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Abstract

A data analysis tool was developed using R in order to quickly and efficiently gain
an initial understanding of the structure and predictive power of a dataset. This tool
was developed for SHS VIVEON AG, a business and IT solution provider for customer
management, and is meant to enable the firm’s Data Science team to perform initial
exploratory data analysis of a client’s dataset. The two key drivers in the design of
the software were versatility in the functions (visualization, clustering, classification,
etc.) and an intuitive interface. This work will do the following: outline the needs
of the firm’s Data Science team when faced with a new dataset, review the statistical
and analytic methods for engaging with data in a business setting, recount the steps
taken to create the tool in question (including the full considerations of SHS VIVEON
AG and the results of usability testing), and take the reader through a step-by-step
mock analysis of a non-proprietary dataset. Overall, the current work shows the
background, design, and implementation of this software, explaining both its technical
and interactive features. Finally, it points to ways that users can modify and improve

upon the software if other requirements are identified in the future.
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1 Introduction

This thesis describes a statistical software tool that was developed for the Data
Science team of SHS VIVEON AG, a business and IT solution provider for customer
management. Developed to address the requirements of the two main stakeholders,
i.e. the firm and the end user (analyst), the software is an interactive application that
allows users to perform a thorough initial exploratory analysis of data without the
need for scripting.

Since the seminal work by Tukey (1977), exploratory data analysis (EDA) has often
been understood as an attitude and approach to flexible investigation of data with-
out assumptions about the data generating process (Kotz et al. 2006, 11:2152). The
amount and complexity of data produced by businesses is constantly growing. Like-
wise, new techniques for data analysis are being rapidly developed to keep pace with
this growing complexity. The advances in algorithmic data processing do not under-
mine the importance of understanding the data at hand, but continue to profit from
it.

This exploratory data analysis tool provides assistance in answering questions about
the appropriateness of clients’ data for addressing specific problems, e.g. prediction.
It also provides estimates about the time, effort and resources required for a project.
The scale and possible consequences of such decisions require a tool that is reliable
and capable of providing trustworthy results. Success and profitability may depend
on it. At the same time, an end user of this tool should perceive benefits of use for
themselves. The tool should be pleasant and intuitive to use, and offer an appropriate
scope of functions and features.

Striking a balance between functionality and simplicity is one of the core challenges
of the digital product development. Excessive complexity and a steep learning curve
may discourage users from investing time into learning, while the lack of highly desired
features would force users to turn to additional tools to complete an analysis, thereby
reducing the appeal of the software.

In a typical scenario, SHS VIVEON’s Data Science team receives tabular data from
its client, from varying industries, e.g. telecommunication, automotive. The historic
data is used to help the client to increase understanding of its business, and to make
predictions about events of interest.

The company considered automating the repetitive task of initial exploratory anal-
ysis in order to make a more efficient use of its time and resources and also to make
the process a more pleasant experience for its analysts. Therefore, it was imperative
that the software be able to:

o quickly provide a first impression of the information in the data, including pre-
dictive performance;

« be manageable via a graphical interface; and



o securely operate on an internal server with a Linux operating system (where the
client data is stored).

The software tool is limited to a qualitative outcome variable, i.e. to classification,
because of the high frequency of such requests from clients. Both binary and multiclass
problems are able to be addressed by the software. The back end is powered by R, an
open-source programming language for statistical computing and graphics. The front
end is implemented as a web-based interface.

This work consists of three main parts. Section 2 contains the theoretical foundation
regarding the methods used in the software tool. It is meant to be a basic reference
for the functions used in the tool rather than an exhaustive explanation of all data
exploration techniques. The structure, functionality, and technical implementation of
the data analysis tool are explained in Section 3, which also includes information on
the process and results of user testing. Finally, Section 4 presents an application of the
developed tool using real-world data. Appendix A contains screenshots of all software
tabs and Appendix B lists files on the enclosed CD.

2 Theory

This section provides background for descriptive statistics and statistical learning
theory that supports methods implemented in the software tool. The explanatory
focus of the work only takes into account sample statistics and no inferential matters
are examined. In other words, the emphasis lies on flexible analysis of the sample

without assuming any probabilistic model.

2.1 Data preparation

2.1.1 Data matrix and variable types

Tabular data consists of a collection of n observations with p measurements, building
an n X p data matrix. Rows can be referred to as instances, cases, objects, units, records
or observations (i =1,...,n), while columns — as variables or fields (j =1,...,p).

Measurements in each column vary by type, a characteristic crucial for the appli-
cability of analytic techniques. A high level distinction is made between variables
that are measured on a numerical scale, those that have an order, but no scale, and
those that have neither scale no ordering. The first kind can be characterized by a
wide range of statistics as mean, sum, difference, etc, while the last kind accepts the
narrowest range of operations. This work treats variables either as quantitative (nu-
meric) or qualitative (categorical, nominal). Various classifications of measurement
scales and variable types are presented in Agresti (2002, 2-4) and Bortz and Schuster
(2010, 12-23).



2.1.2 Constant and almost constant variables

Constant variables (also called unary or zero variance variables) contain identical
values for all observations. Qualifying a variable as almost constant (near-zero vari-
ance) depends on the definition. Kuhn and Johnson (2013, 44-45) suggest two rules of
thumb to identify near-zero variance fields: a low fraction of unique values and a large
frequency ratio of the most prevalent to the second most prevalent values. A com-
bination of these rules aims at preventing false categorization of more or less evenly
distributed variables with low granularity (Kuhn 2008, 4).

2.1.3 Missing values

Missing values are entries of a data matrix that were not observed. Although there
is no single convention on how to mark missing values, special symbols (e.g. NA in
R) and numbers outside of plausible values range (e.g. negative for age) are used for
coding.

Ways of dealing with missing data include the deletion of variables, the deletion
of cases, imputation (see details e.g. in Enders 2010; Little and Rubin 2002) and
the use of statistical methods that can deal with the issue of missing data internally.
A column with all missing values has no explanatory power, while a variable with
mostly missing values may require careful inspection. Their imputation tends to be
risky and such variables are candidates for dropping from the analysis. Sometimes,
a highly structured pattern of missingness (e.g. observations missing in one variable
has values in another) may signal unfortunate coding of variables and such columns
can be merged into one with appropriate coding (Pearson 2011, 98-99). In any case,

a pattern of missing values may contain important information about the dataset.

2.1.4 Extreme values

The definition of an outlier as “an observation (or subset of observations) which
appears to be inconsistent with the remainder of that set of data” (Barnett and Lewis
1994, 7) seems to be adopted and referenced by many researchers. Importantly, this
raises the question of whether an observation belongs to a population. The name
“extreme values” has the intention of departing from inference questions and concen-
trating on the exploration of the sample data.

The probabilistic approach to univariate outliers detection is based on the properties
of the normal distribution. The probability of being beyond a specific number of
standard deviations from the mean is fixed. In practice, population moments are
unknown and they are routinely estimated (Wilcox 2010, 29-32). A univariate decision
rule to detect extreme values is presented in Equation (1). A value z;; from a data
matrix described in Section 2.1.1 is identified as extreme if it is located further than ¢
sample measures of spread §; from a measure of location ¢; of that variable (Pearson
2011, 310). Definitions of sample measures can be found in Upton and Cook (2002).

10



extreme value if |zi;—¢] /85 >t
Tij = (1)
nonextreme value otherwise
where: ¢; — sample mean or median
5j — sample standard deviation or median absolute deviation from the
median (MADM)

t — positive number

Two versions of the rule differ in their resistance to contaminated (e.g. erroneous)
values. Sample breakdown point defines resistance of an estimator as the smallest
fraction of the data for which arbitrary changes would distort the resulting estimate
(Wilcox 2010, 16).

An alternative approach to univariate extreme values detection is based on the in-
terquartile range (IQR) where values can be visually inspected on a box plot (Wilcox
2010, 34-35). Further rules can be found in Kotz et al. (2006, 9:5886-5887). Alto-
gether, such procedures consider one variable at a time. “Anomalous” observations in
more dimensions can be of interest (e.g. identified by relplot for bivariate data, see
Wilcox 2010), but are outside of the scope of this work.

2.1.5 Data transformation

Transformation is a data preparation step that allow the subsequent analysis to be
more accurate and revealing (Kotz et al. 2006, 14:8703). Hoaglin et al. (1983) consid-
ered re-expression one of the main ingredients of EDA, because it helps to emphasize
important structures that are not evident at the original scale. At the same time, the
structures detected via transformation can be artifacts of a sample and the supervision
of a domain expert is needed (Hand et al. 2001, 38-39).

The first group of transformation techniques for numeric variables, e.g. logarithm
or raising to a power, aims to achieve better statistical properties of the variable in
question. Sometimes this happens at the cost of interpretability (Yu 2010, 11-12). Ad-
ditionally, some transformations change the variable type, e.g. discretization/binning
of numeric variables. The second type of data transformations aims to standardize
variables to a consistent range for the purpose of comparability, e.g. min-max trans-
formation results in range [0,1]), decimal scaling in [—1,1], centering by mean and
dividing by standard deviation (z-score standardization), or centering by median and
dividing by IQR (Flach 2012, 314; Larose and Larose 2015, 30-32).

2.1.6 Proximity measures
Clustering techniques and some classifiers are founded on the notion of similarity and
dissimilarity. While these terms indeed measure the opposite, they seek to quantify

proximity. Additionally, the term “distance” is often used as a synonym to dissimilarity

11



for quantitative data. This section discusses measures between units and between

groups of units.

Inter-individual proximity measures depend on variable type (quantitative, nomi-
nal, etc.) and in part on the type of unit (sample or population) (Kotz et al. 2006,
12:7730-7737). Euclidean and Manhattan distances (Equations (2) and (3)) are only
applicable to numeric variables while generalized Gower’s dissimilarity (Equation (4))
accepts both qualitative and quantitative inputs. Further measures are described in
Everitt et al. (2011, 46-56) or Flach (2012, 231-237).

Proximities for datasets with numeric or mixed data types are representable as a
n x n dissimilarity matrix D with elements d;;, dissimilarities between ith and ¢’th
object. Here an later in this work, bold uppercase characters denote matrices and
lowercase bold characters — vectors. Proximity measure for a pair of observations

includes dissimilarities in each of the p attributes and w;, weights of j-th attribute.

1/2
p
Euclidean distance d;; = [Z wjz(xij - %"j)Ql (2)
j=1
p
Manhattan distance d; = Z wjlzij — Sl?z'/j| (3)
j=1

2

i’

Generalized Gower’s dissimilarity —d; =

(4)

where: w; — nonnegative weight of j-th variable

Tij,ry; — j-th variable value for units i and i’

5§g,) — 0 if at least one variable is missing or asymmetric binary variable
have 0-0 match, 1 otherwise
dz(.g,) — contribution of j-th variable to dissimilarity between ¢ and 7’

()

When variable j is nominal, d;;/ is 0 if two values are equal and 1 if they are not.

For numeric variables dz(.l‘?,) is a Manhattan distance after min-max transformation:

49

i = |Tij — 25|/ Rj, where R; is the range of variable j. Ordinal values are substituted
by ranks and treated as numeric (Kaufman and Rousseeuw 1990, 32-37; Maechler et al.
2016; Everitt 1992, 49-56).

Distance calculations according to Equations (2) and (3) consider only those vari-
ables for which values in both observations are present. If both units have no nonmiss-
ing values in common, the resulting dissimilarity cannot be defined. Possible solutions
include the removal of units or the imputation of distances or values in the original

data matrix (Kaufman and Rousseeuw 1990, 15; Hastie et al. 2009, 507).
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Inter-group proximity measure is a dissimilarity d(G, H) between groups G and H

computed using pairwise proximities d; when 7 is in G and ¢’ in H.

