−1
i Ti+1,t) for i ∈ {1, ..., L}, (5)

where the equilibrium temperature ratios wi are empirical adjustments reflecting that the

equilibrium warming does not coincide across all layers. In particular, in a warmer equilib-

rium the oceans lose more energy through evaporation, keeping them cooler relative to the

atmosphere. Based on the data, my empirical calibration in section 2.4 assumes w1 = T1,eq

T2,eq

and wi = 1 for i 6= 1, i.e., it adjusts only for the equilibrium warming difference between

atmosphere and oceans.

7The generalized mean of two values x1 and x2 with weights σ1 and σ2 = 1− σ1 resembles an arithmetic
mean with an additional monotonic weighting function f : M(x1, x2) = f−1[σ1f(x1)+σ2f(x2)]. Hardy et al.
(1964) axiomatize the generalized mean based on the general properties of a mean value.
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2.3 Solving GAUVAL

Appendix B solves GAUVAL by transforming it into an equivalent linear-in-state model

(Karp 2013). This transformation also flashes out what extensions maintain (or destroy)

its analytic tractability. Linear-in-state models rely on equations of motions that are linear

in the state variable, and on control variables that are additively separable from the states.

GAUVAL is not linear in the original state variables, but under appropriate transformations

of capital and temperatures. The present paper assumes that the optimal labor allocation

has an interior solution and that the scarce resources are stretched over the infinite time

horizon along the optimal path, avoiding boundary value complications. For example, a

complementarity assumption of scarce oil with other energy sources assures that the resources

condition is met in Golosov et al. (2014). Linear-in-state models are solved by an affine value

function. The following proposition summarizes the main result of Appendix B.

Proposition 1 An affine value function of the form

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ⊤
MMt +ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt (6)

solves GAUVAL if, and only if, kt = logKt, τt is a vector composed of the generalized

temperatures τi = exp(ξiTi), i ∈ {1, ..., L}, the damage function takes the form

D(T1,t) = 1− exp[−ξ0 exp[ξ1T1,t] + ξ0], ξ0 ∈ IR,

the mean in the equation of motion (5) for temperature layer i ∈ {1, ..., L} takes the form

M
σ

i (Ti,t, w
−1
i Ti−1,t, wi+1Ti+1,t) =

1

ξi
log
(

(1−σ1,i−1−σ1,i+1) exp[ξiTi,t]

+σi,i−1 exp[ξiwi−1Ti−1,t] + σi,i+1 exp[ξiw
−1
i Ti+1,t]

)

,

and the parameters ξi take the values ξ1 =
log 2
s

≈ 1
4
and ξi+1 =

ξi
wi

for i ∈ {1, ..., L− 1}.

The coefficients ϕ are the shadow value of the respective state variables, and ⊤ denotes

the transpose of a vector of shadow values. The coefficient on the resource stock has to

be time-dependent: the shadow value of the exhaustible resource increases (endogenously)

over time following the Hotelling rule. The process ϕt captures the value contribution of the

exogenous processes including technological progress. The damage function has to be of a

double-exponential form with a free parameter ξ0, which scales the severity of damages at a

given temperature level. The damage parameter ξ0 is the semi-elasticity of net production

with respect to a change of transformed atmospheric temperature τ1,t = exp(ξ1T1,t). The

generalized mean M
σ

i uses the non-linear weighting function exp[ξi · ]. Section 2.4 analyzes

how well these assumptions match the actual climate dynamics and current assumptions

about economic damages, calibrating the weight matrix σ, the atmosphere-ocean equilibrium

temperature difference w1, and the damage parameter ξ0.
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Expressed in terms of the vector of transformed temperature states τ , the temperatures’

equations of motion (5) take the simpler form

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 . (7)

I remind the reader that the parameter σforc is the weight on radiative forcing in the at-

mospheric temperature’s equation of motion. To achieve additive separability between con-

trols and states, the consumption rate xt = Ct

Yt[1−Dt(Tt)]
replaces absolute consumption as

the consumption-investment control. Under the assumptions of proposition 1, the optimal

consumption rate is

x∗
t = 1− βκ . (8)

The other controls depend on the precise form of the energy sector. The shadow values

(value function coefficients) are

ϕk =
κ

1− βκ
(9)

ϕ⊤
τ = −ξ0(1 + βϕk)e

⊤
1 (1− βσ)−1 (10)

ϕ⊤
M =

βϕτ,1σ
forc

Mpre

e⊤
1 (1− βΦ)−1 (11)

ϕ⊤
R,t = βtϕ⊤

R,0 .

I will discuss these shadow values and their economic implications in detail in section 3. Note

that the initial values ϕ⊤
R,0 of the scarce resources depend on the precise evolution of the

economy and, thus, further assumptions on the energy sector as well as the chosen climate

policy.

2.4 Calibration

I employ the carbon cycle of DICE 2013. Running the model in a 10 year time step, I

double the transition coefficients. Figure 4 in section 4.2 confirms that the rescaled 10 year

transition matrix yields an evolution of the carbon stock indistinguishable from that of the

original 5 year step of DICE 2013. I employ the usual capital share κ = 0.3 and use the

International Monetary Fund’s (IMF) 2015 investment rate forecast 1−x∗ = 25% to calibrate

pure time preference. Equation (8) implies β = 1−x∗

κ
= 0.25

0.3
and an annualized discount rate

of ρ = 1
10
log β = 1.75%. The conversion of utility values into 2015 USD relies on the log

utility’s implication that dC = C du = x Y du, where the consumption rate is x = 75% and

Y is equal to ten times (time step) the IMF’s global economic output forecast of Y2015 = 81.5

trillion USD.
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Economic damage functions are crucial and yet hard to determine. The most wide-spread

IAM DICE uses the form D(T ) = 1
1+0.0028T 2 . Nordhaus (2008) calibrates the coefficient

0.0028 based on a damage survey for a 2.5C warming. I calibrate GAUVAL’s damage

coefficient to match Nordhaus’ calibration points of 0 and 2.5◦C exactly, delivering ξ0 =

0.0222. Figure 2 compares the resulting damage curve to that of the DICE-2007 model. The

figure also depicts the damage curve D(T ) = 1− 1/
(
(1 + T

20.46
)2 + ( T

6.081
)6.754

)
suggested by

Weitzman (2010), who argues that little is known about damages at higher temperature

levels, and that a more convex damage curve passing through Nordhaus’ calibration point

at 2.5◦C is just as likely. GAUVAL’s damage function initially generates damages that are

slightly higher as compared to DICE-2007, matches it exactly at 2.5◦C, delivers slightly lower

damages up to a 12◦C warming, and finally generates higher damages for global warming

above 12◦C, warming levels that imply a hard-to-conceive change of life on the planet.

Figure 2 also depicts two dashed versions of GAUVAL’s damage function. The lower curve

reduces the damage parameter by 50%, resulting in a damage function that lies almost

everywhere below DICE. The higher curve increases the damage parameter by 50%, resulting

in a damage function that lies everywhere above that of DICE. Section 3 discusses how such

changes affect welfare and the optimal carbon tax.
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Figure 2: GAUVAL’s damage function compared to that of DICE-2007 and
a highly convex damage function suggested by Weitzman (2010). All three
lines coincide for a 2.5◦C warming, the common calibration point based on
Nordhaus (2008). The dashed curves depict GAUVAL’s damage function for a ±50% vari-
ation of the base case damage coefficient ξ0 ≈ 0.022.

The common linear approximation of the heat transfer between the atmosphere and the

ocean layers defies an analytic solution of the model. I now calibrate the alternative system

of equations (5) based on the generalized means derived in Proposition 1. I use the emission

scenarios of the recent assessment report of the Intergovernmental Panel on Climate Change

IPCC (2013). These so-called Representative Concentration Pathways (RCP) replace the

(SRES-) scenarios of the earlier assessment reports. They are labeled by the approximate

radiative forcing levels they produce by the end of the century (measured in W/m2). These

new RCP scenarios are better suited for calibration than the earlier SRES scenarios because
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Figure 3: GAUVAL’s response vis a vis Magicc’s response to the color coded radiative forcing
scenarios used in the latest IPCC assessment report. RCP 3 is the strongest stabilization scenario
and RCP 8.5 is a business as usual scenario. The Magicc model emulates the large scientific models
and is used in the IPCC’s assessment reports. GAUVAL matches Magicc’s temperature response
very well for the “moderate” warming scenarios and reasonably well for RCP 8.5. By courtesy of
R. Calel, the figure presents as well the corresponding temperature response of DICE 2013, PAGE
09, and FUND 3.9, all of which do worse as compared to GAUVAL. The scenarios RCP 4.5 to 3
and RCP 6 to 4.5 are scenarios switching from a higher to a lower forcing trajectory. They are not
part of the IPCC’s official scenario selection but useful to calibrate the model across a temperature
peak.

they are defined for longer time horizons (Moss et al. 2007). I use the Magicc6.0 model by

Meinshausen et al. (2011) to simulate the RCP scenarios over a time horizon of 500 years.

The model emulates the results of the large atmospheric ocean general circulation models

(AOGCMs) and is employed in the IPCC’s assessment report. DICE was calibrated to one

of the old SRES scenarios using an earlier version of Magicc. My calibration of GAUVAL

uses three ocean layers (upper, middle, and deep) as compared to Magicc’s 50 and DICE’s

single ocean layer(s).

Figure 3 shows the calibration results. The solid lines represent Maggic’s response to

the radiative forcing of the RCP scenarios, whereas the dashed lines represent GAUVAL’s

atmospheric temperature response. In addition to the original RCP scenarios, I include two

scenarios available in Magicc6.0 that initially follow a higher radiative forcing scenario and

then switch over to a lower scenario (RCP 4.5 to 3 and RCP6 to 4.5). These scenarios would

be particularly hard to fit in a model only tracing atmospheric temperature. The ability to

fit temperature dynamics across a peak is important for optimal policy analysis. GAUVAL’s

temperature model does an excellent job in reproducing Magicc’s temperature response for

the scenarios up to a radiative forcing of 6W/m2. It performs slightly worse for the high

business as usual scenario RCP8.5, but still well as compared to other IAMs.
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2.5 Uncertainty

Logarithmic utility provides a reasonable description of intertemporal substitutability. How-

ever, the assumption performs poorly in capturing risk attitude. The long-run risk litera-

ture estimates the coefficient of relative risk aversion of a representative household closer

to 10 than to unity (Vissing-Jørgensen & Attanasio 2003, Bansal & Yaron 2004, Bansal

et al. 2010, Chen et al. 2013, Bansal et al. 2012).8 Merely increasing the utility function’s

curvature would result in a much larger risk-free discount rate than observed in the markets

(risk-free rate puzzle). From a different perspective, the market rejects the assumption that

the intertemporal eslasticity of substitution fully determines risk attitude. This assump-

tion is built into the standard expected utility model and implies a form of risk neutrality

in intertemporal choice (Traeger 2014). I follow the asset pricing literature, an increasing

strand of macroeconomic literature, and some recent numeric approaches to climate change

assessment in using Epstein-Zin-Weil preferences to accommodate a realistic coefficient of

risk aversion, which I disentangle from the unit elasticity of intertemporal substitution.

The extension results in a Bellman equation with a non-linear risk aggregation

V (kt, τt,Mt,Rt, t) = max
xt,Nt

log ct +
β

α
log
(

Et exp
[
α
(
V (kt+1, τt+1,Mt+1,Rt+1, t)

)])

. (12)

Expectations Et are conditional on time t information. In general, consumption and next

period’s states are uncertain. The non-linear uncertainty aggregator is a generalized mean

f−1
Et f with f(·) = exp(α ·). A negative parameter α characterizes risk aversion in the

intertemporal sense, axiomatically defined as intrinsic risk aversion in Traeger (2014). The

limit α → 0 recovers the usual Bellman equation where risk aversion is merely generated by

aversion to intertemporal inequality. Appendix C explains the relation between equation (12)

and Epstein & Zin’s (1991) original formulation for this special case of an intertemporal

elasticity of substitution of unity. The coefficient of constant relative risk aversion in Epstein

& Zin’s (1991) definition of Arrow-Pratt risk aversion is RRA= 1−α∗ = 1− α
(1−β)

. The asset

pricing literature estimates RRA in the range [6, 9.5] corresponding to α ∈ [−1,−1.5]. Note

that Epstein-Zin preferences face the same issue as standard expected utility theory when

it comes to calibrating risk aversion in the small and in the large (Rabin 2000): calibrating

aversion on small bets requires higher degrees of risk aversion than seem reasonable for large

bets. In consequence, I use α = −1 for quantitative examples with high uncertainty and

α = −1.5 for quantitative examples with low uncertainty. Figure 5 in Appendix C illustrates

the corresponding risk aversion for a small and a large binary lottery. The analytic formulas

will make it easy for the reader to vary the degree of risk aversion for the quantitative results.

