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ABSTRACT
Having access to large data sets for the purpose of predictive

data mining does not guarantee good models, even when the size
of the training data is virtually unlimited. Instead, careful data
preprocessing is required, including data cleansing, handling
missing values, attribute representation and encoding, and
generating derived attributes. In particular, the selection of the
most appropriate subset of attributes to include is a critical step in
building an accurate and efficient model. We describe an automated
approach to the exploration, preprocessing, and selection of the
optimal attribute subset whose goal is to simplify the KDD
process and dramatically shorten the time to build a model. Our
implementation finds inappropriate and suspicious attributes,
performs target dependency analysis, determining optimal
attribute encoding, generates new derived attributes, and provides
a flexible approach to attribute selection. We present results
generated by an industrial KDD environment called the Accrue
Decision Series on several real world Web data sets. 
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1. INTRODUCTION
Much of the research and discussion in the Knowledge Discovery

in Data (KDD) community has centered around a variety of
approaches — including cross validation and bootstrapping — for
handling the situation in which there is not enough data to build a
good model. Although these techniques are of interest to industrial
practitioners, in practice we typically have access to a nearly limitless
supply of data. This is particularly true when mining Web data
sources, which seem to double in size every few months.

Given this wealth of data, industrial practitioners face the
opposite problem: how to effectively simplify and narrow down
the scope of data used for building a model. Smaller data sets
provide a number of benefits, including:

• Reduced elapsed CPU time for building a model (training
and verification phases)

• Reduced elapsed CPU time for using a model (forecasting or
scoring phase)

• Potentially increased model accuracy
• Increased explanatory power of the model

Given our focus on Web data mining, we are faced with a
prime consideration: getting a model into production as quickly as
possible. This stems from the fact that Web time is famously seven
times faster than "real" time; our client's patience is typically low as
their business is constantly being reinvented overnight. In response,
we have attempted to automate as many steps of the KDD process
as possible, from data collection, to attribution encoding,
transformation and selection, through model parameter searching,
to best model selection.

In this paper, we describe an approach to automating the
exploratory data analysis (EDA) step of the KDD process. In
particular, we focus on the problem of attribute selection,
narrowing the potentially hundreds of thousands of attributes
(a.k.a. variables or features) down to a manageable subset without
destroying the viability of the subsequent model. Our focus stems
from the facts that automated attribute selection is less well
understood than case (a.k.a. record or instance) selection through
sampling techniques, and that attribute selection has historically
been highly labor intensive and error prone.

The techniques described in this paper are available commercially
in the Accrue Decision Series [ADS], a highly scalable knowledge
discovery workbench with seven separate predictive and descriptive
mining engines. The Decision Series also contains techniques outside
the scope of this paper for automating other steps in the KDD process,
including sampling, parameter searching and model selection.

2. EXPLORATORY DATA ANALYSIS
Although exploratory data analysis (EDA) can be used as a

pre-processing step for both predictive and descriptive engines,
much of our focus has been on the efficient building of models
using standard predictive techniques: neural networks [12,11],
classification and regression decision trees [2, 25], and Bayesian
learning [7]. Due to the practical limitations of commercial mining,
we have tried to achieve a balance between the time spent on data
exploration and the gains we get in this process. In this paper,
we assume that the data consists of homogeneous cases each with
fixed number of attributes. Furthermore, we confine ourselves to
numeric attributes with float or integer values and to nominal
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categorical attributes. We call the first type of attributes continuous
and the second type of attributes categorical.

Our EDA approach involves a four-step process:
• Identifying inappropriate and suspicious attributes

• Selecting the most appropriate attribute representation

• Creating derived attributes

• Choosing an optimal subset of attributes

Some attributes are obviously inappropriate to be used in a
particular model and can be discarded automatically. Other
attributes are borderline and marked by the system as suspicious.
For these suspicious attributes, the modeler may choose to manually
intervene by providing additional domain specific information that
cause them to be removed. Otherwise, the suspicious attributes are
retained for processing in subsequent steps.