Nearest-neighbour distance / Single linkage d(G,H) = gldeii’ (5)
1€Gi'e

Furthest-neighbour distance / Complete linkage d(G,H) =" IGnaXHdZ-Z-/ (6)
(ISIERYS

1

Average linkage d(G,H) =

SN di (7)

NGNH jcqircH

where: ng,ng — number of observations in groups GG and H respectively

2.2 Measures of association

Measures of association quantify the statistical strength of the relationship between
a pair of variables. Measures are often scaled to either [0,1] or [—1,1] which facilitates
comparison. The choice of association measures depends on variable type and, in

particular, their possible mathematical characterizations.

Between numeric variables

Sample Pearson correlation between two continuous variables is probably the most
widely used measure of association. Conceptually, it quantifies the reduction in error of
prediction. It compares values of a variable with and without knowledge of the other
variable. Spearman rank correlation coefficient (Spearman’s p) substitutes variable
values with ranks and it measures the monotone relationship rather than just the linear
one addressed by the Pearson correlation. Another rank-based coefficient, Kendall’s 7
explicitly accounts for ties. Mathematical formulation and interpretation of coefficients
can be found in Pearson (2011, 450-469, 490-491), Hérdle et al. (2015, 438-450).

While some association measures are established for continuous variables, under
certain conditions they are applicable to variables of other types. Pearson product-
moment correlation coefficient is useful for integer-valued data for which distance-
related quantities (e.g. mean) are well defined. Spearman rank correlation coefficient
may also be useful for such data, however, it suffers from ties resulting from repetitive
values (Pearson 2011, 491-493).

Between categorical variables
Distance-based quantities are not well defined for categorical variables and, therefore,
a Pearson correlation coefficient is not applicable. Rank based measures may benefit

ordinal variables but not nominal ones.
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A contingency table is a usual way to summarize two nominal variables and a x>
statistic indicates whether there is a statistical relationship. However, this statistic
depends on sample size and table dimensions (number of rows and columns). Many
contingency table based measures adjust the x? statistic to the sample size, the dimen-
sions of the table, or both. These include ¢ (¢?), contingency coefficient, and Cramér’s
V (definitions can be found e.g. in Everitt 1992, 54-55). While all metrics are bound
by zero from below (no relationship), the first two do not have a desirable clear upper
bound. The dependence of the upper bound on table dimensions is further adjusted
in Cramér’s V. For this reason, Cramér’s V is a more universal measure (Bortz and
Lienert 2008, 271-275).

Another group of measures is based on reduction of error in prediction. They incor-
porate predictive ability into meaning of association. A range of metrics was suggested
by Goodman and Kruskal A, many of which are asymmetric (see details and examples
in Everitt 1992, 55-59 or Kotz et al. 2006, 245-251).

Between numeric and categorical variables

When measuring an association between variables of different types, a metric for the
less flexible type is applicable, e.g. ordinal and nominal variables should be treated
as nominal which results in loss of information of order (Pearson 2011, 491-494).
The focus of the developed software on classification requires measuring association
between a numeric variable and a categorical target variable. Therefore, effect sizes
for subgroup analysis are considered.

One of the effect sizes based on proportion of variance explained, (partial) 7%, mea-
sures strength of association between a dependent quantitative and independent qual-
itative variables in a sample. In case of only one factor, partial n? and n? are both
equal to a proportion of the total variance in the dependent variable attributable to
the factor. This sample effect size is calculated as a ratio: a sum of squared differences
between the values of the numeric variable and the group means in the numerator and
the total sum of squared differences between these values and their mean, ignoring the
groups, in the denominator (Tabachnick and Fidell 2001, 36-37, 52-53).

2.3 Data visualization

Visual exploration of data is critical to it being understood. Different graphs are
used to present summary statistics, display distributions, show relationship between
variables, facilitate choice of model parameters, detect groups, etc. Moreover, the
choice of graphical form depends on the type of the depicted data (Clarke et al. 2009,
531-534).

Plots designed for numeric variables depict several features such as asymmetry, mul-
timodality, heaping, extreme or impossible values. Displays of categorical variables

may reveal uneven distributions, repeated categories, and unexpected patterns (Un-
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win 2015, 27-29, 53-56).

Bar charts depict absolute or relative frequencies for each level of a categorical
variable. They are also used to plot some quantitative measures (e.g. means). In
the latter case, values can be complemented by error bars. A clustered (grouped) bar
chart (Figure 1a) visualizes a contingency table of two categorical variables. Mosaic
plots (Figure 1b) are another way of presenting contingency tables of two or more
categorical variables: the space of the graph is subdivided into rectangles proportional
to the counts of the multivariate combinations of categories (Unwin 2015, 131-137).

Box plots are suitable for numeric variables and appear in different variations. The
basic idea of a box plot is to depict the central bulk of data with a box (e.g. from
the first to the third quartiles), displaying a measure of location (e.g. median) inside
the box, and stretching whiskers from the end of the box to a particular level (e.g.
1.5 IQR or minimum/maximum) (Unwin 2015, 44-47). Kernel density estimators
can be viewed as smoothed histograms and tend to offer much better approximation
of the density than widely used histograms (Pearson 2011, 355-365). Estimates are
influenced by a kernel function K and a bandwidth parameter h. The former is usually
a unimodal function with peak at 0 and it has less impact than value of h (Hand et al.
2001, 59-61). Parallel box plots (Figure 1c) and grouped density plots (Figure 1d)
compare distributions of subgroups.

Cleveland dot plots (Figure le) are a visualization where labeled numeric values
are depicted with dots positioned on a common scale. Under some conditions (e.g.
baseline of zero), this plot is similar to a horizontal bar chart (Myatt and Johnson 2009,
43-44). Scatterplots explore the relationship between two continuous variables and
may uncover associations, outliers, and clusters. A third variable can be introduced
by color coding the plot points (Unwin 2015, 75-93) as in Figure 1f. The presence of
massive amounts of data often decreases the usefulness of this graphical display because
large numbers of points may conceal the association (Hand et al. 2001, 62-64).

Heatmaps are designed for visualizing a matrix with quantitative elements. Each
value is mapped to a color spectrum. Cells are either colored relative to values in a
column (e.g. in a matrix plot described in Section 3.2.2) or with regard to a fixed scale
(e.g from —1 to 1 for a correlation matrix) (Piegorsch 2015, 102-105). Dendrograms
(see details in Section 2.4.2) add clustering capabilities to rows, columns or both.
This may reveal structures, but groups’ interpretation is flexible and rather subjective
(Piegorsch 2015, 102-105; Unwin 2015, 164-166). Figure 1g shows an example of a

correlation plot with clustered rows and columns.

2.4 Unsupervised learning
The goal of unsupervised learning is to discover underlying structures of input data

(often multivariate X = [x,...,Xp]). In contrast to supervised learning, introduced in
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Figure 1: Examples of visualization from the developed software tool using Data Min-
ing Cup (2010) dataset

Section 2.5, no dependent variable is present. Techniques such as principal component
analysis (Section 2.4.1), self-organizing maps, multidimensional scaling, etc. seek to
explore associations between multiple variables and whether the X-space can be fairly
well represented by a lower number of dimensions. Clustering techniques (Section
2.4.2) search for distinct groups of observations. The lack of clear quality measures of
unsupervised analysis raises a challenge for their application. At the same time, these
methods contribute to a better understanding of the data and are valuable for data
exploration (Hastie et al. 2009, 486-487).

2.4.1 Principal component analysis (PCA)

The key idea of PCA is to express original p-dimensional data with a smaller ¢
number of linear combinations of the p variables and to capture the highest possible
variability (at maximum ¢ = p). Principal components (PCs) can be derived either
from the covariance or the correlation matrices. The latter is more practical due to
invariability to scale of the original variables. Formally, X* is a matrix of original
variables scaled by their standard deviations. Then the covariance matrix of stan-
dardized X* is the correlation matrix of the original variables. The goal is to find
a; = (a1, ...,apj) such that for all j =1,...,q the j-th PCis uj; = a]TX* with as high as
possible variance subject to being uncorrelated with other u;.

It can be shown that a;s are the eigenvectors of the covariance matrix of standardized
variables, ordered according to decreasing eigenvalues A;. An additional constraint

is required to prevent inflation of variance due to larger component weights a;; a
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usual choice is a; having unit length (a]Taj =1) with Var(uj) = A;. Consequently,
coefficients lie between —1 and 1 and they reflect the contribution of original variables
to a PC. Applying PCs to each observation forms PC scores (Clarke et al. 2009,
495-497; Piegorsch 2015, 342-345; Jolliffe 2002, 4-6).

There is no unanimity about the preferred criteria to choose a number of compo-
nents. Possible strategies include retaining PCs corresponding to eingenvalues that
are above the average. If standardize data is used, this is equal to keeping compo-
nents that explain more variance than any of the original variables (or above 1). An
alternative recommended threshold is 0.7. Another approach is to choose ¢ such that
a predetermined fraction of original variance is pertained, e.g. 80%. A scree plot of
eigenvalues against the number of components demonstrates how quickly they drop
to zero (Piegorsch 2015, 345-346). The first ¢ PCs can be considered as dimensions
embodying the “signal” and others containing the “noise” (Duda et al. 2001, 568-569).

A rotation of the axis within the ¢-dimensional space seeks to increase the inter-
pretability of components. Formally, Aq, a p X ¢ matrix of loading, is multiplied by
a ¢ x ¢ matrix T. The choice of T determines the rotation type: orthogonal (e.g.
varimax, quartimax) or oblique (e.g. promax, oblimin). The varimax rotation, for
example, seeks to simplify columns of the loadings matrix, so that all variables have
coefficients either closer to 0 or to 1. Details on rotations and the transformation
matrix can be found in Jolliffe (2002, 152-154, 270-271), Larose and Larose (2015,
114-117) and Kotz et al. (2006, 11:7357-7357).

2.4.2 Clustering

Clustering techniques explore a dataset with an attempt to find natural groupings.
The goal is to organize objects in such a way that instances within a group are similar
to each other and different from objects in other groups. This requires quantitative
measure of closeness or proximity (see details in Section 2.1.6).

The choice of dissimilarity measure is fundamental for clustering. It should reflect
the analyst’s understanding of closeness for a particular dataset. According to Hastie
et al. (2009, 506), the specification of an appropriate proximity measure is by far more
important to achieve good clustering results than the choice of an algorithm. Specifica-
tion includes dissimilarity measures between attributes’ values and their combinations
(weighting) to calculate the proximity between individual observations. The distance
measures for quantitative and mixed variables include weights w; (see Equations (2)
— (4)), which can be set explicitly or determined from the data.

Clustering techniques are often grouped into partition-based (optimization), hierar-
chical, and model-based clustering. The first type attempts to find optimal partition
into K disjoint sets according to a chosen criterion (score) function. The second type
seeks to discover a hierarchy of nested clusters and the partition is obtained by cutting

at some level of the hierarchy. The third type is based on a probabilistic model for
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clusters in a population and therefore not considered in this work.

Generally, when using unsupervised learning, the evaluation of the resulting clus-
tering solution is not straightforward. Deciding on how many clusters are present in
the data is problematic regardless of the chosen clustering method. An assessment in
terms of the subject matter is crucial, but is not amenable for general research. Sta-
tistical evaluation is possible with external and internal techniques. External validity
(e.g. Rand or Jaccard indexes) assesses similarity between two different partitions of
the same data. Internal clustering criteria (e.g. Calinski-Harabasz, Davis-Bouldin,
silhouette or gap indexes) attempt to evaluate how well clustering reflects internal
structure (Clarke et al. 2009, 480-483; Everitt et al. 2011, 264-273).

Partition-based (optimization) clustering techniques attempt to assign observations
to K disjoint groups. Once an inter-individual proximity measure is chosen, a criterion
(or score) function that measures quality of a particular partition should be defined.
The next step is to find a partition that maximizes or minimizes the criterion function.

Some score functions operate on the basis of the original data matrix, whereas others
require inter-individual dissimilarities. While the former are limited to continuous
variables only and often default to the Euclidean distance, the latter can accommodate
all data types and proximity measures via a dissimilarity matrix. The general idea is to
search for compact clusters that are far from each other. The clustering criterion can
significantly influence the type and structure of clusters that are searched for (Everitt
et al. 2011, 111; Hand et al. 2001, 299).