8Perhaps the lowest estimate is obtained combining the long-run risk model and the Barro-Riesz model,
still resulting in an estimated coefficient of relative risk aversion of 6.4 (Nakamura et al. 2013).
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3 Results from the Deterministic Model

The social cost of carbon (SCC) is the money-measured present value welfare loss from

emitting an additional ton of CO2. The economy in section 2.1 decentralizes in the usual

way and the Pigovian carbon tax is the SCC along the optional trajectory of the economy. In

the present model, the SCC is independent of the precise path of the economy and, thus, this

unique SCC is the optimal carbon tax. The present section discusses the interpretation and

quantification of its closed-form solution. It explores the social cost of global warming and

the social benefits of carbon sequestration. A proposition establishes that mass conservation

of CO2 makes the SCC highly sensitive to pure time preference (not to the consumption

discount rate in general).

3.1 The Price of Atmospheric Carbon

The social cost of carbon derives from equations (9-11) converted into money-measured

consumption equivalents (see Appendix B). The general formula and its monetary value for

2015 are

SCCt =
βYt

Mpre

ξ0
︸︷︷︸

2.2%
︸ ︷︷ ︸

25.5 $
tC

[
(1− βσ)−1

]

1,1
︸ ︷︷ ︸

1.4

σforc

︸︷︷︸

0.42

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

3.7

= 56.5 $/tC , (13)

where [·]1,1 denotes the first element of the inverted matrix in squared brackets. As em-

phasized by Golosov et al. (2014), the SCC is proportional to production Yt and increases

over time at the rate of economic growth. In the present formula, the ratio of production

to pre-industrial carbon emissions sets the units of the carbon tax. The concentration Mpre

comes into play because anthropogenic radiative forcing and, thus, temperature increase is

relative to the atmospheric saturation of CO2 that prevailed in pre-industrial times. The

discount factor β reflects a one period delay between temperature increase and production

impact. The damage parameter ξ0 represents the constant semi-elasticity of net production

to a transformed temperature increase, i.e., to an increase of τ1 = exp(ξ1T1). These terms

together would imply a carbon tax of 25.5$ per ton of carbon.

The subsequent terms paint a detailed picture of the climate dynamics. Appendix D

provides a simple illustrations for a two layer carbon and temperature system. I start with

an interpretation of the term [(1− βΦ)−1]1,1 expanding the expression in its Neumann series

(βΦ is a bounded operator):

Ψ ≡ (1− βΦ)−1 =
∑∞

i=0 β
iΦi .

The element [Φi]1,1 of the transition matrix characterizes how much of the carbon injected

into the atmosphere in the present remains in or returns to the atmospheric layer in pe-

riod i, after cycling through the different carbon reservoirs. E.g., [Φ2]1,1 =
∑

j Φ1,jΦj,1

12
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states the fraction of carbon leaving the atmosphere for layers j ∈ {1, ...,m} in the first time

step and arriving back to the atmosphere in the second time step. In summary, the term

[(1− βΦ)−1]1,1 characterizes in closed form the discounted sum of CO2 persisting in and re-

turning to the atmosphere in all future periods. Its quantification states that the persistence

of carbon increases the earlier value of 25.5$/tC by a factor of 3.7. Without warming delay

and the temperature’s atmosphere ocean interaction the carbon tax would be 95$/tC.

The terms [(1− βσ)−1]1,1 σ
forc capture the atmosphere-ocean temperature delay dynam-

ics. Analogously to the interpretation in the case of carbon, the expression [(1− βσ)−1]1,1
characterizes the generalized heat flow that enters, stays, and returns to the atmospheric

layer. Note that the simple closed-form expression in equation (13) captures an infinite

double-sum stating that an additional ton of carbon emissions today causes radiative forcing

in all future periods, and that the resulting radiative forcing in any given period causes

warming in all subsequent periods. The parameter σforc captures the speed at which atmo-

spheric temperature responds to radiative forcing. The response delay implied by its value

around 0.4 significantly reduces the SCC. However, at the same time, the ocean implied tem-

perature persistence increases the SCC by a factor of 1.4. Together, the ocean-atmosphere

temperature dynamics reduce the carbon tax to a factor of 0.6 and its value of 56.5 USD

per ton of carbon. Expressed in tons of CO2, this SCC accounts to 15.5 USD. At the gas

pump, it translates into 14 cent per gallon or 4 cent per liter. The (dashed) variation of the

damage function in Figure 2 implies a ±50% variation of the semi-elasticity ξ0 and, thus, the

SCC. Ignoring the transitory atmosphere-ocean temperature dynamics calibrated in Figure

3 would overestimate the carbon tax by 70%. Ignoring carbon persistence would result in a

carbon tax that is only 27% of its actual value.

Embedded in equation (13) is the social cost of a marginal temperature increase (SCT)

in degree Celsius

SCT = xY ξ0
[
(1− βσ)−1

]

1,1
ξ1 exp(ξ1Tt).

Unlike the SCC and the transformed temperature state’s shadow value, the cost of a marginal

temperature increase in degree Celsius depends on the prevailing temperature level. This

observation reflects the convexity of damages in temperature. Integrating the shadow value

of a temperature increase from pre-industrial to present temperature levels yields the welfare

cost of the present temperature increase

∆W Temp
USD 2015(T ≈ 0.77C) = Y ξ0

[
(1− βσ)−1

]

1,1
(exp(ξ1T )− 1) ≈ $5 trillion ,

or 6% of world output. What does this number summarize? It is larger than the 0.43%

of immediate output loss per period characterized by the damage function and depicted in

Figure 2. It is smaller than the present value welfare loss of keeping temperatures perpetually

at a 0.77 C temperature increase, which amounts to 27% of world output. The number

captures the welfare loss induced by present atmospheric warming, assuming that the planet
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would return to its pre-industrial equilibrium with the delay captured by the heat transfer

matrix σ. The number neglects that we have already warmed the oceans and that warming

is caused by persistent CO2 emissions that will keep radiative forcing above the pre-industrial

level. The social cost of the present atmospheric CO2 increase is

∆WCO2

USD 2015(M1 ≈ 397ppm) = SCC (M −Mpre) ≈ $14 trillion ,

or 17% of world output. This number reflects the damage already in the pipeline from

present atmospheric CO2. It does not include the CO2 increase in the oceans or the non-

CO2 greenhouse gases, and the damage is additional to the above cited social cost of the

temperature increase that already took place.

A much discussed geoengineering “solution” to climate change sequesters carbon into

the oceans. E.g., engineers are currently exploring mechanisms to extract CO2 from the

exhaustion pipes of coal power plants, planning to pump it into the deep ocean. Pumping

the CO2 into layer i, instead of emitting into the atmosphere, results in the welfare gain

∆W seq = ϕM,i − ϕM,1 =
βϕτ,1σ

forc

Mpre

([
(1− βΦ)−1

]

1,i
−
[
(1− βΦ)−1

]

1,1

)

. (14)

The bracket on the right hand side captures the (discounted and aggregated) difference in the

amount of carbon prevailing in the atmosphere over time when an emission unit is injected

into layer i instead of the atmosphere.9 The shadow value difference in equation (14) will

reappear in several settings of carbon cycle uncertainty. GAUVAL evaluates this welfare

gain from pumping a ton of carbon into the upper ocean layer to 57− 16 = 41 USD, and to

almost the full 57 when pumping the carbon into the deep ocean.10 Appendix D.3 illustrates

equation (14) for a two layer carbon cycle and discusses more generally the relation between

carbon prices in different reservoirs.

3.2 The Optimal Carbon Tax: A Declaration of Independence

In general, the optimal carbon tax is the SCC along the optimal emission trajectory. The

SCC in equation (13) is independent of the absolute stock of carbon in the atmosphere. In

consequence, the SCC in GAUVAL is independent of the future emission trajectory, and

9This intuition is more easily observed using the Neumann series for the expression: ∆W seq =
βϕτ,1σ

up
1

Mpre

(

β [Φ1,i −Φ1,1] +
∑

∞

n=2

∑

j,l(β)
n
Φ1,j

(
Φ

n−2
)

j,l
[Φl,i −Φl,1]

)

. The first term in the brackets cap-

tures the difference between carbon flow from the ocean into the atmosphere Φ1,i and the persistence of
carbon in the atmosphere Φ1,1. The second term captures the fraction of carbon reaching the atmosphere
after n periods if the carbon initially enters ocean layer i as opposed to entering the atmosphere directly
(read right to left). The matrix entry (Φn−2)j,l captures the overall carbon flow and persistence from layer
l to j after n − 2 periods. It approaches the stationary distribution given by its (right) eigenvectors (in all
columns).

10Note that the present damage function does not explicitly model damages from ocean acidification. A
follow-up paper will focus on modeling individual damage channels in more detail.
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the SCC directly specifies the optimal carbon tax. This finding already prevails in Golosov

et al. (2014). It raises a certain degree of discomfort: our optimal effort to reduce a ton of

carbon is independent of whether we are in a world of high or low carbon concentrations,

and independent of whether we are in a world of high or low prevailing temperatures. The

discomfort only increases when we learn that a fraction of any emitted ton of carbon stays up

in the atmosphere for at least thousands of years. A common argument governing climate

change action is: if we delay mitigation today, we have to do even more tomorrow. The

model tells us: if we delay policy today, we have to live with the consequences, but we do

not have to compensate in our future mitigation effort.

The idea of mitigating more at higher levels of atmospheric CO2 is based on the con-

vexity of damages in global temperature increase. Figure 2 shows that GAUVAL has such

a convex damage function, yet, optimal mitigation does not increase in the prevailing CO2

concentration. The reason lies in the radiative forcing equation (4): the higher the CO2

concentration, the less does an additional ton of emissions contribute to further forcing and,

thus, warming. The precise physics of the underlying logarithm is slightly more compli-

cated, but a simple intuition is as follows. CO2 traps (absorbs) a certain spectrum of the

wavelength that our planets radiates out into space, thereby warming the planet. If there

is already a high concentration of CO2 in the atmosphere, most of the energy leaving the

planet in this wavelength is already trapped. As a consequence, an additional unit of CO2

emissions has a much lower warming impact than the first unit of anthropogenic emissions.

GAUVAL models explicitly the implicit assumptions of Golosov et al. (2014) and Gerlagh &

Liski (2012) that the convexity of the damage curve and the concavity of the radiative forcing

equation “cancel” each other. In contrast to the earlier papers, GAUVAL directly employs

the carbon cycle of one of the most wide-spread integrated assessment models, explicitly

uses the physical radiative forcing equation, and matches the forcing induced temperature

dynamics better than most integrated assessment models. I conclude that the finding might

be uncomfortable, but not unreasonable.

In addition, the optimal mitigation policy does not depend on the prevailing temperature

level, despite higher temperatures causing higher marginal damages. The reason is that the

long-term equilibrium temperature is determined entirely by the GHG concentrations, and

a higher temperature level at a given CO2 concentration implies less warming in the future.