All retained attributes are processed to determine the most
appropriate representation. This step handles outliers, missing values,
and encoding. Continuous attributes are encoded by thresholding
(a.k.a. discretizing) [8] the original values into a small number of value
ranges. For categorical attributes, encoding merges several values
(categories) together. This grouping is similar to a subset option in
C4.5 [25]. As both thresholding and grouping can cause the fatal
loss of some of the detail contained in original attributes, we try to
intelligently balance this loss against the advantages of efficient
encoding by using three association measures: mutual information,
chi-squared Cramer's V, and Goodman-Kruskal index.  These
associations are measured between the source attributes and a specific
target (a.k.a. dependent variable) to determine which encoding is
optimal for a given model. This optimization is performed by an
EDA function we call target dependency analysis (TDA).

After determining the most appropriate attribute representation,
EDA attempts to create new derived attributes that may be more
beneficial than the existing ones. It does so by experimenting with a
variety of univariate and multivariate transformations. When all
original and new derived attributes are cleansed, confirmed to be
appropriate, and discretized, EDA uses two independent approaches
to attribute selection [18, 13], which are both based on filter
model selection [14]. Using two algorithms provides additional
flexibility and increases our confidence in the results.

3. INAPPROPRIATE AND SUSPICIOUS
As previously mentioned, inappropriate attributes are

automatically removed from further processing. EDA identifies
following types of inappropriate attributes:

• Constant - only contains a single value;

• Null - has all Null (missing) values;

• Near Null -  has a fraction of Null (missing) values
larger than a specified threshold;

• Many Values - has a fraction or number of values larger
than a specified threshold; These descriptive attributes
are typically identifiers such as phone or social security
numbers.

In contrast to inappropriate attributes, suspicious attributes
warrant some skepticism about their appropriateness but are kept
unless specified by the user. EDA identifies following types of
suspicious attributes:

• Artifact - association or correlation with the target is
greater than a specified threshold.   These attributes are
often unintentionally included and, without proper
identification, they lead to artificially good models that
do not generalize well.

• Poor Predictor - association or correlation with the
target is less than a specified threshold.   These
attributes do not contribute much by themselves in
predicting the target but combinations of these attributes
may have increased predictive power.   Attribute
selection is the ultimate way to decide whether they are
appropriate for further modeling.

• Near Constant - one value of an attribute covers more
than specified fraction of all cases.

• Few Values - has less than a specified number of
distinct values.

• Few Cases - has less than a specified number of distinct
non-Null cases.

4. TARGET DEPENDENCY ANALYSIS
The objective of TDA is to come up with the generic

measures of association between the source and target attributes,
and to research the strength and variation of these associations.
These associations measure the strength of dependency between
attributes and provide a nonlinear generalization to the classic
linear concept of correlation. TDA supplies three choices of
association measures: mutual information, Cramer's V, and Goodman-
Kruskal index.

Given two categorical attributes, source X with values
j=1:J and target Y with values q=1:Q, with joint distribution

Pjq, and marginal distributions Pj., P.q, mutual information I(X,Y)
is defined as

I(X,Y) = � jq  Pjq log(Pjq / Pj.P.q).

where we use base two logarithm if the information units are bits.
This measure is widely used in information theory  [3] and
machine learning [25]. It is sometimes referred to as information
gain, due to a property that it is equal to a decrease in entropy

H(Y)-H(Y|X) caused by knowing X, where H(X) = - � q  P.q

log(P.q). There is also a relation between mutual information and so-
called Kullback Leibler distance (KL-instance) [19]. TDA uses a
normalization of mutual information I(X,Y)/H(X), which is
scaled to [0,1].

The second association measure based on chi-squared statistic

χ2(X,Y) = N � jq (Pjq - Pj.P.q)
2 / (Pj.P.q).

where N is total number of cases. A well known normalization of
chi-squared statistic scaled to [0,1], which represents the strength
of association is Cramer's V [24]

V(X,Y)= χ2(X,Y)/(N min(Q,J)-1).

425



The third measure of association used in EDA is a Goodman-
Kruskal association index. Consider a trivial classifier, which
chooses as a forecast the most frequent target value. When X is
available, we can do better, by choosing the most frequent
forecast among all cases with the same X-value j (maximum
likelihood forecast). The Goodman-Kruskal index is a difference
in error rate between trivial and X conditioned forecasters. While
mutual information and Cramer's V demonstrate a high level of
consistency, the Goodman-Kruskal index has a drawback in that it
can be zero for non binary target, even when other two measures
are positive.