Criterion functions for numeric data are often used within cluster variation (W) to
measure how tight clusters are and between cluster variation (B) to evaluate distances
between clusters. A simple measure of W is a sum of squared Euclidean distances be-
tween a center of a cluster, expressed by its mean, and every data point in this cluster.
B can be measured as distance between cluster means. Fortunately, minimization of
W is connected to maximization of B, because they sum up to the total variation 7.
The sum-of-squares criterion (equivalent to a trace criterion, tr(W)) is criticized for its
dependence on the scale of the variables. Other criteria based on B and W, including
invariant ones, are available. Those, however, also have certain disadvantages (Duda
et al. 2001, 542-548; Hand et al. 2001, 297-300). Clustering criteria for a dissimilarity
matrix are based on the same notions of compactness and farness. A generalization of
a score function for numeric data is to minimize arbitrarily defined dissimilarities to a
cluster center expressed by one of the observations.

Once a score function is chosen, clustering becomes an optimization problem (max-
imization or minimization depending on the clustering criterion). The sample of ob-
servation is finite. Consequently, the number of possible observations’ assignments to
K clusters is also finite. Certainly, exhaustive enumeration is feasible only for tiny

datasets; otherwise an iterative-improvement optimization is performed. The general
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idea is to start with some clustering, reassign data points to improve the score func-
tion, find updated cluster centers, reassign points again, and repeat iterations until
either no improvement of the criterion function, no change in the cluster membership,
or a specified maximum number of iterations is achieved. Overall, only a fraction of
possible points’ allocations to K cluster is examined. Like any greedy search approach,
such an algorithm does guarantee a local, but not a global maximum or minimum.
Nevertheless, computational feasibility makes this approach attractive (Hand et al.
2001, 302-303; Duda et al. 2001, 548-550).

K-means clustering is the most popular partition-based algorithm (a few versions
exist) and can handle large quantities of data. It is appropriate if all variables are
quantitative, squared Euclidean distance (in its standard version) is believed to reflect
dissimilarities in the data and if it is acceptable that cluster centers are represented by a
mean (a mathematical construct rather than real observation). The criterion function
is the sum of squared deviations of points from the cluster means. As described
above, as a rule, an optimization continues until convergence to a (local) minimum.
The Hartigan—Wong algorithm additionally assures that no single reassignment of an
observation to another groups will decrease the value of the score function. Under some
conditions, this algorithm may not converge and an alternative, e.g. by MacQueen,
can be used. Different starting points may influence the final solution (Hastie et al.
2009, 509-510). Repeating the procedure with different starting points provides some
insight into the sensitivity to this parameter and allows one to increase the chances of
attaining the global minimum. Clarke et al. (2009, 410) recommend using at least ten
different sets of starting points.

K-medoids clustering relaxes the limitations in terms of proximity measure choice.
However, this comes at the expense of computation. This approach is applicable
either to a data frame of attributes (numeric variables only) or a dissimilarity matrix
(any type of variables). The minimization of a sum of squared distances in K-means
is substituted by a minimization of the sum of defined dissimilarities to candidate
representative objects (medoids).

Partitioning around medoids (PAM) is one of the K-medoids algorithms and
goes as follows. First, K initial medoids are successively selected. The first object
has the minimum sum of dissimilarities to all observations in a sample. All following
representative objects (up to K) attain a maximum decrease in the criterion function.
Given the initial set of K medoids all points are assigned to the nearest one, then one
of the non-medoids is selected to be exchanged with one of the medoids and the score
function is calculated. In case of improvement, points stay interchanged, while in the
opposite case, the next non-medoid is swapped and so on until no single switch can
decrease the criterion function (Kaufman and Rousseeuw 1990, 68-72, 102-104). This

procedure does not scale up well, but it is less sensitive to outliers than K-means where
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using squared Euclidean distance often causes extreme values to have high influence
(Hastie et al. 2009, 515-517).

CLARA (abbreviated from Clustering LARge Applications) is a K-medoids par-
titioning method adapted to large amounts of data. In contrast to PAM, only a
data matrix of numeric variables can be imputed. The algorithm version proposed by
Kaufman and Rousseeuw (1990) calculates either Euclidean or Manhattan inter-object
dissimilarities. A lowering of computational intensity is achieved via drawing a few
(e.g. five) sub-samples of a fixed size, finding K clusters in each sub-sample, assigning
each observation outside of a sub-sample to the nearest medoid and calculating the
score function for the whole dataset. A solution with the lowest mean (equivalent to
sum) of specified dissimilarities is chosen as a final solution (Kaufman and Rousseeuw
1990, 126-127, 144-146).

Internal validity criteria for different partitioning methods vary. Clustering based
on the sum-of-squares score function deploys plot of W or loglW against number of
clusters or a Calinski-Harabasz pseudo- I’ statistic: F' = % An “elbow” (or
“kink”) on such plot or a maximum value of the statistic may signal a good choice
of K (Piegorsch 2015, 389-390). The gap statistic searches for the largest difference
between logW curve and a curve obtained from a suitable null reference distribution.
Virtually, this is equivalent to searching for a “kick”. In contrast to other methods, the
gap statistic succeeds at detecting a single cluster solution if no groups are present in
the data. Another advantage is its applicability to any clustering method (Tibshirani
et al. 2001; Hastie et al. 2009, 519-520). Average silhoette width over the entire
dataset is a scalar statistic derived from a silhoette plot. This graphical representation
of clustering methods is based on notions of compactness and separation (Rousseeuw
1987; Kaufman and Rousseeuw 1990, 83—-88). Although it was developed for partition-
based techniques, it is applicable to hierarchical clusters, once the number of groups
is decided.

In summary, the proximity measure should reflect the researcher’s understanding of
similarity, K can be chosen based on domain knowledge or experimentally (e.g. with
the help of internal validation metrics), and the choice of an algorithm depends on the

characteristics of the data and the goals of the analysis.

Hierarchical clustering algorithms build a hierarchy of clusters that implicitly contain
any number of groups 1 < K < n. This approach is different from the partition-based
methods that determine a fixed number of clusters, even if no natural groupings exist.
An analyst often tries various K to find an appropriate number of clusters. Notably,
the same issue of constructing clusters even if no natural groupings exists is true for
hierarchical clusters. Additionally, partition-based methods establish K clusters at
once, while hierarchical methods build clusters using already existing ones. This re-

quires an inter-group proximity measure in addition to inter-object dissimilarities that
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were discussed above. Hierarchical techniques are subdivided into agglomerative
(starts with n single-object clusters and then successively merges observations) and
divisive (starts with n observations as a single cluster and then successively separate
into smaller groups).

Given the inter-object dissimilarities, an agglomerative clustering algorithm merges
two observations with the smallest inter-object dissimilarity and all successive merges
are based on the defined measures of distance between clusters (see details for inter-
group distances in Section 2.1.6, while recommendation of use can be found in Clarke
et al. (2009, 415-417) or Duda et al. (2001, 552-555)). All fusions are irrevocable.
The resulting structure is presentable with a dendrogram, a tree-like graph that tra-
ditionally displays the single-observation “leaves” (K =n) on the bottom and K =1
on the top while y-axis quantifies inter-group distances. Drawing a horizontal line
on a dendrogram “cuts” the branches to define a particular number of clusters. It is
important to realize that this graph represents a clustering structure as obtained by a
particular algorithm rather then the graphical display of the data itself (Hastie et al.
2009, 520-523).

2.5 Supervised learning: classification

The goal of supervised learning is to predict an outcome measurement (y) from a
set of p variables (X = [x1,...,Xp]). A training set (Dirain = (24,¥i), ¢ =1, ..., Ngrain) 18
used to learn from a set of objects to then predict the outcome for unseen objects. y
is variously referred to as the response, target or dependent variable and X as pre-
dictors, features, attributes, covariates, independent, explanatory or input variables.
Learning is possible under an assumption that the measurement of interest is related
to predictors in some way. If the target variable is categorical, the task of learning
a mapping from X to y is called classification. Each y; belongs to one of C1,...,Cq
classes; in binary classification () = 2. A zero-one loss function implies equal cost
for misclassification in different categories and is used most frequently (Hastie et al.
2009, 9-21; Hand et al. 2001, 327-330). A learning algorithm is diversely referred as
a model, classifier, or learner.

Many algorithms can naturally have more then two classes (e.g. decision tree based,
k-nearest-neighbor), where as others need a special approach to adjust binary clas-
sification to @) categories (Flach 2012, 81-91, 102). While some classifiers output
only class labels, other learners give a degree of certainty of belonging to a particular
category (predicted probabilities). This work considers only the latter kind.

(Classifiers are primarily evaluated by their generalization performance or prediction
capability. Many researchers proclaim a trade-off between predictive power and inter-
pretability (Hastie et al. 2009, 350-352; Clarke et al. 2009, 307-308; Shmueli 2010).

The latter criterion is not a goal of the developed tool and hence it is not considered
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here. In order to quantify generalization one should decide what to measure and how
to measure it. Section 2.5.1 gives an overview of different performance metrics, Section
2.5.2 presents variations of dataset splits to estimate generalization ability, and lastly
various classifiers are described in Section 2.5.3.

2.5.1 Performance measures

Performance measures are subdivided into threshold, rank, and probability metrics.!
Both scalar and graphical measures are described.

Threshold measures are based on predicted categories of the outcome variable.
Estimated probabilities of test instances are compared with a threshold ¢ to predict
class membership. In binary classification, an instance with predicted probability
above the threshold is commonly assigned a prediction class of 1 while instances with
predicted probabilities below the threshold are assigned a 0.

A cross-tabulation of the predicted and actual class membership (also called confu-
sion matrix) is a usual way to summarize class predictions for any number of classes.
In binary classification, a category of interest is denoted as a positive class. The diag-
onal elements in Table 1 correspond to correctly classified observations: true positive
(TP) and true negative (TN). Misclassified events are called false negatives (FN) and
incorrectly predicted nonevents — false positives (FP). Table 2 contains a list of metrics

based on a confusion matrix.

Observed Predicted
Event Nonevent

Event TP FN

Nonevent FP TN

Table 1: Schematic confusion matrix for ) = 2

Metric Description
TP rate (TPR, sensitivity, recall) | TP/(T'P+ FN)
TN rate (TNR, specificity) TN/(FP+TN)
Posijciye predictive value (PPV, TP/(TP+ FP)
precision)
Negative predictive value (NPV) | TN/(T'N + F'N)
Accuracy (IT'P+TN)/(TP+TN+FP+FN)
Balanced accuracy 0.5(TPR+TNR)
(O—FE)/(1—FE) where O is the observed
Cohen’s k accuracy and E is the expected accuracy
based on the marginal totals

Table 2: Performance metrics based on a confusion matrix for () = 2

The choice of an evaluation measure depends on the problem at hand and reasons

for including specific measures are discussed in Section 3.2.7. In short, the first four

!This taxonomy appear in Japkowicz and Shah (2011, 315) and in Ferri et al. (2009).
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metrics from Table 2 have a single-class focus and are mostly used in binary classifi-
cation, while the remaining metrics concentrate on all classes. Balanced accuracy in
the provided form is defined for binary classification only. Cohen’s k (details and ex-
amples can be found in Everitt 1992, 146-150) and accuracy calculated from a @ x Q)
confusion matrix assess the performance of a multiclass learner.

Rank measures assess the ability of a classifier to rank observations by their prob-
ability of class membership. These metrics are independent of calibration and scaling.
A graphical tool for assessing performance over all possible thresholds — a receiver
operative characteristic (ROC) curve — shows the estimated proportion of correctly
classified events against the estimated proportion of nonevents predicted as events.
The resulting curve inside a unit square shows a perfect classifier if it goes vertically
from a (0, 0) to (0, 1) point (all positives correctly classified, no mistakes in negatives),
while a diagonal line refers to a chance classifier (Hand et al. 2001, 361; Piegorsch 2015,
296-297; Japkowicz and Shah 2011, 113-117). The area under curve (AUC) is an at-
tractive scalar measure of performance, which is independent of a chosen threshold.
However, ROC curves of compared classifiers often cross and a model with higher AUC
can be inferior in a specific region (Hand 2009).

