
Evaluating Dependability Attributes of Component-Based Specifications 
 

Ivica Crnkovic1, Lars Grunske2 
1Mälardalen University, Department of Computer Science and Electronics 

Box 883, 721 23 Västerås, Sweden 
2School of ITEE, ARC Centre for Complex Systems, University of Queensland, 

4072 Brisbane (St.Lucia), Australia 
1ivica.crnkovic@mdh.se, 2grunske@itee.uq.edu.au 

 
Abstract 

Component-Based Development (CBD) is established 
in many application domains. There is a strong trend 
in applying the same approach in different domains of 
dependable systems. However, a precondition of a suc-
cessful use of CBD in these domains is the utilization 
of theories, methods and technologies to predict and 
evaluate dependability attributes. This tutorial gives an 
analysis of current methodologies of attribute-specific 
evaluation methods for dependable component-based 
systems. We identify limitations of the current tech-
nologies, discusses existing and possible new solutions 
to overcome these limitations both from a research-
oriented and practical perspective. 
 

1. Introduction 
 

Inspired by other engineering disciplines, Compo-
nent-Based Software Engineering (CBSE) [4,8] aims at 
building systems from pre-existing components and 
building components that can be reused in different 
systems and in this way achieve development that is 
more efficient.   

CBD has been very successful in building software 
systems in many domains, but has been less utilized in 
development of dependable systems [1], in particular 
software-intensive embedded systems. There are sev-
eral reasons for that: (i) different constraints (such as 
resource consumptions) and dependability require-
ments have not been concerns of component-based 
technologies; (ii) some basic principles of CBD (en-
capsulation and information hiding, extensibility, bot-
tom-up approach) make it more difficult to achieve 
dependability properties required for such systems.  

Today we witness an increasing effort in research 
and in the industry to combine CBD with modeling and 
analysis methods and tools for dependable systems. 
Actually, many modeling and analysis theories and 
tools exist, but are not integrated in CBD. For this rea-
son, the most important initiative is to bring these 
worlds together and make researchers and practitioners 
aware of both sides. 

2. Basic principles  
 

The interest in CBSE is strongly reflected in new 
and innovative software technologies, but it is also 
based on a long history of work in modular systems, 
structured design, and most recently in object-oriented 
systems. CBSE has further developed the concept of 
interface as a specification of components extending it 
from a pure syntax definition to separation of provided 
and required, contractually-based and semantically 
specified interface. Further, CBSE has established cer-
tain principles of development: reusability, substitut-
ability, expandability and composition. Different com-
ponent technologies have implemented these principles 
to different extents. These principles will be discussed 
in the tutorial.  

In classical engineering disciplines such as civil en-
gineering, the component-based approach is the fun-
damental design principle: systems are constructed 
from (existing) components. This is also the case with 
embedded software; in complex embedded systems, 
where components are usually nodes consisting of sen-
sors, actuators and control computing systems. Soft-
ware is embedded in these nodes and is not treated 
separately. This approach works fine as long as the 
nodes are relatively independent of each other, and as 
long as the communication between them is precisely 
defined. By increasing functionality, this communica-
tion significantly increases, and the functional imple-
mentations are not localized on nodes. Instead, services 
become identified as independent units (i.e. compo-
nents) of the systems. This wipes out the clear border 
of hardware components and differentiates between 
hardware and software parts. In addition, due to flexi-
bility and low cost requirements, there are demands for 
separation of software development from hardware 
development. Services become implemented as soft-
ware components that are performing on an underlying 
hardware. In this tutorial, we illustrate these differences 
trough some industrial examples (from the automotive 
and telecommunication industry). 

29th International Conference on Software Engineering (ICSE'07 Companion)
0-7695-2892-9/07 $20.00  © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:54:54 UTC from IEEE Xplore.  Restrictions apply. 



Dependability is related to trustworthiness (i.e. as-
surance that a system will perform as expected) and to 
some extent to survivability (i.e. capability to fulfill its 
mission in a timely manner). Dependability is a crucial 
attribute for safety-critical systems (i.e. systems for 
which failure may have catastrophic consequences), but 
also for the mission-critical, and business-critical sys-
tems. The requirements for dependability are increas-
ingly important for general-purpose everyday-used 
systems. Dependability is an increased concern in soft-
ware development in general, as well as in CBD. De-
pendability is characterized by a set of attributes: avail-
ability, reliability, integrity, confidentiality, safety and 
maintainability. We should add here security (that is 
related to confidentiality). Most of these properties are 
of interest for software-intensive systems but also for a 
wide range of software systems. For embedded sys-
tems, we also have demands on resource utilization and 
real-time properties. Since CBD systems are built from 
components, their specification and their compositions 
must be related to evaluation and composition models 
of the properties of interest. 