GAUVAL shows that this finding prevails in a model that nicely replicates the temperature

dynamics of state of the art climate models (Figure 3). These findings connects immediately

to the debate on the slope of the marginal damage curve in the “taxes versus quantities”

literature (Weitzman 1974, Hoel & Karp 2002, Newell & Pizer 2003). GAUVAL states

that the social damage curve for CO2 emissions is flat. In consequence, taxes not only

minimize the welfare cost under technological uncertainty and asymmetric information as

compared to a cap and trade system, but they even eliminate these welfare costs. The

marginal damage curve would gain a non-trivial slope if the model was to depart from the
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assumption of an intertemporal elasticity of substitution of unity. Deterministic estimates

usually suggest values smaller than unity. However, the long-run risk literature forcefully

argues for an intertemporal elasticity of substitution larger than unity (and disentangled

from risk attitude). The logarithmic middle ground stays reasonable. In particular, it is just

as easy to argue for a slightly falling marginal damage curve as it is to argue for a slightly

increasing marginal damage curve.11

3.3 Discounting and Mass Conservation

Optimal economic policy implies that we have to live with the consequences of historic

overindulgence in carbon because our mitigation effort is independent of past emissions.

What makes it worse: carbon does not decay. Carbon only cycles through the different

reservoirs; the fact that some of it eventually turns into limestone is negligible for human

planning horizons. A model comparison of scientific carbon cycle models found that on

average 18% of a 100Gt emission pulse, approximately 10 years of present emissions, still

remain in the atmosphere after 3000 years (Joos et al. 2013). In DICE 2013’s carbon cycle

adopted here, 6% of an anthropogenic emission unit stays in the atmosphere forever.12

This implication of mass conservation of carbon has an immediate and important impact

on the optimal carbon tax.

Proposition 2 A carbon cycle (equation 3) satisfying mass conservation of carbon implies

a factor (1− β)−1, approximately proportional to 1
ρ
, in the closed-form solution of the SCC

(equation 13).

In particular, the SCC approaches infinity as the rate of pure time preference approaches

zero.13 The proof runs as follows. Mass conservation of carbon implies that the columns of Φ

add to unity. In consequence, the vector with unit entry in all dimensions is a left and, thus,

right eigenvector. The corresponding eigenvalue is one and the determinant of 1 − βΦ has

the root 1 − β. It follows from Cramer’s rule (or as an application of the Cayley-Hamilton

theorem) that the entries of the matrix (1− βΦ)−1 are proportional to (1− β)−1.

I briefly point out how the result changes if I had not normalized population to unity. I

assume that the social welfare function is population weighted per capita consumption and

that population grows at the factor G = exp(g). Then, the root and the factor in equation

11The marginal damage curve would also be negatively sloped if the damage function was less convex
resembling more closely that of the DICE model. The intuition is that the logarithm in the radiative forcing
equation is very strong, and that the underlying saturation in the CO2 absorption spectrum can outweigh
the damage convexity.

12The maximal eigenvalue of the transition matrix Φ is unity. The corresponding eigenvector governs the
long-run distribution as the transitions corresponding to all other eigenvectors are damped. I obtain the
0.06 as the first entry of the corresponding eigenvector.

13The present objective function and the dynamic programming equation are not well-defined in the limit
of a zero rate of pure time preference. However, the statement holds in that for any n ∈ N there exists a
strictly positive pure rate of time preference ρ such that SCC(ρ) > N .
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(13) change to (1 − βG)−1 ≈ 1
ρ−g

. The SCC becomes even more sensitive to the rate of

pure time preference.14 Note that, in contrast to the SCC, the temperature’s shadow value

does not have a root (1− β)−1. The matrix σ does not have a unit eigenvalue because the

planet exchanges heat with outer space.15 The long-run temperature responds to changes of

radiative forcing without hysteresis, i.e., without path dependence. Appendix D.1 illustrates

Proposition 2 for a two-layer carbon cycle, and the absence of such sensitivity for a two-

layer atmosphere-ocean temperature system. It also shows how a frequently used decay

approximation of the carbon cycle misses the sensitivity to pure time preference.

It is well-known that the consumption discount rate plays a crucial role in valuing long-run

impacts. The present finding is different. GAUVAL’s damages are proportional to economic

output, and the economic impact of climate change grows with output. Given the logarithmic

utility specification, the usual consumption discount rate argument does not apply: economic

growth does not effect the SCC. Yet, the SCC is extremely sensitive to the rate of pure time

preference. It is a widely held believe in the integrated assessment community that it is

of little importance how we calibrate the constituents of the consumption discount rate, as

long as pure time preference and the growth-based component add up to the same overall

consumption discount rate (Nordhaus 2007). The present finding fleshes out the shortcoming

of this consumption discount rate based reasoning.

Illustrating the SCC’s sensitivity to pure time preference, I reduce the investment-rate-

implied annual rate ρ = 1.75% to a value of ρ = 1%. The SCC increases to 93 USD per

ton C or 25.5 USD per ton CO2. Further reducing the rate of pure time preference to the

value of ρ = 0.1% employed in the Stern (2008) Review results in an optimal carbon tax of

660 USD per ton C and 180 USD per ton CO2. The Stern Review justified its low pick of

the rate of pure time preference by normative reasoning, market failure, and a dual role of

individuals who might behave differently on the market as compared to large-picture policy

decisions (Hepburn 2006).

Schneider et al. (2013) show in a continuous time overlapping generations model how the

common infinitely-lived-agent based calibration of IAMs overestimates time preference under

limited altruism. In addition, the present model, like other IAMs, does not explicitly model

the actual portfolio of risky investments and, yet, calibrates to overall investment and the

Ramsey equation. In an asset pricing context, Bansal et al. (2012) calibrate the pure rate

of time preference to ρ = 0.11% carefully disentangling risk attitude and risk premia from

consumption smoothing and the risk-free discount rate. Their model explains observed asset

prices significantly better than any asset pricing approach based on the standard economic

14The intuition is that population weighted per-capita consumption puts additional weight on future
generations that are more numerous, acting as a reduction of time preference. As is well-known, the value
function no longer converges as ρ → g.

15Temperature is an intensive quantity and a conservation of “heat” would imply that the rows of the
matrix σ added to unity. However, the atmospheric layer constantly exchanges heat with outer space.
Formally, the subtraction of σforc which implies that the first row of the matrix σ does not add to unity,
implying that the largest eigenvalue of the matrix is smaller than unity and historic influences are damped.
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model with higher time preference. Traeger (2012a) shows how uncertainty-based discounting

of an agent whose risk aversion does not coincide with her consumption smoothing preference

(falsely) manifests as pure time preference in the economic standard model, and he discusses

some implications for climate change evaluation. Disentangling the different contributions

to the SCC for the ρ = 0.1% case delivers

SCCt =
βYt

Mpre

ξ0
︸︷︷︸

2.2%
︸ ︷︷ ︸

✟✟✟26 $
tC

30 $
tC

[
(1− βσ)−1

]

1,1
︸ ︷︷ ︸

✟✟1.4 2

σforc

︸︷︷︸

0.42

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

✟✟3.7 26

=✟✟❍❍57660
$

tC
.

The large part of the increase, a factor 7, arises from the carbon cycle’s contribution.

4 Carbon Cycle Uncertainty, Learning, and Welfare

This section analyzes the welfare implications of uncertainty governing the carbon cycle. I

present simple formulas quantifying the welfare impact and the value of uncertainty reduc-

tion. First, I model uncertainty as a sequence of persistent shocks drawn from an arbitrary

distribution (vector autoregressive model). Second, I present a Bayesian model incorporating

the anticipation of learning.

4.1 Carbon Sink Uncertainty

Over 10% of the annual flow of anthropogenic carbon emissions leave the atmosphere into

an unidentified sink. These missing 1Gt+ in the carbon budget are over twice the weight

of all humans walking the planet. Current research is not conclusive, but a likely candidate

for at least part of the “missing sink” are boreal or tropical forests. The limitations in un-

derstanding the carbon flows and whether the uptake of the missing sink is permanent or

temporary implies major uncertainties in predicting future carbon dynamics. The scientific

community and governments invest significant sums into the reduction of these uncertain-

ties, including the launching of satellites and new supercomputing facilities. GAUVAL can

produce a simple estimate of the welfare costs of these uncertainties and serve as a formal

model for quantifying the benefits of uncertainty reduction.

A useful approximation of the carbon cycle uncertainty adds a stochastic flow between

the atmosphere and other layers. I modify the carbon cycle’s equation of motion (3) to the

form

Mt+1 = ΦMt + (ǫt,−ǫt, 0, ..., 0)
⊤ + e1(

∑Id

i=1 Ei,t + Eexo
t ) , (15)

where ǫt, t ∈ {0, ...,∞} is a sequence of random variables and ǫ0 has a zero mean. Using

DICE 2013’s three-layer carbon cycle, the random variable ǫt captures the uncertainty in
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the carbon flow between the atmosphere and the joint upper ocean and biosphere carbon

reservoir.

I suggest two conceptually different ways to think about the uncertainty. In the first

interpretation, we are merely worried about changes in the carbon flows over time that

cannot be predicted with certainty. A small persistent shock to ǫ moves the carbon flow,

either increasing or decreasing the sink uptake. Over time, these shocks accumulate and

so does the uncertainty in forecasting future carbon levels, temperatures, and economic

damages. In the second interpretation, the physical carbon flows are merely unknown to the

scientists, but over time scientists expect to learn the carbon flows, making the system more

predictable. I will treat these two cases in the subsequent two sections and compare their

economic implications.

The underlying model comparison study is subject to common bias and short-comings,

and this standard deviation is best interpreted as a lower bound of actual uncertainty.

4.2 Vector Autoregressive (VAR) Uncertainty

I assume a VAR(1) process to model persistent shocks that change the carbon flows in an

unpredicted way

ǫt+1 = γǫt + χt, (16)

where γ ≤ 1 and the sequence χt,t∈{0,...,∞} is independently distributed (and ǫ0 = 0). I

calibrate persistence based on the model comparison study by Joos et al. (2013) to γ = 0.997.

The new shadow value ϕǫ of the persistent random variable in the carbon cycle is

ϕǫ =
β

1− γβ
[ϕM1

− ϕM2
] . (17)

The higher the persistence γ, and the larger the shadow value difference between carbon in

the two reservoirs, the larger is the welfare cost of a carbon cycle shock ǫt. Appendix E.1

derives the general welfare difference between the deterministic and the uncertain scenario.

Here, I focus on a sequence of identically distributed shocks χt implying the welfare cost of

uncertainty

∆W V AR,iid =
β

α(1− β)
log
[
E exp

[
αϕǫχ

]]
=

β

α(1− β)

∞∑

i=1

κi

(αϕǫ)
i

i!
. (18)

The first expression for the welfare loss involves the cumulant generating function (cgf)

Gχ(z) = log [E exp(zχ)] of the random variable χ. The cgf is the logarithm of the moment

generating function. The welfare loss from carbon cycle uncertainty is the shock’s cg f

evaluated at the product of the persistent flow’s shadow value ϕǫ and the risk aversion

parameter α. The factor 1
1−β

reflects the infinite sum over future shocks, and the factor β

reflects the one period delay between the shock and its welfare impact.
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The second expression for the welfare loss expands the function in terms of the random

variable’s cumulants κi, i ∈ N. The first cumulant is the expected value of χ. In the present

case where κ1 = Eχ = 0, the second cumulant is the shock’s variance and the third cumulant

is the third central moment specifying skewness. The higher order cumulants do not coincide

exactly with the central moments, but relate closely. An advantage of cumulants as compared

to central moments is that they are additive for independent random variables and cumulant

i is homogenous of degree i under scalar multiplication (cumulant i of λχ is λiκi).

The welfare loss is the sum of the stochastic shock’s cumulants, each weighted with the

flow’s shadow value taken to the power of the cumulant’s order. The expected value is valued

independently of risk aversion, the variance proportional to risk aversion, and skewness

proportional to risk aversion squared. This basic structure for evaluating the welfare loss

of different uncertainties will reappear for all uncertainties. For most distributions, the

cumulant (or the moment) generating functions are tabled and the closed-form solution

for the welfare loss follows directly. Alternatively, section 5.2 embraces numeric scientific

estimates of temperature uncertainty and employs the cumulant expansion to evaluate the

welfare loss.

In the case of a mean-zero normally distributed iid shock χ ∼ N(0, σ2
χ) only the second

cumulant κ2 = σ2
χ differs from zero, and the welfare impact is

∆W V AR,normal =
αβ

1− β
ϕ2
ǫ

σ2
χ

2
=

αβ

1− β

( β

1− γβ

)2

(ϕM1
− ϕM2

)2
σ2
χ

2
. (19)

This welfare loss is proportional to the square of the shadow value ϕǫ and, thus, proportional

to the squared difference between the shadow values of carbon in the different reservoirs and

proportional to the squared inverse of 1− γβ. This latter term makes the welfare loss from

an individual shock approach infinity as both persistence and discount factor approach unity.