While ROC analysis for binary classification is an established analytical method,
extension of AUC to multiclass case is not straightforward and resulted in many vari-
ants. Japkowicz and Shah (2011, 131) recommends using a generalization by Hand
and Till (2001) based on the AUCs of all possible pairwise binary classifiers.

Probability measures reflect a classifier’s confidence about predicted classes. In
contrast to threshold metrics, probability measures account for classification uncer-
tainty, e.g. observation with estimated probabilities of 0.51 and 0.99 would belong
to the same class in case of ¢ = 0.5, but deviations from the true probabilities evalu-
ate these two observations differently. Brier score quantifies these deviations as mean
squared error (Japkowicz and Shah 2011, 106-107; Kuhn and Johnson 2013, 247-248;
Ferri et al. 2009).

2.5.2 Resampling methods

Once an analyst has chosen performance metrics that best suit a dataset and problem
at hand, they should decide on what data these performance measurements are calcu-
lated on. A naive approach of using a complete dataset for training and for evaluation
results in an overoptimistic estimate of a model’s generalization ability. Importantly,
two distinct goals of model selection (choice of tuning parameters of a classifier) and
model assessment (how a final model does when applied to the unseen data) can be of
interest. In a best case data-rich scenario, one can split a dataset into equal training,
validation, and test fractions of data, where the train set is used to train classifiers
with different tuning parameters, a validation set is used to select a best learner among

them and finally, a test set assesses the performance of a chosen model (Hastie et al.
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2009, 222-223). If no tuning is performed then measuring performance on the test set
suffices.

A holdout set is probably the simplest measuring protocol. This method splits
the entire sample into two mutually exclusive sets, where one is used for training and
another for model assessment. The fraction of data left for testing depends on the
overall number of observations; a quarter, a third or a half of a sample are typical
amounts (James et al. 2013, 176-177).

The K-fold cross-validation (CV) method divides available data into K (roughly)
equal subsets (folds) and applies a classifier K times, each time treating one fraction
as a test set and using the remaining K — 1 sets for training. Consequently, all data is
eventually used for statistical learning and averaging K performance estimates reduces
their variability (Hastie et al. 2009, 241-242).

Balancing datasets with considerably low relative frequency of a response class (rare
event) allows a classifier to learn about all kinds of records, not primarily the high
frequency category. In case of binary classification, the simplest balancing methods
include oversampling/upsampling and undersampling/downsampling. In the former,
instances of minority class are randomly sampled to achieve a more balanced distribu-
tion (e.g. increase fraction from 7% to 30% or 50%), while in the latter, the number
of majority class records is reduced. Importantly, the test set is not balanced in order
to imitate the new data (Larose and Larose 2015, 166-167).

2.5.3 Predictive models

The logistic regression models probabilities of () classes via a linear function of
the explanatory variables. In cases of binary classification, only one linear function is
estimated. In short, estimation is performed via iteratively (re)weighted least squares,
maximum likelihood algorithms, or feed-forward neural networks. Details on the first
two more traditional approaches can be found in Hilbe (2009, 51-61) or Hastie et al.
(2009, 120-121) while the last method is described in Ripley (1996, 145-153).

The k-nearest-neighbor (k-NN) is a distance-based learning method. Each test
observation from Diest = (24,yi), @ = 1,...,nest is compared with covariates of train
instances, then k “nearest” are selected and a test instance is labeled by a majority class
among the neighbors (Hastie et al. 2009, 463-465). A weighted k-NN technique offers a
modification of the basic nearest neighbor algorithm: it transforms calculated distances
into weights according to a kernel. This function of the distance, d, has a maximum
at d = 0 and decreases as dissimilarity grows. While a rectangular kernel assigns equal
weights to all k instances, other kernels assure that more distant training cases have less
influence on the prediction. The predicted probability for a particular class of a new
instance is proportional to the sum of the weights for this category among the k train
instances. In summary, the weighted k-NN requires a specification of the measure of

similarity (see details in Section 2.1.6), a number of neighbors &, and a kernel function.
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As for other distance-based procedures, data for k-NN is standardized to ensure equal
weights of all predictors. Numeric attributes are divided by their standard deviations
and categorical variables are binarized, and consequently standardized, according to a
procedure described in Hechenbichler and Schliep (2004).

The decision tree approach recursively divides the feature space into disjoint rect-
angles. At first, the “root” (complete dataset) is split into two groups by the most
informative feature that can achieve the most homogeneous samples. Splitting criteria
can be chosen by classification error rate, Gini impurity, or other alternatives. Full re-
cursive partitioning would result in absolutely pure nodes (with instances of the same
class), sometimes of single observation. This is likely to overfit the train data and give
poor prediction on the test set. Stopping rules may include minimum size of node or
a threshold for decrease in impurity. Alternatively, an algorithm grows full trees and
then prune it back (“cut branches”). Depending on the observed features’ values, each
new instance lands in one of the terminal nodes and a proportion of the majority class
in this node is assign as a predicted probability (Piegorsch 2015, 312-321; Hastie et al.
2009, 305-310). Further details and examples of classification trees can be found in
Clarke et al. (2009, 249-253), Flach (2012, 129-147) and Duda et al. (2001, 395-413).

The random forest is a generalization of recursive partitioning that combines mul-
tiple decision trees. This approach averages over single learners which typically de-
creases variability and often results in a better classifier (Clarke et al. 2009, 254-255).
Two main components of random forests are bagging (bootstrap aggregation) and ran-
dom selection of features. The former involves building each tree from a sample of
size Nyrqin drawn with replacement. The latter consist of limiting the number of at-
tributes available at each split to m < p. In combination, this enables the exploration
of the predictive power of all features and creates “de-correlated” trees. The probabil-
ity prediction for a new instance corresponds to a proportion of trees that result in a
particular class (Hastie et al. 2009, 587-593).

3 Software

This section presents a data analysis tool developed for the Data Science team of SHS
VIVEON AG and named Data Discovery Platform (DDP). The terms “tool”, “app”,
and “software” are used interchangeably. A discussion of the app’s goals (Section 3.1)
is followed by a detailed description of its functionality and technical implementation
(Section 3.2) as well as the app’s deliverables (Section 3.3) and user interface (Section
3.4). The end users contributed to the content and appearance of the software, and
some of their comments are mentioned throughout of the app description. User re-

search methods and more general results of their application are presented in Section

3.5.
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3.1 Goals

The business application for the software is the exploration of tabular data received
from clients. A classification task implies a categorical target variable and one or more
predictors. A typical dataset contains a few dozens of thousands of observations and a
few dozens of variables. The target group for the tool is members of the Data Science
team all of whom are specialists with considerable knowledge of data analysis.

Aside from tackling the general business goal of decreasing the costs involved in
completing repetitive tasks, the tool was specifically created to:

1. provide a first impression of the information in the data and conduct a data
sanity check;

2. assess the appropriateness of client’s data for a prediction classification task
(binary or multiclass); and

3. allow users to analyze data interactively, quickly, and without any programming
effort and function intuitively for a person with a solid statistical and machine
learning background.

The first two goals suggest a combination of data exploration and initial predictive
analytics. The data needs to lend itself to classification and the software tool seeks to
assesses how adequate the data is for given task. Working with secondary data from
a client raises a potential quality concerns, e.g. attributes that have no relation to
the target variable were collected or the same level as a categorical predictor coded
in different ways (e.g. “male” and “M”). In addition, reports of the analysis should
be available to support decision making, e.g. whether the consultancy firm can work
further with the provided data.

The third goal addresses the interests of both the company and end users. While
the employer values the speed and quality of the performed tasks, the users benefit
from the interactivity, graphical interface, and automation, allowing them to focus on

interpretation rather than the correctness of typed commands.

3.2 Description and technical implementation

Data characterization appears as descriptive numeric summaries, graphical charac-
terizations, and data models (Pearson 2011, 6). The tool’s functionality represents
techniques of all these categories and is enriched by the detection of groups in the
data via clustering. Table 3 summarizes techniques included in DDP.

The software tool is constructed as a series of panels (tabs) dedicated to particular
topics, e.g. clustering. All tabs are presented in Sections 3.2.1 — 3.2.7 and a general
view of each panel can be found in Appendix A. Although a navigation bar (on the left
on Figure 2) offers soft guidance about a sequence of steps, the analysts are encour-
aged to follow their intuition, particularly because discoveries with one technique may

spark interest to return to an already completed analysis, e.g. substitution of extreme
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Function Tools
Data preparation and
preprocessing

Data import, change of variable type, detection of con-
stant and almost constant predictors, identification of
highly correlated predictors, exploration of extreme and
missing values

Description, visualization | Plots of distributions, measures of association, PCA,
variable importance rating

Grouping K-means, PAM, CLARA, and agglomerative hierarchi-
cal clustering
Prediction (Multinomial) logistic regression, k-NN, decision trees,

and random forest with different resampling methods

Table 3: Summary of techniques implemented in the software

values by missing values suggests that analysts should return to examining patterns
of “missingness”. Besides navigation, the sidebar contains fields with a target variable
and FEzcluded variable(s) widget for (temporary) elimination of attributes from the

analysis.

Data Discovery Platform =

Import summary

& Download this page report

Upload a delimiter-separated file Dataset summary
Uploaded file: dmc2010_train.csv i
Number of observations 32428 & Download updated dataset
Separator Decimal Quote Number of variables 38
Comma © Point © None & Download metadata
© Semicolon Comma Double quote
Tab Single quote Proportion of the target variable & Download app documentation
Reapply import settings 0 o8134
1 01866 ntera comment to be saved in this pag
Modeling 4
1. Choose a target variable
Verifying correct variable types
target90 v ving P
Attention! Choice of variable types determines how the attributes will be treated in the consecutive analysis
2. Exclude variable(s)
Variable with incorrect type New type Change type
customernumber
salutation - factor -
Show 50 [EJ entries
Variable Variable type N distinct values Pct most frequent value Sample values Levels
customernumber integer 32428 0 41191,38860, 19302, 61917, 40647
date Date 351 098 2008-12-01,2008-12-16, 2008-10-26, 2008-08-19, 2008-06-16
salutation factor 3 5501 0,1,0,0,1 0,1,2
title factor 2 993 0,0,0,0,0 0,1

Figure 2: General view of the software tool

Each panel of the software contains a button to download that page report and
a comment field that is transferred into the report (located in the top right corner
of Figure 2). The comment option allows analysts to save their insights within the
software. When appropriate, panels contain in-app notes about the number of ob-
servations and variables that were used in a particular analysis. This information is
to assist users whose confidence about results may depend on the size of the data on

which a technique was applied
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The software functionality relies heavily on visualizations that have a potential to
elucidate quantitative information and communicate it simply yet powerfully (Tufte
2001, 9). Multiple plots per page encourage and facilitate comparison, and expose
similarities and distinctions. Due to the possibly large number of charts of individual
attributes, the app prioritizes predictors with estimated stronger classification ability.
This facilitates perception and additionally saves end users’ time. Statistical graphics
depicting separate observations are useful if the number of cases is not too large. This
restriction motivates the design choice of giving preference to graphics summarizing
distributions, such as box plot and kernel density estimators (as described in Section
2.3). Numerical statistics often accompany statistical graphics in order to support the
possible visual discovery.

In order to achieve the goal of having interactive interfaced-based controls, the ap-
propriate technical based solutions had to be employed. A so-called shiny app enables
access to R (R Core Team 2016) capabilities for statistical analysis through an interac-
tive web interface. The advantages of using R include a wide and ever expanding range
of cutting-edge statistical and machine learning methods, a vital supportive commu-
nity of users, and its free-of-charge basis (Crawley 2013, xxiii). Intensive use of this
scripting language by members of the SHS VIVEON’s Data Science team simplifies
future modifications of the tool. Moreover, ready-to-use building blocks from shiny
(Chang et al. 2016) and shinydashboard (Chang 2016) packages permit construction
of a web interface without any CSS or HTML scripting skills. Technical limitations
such as single thread processing and the impossibility of stopping a running R routine
without app termination did not outweigh the benefits.