These association measures are used as the objective function
in TDA to generate optimal thresholding for continuous attributes
and optimal grouping for categorical attributes. This optimization
must take into account both the number of groups or thresholds
and their location.  For a continuous attribute and a fixed number of
thresholding intervals, the corresponding cut points are optimized
by means of an annealing algorithm [23]. In practice, we also
impose a lower bound on the number of cases per thresholding
interval to ensure that the ranges are relevant. For a categorical
attribute and a fixed number of groups (less than J), we
experimented with two approaches for grouping of categorical
values. The first one was based on clustering of j-conditional
distributions of target q-values and used the traditional K-means
technique to cluster J points in Q-dimensional space. We preferred a
direct information based clustering, similar to K-means, but using

an information based objective function rather than L2 norm as it
explicitly relates to the I(X,Y) association measure defined
above.

To determine both the number of thresholding intervals for
continuous attributes and also the number of groups for categorical
attributes, we used a simple heuristic based on the rate of flattening of
the objective function. Higher dimensions produce better results but
also introduce more complexity; as long as the objective function is
increasing rapidly we continue to increase the number of dimensions.
We also check if adding Nulls as a separate category would more than
marginally affect the objective function. Choosing the best number of
intervals and groups is an area of on-going research for us.

After running TDA, we have a new set of discretized categorical
attributes that result from thresholding and grouping the original attributes.
As all attributes are now categorical, it is easy to compare their overall
benefit to the model and rank their predictive power with respect to the
target.

5. DERIVED ATTRIBUTES
When a source attribute is continuous, certain univariate

transformations may increase its correlation with the target. These
transformations are typically only beneficial to linear regression
models (such as the regression tree technique in the Decision Series)
and, as such, can be disabled when using other mining engines to
save computational time. Several transformations, including
quadratic function, inverse function, exponent, logarithm, power
function, and square root, are tried for each continuous attribute.
Some of the functions have free parameters, which are optimized to
find the best value. If a given transformation increases the
correlation with the target beyond a specified threshold, that
transformation is retained for further processing.  EDA relies on the
fact that the concept of correlation can be generalized to a

continuous-categorical couple [26] so that these transforms can be
used regardless of whether the target is continuous or categorical.

EDA also supports exploring functions of several continuous
attributes, including linear combinations with undefined
coefficients, ratios and products. If one of these functions has a
significantly higher correlation than each of the original attributes
does, it becomes a new derived attribute. A good example of this
from the financial community is the classic price/earning ratio,
which is typically more predictive than the attributes price or
earnings alone.  Since this feature is computationally expensive, it is
typically restricted to certain subsets of the original attributes.

6. ATTRIBUTE SELECTION
The goal of attribute selection is to select a subset of

attributes without significantly affecting the overall quality of the
resultant model. Reducing the total number of attributes used
reduces computational time and memory requirements, and in
many cases leads to more accurate and/or more easily explainable
models. We use two independent algorithms for attribute selection
to ensure the widest possible range of applicability.

The first selection algorithm is based on the concept KL-
distance mentioned above and is a modification of attribute
selection methodology suggested in [18]. The essence of this
algorithm is the minimization of the expectation of KL-distance
between the target distribution P(Y=q|X1=j1,..Xk=jk),
conditioned by joint distribution of all k source attributes, and the
target distribution conditioned by s selected attributes X1,..Xs,
P(Y=q|X1=j1,..Xs=js), s<k,  (for simplicity we assume
that exactly the first s attributes are selected)

δ(X1:k,X1:s)= � j1,..,jk Pj1,..,jk KL(Pq|j1,..,jk || Pq|j1,..,js),   

KL(Pq||Rq) = � q Pq log (Pq/Rq).

To make this idea computationally feasible, the algorithm resorts
to low dimensional Markov Blankets (MB), rather than comparing
large attribute sets. The concept behind MB reflects the simple
idea of information coverage. An attribute X0 is associated with a

small subset of attributes or blanket X1:b. If  δ(X0:b,X1:b)
is small, an attribute X0  is well covered by its blanket and is a
good candidate for exclusion. In practice, the implementation
must address such issues as the choice of the original blankets and
the exclusion criterion. The attribute with the smallest δ-measure
is not necessarily the best candidate for exclusion, since it
potentially could be a member of another blanket used at some
previous iteration to exclude another attribute, and its exclusion
could cause a chain effect. This MB algorithm belongs to the
category of backward selection algorithms. Care must be taken in
setting the size of the blanket as small increases in the MB
dimensions can results in large increases in computational resources;
however, very modest dimensions generally result in a good
selection.