For high persistence, this term makes the welfare loss highly sensitive to pure time preference.

For an independently distributed shock, where γ = 0, the welfare loss is not sensitive to time

preference. Recall that the disentangled Arrow-Pratt risk aversion parameter is α
1−β

. Hence,

this term does not change with time preference when keeping Arrow-Pratt risk aversion

constant.

4.3 Bayesian Uncertainty and Anticipated Learning

This section replaces the simple VAR(1) uncertainty by a Bayesian model, capturing the

decision maker’s subjective uncertainty as well as her anticipation of learning over time.

Closely related Bayesian learning models have first been used in integrated assessment of

climate change by Kelly & Kolstad (1999) in a numeric application to climate sensitivity

uncertainty and by Karp & Zhang (2006) in a stylized semi-analytic application to damage

uncertainty. The uncertain carbon flow ǫt is now governed by a subjective prior, which I
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assume to be normally distributed with unknown mean but known variance

ǫt ∼ N(µǫ,t, σ
2
ǫ,t) , µǫ,0 = 0.

In addition, the equations of motion are subject to an objective stochastic shock νt ∼

N(0, σ2
ν,t), which can also be interpreted as measurement error. This stochasticity prevents

the decision maker from learning the prior’s mean from a single observation. The new equa-

tion of motion for the atmospheric and the biosphere-and-upper-ocean carbon reservoirs take

the form

M1,t+1 = (ΦMt)1 +
∑Id

i=1 Ei,t + Eexo
t + ǫt + νt, (20)

M2,t+1 = (ΦMt)2 − ǫt − νt. (21)

I will model the learning process based on atmospheric carbon observation.16 Rearranging

equation (20), the decision maker derives information on ǫt from the realizations

ǫ̂t = M1,t+1 − (ΦMt)1 −
∑Id

i=1 Ei,t − Eexo
t − νt .

Recently, three satellites were launched to reduce the carbon flow measurement errors νt,

one of whom dropped straight into the Artic sea. But learning is not limited to future

observation. Given the availability of historic data, learning also takes place through the

advances in fundamental scientific knowledge and supercomputing. Thus, I interpret νt
merely as a parameter determining the speed of learning.

The equations of motion for the Bayesian prior’s mean and variance are

µǫ,t+1 =
σ2
ǫ,tǫ̂t + σ2

ν,tµǫ,t

σ2
ǫ,t+σ2

ν,t

and σ2
ǫ,t+1 =

σ2
ν,tσ

2
ǫ,t

σ2
ν,t + σ2

ǫ,t

. (22)

This standard Bayesian updating equation characterizes the posterier mean as a weighted

average of the new observation and its prior mean. The weight of the new observation

is inversely proportional to the variance of the measurement error (or proportional to its

precision). The weight on the prior’s mean is inversely proportional to its variance. The

variance of the carbon cycle uncertainty in this Bayesian learning model falls exogenously

over time. The smaller the ratio of stochasticity to overall uncertainty
σ2
ν,t

σ2
ν,t+σ2

ǫ,t
, the faster

the learning.

The new shadow value ϕµ of a mean carbon transfer shift is

ϕµ =
β

1− β
[ϕM1

− ϕM2
] . (23)

16In principle, the decision-maker could simultaneously learn from observing the carbon concentration in
the combined biosphere and upper ocean reservoir. However, as I explained earlier, measurement errors
in the non-atmospheric carbon reservoir are so much larger that an observation-based learning model can
comfortably ignore these additional measurements.
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This shadow value coincides with the shadow value of a perfectly persistent shock (equa-

tion 17). The welfare cost of epistemological uncertainty in the Bayesian setting is (see

Appendix E.1)

∆WBayes =
∑∞

t=0 β
t+1 σ

2
ǫ,t+σ2

ν,t

2
α (ϕM1

−ϕM2
)2
(

1
1−β

)2( σ2
ǫ,t

σ2
ν,t+σ2

ǫ,t
+ (1−β)

σ2
ν,t

σ2
ν,t+σ2

ǫ,t

)2

︸ ︷︷ ︸

≡Ωt

. (24)

As in the case of a normally distributed persistent shock, the welfare loss is proportional to

the squared difference of the shadow values of carbon in the atmosphere and the biosphere-

ocean sink. However, the loss is now composed of two distinct contributions. The first arises

from the epistemological uncertainty prevailing already in the current period (equations of

motion 20 and 21). The second arises from the “updating shock” to the prior’s mean in

equation (22), which has a similar effect as the persistent shock to ǫt in the earlier setting,

and whose effect is proportional to ϕµ. These two contributions combine in the weighted

mean Ωt (see Appendix E.1). The relevant variance in the case of learning is the prior’s

variance plus the variance of the periodic shock (σ2
ǫ,t+σ2

ν,t). The prior’s variance is declining

as the decision maker improves her estimate of the true carbon flows.

Ignoring the time dependence of the variances for a moment, the infinite sum becomes
αβ

1−β
( 1
1−β

)2 (ϕM1
−ϕM2

)2
σ2
ν,t+σ2

ǫ,t

2
Ωt, closely resembling equation (19) for the persistent shock.

The two differences are, first, the absence of the persistence parameter γ in the denominator

and of the discount factor β in the numerator of the factor ( 1✁❆β
1−✁❆γβ

)2 and, second, the new term

Ωt. The first change evokes the impression that the case of Bayesian learning corresponds

to a scenario of fully persistent shocks (γ = 1). Indeed, this difference amplifies the early

contributions of the infinite sum in equation (24) and makes them even more sensitive to

pure time preference (approximately proportional to 1
ρ2
). In addition, epistemological uncer-

tainty affects carbon flows without delay eliminating the discount factor in the numerator.

However, in the long-run, the second change introduced by Ωt more than offsets this appar-

ent persistence. The term is a weighted mean of unity and 1 − β. Initially, the variance of

the prior σ2
ǫ,t dominates, and Ω ≈ 1. Over time, the decision maker learns the subjectively

uncertain part of the carbon flow uncertainty. As σ2
ǫ,t falls, the weight on the term (1 − β)

increases and Ω → (1 − β)2, offsetting the term ( 1
1−β

)2. As the decision maker learns the

subjective distribution of ǫt, the remaining uncertainty of the shock σ2
ν,i is independently

distributed. The welfare loss of independent shocks is small and not sensitive to pure time

preference.

4.4 Quantifying the Welfare Impact of Carbon Cycle Uncertainty

This section derives a quantitative estimate of the welfare loss from carbon cycle uncertainty

and the willingness to pay for uncertainty reduction. The uncertainty calibration is based on

a business as usual scenario. Joos et al. (2013) subject 18 different carbon cycle models to a
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Figure 4: The graph on the left shows the evolution of atmospheric carbon for the DICE 2013
business as usual emission scenario. Decadal shocks with standard deviation of σχ = 20 Gt per
decade change the flow between the atmosphere and the carbon sinks with a persistence of γM =
0.997 calibrated to carbon cycle comparison study be Joos et al.’s (2013). The deterministic DICE
evolution (5 year time steps, “Data”), the deterministic GAUVAL evolution (10 year time steps),
and the mean and the median of 1000 uncertain trajectories are hardly distinguishable. The right
graph depicts the willingness to pay for a 1Gt uncertainty reduction. In the Bayesian learning
case, the reduction is in the measurement error, increasing the speed of learning. In the case of the
vector autoregressive shock model (“VAR”), the willingness to pay is based on a physical reduction
of carbon flow stochasticity, e.g., as a co-benefit of emission reductions.

100Gt and 5000Gt carbon pulse and track their responses for up to 3000 years. The larger

shock corresponds to 500 years of present day emissions and it implies a medium run (100-

1000 years) cross-model standard deviation of atmospheric carbon of approximately 500Gt.

The underlying model comparison study is subject to common bias and short-comings, and

this standard deviation is best interpreted as a lower bound of actual uncertainty. In the VAR

model, Joos et al.’s (2013) simulations suggest a persistence in equation (19) of γ = 0.997,

i.e., highly intertemporally correlated uncertainty governing the flow of carbon between the

atmosphere and the sinks. All carbon cycle uncertainty scenarios employ a risk aversion

coefficient of α = −1.5 (see Appendix C).

For the auto-regressive shock scenario of section 4.2, I assume a standard deviation of

the decadal shock of σχ = 20 Gt per decade, which builds up into the 500 Gt standard

deviation suggested by Joos et al. (2013) around the year 2300. Figure 4, left panel, evalu-

ates the resulting carbon concentration along the business as usual scenario of DICE 2013.

Appendix E.2 discusses variations. This uncertainty translates into a welfare loss of 110

billion USD. For the case of epistemological uncertainty, I assume that the Bayesian prior

has a standard deviation of σǫ,0 = 20Gt (per decade), and that the “measurement error” is

σν = 10Gt (corresponding approximately to the missing carbon). This combination of prior

and measurement error implies a remaining epistemological uncertainty of 4.4Gt after 50

years and of 2.6Gt per decade after 150 years. The resulting welfare loss from carbon cycle

uncertainty in this Bayesian learning scenario is approximately 29 billion USD. It is most

sensitive to the initial prior. Lowering initial uncertainty to σǫ,0 = 10Gt lowers the welfare
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loss to 9 billion USD. To obtain a welfare loss of 110 billion USD as in the case of the VAR

shocks, I would have to raise initial uncertainty of the prior to a 40Gt standard deviation.

For a comparison of magnitude, the annual NASA budget is about 20 billion USD.

In the case of an annual rate of pure time preference of ρ = 0.1 the uncertainty contribu-

tions increase to 2 trillion USD in the case of VAR shocks and to 60 trillion USD, or 73% of

world output, in the case of Bayesian learning. The significantly higher sensitivity to pure

time preference in the case of Bayesian learning reflects the permanent impact that learning

has in the initial periods and which acts like a fully persistent VAR shock (see section 4.3).

It is fair to conclude that the absolute welfare costs from uncertainty over the carbon flows

are small to moderate as compared to the deterministic contributions discussed in section 3.

The reason is the increasing satiation of the wave spectrum in CO2’s absorption spectrum

which implies a logarithmic relation between CO2 concentrations and warming. This loga-

rithm eliminates the convexity arising from damages and logarithmic utility. The remaining

welfare costs are born directly from risk aversion.

Figure 4, right panel, states the willingness to pay for a 1Gt reduction of the decadal

standard deviation as a function of pure time preference. In the case of the VAR model,

the uncertainty reduction lowers the physical stochasticity of the carbon flows (σχ = 10Gt→

9Gt).17 In the case of the Bayesian model, the uncertainty reduction lowers the measurement

error and increases the speed of learning (σν = 10Gt→ 9Gt). The figure compares the welfare

gain from better measurement and faster learning to the costs of a common satellite (∼150

million USD), NASA’s Orbiting Carbon Observatory (∼ 280 million), and the National

Center for Atmospheric Research’s recent supercomputer (∼ 70 million). For the standard

calibration of the time preference these (American) investments are worth the (global) welfare

gain. For an annual rate of time preference around 3% even the global welfare gain might

no longer outweigh their costs in GAUVAL.18 In contrast, following a normatively or long-

run risk founded rate around ρ = 0.1% increases the willingness to pay for a decadal 1Gt

stochasticity reduction to approximately 110 billion USD, the same amount as the complete

risk elimination in the VAR shock scenario for the standard time preference calibration.

5 Temperature Uncertainty

So far, I have assumed that a doubling of the CO2 concentrations from its pre-industrial

concentration of 280 ppm to 560 ppm yields a long-term temperature increase of 3C. At

present, CO2 levels are up to almost 400 ppm. Including the CO2 equivalent forcing of

17Reducing the carbon flow’s decadal standard deviation σχ by 1 Gt reduces the welfare loss by the fraction

2
σχ

+ 1
σ2
χ
. The formula solves x =

∆WV AR,normal
σχ

−∆W
V AR,normal
σχ−1

∆W
V AR,normal
σχ

for x. The graph is only visible in the upper

right corner: the payoff of the physical stochastic shock reduction is much more valuable than a reduction
of measurement error that accelerates learning.