At a later stage of the project the software tool was turned into a ddp package and
installed at a SHS VIVEON’s server. The version control is enabled via the com-
pany’s BitBucket. This solution was motivated by proprietary nature of the created
code and therefore prohibition of publicly available tools as GitHub. The core of the
ddp package contains global. R (load of packages, auxiliary functions and some defi-
nitions), wi.R (structure and components of user interface), server.R (server side of
the application where calculations are defined), multiple <name_ of report>.Rmd for
downloadable reports, and DDPfunctions. R (manually created auxiliary function for

supporting repeated operations and making code more readable).

3.2.1 Import summary

The Import summary tab is a landing page of the app that includes upload capa-
bilities and presents summaries of the dataset. Figure 19 portrays the general view
of this tab. Assumptions about an input file include delimiter-separated format (e.g.
.csv, .txt), presence of variable names in the first row and settings among the available
ones (comma, semicolon, tab as column separator, point or comma as decimal sign and

none, double or single quotes). The upper limit of the file (200MB) approximately cor-
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responds to the maximum dataset size processable by the app at an acceptable speed.
In case of a large dataset, a sample can be explored in the software. The file upload is
enabled by shinyFileChoose() from the shinyFiles package (Pedersen 2016). Then
the file is read in read_delim() from the readr package (Wickham et al. 2016). This
function was selected for its ability to automatically parse dates which is not available
in a more common read.csv() from the utils package (R Core Team 2016).

The dataset is summarized in a table that lists all variables with their corresponding
type, number of distinct values, percentage of the most frequent value, minimum
and maximum values (for nonnumeric fields maximum and minimum string), as well
as a few sample values, and levels if a variable is cast as categorical. The table is
implemented with datatable() from the DT package (Xie 2016) and can be sorted by
any column to ease the review of information about the variables. The inclusion of the
number of unique values and the percentage of occurrence of the most frequent value is
motivated by the implications of discreteness of numeric variables (e.g. in Spearman
rank coefficient or resistant outlier detection). The inclusion of these elements can
also support decisions about variable type in case of missing or incomplete metadata.
Minimum and maximum values may point out anomalies, e.g. negative height or
human age of in years of 999.

Supported variables types include factor, integer, numeric, character, and Date.
Once a dataset is fed into the app, an auxiliary function AssignClasses() converts
all variables with values either 0 or 1 into nominal variables. Full automation of type
detection is not feasible, e.g. integers can encode categories or have numeric meaning.
The analyst is encouraged to verify the correctness of the variable types and modify
them if necessary as it determines how the attributes are treated in the subsequent
analysis. Changes can be done via the interface: Variable with incorrect type drop-
down contains all variables, New type drop-down gives all possible variable types,
and Change type button completes the change, which is immediately reflected in the
summary table.

The user has multiple ways to verify that data was successfully uploaded. First,
drop-down widgets contain lists of variables. Second, a table with a number of cases
and variables reflects data dimensions. Third, the summary table displays a list of
variables and their sample values. The early version of the app required a second
upload in the case of wrong upload settings. This was mentioned as undesirable
during the usability tests and currently the user can adjust and reapply settings (e.g.
change decimal mark) with a Reapply import setting button.

The distribution of the target variable is displayed as soon as it is chosen in a Target
variable drop-down. The inclusion of this information into the first page emphasizes
the classification focus of the software. In the case of highly unbalanced classes, an

analyst can adjust their judgments about results in the later stages of the analysis.
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3.2.2 Missing values

The Missing values tab provides a numeric summary of missing values per variable
(univariate inspection) and offers a visualization designed to help the analyst to under-
stand patterns of “missingness” (multivarite exploration). The table orders variables
by percent of missing values so that the analyst can concentrate on predictors where
the issue is most widespread. Additionally, the user can limit the number of displayed
rows via Show variable with % of missing values over slider widget. The general view
of this tap is depicted in Figure 20.

Missing values in a dataset are depicted with a matrix plot, a heatmap (see de-
tails in Section 2.3) where each row represents an observation and each column — a
variable, resulting in each value of a dataset to be depicted by a rectangle (Templ
et al. 2012, 41-42). Missing values are marked red, while filled cells are colored by
a continuous color scheme for which the values are scaled to an interval [0,1] (Templ
et al. 2016, 37). Although some patterns become visible, data that is systematically
missing variables may exhibit a sporadic-looking missing data pattern (Enders 2010,
4-5). By default, matrixplot () from the VIM package (Templ et al. 2016) graphs
observations as rows and variables as columns, except the excluded ones, in their orig-
inal order. Observations can be sorted according to a variable with a Sort matriz plot
by drop-down widget. The visualization in Figure 6 is sorted by deliverydatereal
and demonstrates some irregularities in other variables for rows with missing values.

The matrix plot was chosen as a final solution for various reasons. Firstly, typical
dataset sizes used by the Data Science team are depictable in this way. Specifically,
the app renders a plot for datasets with fewer than 300,000 observations which was
experimentally defined. Otherwise, an in-app note about the maximum number of
observations is displayed. Secondly, a heatmap of a dataset is a more intuitive graphical
display than its aggregated version depicting frequencies (see detailed description in
Templ et al. 2012, 34-35). Thirdly, aggregation is connected to loss of information.
In fact, sorting by a variable in the matrix plot is analogue to aggregation and reveals
“co-missingness” of values in different variables.

Imputation, mentioned in the theoretical background in Section 2.1.3, is not imple-
mented in the app due to the software goal of the first impression and sanity check of
raw data. The only exclusion is an implemented option to create an additional miss-
ing level in factor variables with the help of fct_explicit na() from the forcats
package (Wickham 2017).

Missing values in predictors are correctly detected as such, if entries in the uploaded
data matrix appear as blank fields, NA or NaN. The data dictionary or any other
documentation may reveal the specifics about a dataset, e.g. missing values in variable
age are marked with 999. In such cases, these values should be replaced with blank

fields or NA prior to analysis. Additionally, a lack of proper metadata can result in a
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problem of disguised missing values when numeric codes are treated as observed values
(e.g. 0 for BMI in the Pima Indians diabetes dataset, see Pearson 2011, 88-92). Such
values are not automatically detected by DDP as missing, but a researcher may notice

anomalies in other steps of EDA and correct it.

3.2.3 Variable importance

The Variable importance tab (Figure 21) visualizes ranking of attributes by their
ability to predict the target variable, measured by ROC AUC (see theoretical back-
ground in Section 2.5.1). This approach includes building classifiers with a single in-
dependent variable, (multinomial) logistic regressions with 3-fold cross-validation, and
measuring predictive performance on test data. Such univariate screening was pre-
ferred to separate rankings for numeric and categorical variables since all attributes
are comparable.

The technical implementation is similar to training this type of classifier and cal-
culation of either binary of multiclass AUC in the Modeling tab. This process is
encapsulated in CalculateUnivariateAuc(data, target, balance) auxiliary func-
tion that outputs a data frame ready for plotting. The balance argument takes one
of three possible values for use of original, over- or undersampled data.

A Cleveland dot plot (as described in Section 2.3) is chosen for mainly two reasons.
Firstly, it is compact, has high data-ink ratio and its labels are easily readable, which
is especially important if the number of variables is large. Secondly, a dot chart may
outperform other graphs (e.g. horizontal bar chart) thanks to the human ability to
compare objects’ position on a common scale (Cleveland 1984, 270-275; Myatt and
Johnson 2009, 43-44). The plot is implemented with ggvis() from the ggvis (Chang
and Wickham 2016), so that hover over on the points displays a value of ROC AUC.

3.2.4 Numeric variables

The Numeric variables tab is subdivided into preprocessing, correlation plots, PCA,
and plots. Preprocessing allows the user to clean extreme values, detect constant and
nearly constant predictors, and explore pairwise correlations. Real-valued variables
(numeric) and integer-values count variables (integer) are analyzed in this tab.

The transformation of individual explanatory variables is a frequent preprocessing
step and indeed it has the potential to improve predictive performance of classification
algorithms. However, the application of these techniques should be carefully tied to
the data. Because of this, the transformation was considered excessively complex for
automation and unnecessary for an initial exploration of the data. A second type
of transformations, mentioned in Section 2.1.5, is carried out according to specific

methods, which are described in their respective sections below.

Preprocessing: Extreme values
An analyst can choose either to deal with extreme values in the data preparation

stage or to apply procedures that will be less sensitive to them. The former includes
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the option of detecting extreme values and then either omitting them, replacing them
with plausible values or examining them separately (Pearson 2011, 287-294). However,
the absence of reliable and universal detection methods makes this path challenging
(Sprent 1998, 64). Likewise, practical difficulties arise while using resistant estimators.
The use of measures capable of mitigating the influence of extreme values is not always
effective and, consequently, the detection of such values may be essential (Behrens
1997, 144; Yu 2010, 11). For these reasons, the app offers several methods for the
detection and omission of extreme values as well as some analytical routines that are
relatively insensitive to them.

Both versions of the Equation (1), one with mean and standard deviation and an-
other with median and MADM, are implemented in the software. This is because
reasonable agreement between traditional and resistant methods of outlier detection
strengthens confidence in the outcome, while greatly differing results are likely to in-
dicate an unusual data structure (Pearson 2011, 276). Consequently, the end users
benefit from the comparison of the two procedures and can choose the one that they
see as more sensible for the analyzed data. Furthermore, as each of the approaches
has its own advantages and disadvantages, one of them may be more appropriate for
a particular dataset. In absence of the normality assumption, a version of a decision
rule with mean and standard deviation can reflect a belief of a nontypical value that
in distant from the center of the data. This method, however, is flawed by so called
masking: both mean and standard deviation are sensitive to extreme values and these
metrics mask the same their presence. Alternatively, median is a measure of location
and MADM estimator is a measure of scale, both of which are insensitive to extreme
values. As in the case with the mean/standard deviation rule, values of a variable can
be declared extreme if their magnitude exceeds a specific number of MADMSs of that
variable. The MADM’s breakdown point has the highest possible value of about 0.5
and is advantageous for outlier detection (Wilcox 2010, 32-33). While this procedure
is much less sensitive to masking, the opposite problem of declaring some legitimate
points outliers (swamping) may occur (Pearson 2011, 305). On the negative side,
MADM is zero if the fraction of the most frequent value exceeds 50%. In such case,
all values unequal to the median would be considered extreme for any t.

The value of t should be selected by a user via the Number of standard deviations or
Number of median absolute deviations slider widget respectively. Different values in a
range from two to six are suggested by researchers (see an overview in Pearson 2011,
Section 7.5.3) and three is chosen as the widget default. General view of the Extreme
values tab is depicted in Figure 22.

Due to a possibly high number of variables, no detailed information per predictor is
offered. Instead, a note about the remaining number of complete cases is displayed.

This supports the user’s decision regarding whether to apply the substitution of ex-
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treme values with NA and, if so, what value to choose for t. On a technical note,
detection and substitution of extreme values by missings is implemented with auxil-
iary functions FindOutliers(data, t) and FindOutliers.resist(data, t).

In summary, a quick solution for inspecting extreme values sets a number of sample
spread measures (standard deviations and MADMSs) for all variables. The app also
allows to inspect numeric variables one by one or in small subgroups if other variables
are temporarily excluded via the Fzcluded variable(s) widget. Detection and substi-
tution of extreme values by some plausible values as well as detection and further

scrutiny were considered too complex for an initial examination of a dataset.

Preprocessing: Constant and almost constant predictors

Constant fields have no explanatory power to a response variable. They may emerge
out of inspection of a fraction of data (e.g. panel data for one year only), signal
problems in data collection (e.g. failure of a sensor), etc. Regardless of the source,
such variables are noninformative in a dataset and, moreover, hinder some analytical
procedures (e.g. result in division by zero in the Pearson correlation coefficient).