 

3. Composability and Analysis 
 

In a bottom-up approach, which is typical for build-
ing systems from existing components, composition of 
components and composition of their properties are 
important concerns in predicting properties of the sys-
tems. While compositions of functional properties, 
although difficult, are computable, and consequently 
predictable, compositions of non-functional properties 
are significantly more difficult to model. In many cases 
properties are not even composable. In this tutorial, we 
shall present a classification of properties that distin-
guishes properties according to their composability [4].   

In the cases in which it is not possible to reason 
about a composition, different evaluation and analysis 
methods on the system level must be applied. These 
methods are based on different evaluation and analysis 
theories, component specifications and system architec-
ture. Dependability evaluation methods for component-
based systems are currently focused towards specific 
dependability attributes. 

Reliability Evaluation. Reliability is defined as the 
ability of a system to operate correctly according to its 
specification for a given time interval. To be able to 
analyze the system’s reliability, the reliability of com-
ponent services must be defined in relation to the de-
ployment context and the reliability of required ser-
vices [5,7].  

Safety Evaluation. The aim of safety evaluation 
techniques is to determine whether a specification and 

the resulting system can meet its safety requirements, 
where a safety requirement is a description of a hazard 
combined with the tolerable probability of this hazard. 
Common safety evaluation methods are based on dif-
ferent fault propagation notations that can be applied to 
estimate hazard probabilities of component-based ar-
chitectures [6].  

Real-time Evaluation. Real-time properties are re-
lated to time-related system requirements such as sys-
tem response, guarantee of a successful completion of 
an operation and similar. When applying CBD, ques-
tions such as transformation of components to execu-
tion entities (tasks or threads), component specification 
of real-time properties, and composition of real-time 
properties become important issues to achieve system 
temporal correctness. 

Performance Evaluation. Performance evaluation 
techniques are used to predict if software systems can 
satisfy user performance goals such as mean reaction 
times on external stimuli or number of possible simul-
taneous requests [2]. Common performance evaluation 
model to perform these predictions are Queuing Net-
works, Petri Nets and Markov Models.  

 
[1] Avižienis A., Laprie J-C., Randell  B., Fundamental 
Concepts of Computer System Dependability, IARP/IEEE 
Workshop on Robot Dependability: Technological Challenge 
of Dependable, Robots in Human Environments, 2001. 

[2] Balsamo S., Di Marco A., Inverardi P. and Simeoni M. 
Model-Based Performance Prediction in Software Develop-
ment: A Survey. IEEE Trans. Software Eng. 30(5), 2004, 
295-310  

[3] Crnkovic I. and Larsson M.(editors), Building Reliable 
Component-Based Software Systems, Artech House Publish-
ers, ISBN 1-58053-327-2 

[4] Ivica Crnkovic, Magnus Larsson, Otto Preiss, Concern-
ing Predictability in Dependable Component-Based Systems: 
Classification of Quality Attributes, Architecting Dependable 
Systems III, pp. 257 – 278, LNCS 3549, 2005 

[5] Goseva-Popstojanova K., Trivedi K. S., Architecture-
based approach to reliability assessment of software systems, 
Performance Evaluation 45 (2-3), 2001, 179-204. 

[6] Grunske L., Kaiser B. and Papadopoulos, Y., Model-
driven safety evaluation with state-event based component 
failure annotations. In: CBSE 2003 Component-based Soft-
ware Engineering. 2005, 33–48 

[7] Hamlet D., Mason D. and Woit, D. Theory of Software 
Reliability Based on Components. Proceedings of the 23rd 
International Conference on Software Engineering. Toronto, 
Canada, IEEE Computer Society Press, 2001. 

[8] Szyperski C., Component Software: Beyond Object-
Oriented Programming. Second edition, ACM, Press and 
Addison-Wesley, New York, N.Y., 2002. 

 

29th International Conference on Software Engineering (ICSE'07 Companion)
0-7695-2892-9/07 $20.00  © 2007

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on August 12,2010 at 07:54:54 UTC from IEEE Xplore.  Restrictions apply. 