18NASA’s Orbiting Carbon Observatory is the investment closest to a direct reduction of measurement
error to improve learning. Slowly coming out of its calibration phase, the ultimate precision is still unclear.
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other GHGs the level is already close to 480 ppm and 70% of the way toward doubling pre-

industrial concentrations. The implied 3C equilibrium warming is little more than a best

guess. The value depends on a set of uncertain feedback processes that either increase or

decrease the initial warming. For example, higher temperatures imply more evaporation,

and water vapor itself is a powerful GHG. The value of 3C was cited as the best guess in the

first four IPCC assessment reports. The latest report deleted this best guess and only cites

a likely range of 1.5-4.5C (IPCC 2013).

The present section discusses the basics of temperature uncertainty. I explain why the

normal-normal learning model would not be reasonable in the case of temperature uncer-

tainty and construct and alternative model that comprises epistemological uncertainty as

well as persistent shocks. I quantify a lower bound for the welfare loss from uncertainty over

the temperature response to a given CO2 concentration.

5.1 On Weighty Tails

Meinshausen et al. (2009) collect 20 estimates of the probability distributions governing

the temperature increase from a doubling of the CO2 concentration, the so-called climate

sensitivity. These estimates derive from different groups and use a variety of methodological

approaches. My evaluation of temperature uncertainty will rely on the average distribution

assigning equal weight to each approach. I refer to Appendix F.2 and, in particular, Figure

7 for details. The support of these distributions spans from no warming to a 10C warming.

A warming above 10C is possibly but the probabilistic estimates are conditional on not

exceeding 10C for a doubling of pre-industrial CO2 concentrations.

The climate sensitivity distribution governing global warming is positively skewed, i.e.,

it exhibits a pronounced right tail. In addition, the equations of motion are exponential in

temperature (linear in τ1 = exp(ξ1T1)). Thus, even a normal distribution of temperature can

translate into a log-normal distribution in the linear equations of motion. By section 4.2,

the resulting welfare loss is proportional to the cumulant generating function. The cumulant

generating function of the log-normal distribution is infinite. Hence, I can easily set up a

model that delivers an infinite welfare loss from climate sensitivity uncertainty. This result

takes Weitzman’s (2009) “dismal theorem” and Millner’s (2013) extension from their sylized

frameworks into a full-fledged and well-calibrated integrated assessment model. Here, even

the thin-tailed normal distribution as opposed to the fat-tailed prior in Weitzman (2009)

can blow up the welfare loss through its translation into economic damages.19 The present

result is particularly interesting in the context of Kelly & Tan (2013), who show that fat

tails should also imply a relatively quick learning with major updates that have not been

19Figure 2 shows that for temperature increases up to 12C GAUVAL’s base case damage specification
delivers damages lower than DICE. More than that, the “dismal result” holds for any ξ0 > 0, implying that
I can make damages at any given temperature level arbitrarily small and still find an infinite welfare loss
from temperature uncertainty.
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observed in the past.

The “dismal results” rely on the extrapolation of different functional forms that nicely

capture our best guess of what happens at moderate degrees of warming. However, no eco-

nomic model to date has incorporated a reasonable quantitative characterization of what

happens to life and welfare on planet Earth for a 20C or 30C global temperature increase.

Should we concluded that we commit all of our economic resources to fighting global warm-

ing? No.20 It is already daring to evaluate damages from a warming of up to perhaps 10-20C

with state of the art integrated assessment models. To evaluate even higher temperature

and damage scenarios, we should not rely on the extrapolation of functional forms, but build

a separate model aiming directly at the quantification of scenarios that lie far from experi-

ence and even imagination. What either version of the “dismal theorem” can do is to raise

awareness about the importance of integrating uncertainty into climate change assessments.

What GAUVAL can do is estimate a lower bound of the welfare loss from uncertainty given

a warming range for which damages and temperature dynamics seem somewhat reasonable.

5.2 A VAR Model with Epistemological Uncertainty

A model of temperature uncertainty has to incorporate an epistemological uncertainty com-

ponent. Epistemological uncertainty is characterized by endogenous informational states.

Usually, the informational states are a small set of parameters that uniquely pin down the

distributions of a given class. In the present context of a linear-in-state system, the equations

of motion have to be linear in (suitable transformations of) the endogenous informational

states. Analytically tractable Bayesian learning models rely on distributional assumptions

that ensure that the posterior lies in the same distributional class as the prior (conjugate

prior model). The only Bayesian (conjugate prior) model compatible with the linear in state

model seems to be the normal-normal learning model that I employed in section 4.3.

For temperature uncertainty, I cannot reasonably assume a normal distribution.21 In

consequence, I introduce a combined epistemological and vector autoregressive shock model

of uncertainty that disposes of the straight-jacket imposed by a normal distribution at the

expense of no longer being strictly Bayesian. Instead of relying on a particular class of prob-

ability distributions whose (endogenous) parameters enter the equations of motion linearly,

I characterize an arbitrary probability distribution through its (countably infinite) sequence

20Also technically, the result hinges on a crucial assumption that makes it inadequate for the evaluation
of high temperature tails. Representations of rational preferences by expected utility, including the present
representation, require bounded utility functions or alternative assumptions with similar consequences (von
Neumann & Morgenstern 1944, Kreps 1988). The “dismal result” depends crucially on not meeting this
rationality assumption when the damage distribution approaches full output loss with high density.

21A normal on temperature in degree Celsius would ignore positive skewness and, yet, the tails far outside
of what I can reasonably calibrate would drive the results. See discussion in previous section for details. A
normal on transformed temperature τ1 would assign significant weight to large negative values of the actual
atmospheric temperature increase T1.
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of cumulants. This approach allows me later to employ the particular numeric distribution

derived in the scientific literature for a quantitative estimate of the welfare impact.

I represent uncertainty governing the temperature’s equation of motion as a random

contribution ǫτt to incremental warming, changing equation (7) to the form

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 + ǫτt e1 . (25)

The random variable ǫτt captures both epistemological uncertainty as well as stochastic

changes. I characterize a general distribution of ǫτt by its cumulants κi,t, i ∈ N. Initial

epistemological uncertainty is given by κi,0, i ∈ N, and the cumulants follow the equations

of motion

κi,t+1 = γiκi,t + χτ
i,t , (26)

0 ≤ γ ≤ 1, for all i ∈ N. The special case where κi = 0 for i > 2 relates closely to the

Bayesian learning model in section 4.3.22 In the absence of shocks (χi,t = 0), epistemological

uncertainty decays at rate γ: ǫt+1 is then distributed as γǫt. I assume that the stochastic

shocks χi,t are independently and identically distributed. They introduce new uncertainty

in every period, and they delay or even undo the decision maker’s learning process. In the

normally distributed Bayesian learning model, the uncertainty over the mean falls quickly.

In the VAR model, the shocks remain constant over time and build up slowly into forecast

uncertainty. The present model combines these features. In addition, the model in equation

(26) permits shocks to the variance χτ
2,t, making the speed of learning itself uncertain (a

feature also present in “non-normal” Bayesian learning models). In the context without

learning, such non-zero shocks χτ
2,t are considered in stochastic volatility models.23

Appendix E.1 derives the resulting shadow value of cumulant κi to

ϕκ,i =
β

1− βγi

(αϕτ,1)
i

i! α
. (27)

The shadow value ϕκ,i of a mean shift in (transformed) temperature flow is similar to those

in the case of carbon cycle uncertainty (equations 17 and 23). The factor 1
1−βγi reflects the

permanent impact of a shift in the mean and, here, the shadow value of a (transformed)

temperature increase replaces the difference of the carbon price between the atmosphere and

the sinks in the previous sections. For the variance and higher order cumulants, risk aversion

22The Bayesian model would exhibit a time dependent parameter γi,t in the equation of motion κi,t+1 =
γi,tκi,t + χτ

i,t and require an additional non-persistent iid shock in equation (25) (which has little impact on

the welfare evaluation). The parameter γ2,t = σ2
ǫ,t can be chosen to reproduce the learning of the Bayesian

model (plus stochasticity νt), and the shocks χτ
1,t would have to match the Bayesian updates of the mean.

23Not all combinations of shocks to the cumulants will lead to well-defined probability distributions of
ǫt. However, in such a case, the cumulants can still be considered a reasonable approximation of a closely
related distribution.
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and higher orders of the temperature’s shadow value come into play as well. The resulting

welfare loss from temperature uncertainty is composed of two parts

∆W temp =
∑∞

i=1 ϕκ,iκi,0
︸ ︷︷ ︸

Epistemological

+ β

α(1−β)

∑∞
i=1 log

[
Et exp

[
αϕκ,iχ

τ
i

]]

︸ ︷︷ ︸

Future Shocks

(28)

First, initial epistemological uncertainty translates into the shadow-value-weighted sum of

the cumulants. The welfare loss implied by any non-zero cumulant (variance, skewness,...)

is proportional to its shadow value discussed above. Second, the future VAR shocks χi,t to

the cumulants result in a welfare loss that is evaluated by the moment generating function of

the shock and the corresponding cumulant’s shadow value. In particular, shocks to the first

cumulant, the mean, imply an identical formula for the welfare loss as the VAR shocks to the

carbon flow in equation (18). Shocks to the higher order cumulants (volatility, skewness,...)

depend on higher orders of risk aversion and the temperature’s shadow value through the

shadow values of the corresponding cumulants.

In the case of perfectly persistent epistemological uncertainty, I can compare the two dif-

ferent contributions in equation (28) directly. Expressed as the cgf of ǫτt , the epistemological

contribution almost coincides with the cgf of χ1,t evaluating shocks to the mean.24 Both

are evaluated proportional to risk aversion and the temperature’s shadow value, but the cgf

evaluating shocks to the mean contains the additional factor β

1−γβ
. The discount factor β

arises because the shock only affects welfare with a one period delay, whereas epistemolog-

ical uncertainty is immediate. The factor 1
1−γβ

translates the impact of the periodic and

persistent shock χτ
1 into the corresponding stationary uncertainty of the temperature flow

ǫt. In determining its welfare impact, the persistence is discounted by time preference. It

is this time preference that makes the shock contributions more sensitive to small discount

rates as compared to the epistemological component: a patient decision maker is increas-

ingly concerned with the cumulative uncertainty over the long-run future implied by periodic

shocks.

The higher sensitivity of the “future shock” contribution to time preference seems to

differ from the comparison between the Bayesian learning model and the VAR model in the

case of the carbon cycle. However, in the present stylized learning model the future shocks

simultaneously capture stochastic shocks to warming as well as updates to the mean (by

moving next period’s κ1,t+1). Thus, the present model complements the earlier comparison

by emphasizing that the updates to the mean (or higher moments) drive the high sensitivity

to time preference of the Bayesian learning model, not merely the presence of epistemological

uncertainty as captured by ǫτ0.

24
∑

∞

i=1 ϕκ,iκi,t = β
α(1−β) log

[
Et exp

[
αϕτ,1ǫ

τ
t

]]
. This expression compares directly to the “Future

Shock” contributions. In particular, the shock χτ
1 moving the expected value (i = 1) takes the form:

β
α(1−β) log

[

Et exp
[αβϕτ,1

1−βγ
χτ
1

]]

.
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5.3 Quantifying the Welfare Impact of Temperature Uncertainty

For a quantitative assessment I employ again DICE’s business as usual (BAU) emission

scenario leading to the solid (deterministic) line in Figure 4. It employs the average of Mein-

shausen et al.’s (2009) survey of climate sensitivity distributions, whose mean I shift to the

3C best guess focussing on the impact of uncertainty only. Along the DICE BAU scenario

greenhouse gas concentrations exceed the doubling of CO2 significantly and I scale the tem-

perature shocks accordingly. Initial epistemological uncertainty ǫτ0 and the distribution of

the shocks to the mean χ1,t are both chosen to reproduce climate sensitivity uncertainty if

concentrations are double the pre-industrial level. Epistemological uncertainty ǫτ0 prevails

immediately, whereas the shock uncertainty only builds up over time.