Almost constant (near-zero variance) attributes are also candidates for exclusion.
The first reason for this is that analysis is in essence interested in explaining changes
in a target variable in response to variation in an explanatory variable (Pearson 2011,
97-98). The second reason is that resampling at the modeling stage (see details in
Section 2.5.2) may result in chunks of data with constant columns.

Constant and almost constant predictors are detected with nearZeroVar() from
the caret package (Kuhn 2016). Two tuning parameters from this function are im-
plemented in slider widgets Frequency ratio (freqCut) and Percent of unique values
(uniqueCut). The details of these parameters are discussed in Section 2.1.2. The
output table presents only variables with zero and near-zero variance in order to avoid

superfluous output (see an example in Figure 23).

Preprocessing: Highly correlated predictors

Similar to the Extreme values panel, this part of the software offers users the option of
choosing less and more resistant measures to encourage comparison. The less resistant
measures are represented by Pearson product moment correlation coefficient while the
more resistant measures are represented by Spearman’s rank correlation coefficient. An
output table presents pairs of correlation and shows only those exceeding a threshold
determined in the Absolute value of correlation widget for at least one of the metrics.
Details on the measures of association included in the app can be found in Section 2.2
and the general view of this tab is presented in Figure 24.

Pearson correlation coefficient is probably the most extensively used association
measure for numeric variables. The end users explicitly asked for its display in the
tool. However, it is very sensitive to extreme values, e.g. association can be missed

because of one anomalistic observation (sample breakdown point is 1/n) (Wilcox 2010,
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123, 169-172; Pearson 2011, 450-459). For this reason, it was decided that this well
known metric would be presented alongside more resilient methods.

Spearman’s p and Kendall’s 75, are based on values’ ranks and reflect the strength
of a monotone relationship rather than just a linear one. While Kendall’s 7, explicitly
accounts for concordant pairs, Spearman’s coefficient can suffer from ties and may not
be advisable for highly discrete numeric variables. The implementation of Kendall’s
7 was prevented by its low calculation speed for large datasets.

Correlation coefficients are calculated by specifying the method "pearson" and
"spearman" in the cor(..., use = "pairwise.complete.obs") function from the
stats package (R Core Team 2016). The results are undefined if at least one of the
variables is constant. This condition is checked prior to calculation and, if needed, a
help message is displayed. The user can detect zero-variance predictors in the Con-
stant and almost constant variables in Preprocessing and exclude them from analysis
via the Ercluded variable(s) widget.

In theory, global measures of association would offer an alternative way to decrease
sensitivity to extreme values. Metrics such as the minimum volume ellipsoid or the
minimum covariance determinant estimators take the overall structure of a dataset
into account (Wilcox 2010, 180-186). However, these measures are less researched and
end users of the software tool are not likely to be familiar with them, which would
make interpretation challenging. Therefore, the global measures of association are not

included in the app.

Correlation plots

Patterns are often more obvious from a plot than raw values, especially for larger
matrices. Hence, it is advantageous to present matrices of pairwise correlations visu-
ally. At the same time, a heatmap relies on distinguishing differences in color hue and
saturation, the perception of which is believed to be relatively inaccurate (Cleveland
and McGill 1984).

The user chooses whether to plot Pearson correlation coefficients or Spearman’s p
via a radio button widget (with Pearson as the default). The general view of the tab
is shown in Figure 25. For the above mentioned reasons, constant predictors should
be excluded. Correlations are visualized by being clustered according to correlation
strength and their sign, and presented in two plots, one for almost constant predictors
(as detected in tab Constant and almost constant variables) and another for all the
others. This split into two plots lowers the number of variables in each visualization,
which may contribute to easier perception. Moreover, this allows the users to sup-
port their decision about whether to exclude almost constant predictors from further
analysis.

The app uses a modified version of d3heatmap() from the d3heatmap package

(Cheng and Galili 2016) with a hierarchical clustering of rows and columns of the
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correlation matrix. This technical solution is able to accommodate large correlation
matrices thanks to hover over information about a pair of variables and a correlation
coefficient. The function modification designates the range of colors from —1 to 1,
from dark blue to dark red with white corresponding to 0, and to use a colorblind safe
palette of 11 colors from the RColorBrewer package (Neuwirth 2014) (extrapolated
to 220 by colorRampPalette() from the grDevices package by R Core Team 2016).

PCA

While other Numeric variables tabs consider one variable at a time or their pairs,
principal components analysis examines all variables at once. PCA explores associa-
tions between multiple attributes and can signal the amount of structure, detectable
by linear combinations of the original variables. It reduces complex data into a simpler
representation with the hope of elucidating patterns. The PCA implemented in the
app is based on a correlation matrix. Further background on the PCA is given in
Section 2.4.1.

The PCA tab (Figure 26) contains a scree plot, a table with eigenvalues and cu-
mulative proportion of variance explained and a heatmap of coefficients (loadings).
The PC scores are added as columns to the downloadable extended dataset (variable
names include counting number of a component with a prefix, “PC” if no rotation was
done, “RC” in case of orthogonal rotation varimax or quartimax and “TC” in case of
oblique rotation oblimin).

A scree plot elected to be used instead of the other methods for choosing PCs
(see Section 2.4.1) because it allows users to make a visual assessment of the data
rather than relying on a numeric threshold. The plot provides an understanding of
which components capture most of the structure. The flexibility of assessment is
advantageous as it does not tie an analyst to a specific cut-off (e.g. explain 80% of
variance), which cannot be known in advance and is not a focus of the analysis.

Carrying out a PCA for exploratory purposes raises the question of the results’
interpretability. Unlike factor analysis, this method is not deployed to discover latent
factors. Nevertheless, rotations can simplify the interpretation of loadings, but not
without drawbacks. The value of cummulated explained variance remains, but it is
redistributed from the highest PC to the others and can lead to missing a dominant
component. Moreover, results after rotation are very sensitive to the choice of g (see
more details and examples in Jolliffe 2002, 269-272).

While PCA can increase understanding of a dataset, it has its limitations. This
technique considers only linear combinations of the original variables and is based
on the first two moments. This technique is of limited use for data with nonlinear
structures or those in which distributions are better characterized with higher moments
(Clarke et al. 2009, 494). Moreover, the resulting projection is not optimized in terms of

predictive performance and sometimes clouds the class differences in datasets intended
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for classification (Hand et al. 2001, 196).

On the technical side, a scree plot is created by fa.parallel(..., fa = "pc")
and PCA is performed by principal() from the psych package (Revelle 2016). This
function takes as inputs the number of components and rotation, which are specified
by the user in widgets Number of components and Rotation respectively. Possible
rotations include none, varimax, quartimax, and oblimin.

In general, the functionality of the software allows users to run PCA, download an
extended dataset, load it again and feed the PC scores into a classifier. This may
be sensible if strong correlation structures are present and/or dimensionality of the
original data is large. This can be the next iteration of the analysis and initially, the

correlation structure is just assessed.

Plots

This tab (Figure 27) presents parallel box plots and grouped kernel density plots of
individual numeric attributes, conditioned on the level of the target variable. Different
graphical displays are included because of their ability to highlight different attributes’
characteristics. Multiple box plots contain less information about distribution than
kernel density estimates. However, the box plots’ simpler form often conveys infor-
mation with greater clarity than kernel density estimates, especially when the target
variables have many categories (Hand et al. 2001, 59-61). The use of the target vari-
able as a grouping factor and ordering of plots according to ROC AUC calculated in
the Variable importance tab promote exploration of attributes without losing sight of
the overall classification goal.

The visualizations are created with the ggplot2 package (Wickham 2009) and each
level of target variable is distinguished by a color from a colorblind safe “Set 1” from
the RColorBrewer (Neuwirth 2014). The data for plotting is prepared with melt ()
from the reshape2 package (Wickham 2007) and display of multiple plots is facilitated
by grid.arrange() from the gridExtra package (Auguie 2016).

A box plot summarizes the distribution of a variable in a few statistics, and it
assesses asymmetry, dispersion, and extreme values. As described in Section 2.3,
the borders of the box correspond to 25th and 75th quantiles, the line inside the
box corresponds to median, and the whiskers stretch to 1.5 IQR (Wickham 2009).
Box plots display specific values of empirical distributions, but the variation between
them, e.g multimodality, is obscured by this type of graph (Unwin 2015, 44-47). Other
visualizations of numeric variables’ distribution, such as histograms and kernel density
estimators, can reveal these variations.

Kernel density estimators of a variable at different levels of the factor (grouped
density plot) show the differences in distributions between classes (area under each
curve is 1, independent of the subgroups’ size) as well as the distribution’s shape in

each subgroup (e.g. modality, skewness). The density estimates are positioned in
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one plot to encourage comparison. The kernel parameter K, mentioned in Section
2.3, is specified as Gaussian. Experimentation with different bandwidths showed wide
applicability of the default of the density() function. In contrast, estimation of
the Sheather—Jones rule (bw = "SJ"), recommended by Venables and Ripley (2002,
128-129), failed for some data.

Visualizations are accompanied by an effect size for the strength of association be-
tween a numeric attribute and the target variable, n? (see details in Section 2.2). In
the special case of one numeric and one categorical variable, the value of this measure
of association is equal to the coefficient of determination R? in a simple linear regres-
sion with one categorical variable. The fact that end users may not be familiar with
n® necessitates that its value be displayed with a comment of equality to R?. The
association measure is calculated with summary (lm(attribute~target))$r.squared

from the stats package.

3.2.5 Categorical variables

Due to the focus on classification, categorical predictors (type factor) are considered
in relation to the target variable. The general view of this tab is depicted in Figure
28. The distributions are visualized by clustered (grouped) bar plots and mosaic plots
(as described in Section 2.3). Graphics are ordered by ROC AUC, as calculated in the
Variable importance tab.

A clustered (grouped) bar chart benefits from having the highly familiar bar format.
It compares one variable at different levels of another (Larose and Larose 2015, 59).
Differences in the length of the bars are easily perceived by the eye, which allows this
graphic to convey data adequately (Cleveland and McGill 1984, 533). Grouped bar
plots are created with ggplot() from the ggplot2 package. The y-axis depicts the
relative frequency with the total number of observations corresponding to 100%.

The usability tests of the software tool showed that users are unacquainted with mo-
saic plots. Nevertheless, this alternative visualization of contingency tables is included
in the tool, primarily for its ability to communicate dependency. In particular, a simi-
lar fraction of one variables at different levels of another forms an “unbroken” straight
line between rectangles and indicates the absence of dependency. On the contrary, a
“broken” line points out dependency (Unwin 2015, 131-137). Mosaic plots are created
with mosaicplot () from the graphics package (R Core Team 2016).

The aggregation of less frequent levels in a nominal attribute into an “other” category
is performed if the number of categories exceeds four. This prevents overcrowding in
the plots and allows the analyst to concentrate on the most populous categories. At
the same time this may conceal repetitive categories with different names (e.g. “M”
and “male”).

Visual displays are supported by measures of association between two categorical

(nominal) variables with two or more levels. As a dataset can contain variables with
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different numbers of categories and their comparison is desirable, a more universal
measure of association, Cramér’s V, is chosen for the reasons outlined in Section 2.2.
An asymmetric version of Goodman and Kruskal’s A with the target variable as a
dependent one is well suited for the app’s focus on classification. The resulting metric
reveals the percentage by which knowledge about a categorical attribute reduces the
probability of error (Everitt 1992, 56-59). Software implementation calculates the
sample measure by assocstats(table(attribute, target))$cramer from the ved
package (Meyer et al. 2016). Goodman and Kruskal’s A is calculated with a auxiliary
function calc.lambda.col(table(attribute, target)) adjusted to output only A

for predictions of target from another variable (Schwartz 2015).