The second attribute selection algorithm is based on the
concept of Inconsistency Rate (IR), which is a generalization to
many attributes of the Goodman-Kruskal index described above
(see also [13]).  IR is the error rate of a trivial (maximum
likelihood) classifier which predicts the majority target outcome
on each subset X1=j1,..Xk=jk. If the omission of a certain
attribute does not affect IR, the error rate of this simple classifier
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remains intact without this attribute, and the attribute is a good
candidate for exclusion. We use a step-wise heuristic with a major
loop of backward selection, based on the iterative exclusion of the
attribute that minimally affects IR. Forward steps are used to
check if a previously excluded attribute can be re-included
beneficially to overall monotone sequence of IR for subsequent
k,k-1,...- dimensional attribute subsets.

For both the MB and IR algorithms, the backward process
stops a when user-specified minimum number of retained
attributes is reached. Because all excluded attributes are
ordered by the iteration count at which they have been
excluded, attributes excluded at the earliest stages are
eliminated until the requested number (large enough to cover
minimal retained set) is reached. For example, we can request
to exclude attributes with IR rates below a certain threshold.
The output at each step of the δ measures for MB algorithm
and the inconsistency rates for IR algorithm provides a good
heuristic of what number of attributes to request.

7. EXPERIMENTAL EVALUATION
This section provides example results from using EDA on real

world Web data sets. Due to confidentiality requirements of paying
clients, the sources of the data have been made anonymous.

In the first example, an on-line newspaper publishing company
wanted to identify repeat visitors to its site in advance of their
returning. Overall the return rate was 25%; the problem is predict
which visitors are most likely to return in the next 30 days from
the last 90 days of Web site traffic information. The training set
contained ~10,000 cases; the verification set contained 2,500
cases. More than 300 attributes were available for modeling,
including recency, frequency, duration (RFD) information, browser
type, referring domain and URL, and a variety of demographic data.

Out of the original 300 attributes, EDA identified more than
50 as inappropriate and removed them from subsequent
processing.  As expected, many of these inappropriate attributes
were Null or Near Null.  A significant portion of them, however,
were classified as Many Values. These pseudo-identifiers had
nearly a different value for every case; with such a high
cardinality they provided little value to the modeling process.
One common example of this phenomenon is the attribute that
captures the Browser/IP pair. In fact, Browser/IP pairs serve as a
visitor identifier at those sites which have no registration or
cookie mechanism.

As we can see from the following output (see Figure 1), EDA
also identified that the TOPLEVELDOMAIN attribute was
suspicious because the value of COM covers more than the
default 90% of the cases. (For those readers who may not be
familiar with Internet terminology, top level domain refers to the
third part of an URL, as in the com part of www.accrue.com.)
The distribution of values is indeed suspicious in light of the fact
that most Web sites see about 75% of their traffic come from the
COM top-level domain. The open question is what the modeler
should do about it. As previously mentioned, by default the
Accrue Decision Series will continue to use it and ultimately
decide during attribute selection whether it should be eliminated.
A clue to its value is contained in the output; a significantly
higher percentage than normal (89%) of the visitors from the EDU
domain do not return to the Web site.

TOPLEVELDOMAIN

Status is Suspicious: Near Constant

Type is Categorical
Number of cases with non NULL values
is 9107 (99.3%)
Number of distinct attribute values
is 5

Values Statistics:

 No    cases:     0    1 : Value Name
  1     8244:  0.76 0.24 : COM
  2        1:  1.00 0.00 : GOV
  3      193:  0.89 0.11 : EDU
  4      152:  0.71 0.29 : ORG
  5      517:  0.72 0.28 : NET

Value COM covers a larger percentage
(90.5%) of cases than specified
threshold (90.0%).

Figure 1.  Example suspicious attribute

In the following related output (see figure 2) we see three
optimized encodings determined by the EDA module. The age
attribute was a continuous attribute that was thresholded into five
ranges using four cut points while the original 14 categorical
values of the education attribute were replaced with five
groups. On the other hand, EDA was not able to optimize the
default encoding for the sex attribute; the two original categories
(M and N) were each encoded as separate values.

Age threshold 23.5 27.5 35.5 61.5 ; --

4 cut points determined.

Education category { 10th 11th 12th

1st-4th 5th-6th 7th-8th 9th Preschool
} { Bachelors } { Doctorate Masters
Prof-school } { HS-grad  Some-college
} ; -- 5 groups determined.