In the spirit of finding a lower bound of the welfare loss, I make the following two

assumptions. First, I calibrate the shock uncertainty so as to produce the climate sensitivity

distribution in the infinitely long run. Second, I split the overall climate sensitivity into

an epistemological fraction ζ and a shock-based long-run fraction 1 − ζ. At any given

point in time the actual forecast uncertainty will then be lower than the climate sensitivity

distribution because epistemological uncertainty falls over time and the shocks only build

up the fraction 1 − ζ in the long-run. Third, I omit possible contributions from stochastic

volatility or shocks to higher order cumulants. Also in the spirit of a lower bound, I pick

α = −1 at the lower end of measured risk aversion.

The first or “baseline” scenario assumes a persistence γ = 0.9 of both epistemological

uncertainty and shocks to the mean, an equal split of overall climate sensitivity uncertainty

between the epistemological and the shock contributions (ζ = 1
2
), and the standard discount

rate calibration to IMF 2015 data (ρ = 1.75%). These assumption result in an overall welfare

loss from climate sensitivity uncertainty of 16 trillion USD, approximately one year of US

output. Initial epistemological uncertainty and the stochastic shocks contribute almost equal

shares to this loss. As a consequence, attributing e.g. a larger share of the uncertainty to

shocks and future updating hardly changes the welfare loss (1− ζ = 2
3
increases the loss by

half a trillion).

Reducing the persistence of shocks and of epistemological uncertainty to γ = 0.7 slightly

reduces the epistemological contribution and significantly increases the welfare loss caused by

the shocks. The shocks then contribute 4 times as much as the epistemological uncertainty

to an overall welfare loss of 20 trillion USD. Analogously, an increase of the persistence to

the value calibrated for carbon cycle uncertainty of γ = 0.997 reduces the overall welfare

loss to 11 trillion USD deriving from initial epistemological uncertainty plus 0.5 trillion USD

deriving from future shocks. The significant reduction (rather than increase) of the welfare

loss from future shocks under a higher shock persistence is a result of the calibration: under a

higher persistence a smaller decadal shock will result in the same long-run climate sensitivity

uncertainty and an impatient decision maker prefers such a postponement of uncertainty.

A reduction of pure time preference to ρ = 0.1% in the “baseline” scenario increases the
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loss to over 700 trillion USD or 8.5 years of world output. This factor 40 increase is even

larger than the response of the carbon tax to the change in pure time preference. 95% of the

contribution result from the future shocks. The robust quantitative insight is that a lower

bound of the welfare loss from uncertainty over the climate’s sensitivity to CO2 is 2-3 orders

of magnitude higher than the best guess of the welfare loss from uncertainty over the carbon

flows. A clear quantitative message from economics to science to shift more attention to the

feedback processes on the temperature side.

6 Conclusions

I introduce an integrated assessment model of climate change that matches scientific climate

models as well as do numeric integrated assessment models used in policy advising. Yet, the

GAUVAL model solves for the optimal carbon tax and welfare loss in closed form. GAUVAL

merges Golosov et al.’s (2014) framework with a standard carbon cycle, radiative forcing,

temperature dynamics, risk attitude, and different uncertainty frameworks. The resulting

model compares closely to the wide-spread integrated assessment model DICE. GAUVAL

exhibits a simpler capital depreciation structure, but has a better temperature tracking. The

damage functions differ slightly without a clear winner. GAUVAL allows for a better market

calibration by disentangling intertemporal substitution and the low risk free discount rate

from risk aversion and risk premia. Finally, GAUVAL’s results hold for a general class of

energy production sectors that contain DICE’s abatement formulation as a special case.

Policy measures have to rely on quantitative advice. GAUVAL delivers quantitative

advice without losing closed-form analytic traction or brushing over major features of the

climate and its interaction with the economy. The deterministic model finds a market-

based social cost of carbon of 57 USD per ton of carbon (15 USD per ton of CO2), using a

standard calibration approach. The closed-form solution sizes the different contributions to

this optimal carbon tax and establishes back-of-the-envelope formulas for the welfare cost of

a temperature increase or the welfare gains from carbon sequestration. Like Golosov et al.’s

(2014) model, GAUVAL implies a flat marginal benefit curve from mitigation. The finding

underpins the advantages of a carbon tax over a cap and trade mechanism to regulate the

climate externality. Another implication of the flat marginal benefit curve is that the optimal

mitigation effort is independent of whether we followed business as usual or optimal policy

in the past. If we “sinned” in the past, the optimal policy will not tell us to repent, but to

live with the (perpetually) persisting consequences in the future.

It is a wide-spread believe that the optimal carbon tax is sensitive to the overall con-

sumption discount rate, but not to its individual constituents. In contrast, I prove that

mass conservation in the carbon cycle makes the optimal carbon tax in the present setting

is highly sensitive to the rate of pure time preference, whereas proportionality of damages

to output make it insensitive to growth related discounting. The sensitivity to pure time
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preference weights particularly strong as recent asset pricing approaches as well as overlap-

ping generations based calibration formulas suggest much lower rates of pure time preference

than the 1.75% calibrated here. These approaches give support to rates as low as the 0.1%

used as well in the Stern Review, increasing the optimal carbon tax tenfold.

I employ GAUVAL to advance our understanding of the welfare implications of uncer-

tainty in climate change. I evaluate the impact of vector autoregressive shocks in substantial

generality based on a distribution’s moment generating function, or a sum of (intertemporal)

risk aversion weighted cumulants. I solve a Bayesian model with anticipated learning over

carbon flows under the assumption of normally distributed uncertainty. The anticipation of

updated information has a similar effect as the VAR shocks, however, the updates initially

act as fully persistent shocks. In consequence, the Bayesian learning model is more sensitive

to pure time preference. In the standard calibration, the welfare loss from carbon cycle

uncertainty is in the order of a hundred billion USD, and the willingness to pay for reducing

measurement error and accelerating learning is in the order of half a billion (a few satellites

and a supercomputer) per Gt C of decadal resolution.

Uncertainty about the temperature response to a given CO2 path causes a lower bound

welfare loss that is 2 to 3 orders of magnitudes larger (about one year of US output). Here, a

reduction of pure time preference to 0.1% raises the loss even 40fold creating a lower bound

welfare loss that is over 8 years of world output. The temperature uncertainty caused by

climate sensitivity is not normally distributed and, for the assessment, I developed a stylized

model combining VAR shocks with an epistemological uncertainty. Instead of tracking a few

endogenous informational states characterizing a particular distribution, the model tracks the

cumulant representation of an arbitrary distribution. Governments and research institutions

are spending large amounts to better understand the carbon cycle. An immediate conclusion

is that better assessments of the temperature feedback response has a significantly higher

social payoff.

The intuition for this finding is as follows. Every additional ton of carbon in the at-

mosphere traps less energy than the preceding ton. This decreasing “harmfullness” of CO2

to temperature partially offsets the convexity of damages from the implied warming. The

remaining part of the damage convexity is offset by decreasing marginal utility (governing

intertemporal trade-offs). Thus, if it was not for (disentangled) risk aversion, negative and

positive shocks in the carbon flow would exactly offset each other. Risk aversion implies a

willingness to pay for a risk reduction, but it is not large. In contrast, temperature feed-

backs operate directly on temperatures. Because of the convex damage function, which is

only partially offset by log-utility, high realizations cause more loss than low realizations

return. In expectation, the shocks reduce overall welfare, an effect that is only amplified by

risk aversion.

The present paper paves the way for a wide array of analytic and quantitative research.

An accompanying paper analyzes the response of the optimal carbon tax to climate and
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economic uncertainties. GAUVAL can be generalized for regional analysis, to examine adap-

tation, to analyze detailed damage channels like ocean-acidification or sea level rise, and to

evaluate benefits from climate engineering projects. The present paper specifies the optimal

carbon tax for a large class of energy sectors. A sequel to this paper will specify the details

of the energy sector and analyze the sectoral and emission response to policy under techno-

logical uncertainty. Climate change is an intergenerational problem. Even the market-based

approach contains hidden normative assumptions (Schneider et al. 2013). The present paper

focuses on market-based evaluation, following common practice of policy advising in the US.

GAUVAL also lends itself to a normatively motivated analysis. GAUVAL major virtues is

to combine quantitative analysis with analytic insight. Any analytic approach has its lim-

itations in the non-linearities and interactions it can handle. The model serves best as a

benchmark, guiding and helping to enlighten fine-tuned quantitative numeric research.
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Appendix

A General Capital Depreciation

Equation (2) assumes full capital depreciation. In this appendix, I show how to avoid

the full capital depreciation assumption and match observed capital-output ratios through

an exogenous adjustment of the growth rate. The model extension keeps the structural

assumptions that imply a constant investment rate. Under a depreciation rate δk the capital

accumulation equation (2) changes to

Kt+1 = Yt[1−Dt(T1,t)]− Ct + (1− δk)Kt .

Defining the consumption rate xt =
Yt[1−Dt(T1,t)]

Ct
and recognizing that Yt[1−Dt(T1,t)]−Ct =

Kt+1 − (1− δk)Kt by definition implies

Kt+1 = Yt[1−Dt(T1,t)](1− xt)

[

1 +
1− δk

Kt+1

Kt
− (1− δk)

]

.

Defining the capital growth rate gk,t =
Kt+1

Kt
− 1, I obtain the equivalent equation of motion

for capital

Kt+1 = Yt[1−Dt(T1,t)](1− xt)

[
1 + gk,t
δk + gk,t

]

. (29)

For full depreciation δk = 1 the squared bracket is unity and equation (29) coincides with

equation (2) in the main text. For δk < 1 the squared bracket states an empirical correc-

tion multiplier larger unity. First, this multiplier can be used to match the model’s capital

accumulation to the empirical capital accumulation. Second, this multiplier makes the rep-

resentative agent realize the additional capital value deriving from its persistence beyond its

end of period value for production.

Treating the growth and depreciation correction in squared brackets as exogenous remains

an approximation. The extension shows that the model is robust against the immediate

criticism of not being able to represent the correct capital evolution and capital output

ratio, and against the agent’s neglecting of capital value beyond the time step. However,

equation (29) with gk,t treated as exogenous remains an approximation. It is the price to

pay for an analytic solution.

B Solution of the Linear-in-State Model

To obtain the equivalent linear-in-state-system, I first replace capital Kt+1 by logarithmic

capital kt ≡ logKt. Second, I replace temperature levels in the atmosphere and the dif-

ferent ocean layers by the transformed exponential temperature states τi,t ≡ exp(ξiTi,t),

37



Analytic Integrated Assessment and Uncertainty

i ∈ {1, ..., L}. I collected these transformed temperature states in the vector τt ∈ IRL.

Third, I use the consumption rate xt =
Ct

Yt[1−Dt(Tt)]
, rather than absolute consumption, as the

consumption-investment control. Only the rate will be separable from the system’s states.

Finally, I define at = logA0,t and express utility in terms of the consumption rate

u(Ct(xt)) = logCt(xt) = log xt + log Yt + log[1−Dt(Tt)] = log xt + at

+κkt + (1− κ− ν) logN0,t + ν logEt − ξ0 exp[ξ1Tt] + ξ0.

The Bellman equation in terms of the transformed state variables is

V (kt, τt,Mt,Rt, t) = max
xt,Nt

log xt + at + κkt + (1− κ− ν) logN0,t (30)

+ν logEt − ξ0τt + ξ0 + βV (kt+1, τt+1,Mt+1,Rt+1, t+1) ,

and is subject to the linear equations of motion

kt+1 = at + κkt + (1−κ−ν) logN0,t + ν log g(Et(At,Nt))

−ξ0τ1,t + ξ0 + log(1−xt) (31)

Mt+1 = ΦMt +
(
∑Id

i=1 Ei,t + Eexo
t

)

e1 (32)

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 (33)

Rt+1 = Rt −Ed
t , (34)

and the constraints

∑I

i=0 Ni,t = Nt, Ni,t ≥ 0,

Rt ≥ 0 and R0 given.

The present paper assumes that the optimal labor allocation has an interior solution and

that the scarce resources are stretched over the infinite time horizon along the optimal path,

avoiding boundary value complications.