3.2.6 Clustering

The Clustering panel contains subtabs for four clustering methods included in the
tool: K-means, CLARA, PAM, and agglomerative hierarchical clustering (Figure 29).
There is also a tabular overview of these methods. The theoretical background and
details of these techniques can be found in Section 2.4.2. The application of a clustering
method to a dataset consists of two steps:

o Step 1 (optional): Choosing an optimal number of clusters presents the results
of internal validity criteria (Figure 30); and

o Step 2: Performing cluster analysis presents the results of clustering: group sizes
and various visualizations of variables included in the clustering process (Figure
31). Simultaneously, a variable of cluster membership is added as a column to
the downloadable extended dataset.

The four algorithms were chosen to address different input data requirements (size,
type of variables) and to enable a comparison of results. K-means is probably the
most well-known clustering method. Its strength lies in its ability to handle large
amounts of data relatively quickly, an important feature for many datasets. The fol-
lowing characteristics can be a downside to K-means, depending on the project goals
and the data: K-means only handles numeric data and its basic version is restricted to
squared Euclidean distance (as defined in Equation (2), squared), K-means requires
that decision about the standardization of variables be made and extreme values can
negatively influence the outcome, the K-mean’s optimization algorithm cannot guar-
antee the global extremum, K-means does not create a hierarchical structure of groups,
and no missing values are allowed.

PAM is less sensitive to extreme values than K-means for the same distance mea-
sures. It can handle any data types via a dissimilarity matrix and accepts missing
values with rare exceptions, which are described at the end of Section 2.1.6. The clus-
ters are represented by real observations in contrast to mean values in K-means, which
is not a clear advantage or disadvantage. PAM’s inability to handle large data is a

potential drawback, which CLARA is solving. However, this partition-based method
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for large datasets uses subsets to find clusters and this does not necessarily fully reflect
the overall structure. It is also limited to numeric variables. In order to cover different
views of the data, Manhattan distance (as defined in Equation (3)) is predefined in
CLARA clustering.

Divisive hierarchical methods tend to require more computations and there is no
clear evidence of their superiority in comparison to agglomerative methods (Piegorsch
2015, 384). For these reasons, agglomerative clustering tends to be more commonly
used in practice and has been implemented in the software. The software includes three
types of inter-group distances: average, complete, and single linkages (see details in
Section 2.1.6). These distances determine the set of clusters from which a final solution
is chosen. Other measures, such as centroid linkage or Ward’s method, that build on
the notion of means, are not applicable to arbitrary dissimilarities (Everitt et al. 2011,
76-78) and, therefore, are not implemented in the software tool.

Clustering methods are executed on preprocessed data. K-means and CLARA al-
gorithms input numeric variables that are normalized prior to clustering in order to
prevent attributes with large numeric values from dominating distance calculations.
This normalization is equivalent to using variability weights. Although standardiza-
tion is widely applied, it may conceal the groupings that were well separated before
the transformation (Everitt et al. 2011, 43-69; Duda et al. 2001, 538-541). A min-
max transformation is implemented in the app, because it showed relatively good
performance in experimental studies. At the same time, they postulate that appro-
priate standardization method depends on the data and other clustering parameters.
A simulation study examining different standardization procedures on datasets with
varying percentage of contaminated data and separation level of clusters by Milli-
gan and Cooper (1988) showed that standardization involving scaling by the range
of a variable is favorable to other types of standardization. A study concentrating
on K-means clustering also showed that max-min transformation performed better
than z-scores (Steinley 2004). Moreover, Kaufman and Rousseeuw (1990, 6-11) also
warn against scaling by a standard deviation that is highly influenced by extreme
values. Technically, normalization is implemented with data.Normalization(...,
type = "n4", normalization = "column") from the clusterSim package (Walesiak
and Dudek 2016). PAM and hierarchical clustering are based on a dissimilarity matrix
from both numeric and categorical variables by Gower’s generalized coefficient, as de-
scribed by Equation (4), implemented with daisy (..., metric = "gower") from the
cluster package (Maechler et al. 2016). However, computational challenges prohibit
the calculation of such matrices for large datasets.

Step 1 of each clustering method provides means for choosing K. The meaningful
partition of data can be checked by a domain expert, but the end user of the app is

not likely to be an expert in the field pertinent to the client data. This increases the
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importance of offering internal validity criteria in the software. In step 1, the K-means,
PAM, and CLARA algorithms are run repeatedly with different numbers of clusters,
from one to a number specified by the user in the Mazimum number of clusters widget.
The results are plotted and displayed as in-app notes. The agglomerative hierarchical
clustering is constructed once for each linkage and then the “branches” are cut to
form different numbers of groups, as in other clustering methods, from one to the user
specified maximum. In addition to plotted internal validity criteria, dendrograms for
each linkage are displayed.

Internal validity criteria vary with different clustering methods. The silhouette in-
ternal validity criterion is implemented for all four algorithms and visualized with a
plot of average silhouette width against different numbers of clusters. This measure
is assessed via $silinfo$avg.width in pam() and clara() results or calculated with
silhouette() from the cluster package for K-means and hierarchical clustering. The
calculation uses their corresponding dissimilarity matrices as input. Researchers give
some guidance to this statistic interpretation: values under 0.25 signal no substan-
tial structure, whereas values over 0.7 indicate a strong structure with other levels
in between (Kaufman and Rousseeuw 1990, 83-88). Additionally, Davies-Bouldin’s
index (index.DB()$DB from the clusterSim package) and Calinski-Harabasz pseudo
F-statistic (index.G1() from the clusterSim package) are calculated for each K in
K-means and the number of clusters corresponding to the smallest Davies-Bouldin’s
index and to the largest Calinski-Harabasz pseudo F-statistic is outputted.

The gap statistic was included in the software to assess whether any groups exist
during the initial analysis of the data. This may be crucial, because as mentioned in
Section 2.4.2; the clustering methods build clusters even if no natural groupings exist.
The gap statistic is implemented with the clusGap(..., B = 100) from the cluster
package. Due to the fact that this function accepts only numeric attributes, the app
demonstrates this statistic only for K-means and CLARA clustering. The reference
null distribution is left at its default value (spaceHO = "scaledPCA"), as described
in the original paper by Tibshirani et al. (2001). Due to computational considera-
tions, the number of bootstraps generating the reference distribution is lowered to
100 instead of the recommended 500. Moreover, if the number of rows in the dataset
exceeds 5,000, a random sample of this size is drawn for the statistic calculation. The
clusGap () includes parameters for specific clustering methods (e.g. number of sets of
starting values in K-means). The parameters resemble the specification of the applied
clustering techniques in Step 2. The optimal number of clusters is chosen by the rule
proposed in the original paper (maxSE(..., method = "Tibs2001SEmax")). During
the development of the software, this internal validity criterion was tested with a sim-
ulated dataset with “noise” attributes and indeed, the gap statistic recommended one

cluster.
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Step 2 requires the specification of the number of clusters and, in addition, a linkage
in case of hierarchical clustering. There is intentionally no default in this radio but-
ton widget, because suitability of an inter-group proximity measure depends on the
data. Step 2 presents cluster sizes and visualizes the input variables. Importantly,
the attributes are shown on their original scale, irrespective of the standardization
method used for clustering. Numeric variables are visualized by parallel box plots,
kernel density estimators, and for K-means, in addition, by bar plots of means. The
first two types of visualizations are created like the visualization in Numeric variables
tab described in Section 3.2.4 with the only difference being that cluster membership
is a grouping factor. Bar plots of means are created by ggplot () and depict means of
standardized variables with corresponding error bars of one standard deviation. Cat-
egorical variables are represented as grouped bar plots by cluster membership. The
ordering of attributes by variable importance allows users to compare with distribu-
tions of variables on different target levels in Numeric variables > Plots tab.

A Clusters in relation to principal components plot is a scatter plot (as described in
Section 2.3) of the first two principal components with color-coded cluster membership
of observations. This representation depicts information in the numeric variables at
a glance, as opposed to depicting the individual variables, which is especially inter-
esting if the number of fields is high. However, this low-dimensional representation is
not guaranteed to reflect the presence of clusters (Everitt et al. 2011, 273-275). In
particular, the kind of structures that can be revealed by this plot may be limited due
to orthogonality of PCs (Jolliffe 2002, 78-80). While the PCA was calculated locally
for this plot in the early versions of the app, the PCs are currently generated in the
PCA subtab of the Numeric variables tab, where the user may adjust the number of
PCs and rotation. These changes are immediately reflected in the plot displayed in
the Clustering tab.

On the technical side, clustering is performed whenever computationally feasible
with the following procedures. The function kmeans(..., iter.max = 50, nstart
= 25) from the stats package attempts to use the Hartigan-Wong algorithm with 25
different starting points; if it fails, MacQueen is used instead. Multiple sets of starting
points are used to increase the chances of attaining a global minimum for a score
function. CLARA is implemented with clara(..., metric = "manhattan") and
PAM with pam() from the cluster package. Hierarchical clustering is performed with
hclust () from the fastcluster package (Miillner 2013). Sourcing function hclust ()
from this optimized package improved performance in comparison to a same-name
function in stats package. An experiment of constructing dendrograms with three
different linkages on a dataset of 10,000 observations demonstrated that average speed
(in 100 runs) dropped from 10.3 to 5.4 seconds.

Some methods may be more appropriate for particular data and certain types of
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analytic objectives. It may be reasonable to apply different methods, compare their
solutions, and assess their appropriateness. Similarity in clustering results gives some
confidence in the presence of natural groupings in a sample. In contrast, drastically
different solutions may signal the absence of clear sub-classes (Everitt et al. 2011,
257-260). The possible use of different numbers of cases due to differences in handling
missing values discourages the application of an external validity criterion (as de-
scribed in Section 2.4.2). If needed, this analysis can be done with cluster membership
information from a downloaded extended dataset.

Clustering is included in the software, primarily, because the identification and in-
terpretation of groups increases understanding of the data. Clustering can also be
used as a preparation step for building a classifier. In particular, strong differences
encourage experimenting with separate predictive models for each group. In this case,
however, the test instances should first be clustered (Myatt and Johnson 2014, 84).
This scenario can be considered by an analyst as a result of clustering. However, sep-
arate models are not directly supported by the software. Besides, if clustering results
in groups that are highly similar to the target categories, the definition of the response
variable may be reevaluated. Often, the binary classification, e.g. into either churn or

non-churn (0/1) depends on a definition, e.g. churn withing x months.

3.2.7 Modeling

The Modeling tab provides users with their a first glimpse at the predictive power of
the data. It offers a choice of the dataset (original, under- or upsampled), the resam-
pling method (holdout or cross-validation), the positive class (for binary classification
only), and the different classifiers. The output is concentrated on presenting predictive
performance on test data, numerically and graphically. Presenting the result of any
classifier in a consistent format facilitates comparison, and the performance of any two
models can be compared in a separate tab. Due to this emphasis on prediction, the
output intentionally does not include coefficients and similar model outcomes. The
results are displayed in subtabs for Model 1, Model 2, and Model comparison (see
Figure 3). Additionally, an example of the output of a learner is presented in Figures
33 and 34. The theoretical background on supervised learning, assessing performance,
resampling methods and specific models can be found in Section 2.5.

Learners of different classes, degree of simplicity, and scalability are included in
the software. The current version includes four classifiers: (multinomial) logistic re-
gression, k-NN, decision tree, and random forest. Logistic regression is a technique
well-knows to end users. It makes rather strong assumptions about the data and in-
cludes at least p parameters. Following the terminology of machine learning, it is a
stable classifier. Despite its simplicity, k-NN is believed to be successful if boundaries
of the classes are irregular (Hastie et al. 2009, 463-468). Decision trees based methods

implicitly perform variable selection and binning of numeric variables, which mitigates
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Figure 3: General view of the Modeling tab

the potentially harmful effects of extreme values. A single tree has the further advan-
tage of low computation cost. At the same time it is characterized as an unstable
high variance learner, i.e. “slight” changes to the data can “largely” change predictive
performance (Hastie et al. 2009, 350-352; Duda et al. 2001, 475-476). Random forest
was included because of its reputation for having high predictive performance on many
datasets and also due to its relatively low number of tuning parameters in comparison
to other ensemble methods (e.g. gradient boosted model). No model is always the
best and the performance results of different models can give an idea about the type
of relationship between the target and predictors, e.g. if k-NN shows a good result in
comparison to logistic regression, the relationships are likely nonlinear.