Sex category; --  No grouping (2

original values).

Figure 2.  Optimized encodings determined by the EDA module

In the second example, a clicks and mortar retailer wanted to
optimize their direct marketing campaigns by using historic data to
target consumers for upcoming campaigns. Overall the response rate
from previous campaigns was 4.4% with 200,000 cases split into a
9000 case 50/50 stratified training set and a 100,000 case
unstratified verification set. There were 593 source attributes
available, including purchase transactions, financial information,
and demographics.

A number of experiments were run to test the efficacy of the
EDA attribute encoding and selection. Three base models were built
using all 593 attributes marked No Selection (see table 1), using 254
attributes selected by the Markov Blanket technique, and using 16
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attributes selected by the Inconsistency Rate technique. These base
models used default, unoptimized encodings in which continuous
attributes were thresholded using an equal frequency algorithm and
categorical attribute were unchanged.  From these three base models,
we also constructed three corresponding models with optimized
encodings, using the thresholding and grouping suggestions from
EDA.

The resultant six models were compared using two separate
measures, lift in the top 5% quantile and ROC. We prefer these
measures to the overall error rate on the verification set as they more
closely reflect the actual business goals: optimizing behavior on a
subset of the population as opposed to the entire audience.  From the
following table, we see that halving the number of attributes
significantly improves the model; in fact a further 63% reduction in
number of attributes to only 16 causes almost no degradation in
performance with the associated saving in elapsed time. What’s more,
using the optimized encoding suggested by EDA improves the model
such that there is virtually no difference between using 254 attributes
and using 16.

Two other results are worth pointing out. First, to test whether the
increase in these measures was significant, we ran multiple models
with different training and verification sets. We calculated from
formulas that the top 5% lift had a standard deviation of 0.11 and the
ROC metrics [20, 6] had a standard deviation of 0.0037. Second, these
results were obtained using a boosted naïve bayesian classifier; a
classification tree induction technique produced analogous results.

Table 1.  Unoptimized Encoding vs EDA Encoding

Unoptimized
Encoding

EDA
Encoding

No Selection Attributes Used 593
593

Training Time 151
130

ROC 0.712
0.724

Top 5% Lift 2.76
2.71

MB Attributes Used 254
254

Training Time 74
79

ROC 0.729
0.742

Top 5% Lift 3.28
3.39

IR Attributes Used 16
16

Training Time 44
40

ROC  0.712
0.735

Top 5% Lift 3.03
3.35

8. RELATED WORK
Data preprocessing is a standard practice in statistics [28],

pattern recognition and data mining [26]. Generic data cleansing
techniques are well described in [10]. Grouping of categorical
values as it relates to tree induction techniques is discussed in
[25] while thresholding of continuous variables is discussed in
[8]. In [9] information based thresholding of continuous attributes
is augmented by the use of the minimal description length
principal.  A comprehensive introduction to information theory is
contained in [3]. For a practical study related to deriving new
attributes in context of data mining, see [1]. In linear statistical
modeling, many similar approaches have been used; most notably,
principal component analysis [15]. The idea that EDA is
inherently an iterative, interactive endeavor is advocated in [27].
While we agree with this philosophy in some aspect, our primary
focus is on automatic process. Visualization environment for EDA
is discussed in [4].

For attribute selection in unsupervised learning see [5]. Two
models, filter and wrapper, exist for attribute selection and both
are described in [14].  For an earlier work on attribute selection
see [16]. The Markov Blanket attribute selection algorithm is a
modification of the algorithm introduced in [18]. Inconsistency
Rate, utilized in IR attribute selection, serves as an objective
function in [13], where a Las Vegas type algorithm is used for the
major iterative loop. For wrapper type attribute selection see
[17,22].

9. CONCLUSIONS
This paper presents an approach for automating the exploratory

data analysis step in the knowledge discovery in data. This EDA
process identifies inappropriate and suspicious attributes, selects the
most appropriate attribute representation, create univariate and
multivariate derived attributes, and chooses an optimal subset of
attributes to retain for the model. Using the resultant simplified
attribute subset reduces elapsed CPU time for building and using a
model, increases model accuracy, and improves the explanatory
power of the model. In practice, these benefits are magnified several-
fold because the process of building an effective model typically
involves building multiple models with different parameters, training
sets, or business objectives.
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