I now show that the affine value function

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ⊤
MMt +ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt (35)

solves the above linear-in-state system. The coefficients ϕ are the shadow value of the respec-

tive state variables, and ⊤ denotes the transpose of a vector of shadow values. The coefficient

on the resource stock has to be time-dependent: the shadow value of the exhaustible resource

increases (endogenously) over time following the Hotelling rule. The controls in the equa-

tions of motion (31)-(34) are additively separated from the states. Therefore, maximizing
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the right hand side of the resulting Bellman equation delivers optimal control rules that are

independent of the state variables. These controls are functions of the shadow values.

In detail, inserting the value function’s trial solution in equation (35) and the next period

states (equations 31-34) into the (deterministic) Bellmann equation (30) delivers

ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt =

max
xt,Nt

log xt + βϕk log(1−xt) + (1 + βϕk)κkt + (1 + βϕk)at

+(1 + βϕk)(1− κ− ν) logN0,t

+(1 + βϕk)ν log g(Et(At,Nt))

−(1 + βϕk)ξ0τ1,t + (1 + βϕk)ξ0

+βϕ⊤
M

(

ΦMt +
(∑Id

i=1 Ei,t + Eexo
t

)
e1

)

+βϕ⊤
τ

(

στt + σforcM1,t +Gt

Mpre

e1

)

+βϕ⊤
R,t+1 (Rt −E1,t)

+βϕt+1

+λt

(
Nt −

∑I

i=0 Ni,t

)

Maximizing the right hand side of the Bellman equation over the consumption rate yields

1

x
− βϕk

1

1− x
= 0 ⇒ x∗ =

1

1 + βϕk

. (36)

The labor input into the various sector’s depends on the precise assumptions governing the

energy sector, i.e., the specification of g(Et(At,Nt)). For a well-defined energy system, I

obtain unique solutions as functions of the technology levels in the energy sector and shadow

values of the endogenous state variables N ∗
t (At, ϕk,ϕM ,ϕR,t+1). Knowing these solutions

is crucial to determine the precise output path and energy transition under a given policy

regime. However, the SCC and, thus, the carbon tax do not depend on these solutions.

Inserting the (general) control rules into the maximized Bellman equation delivers the

value function coefficients. In detail, I collect terms that depend on the state variables on
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the left hand side of the resulting Bellman equation

(
ϕk− (1 + βϕk)κ

)
kt +

(

ϕ⊤
M − βϕ⊤

MΦ− βϕτ,1
σforc

Mpre

e⊤
1

)

Mt

+
(
ϕ⊤

τ −βϕ⊤
τ σ + (1 + βϕk)ξ0e

⊤
1

)
τt +

(
ϕ⊤

R,t − βϕ⊤
R,t+1

)
Rt

+ϕt = log x∗
t (ϕk) + βϕk log(1−x∗

t (ϕk)) + (1 + βϕk)ξ0 + (1 + βϕk)at (37)

+(1 + βϕk)(1− κ− ν) logN ∗
0,t(At, ϕk,ϕM ,ϕR,t+1)

+(1 + βϕk)ν log g
(
Et(At,N

∗
t (At, ϕk,ϕM ,ϕR,t+1))

)

+βϕM,1

∑Id

i=1 Ei,t(At,N
∗
t (At, ϕk,ϕM ,ϕR,t+1)) + Eexo

t

−βϕ⊤
R,t+1E

d
t (At,N

∗
t (At, ϕk,ϕM ,ϕR,t+1))

+βϕt+1 .

The equality holds for all levels of the state variables if and only if the coefficients in front

of the state variables vanish, and the evolution of ϕt satisfies the state independent part of

the equation. Setting the states’ coefficients to zero yields

ϕk − (1 + βϕk)κ = 0 ⇒ ϕk =
1

1− βκ

ϕ⊤
M − βϕ⊤

MΦ− βϕτ,1
σforc

Mpre

e⊤
1 = 0 ⇒ ϕ⊤

M =
βϕτ,1σ

forc

Mpre

e⊤
1 (1− βΦ)−1

ϕ⊤
τ + (1 + βϕk)ξ0e

⊤
1 − βϕ⊤

τ σ = 0 ⇒ ϕτ = −ξ0(1 + βϕk)e
⊤
1 (1− βσ)−1

ϕ⊤
R,t − βϕ⊤

R,t+1 = 0 ⇒ ϕR,t = βtϕR,0 .

Using the shadow value of log capital in equation (36) results in the optimal investment rate

x = 1 − βκ. From line (37) onwards, the maximized Bellman equation defines recursively

the time-dependent affine part of the value function ϕt. Everything discussed in this paper

is independent of the process ϕt and only assumes convergence of the value function. For

most choices of g(Et(At,Nt)), the process ϕt has to be solved numerically together with the

initial value of shadow price vectors of the scarce resources.

The SCC is the negative of the shadow value of atmospheric carbon expressed in money-

measured consumption units. Inserting equation (9) for the shadow value of log-capital (see

as well above) and (10) for the shadow value of atmospheric temperature (first entry of

the vector) into equation (11) characterizing the shadow value of carbon in the different

reservoirs delivers

ϕ⊤
M = −ξ0

(

1 + β
κ

1− βκ

)
[
(1− βσ)−1

]

1,1

βσforc

Mpre

e⊤
1 (1− βΦ)−1
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As a consequence of logarithmic utility, this marginal welfare change translates into a con-

sumption change as du = 1
c
dc = 1

xY
dc ⇒ dc = (1− βκ)Y du. Thus, the SCC is

SCC = −(1− βκ)YtϕM,1 = Yt ξ0
[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1
.

C Equivalence to Epstein-Zin-Weil Utility and Illus-

tration of Risk Aversion

I show the equivalence of the Bellman equation (12) and the wide-spread formulation of

recursive utility going back to Epstein & Zin (1991) and Weil (1990). Keeping isoelastic risk

aggregation and using the logarithmic special case for intertemporal aggregation reflecting

GAUVAL’s intertemporal elasticity of unity, the usual formulation reads

V ∗
t = exp

(

(1− β) log ct + β log
[
Et V

∗
t+1

α∗] 1
α∗

)

. (38)

Defining Vt =
log V ∗

t

1−β
and rearranging equation (39) delivers

Vt = log ct +
β

1− β
log
[

Et exp
(
(1− β)Vt+1

)α∗
] 1

α∗

. (39)

Defining α = (1−β)α∗ and pulling the risk aversion coefficient α∗ of the Epstein-Zin setting

to the front of the logarithm and into the exponential yields equation (12) stated in the text.

Figure 5 illustrates the quantitative implications of a choice of risk aversion RRA= 1−α

in the model.25 In the basline, an agent consumes a constant level c̄ in perpetuity. In a coin

toss lottery, she loses 5% of her consumption in the upcoming decade (left) or 25% (right) in

case of tails (probability 1/2). The graph presents, as a function of her risk aversion RRA, the

percentage gain over the baseline that the agent requests if heads comes up to be indifferent

between the lottery and the baseline. It is important to realize that these losses and gains

are direct consumption changes. The numeric illustrations in the paper are based on the

range RRA∗ = 1 − α∗ ∈ [6, 9.5] found in the long-run risk literature. The bounds translate

approximately into α = (1 − β)α∗ ∈ {1, 1.5} in the present model’s equation (12) and into

RRA∈ {2, 2.5} in Figure 5.

25I directly illustrate risk aversion for the choice of 1 − α as opposed to Epstein-Zin’s 1 − α∗ = 1 − α
1−β

.
This illustration is independent of time preference. A similar time preference independent illustration of
Epstein-Zin’s 1−α∗ would involve a lottery over infinite consumption streams. The argument why 1−α∗ as
opposed to 1−α would be time preference invariant relies on the idea that the lottery payoffs in the current
period have less significance for a more patient agent.
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Figure 5: The graphs illustrate the relation between the risk aversion RRA= 1 − α and the
relative consumption gains and losses that leave an agent indifferent to her original position. With
probability 1/2, the agent loses 5% of her decadal consumption (left) or 25% (right). The graphs
show how much of a relative consumption gain she requires for being indifferent to here initial
deterministic position under different degrees of risk aversion.

D Illustrating the “Climate Matrices”

D.1 A Two Layer Carbon Cycle

In the simple and insightful case of two carbon reservoirs the carbon cycle’s transition matrix

is Φ =
(
1−δAtm→Ocean δOcean→Atm

δAtm→Ocean 1−δOcean→Atm

)
, where e.g. δAtm→Ocean characterizes the fraction of carbon

in the atmosphere transitioning into the ocean in a given time step. The conservation of

carbon implies that both columns add to unity: carbon that does not leave a layer (δ·→·)

stays (1− δ·→·). The shadow value becomes

ϕM,1 = βϕτ,1σ
forcMpre

−1(1− β)−1

[

1 + β
δAtm→Ocean

1− β(1− δOcean→Atm)

]−1

.

The shadow value becomes less negative if more carbon flows from the atmosphere into the

ocean (higher δAtm→Ocean). It becomes more negative for a higher persistence of carbon in the

ocean (higher 1−δOcean→Atm). These impacts on the SCC are straight forward: the carbon in

the ocean is the “good carbon” that does not contribute to the greenhouse effect. In round

brackets, I find Proposition 2’s root (1 − β)−1 that makes the expression so sensitive to a

low rate of pure time preference.

A common approximation of atmospheric carbon dynamics is the equation of motion

of the early DICE 1994 model. Here, carbon in excess of preindustrial levels decays as in

M1,t+1 = Mpre + (1− δdecay)(M1,t −Mpre). The shadow value formula becomes

ϕM,1 = βϕτ,1σ
forcM−1

pre

(
1− β(1− δdecay)

)−1
,

which misses the long- run carbon impact and the SCC’s sensitivity to pure time preference.

Temperature is an intensive variable: it does not scale proportional to mass or volume

(as is the case for the extensive variable carbon). The columns of the matrix σ do not sum

to unity. As a consequence of the mean structure in equation (5), however, the rows in
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the ocean layers’ transition matrix sum to unity. The first row determining next period’s

atmospheric temperature sums to a value smaller than unity: it “misses” the weight that the

mean places on radiative forcing. The “missing weight” is a consequence of the permanent

energy exchange with outer space. Radiative forcing characterizes a flow equilibrium of

incoming and outgoing radiation.

D.2 A Two Layer Atmosphere-Ocean Temperature System

The two layer example of atmosphere-ocean temperature dynamics has the transition matrix

σ =
(

1−σ
up
1 −σdown

1 σdown
1

σ
up
2 1−σ

up
2

)

. The corresponding term of the SCC (equation 13) takes the form

[
(1− βσ)−1

]

11
=

(

1− β (1− σdown
1 − σup

1 )
︸ ︷︷ ︸

persistence in atmosphere

−
β2σdown

1 σup
1

1− β (1− σup
2 )

︸ ︷︷ ︸

pers. in ocean

)−1

.

Persistence of the warming in the atmosphere or in the oceans increases the shadow cost.

Persistence of warming in the oceans increases the SCC proportional to the terms σdown
1

routing the warming into the oceans and σup
1 routing the warming back from the oceans into

the atmosphere. The discount factor β accompanies each weighting factor, as each of them

acts as a transition coefficient causing a one period delay. Taking the limit of β → 1 confirms

that (an analogue to) Proposition 2 does not hold

lim
β→1

ϕτ,1 = −ξ0(1 + ϕk)
[
(1− σ)−1

]

11
= −

ξ0(1 + ϕk)

σup
1

6= ∞. (40)

As the discount rate approaches zero, the transient temperature dynamics characterized

by σdown
1 and σup

2 becomes irrelevant for evaluation, and only the weight σup
1 reducing the

warming persistence below unity contributes.26

D.3 The Price of Carbon and the Different Reservoirs

The carbon price in the atmosphere is immediately connected to its exchange with the

remaining reservoirs. In fact, it can also be expressed the shadow value of carbon in any

reservoir as the following function of the shadow prices in the remaining reservoirs

ϕM,i = β

∑

j 6=i ϕM,jΦj,i + 1i,1
ϕτ,1σ

up
1

Mpre

1− βΦi,i

. (41)

26The carbon cycle lacks the reduction in persistence deriving from the forcing weight σup
1 and equation (40)

gives another illustration of the impact of mass conservation in the case of carbon: “σup
1 → 0 ⇒ ϕτ,1 → ∞”.

Note that in the SCC formula σup
1 cancels, as it simultaneously increases the impact of a carbon change on

temperature. This exact cancellation (in the limit β → 1) is a consequence of the weights σup
1 on forcing and

1− σup
1 on atmospheric temperature summing to unity. The result that a warming pulse has a transitional

impact and an emission pulse has a permanent impact on the system is independent of the fact that these
weights sum to unity.
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The carbon price in layer i is the sum of carbon prices in the other layers times the flow

coefficient capturing the carbon transition into that other layer (generally only positive for

the two adjacent layers). The atmospheric carbon price has as an additional contribution

(1i,1 denotes the Kronecker delta) the shadow value of the atmospheric temperature increase.

Finally, the denominator implies that the carbon price increases over the stated sum accord-

ing to the persistence Φi,i of carbon in that given layer. Equation (41) resembles the carbon

pricing formula for the one layer “carbon cycle” model discussed at the end of section D.1

where the atmospheric carbon persistence is Φi,i = 1 − δdecay, and the present equation

adds the pricing contributions from the other carbon absorbing layers as, unfortunately, the

carbon leaving the atmosphere does not decay.

Finally, I illustrate the value of carbon sequestration in equation (14) for the case of the

two layer carbon cycle introduced in section D.1

∆W seq = βϕτ,1σ
up
1 Mpre

−1 [1 + βδOcean→Atm − β(1− δAtm→Ocean)]
−1 .

The value of carbon sequestration into the ocean falls in the stated manner in the transition

parameter δOcean→Atm that captures the carbon diffusion from the ocean back into the at-

mosphere and increases with the transition parameter 1− δAtm→Ocean that characterizes the

persistence of carbon in the atmosphere. In the DICE carbon cycle, the value of sequestering

carbon into the intermediate ocean and biosphere corresponding is $40 per ton and the value

of pumping carbon into the deep ocean is $56 per ton.27

E Carbon Cycle Uncertainty: Details

E.1 Solving the Bellman Equation

In the case of persistent carbon sink uncertainty, the adjustments in the equations of motion

(15) and (16) modify or add the following terms to the Bellman equation (12)

ϕǫǫt + ϕt + ... = ...+βϕt+1 + βϕǫγǫt + β[ϕM1
− ϕM2

]ǫt +
β

α
log
(

Et exp
[
αϕǫχt

])

.

It is easily observed that these changes do not affect the optimal investment rate and labor

distribution. Matching the coefficients of the flow adjustment ǫt to make the Bellman equa-

tion independent of its level delivers equation (17) for the shadow value ϕǫ. The remaining

terms imply ϕt = βϕt+1 +
1
α
log
(

Et exp
[
αβϕǫχt

])

+ constt, where constt is a term that is

independent of the uncertainty. Given ǫ0 = 0, the welfare difference between the determin-

istic and the uncertain scenario is determined by the difference of the affine value function

27Note that the present model does not explicitly model damages from ocean acidification, which would
be an interesting and feasible extension.
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contributions

∆W V AR= V unc
0 − V det

0 = ϕunc
0 − ϕdet

0 = β(ϕunc
1 − ϕdet

1 ) +
β

α
log
(

E0 exp
[
αϕǫχ0

])

.

=
∑∞

i=0
βi+1

α
log
(

Ei exp
[
αϕǫχi

])

+ limi→∞ βi(ϕunc
i − ϕdet

i ) .

For a well-defined dynamic system limi→∞ βi(ϕunc
t+i − ϕdet

t+i) = 0 and I obtain the general

welfare loss equation for non-stationary shocks

∆W V AR 1
α

∑∞
t=0 β

t+1 log
[
E exp

[
αϕǫχt

]]
. (42)

For a sequence of identically distributed shocks χt, I obtain the welfare cost of uncertainty

stated in (18) by evaluating implied geometric sum in equation (42).

In the case of anticipated learning, the adjustments in the equations of motion imply

modifications of the Bellman equation (12) captured by the terms

ϕµµǫ,t + ϕt + ... = ...+βϕt+1 + βϕµ

σ2
ν,t

σ2
ν,t+1 + σ2

ǫ,t

µǫ,t (43)

+
β

α
log
(

Et exp
[

α
(

ϕM1
− ϕM2

+ ϕµ,t

σ2
ǫ,t

σ2
ν,t+1 + σ2

ǫ,t

)

(ǫt + νt)
])

.

Matching the coefficients of the informational state µǫ,t to make the Bellman equation inde-

pendent of its level delivers equation (23) for the shadow value ϕµ. Solving inductively the

remaining state-independent terms in equation (43) for the welfare difference between the

uncertain and the deterministic scenario as above delivers the welfare loss

∆WBayes =
∑∞

t=0 β
t+1α

σ2
ǫ,t+σ2

ν,t

2

[

ϕM1
− ϕM2

+ ϕµ,t
σ2
ǫ,t

σ2
ν,t+σ2

ǫ,t

]2

.

=
∑∞

t=0 β
t+1α

σ2
ǫ,t+σ2

ν,t

2
(ϕM1

− ϕM2
)2
[
(1−β)σ2

ǫ,t+(1−β)σ2
ν,t+βσ2

ǫ,t

(1−β)(σ2
ǫ,t+σ2

ν,t)

]2

,

where I inserted the shadow value ϕµ from equation (23). Canceling terms in the numerator

of the expression in squared brackets delivers equation (24) in the main text.

E.2 Quantitative Analysis of Carbon Cycle Uncertainty

The quantification of carbon cycle uncertainy in section 4.4 is an informed guess based on

Joos et al.’s (2013) model comparison study and the measurement error implied by the

missing sink. Here, I attempt to bound the welfare impact using a somewhat reasonable

lower and upper bound for carbon cycle uncertainty. In the VAR model of section 4.2,

the left panel of Figure 6 reduces the shock’s standard deviation to 10 Gt per decade. It

builds up to a 200Gt standard deviation after about 300 years, which is significantly lower

than the 500Gt standard deviation in Joos et al.’s (2013) model comparison study. The
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Figure 6: shows the evolution of atmospheric carbon under the low and the high specifications
of the carbon cycle shock in equation (16), σχ = 10 Gt on the left and σχ = 50 Gt on the right.
The shock’s persistence of γM = 0.997 is calibrated to Joos et al.’s (2013) model comparison study.
The underlying emission scenario is DICE’s business as usual. The deterministic DICE evolution
(5 year time steps, “Data”), the deterministic GAUVAL evolution (10 year time steps), and the
mean and the median of 1000 uncertain trajectories are hardly distinguishable.

resulting welfare loss is approximately 28 billion USD. The right panel of Figure 6 increases

the shock’s standard deviation to 50 Gt per decade. It builds up to the suggested 500Gt

standard deviation after 125 years, but implies double that value after around 350 years.

The resulting welfare loss is approximately 700 billion USD.

The willingness to pay for a stochasticity reduction in Figure 4 also quantifies the sen-

sitivity to a change in the measurement error or speed of learning, which is approximately

half a billion USD per Gt decadal standard deviation. If the initial measurement error σν

is already down to 5Gt instead of 10Gt per decade, then this willingness to pay is also

cut into half to approximately 260 million USD. If the initial measurement error is doubled

(σν = 20Gt), then the willingness to pay increases to 750 million USD.

F Temperature Uncertainty: Details

F.1 Solving the Bellman Equation

In the combined model of persistent epistemological and VAR uncertainty over the tempra-

ture increase in section 5.2 the Bellman equation gains the following terms

∑∞
i=1 ϕκ,iκi,t + ϕt + ... = ...+ βϕt+1 +

β

α
log
(

Et exp
[

α
(
∑∞

i=1 ϕκ,i(γiκi,t + χτ
i,t)

+ϕτ,1ǫ
τ
t (κ1, κ2, ...)

)])

.

⇒ ϕt + ... = ...+ βϕt+1 + β
∑∞

i=1

[

ϕκ,i(βγi − 1) + β (αϕτ,1)i

i!α

]

κi,t

+β

α
log
(

Et exp
[

α
(
∑∞

i=1 ϕκ,iχ
τ
i,t

)])

.
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Matching the coefficients of the new states κi, i ∈ N, eliminates the squared bracket in from of

the cumulants and delivers the shadow values stated in equation (27). Moreover, analogously

to the earlier scenarios, the difference in the uncertain and the deterministic value function’s

affine components is

ϕunc
0 − ϕdet

0 = β(ϕunc
1 − ϕdet

1 ) +
β

α
log
(

E0 exp
[

α
(
∑∞

i=1 ϕκ,iχ
τ
i,t

)])

=
∑∞

t=0
βt+1

α
log
(

Et exp
[

α
(
∑∞

i=1 ϕκ,iχ
τ
i,t

)])

.

The welfare difference between the uncertain and the deterministic scenario is now comprised

of a state (cumulant) dependent part
∑∞

i=1 ϕκ,iκi,t and the affine part of the value functions

∆W temp = V unc
0 − V det

0 =
∞∑

i=1

ϕκ,iκi,t + ϕunc
0 − ϕdet

0

=
∑∞

i=1 ϕκ,iκi,t +
∑∞

i=0
βi+1

α
log
(
Et exp

[
α
(∑∞

i=1 ϕκ,iχ
τ
i,t

)])
.

In the case of identically distributed shocks over time, the second sum characterizes a geo-

metric series giving rise to the factor β

1−β
, turning the welfare loss into the form stated in

equation (28) in the main text.

F.2 Quantitative Analysis of Temperature Uncertainty

Figure 7 illustrates the uncertainty governing the temperature increase from a doubling of

the CO2 concentration, the so-called climate sensitivity. On the left, the figure depicts 20

probability distributions of climate sensitivity derived by different groups and using different

methodological approaches (Meinshausen et al. 2009). These probability densities are con-

ditional on the temperature increase not exceeding 10 C. On the right, the figure depicts the

average distribution assigning equal weight to each approach. The distribution is positively

skewed and exhibits more weight in the right tail as compared to a (truncated) normal dis-

tribution. It serves as the starting point for my numeric estimates of the welfare loss from

temperature uncertainty.

This average climate sensitivity distribution on the right of Figure 7 has an expected value

of 3.4 C, differing from the common best guess of 3 C employed so far. Focusing on the uncer-

tainty contribution, I shift Meinshausen et al.’s (2009) distribution to the left to conserve the

3 C warming expectation. I denote the implied distribution of the generalized temperature

state by τ̃∞. By equation (25), the temperature flow uncertainty ǫτ = [1−σ]1,1τ̃
∞ − 2σforc

generates this long-run temperature uncertainty under the assumption of a doubling of prein-

dustrial CO2 concentrations. I start by assuming only the VAR model, which corresponds to

autoregressive shocks χ1 to the mean. Such shocks build up over time, and for a doubling of

CO2 concentrations a stationary shock χ1 = (1− γ)ǫτ generates the depicted distribution of

climate sensitivity. More than two decades of IPCC assessment reports have not tightened
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Figure 7: shows estimates of the probability distribution of a temperature increase in degree
Celsius resulting from a doubling of CO2 concentrations with respect to industrial levels. On the
left, the figure depicts 20 probability distributions of climate sensitivity derived by different groups
and using different methodological approaches (Meinshausen et al. 2009). On the right, the figure
depicts the average distribution assigning equal weight to each approach. The Figure is to be
interpreted as the probability density of a temperature increase conditional on not exceeding 10C.

the confidence interval on climate sensitivity. Therefore, I assume a persistence of epistemo-

logical uncertainty of γ = 0.9 in my “baseline” scenario. In evaluating the welfare loss from

temperature uncertainty along the DICE business as usual scenario, I scale the exogenous

shocks χ1,t proportional to the atmospheric CO2 concentrations along the business as usual

path (thick black ‘data’ line in Figure 4).28

28The scaling of the shock is proportional to the CO2 concentration because the shock affects transformed
temperature, which translates logarithmically into real temperature, accounting for falling radiative forcing
from an additional ton of CO2.
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