Experimenting with some simple learning methods without tuning parameters can
bring to light some of the complexities inherent in the data. The software’s capabilities
are deliberately limited based on the assumption that parameter tuning and data
transformation (e.g. binning) have the potential to improve performance.

The mlr package (Bischl et al. 2016) covers all functions implemented in this sec-
tion. In short, makeClassifTask() specifies data, target variable and positive class
(in binary case). The function makeResampleInstance() creates an index of observa-
tions that belong to train and test sets using the input from the Resampling method
drop-down widget. The command makeLearner () takes the name of a classifier as

input and indicates to predict probabilities of an observation to belong to each class
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(default probability threshold is 1/@) where @) is a number of classes). The outputs
of the three functions (task, resampling instances and learner) are taken into resam-
ple() and predictions on the test dataset are made. The classifiers are implemented
with classif.multinom (logistic regression), classif .kknn (k-NN), classif.rpart
(decision tree), and classif.randomForest (random forest). Details and learner-
specific default parameters are mentioned in Ripley and Venables (2016), Schliep and
Hechenbichler (2016), Therneau et al. (2015), Breiman et al. (2015) respectively.

Early versions of the app trained different models with the same sampling procedure,
but not necessarily with the same data splits. An intermediate step of the resampling
instances stores information about train and test observations. This ensures fair model
comparison that is not influenced by randomness due to the resampling for different
models.

The software includes three kinds of performance metrics: threshold, rank, and
probability (see Section 2.5.1 for details). The users have the option of using the
metric they believe to be best suited for the data and project goals, or to use multiple
metrics and compare the results.

Threshold measures include sensitivity, specificity, positive and negative predictive
values, balanced accuracy, Cohen’s k, and accuracy (the last two are also calculated for
multiclass classification). In order to calculate these measures, predicted probabilities
are transformed into discrete categories. Class predictions are useful in many practical
applications, e.g. spam or ham emails. In general, threshold measures are appropriate
when an analyst is assessing the classifier’s ability to separate classes with minimal
error (Ferri et al. 2009, 27).

For binary classification, interactive cutting of predicted probabilities into classes
determines point estimates for the values in the confusion matrix. Technically, the
function setThreshold() is governed by a slider widget Choose probability threshold
(cutoff), as depicted in right part of Figure 3. Graphical displays of performance mea-
sures against the probability threshold (generated by generateThreshVsPerfData())
are exploratory in nature and complement point estimates of a confusion matrix. The
analyst’s decision about the cutoff is supported by line plots of performance metrics
against a probability threshold. Additionally, depicting metrics in pairs (true posi-
tive and negative rates, positive and negative predictive values) shows the trade offs
between them. Three accuracy measures in one graphical display demonstrate discrep-
ancies between metrics with and without chance correction (see examples in Figure
4).

Sensitivity and specificity are accuracy measures for events and nonevents in the
observed positives and observed negatives, respectively. This makes them conditional
metrics or per-class accuracies, e.g. 90% sensitivity is the classifier’s accuracy, assum-

ing the email is non-spam. Unconditional statements are possible and expressed with
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Figure 4: Performance metric vs. threshold plots with vertical dashed line correspond-
ing to value from the Choose probability threshold (cutoff) widget

positive and negative predicted values. However, their estimation is difficult due to
dependence on the prevalence of the event (Kuhn and Johnson 2013, 256-259). In
fact, many researchers assume a fixed prevalence of 50% and then PPV and NPV can
be calculated from values of a confusion matrix (Japkowicz and Shah 2011, 99-100).

Accuracy is intuitive to interpret, but is misleading in class-imbalance cases. One
way to overcome overoptimism about a classifier is to compare the resulted accuracy
with a no information rate (always predicting the majority class). Balanced accuracy
would coincide with the conventional counterpart if a classifier performs equally well
in both classes. Cohen’s k statistic, introduced as a measure of agreement between
raters (Cohen 1960), compares observed accuracy with accuracy achieved by chance.
Values between 0.3 and 0.5 are believed to signal reasonable agreement between actual
and predicted classes (Kuhn and Johnson 2013, 254-256; Japkowicz and Shah 2011,
86-92).

Consequences of the correct and incorrect predictions can be quantified with a cus-
tom cost/benefit metric. This would normally require domain expert knowledge and
understanding of business objectives. End users of the app would supposedly have
access to domain experts on the client side. Assignment of costs and net benefits to
all cells in a confusion matrix allows calculation of total or average profit (Kuhn and
Johnson 2013, 260-262; Larose and Larose 2015, 460-463). Demonstration of costs
and net benefits for different correct and erroneous predictions facilitates understand-
ing of modeling results for statistical non-experts and can foster initial exploratory
results for SHS VIVEON’s clients.

While the mlr package offers a wide range of performance measures, two metrics

were developed:
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o For binary classification, costvalue.measure is created with makeCostMea-
sure() and inputs from the cost matrix (visible if the box Enable cost/benefit
analysis is checked, see an example in Figure 32). The user assigns different
costs to wrongly predicted observations and net benefits to correctly predicted
ones. The resulting matrix is then multiplied with the four cells of the confusion
matrix to calculate the total value for predictions on the test dataset.

o kappaAC is created with makeMeasure() taking in a function that calculates
Cohen’s k of the confusion matrix with cohen.kappa(table)$kappa from the
psych package (Revelle 2016).

Rank measures are presented by a ROC graph with the chosen threshold marked by
a dot and the AUC scalar measure. The Brier score represents a numeric probability
measure. However, richer information about model performance may be obtained from
a visualization of predicted probabilities distribution for different true outcomes in the
form of kernel density plots. An “ideal” classifier produces non-overlapping density
estimators for true events and nonevents. A vertical line indicating a probability cutoff
facilitates the choice of the threshold (Kuhn and Johnson 2013, 251-252; Hosmer
et al. 2013, 174-176). For binary classification, the graphical display is implemented
with ggplot() density of predicted probabilities at two levels of the true outcome.
Importantly, this graph shows model’s strengths and weaknesses for each class.

All the above mentioned metrics are calculated on test data. The app does not give
an option to get performance on the training data, which is probably overoptimistic.
Instead it offers various ways of splitting: holdout with test dataset of 1/2 or 1/3 or
cross-validation with five or ten iterations. Stratification achieves roughly equivalent
class distribution in train and test sets and is recommended, especially in the case of
unequal proportions of the target variable (Flach 2012, 350).

The holdout set approach is simple, intuitive, and relatively fast (a classifier is
trained only once). In general, learning with more data is preferred, but computational
considerations can make initial training with a smaller fraction of data more attractive.
However, the holdout set approach has at least two drawbacks. Firstly, a fraction of
data excluded from training may contain important patterns. Secondly, resulting
performance metrics vary considerably, depending on the cases that are included in
the train set (James et al. 2013, 176-178).

K-fold cross-validation attempts to combat both of the disadvantages of the holdout
set approach. The extreme case of K =n is called leave-one-out CV and is charac-
terized by high variance due to almost identical training sets. This possible drawback
and high computational burden motivated the exclusion of leave-one-out CV from the
software tool. Despite lacking a theoretical justification, 5- or 10-fold stratified CV
are believed to give good results (Kohavi 1995; Hastie et al. 2009, 242-249; Japkowicz
and Shah 2011, 202-204) and are implemented in the app.
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The user is offered a choice among the original data, under- or oversampling, because
balancing of datasets frequently shows improved classifiers’ predictive performance
(Hérdle et al. 2009). Experimental studies regarding different balancing methods give
contradictory results that could have been heavily influenced by a particular classifier
and dataset (Batista et al. 2004). Finding no unanimity among researchers motivated
the implementation of the two simplest methods — upsampling and downsampling for
binary classification. Both techniques achieve an approximately equal percentage of
cases for both classes in the train set, while preserving the original distribution in
the test set. Importantly, upsampling increases the total number of observations and
should be applied with caution for originally large data with a strong inbalance. On
the other hand, downsampling randomly removes cases of the majority class, which
may result in leaving out or obscuring the patterns. Subject to data size constraints,
an analyst is encouraged to experiment with different balancing methods. In the
software, the original dataset is a default that can be changed via the Dataset used for
modeling radio button widget. If balancing is chosen, an makeUndersampleWrapper ()

or makeOversampleWrapper () is applied to the created with makeLearner () classifier.

3.3 Outputs / Deliverables

Deliverables of the tool are a documentation of the achieved results and provide a
basis for further analysis. File names include a dataset name and a time-stamp to
ensure versioning. An example of a set of outputs can be found on the enclosed CD
(see a list of files in Appendix B).

The downloadable files incorporate:

« an updated dataset that includes columns of PCA scores and cluster membership,
and reflects the substitution of extreme values by NA, if these steps were executed
(.csv file);

« metadata that includes information on the variables level: variable type, impor-
tance score, percent of missing values, etc. and whether a variable was excluded
from analysis (.csv file);

o result reports of individual pages that contain the final state of the performed
actions in each tab and can be enriched by end user comments (.html files,
generated by markdown (Allaire et al. 2016) and pander (Daréczi and Tsegelskyi
2015) packages); and

o general documentation that provides references to the implemented R routines
and settings (.html file).

An advantage of using the .html format for the reports lies in maintaining some
functionality that could not be presented in a .doc or .pdf. For example, this includes
hover-over tooltips with information on correlation plots. In contrast to the interface

where display is sometimes conditioned by the chosen view, reports contain all results
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from a tab, e.g. both Pearson and Spearman correlation plots. The general documen-
tation is included in the software in order to make it self-containing. Additionally, an
internal company wiki-article was created mainly for promotional purposes. It outlines

functionality and provides instructions on where and how to access the software tool.

3.4 User interface

Engagement with a digital product is possible and enabled through an interface.
Many researchers emphasize that good design starts with an understanding of human
behavior, not with layouts and sketches. The interface designer must first clarify
the target audience’s goals and intuitions to understand the behaviors relevant to the
development of future software. The search for a visual solution should only start after
outlining the main tasks and objects (Tidwell 2011, 1-9, 25). The target audience of
the DDP app are data scientists of SHS VIVEON AG, which is a rather homogeneous
group in terms of their technical and methodological training. The goals, outlined in
Section 3.1, determine the organization of elements and choice of controls.

In terms if its form, the DDP app is a web application, so use of web conventions (e.g.
evidently clickable elements or download icon) is beneficial. Familiar and recognizable
interface parts make interaction easier and more enjoyable (Tidwell 2011, xvii; Krug
2014, 14). In terms of content and functionality, the app enables interactive exploration
of a new dataset.

The app’s global navigation is positioned on the left, which is conventional for web-
sites. Signposts such as tab highlighting and page titles help the user to understand
their location (Tidwell 2011, 77-85). The above mentioned design principles also pro-
vided the motivation to structure the navigation bar with a sequential list resembling
an EDA workflow.

Each page is dedicated to one topic (each of them presented in Sections 3.2.1 — 3.2.7
with general views depicted in Figures 19 — 32). The grid divides a page into clear
regions and it guides the user on what parts can be ignored and what to focus on (Saffer
2007, 122-123). The left panel of the DDP is visible all the time, which emphasizes
its significance. Besides navigation, the left panel contains the target variable and
excluded attributes widgets. When the user opens a new tab, titles indicate what
one can expect from this page, and what tables or graphs are to be rendered. The
largest central part of a page is reserved for outputs and all controls belonging to a
particular page are positioned on the right. Only the Import summary and Modeling
pages contain some interactive elements that are integrated with the output elements.
In the former case a drop-down menu allows the user to change the variable type,
which then should be confirmed by pressing a button (see Figure 19). The result is
reflected in the table located underneath. In the latter case, this page sets parameters

for two models in different subtabs (see Figure 32). In other words, tuning elements
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positioned in the main panel has an effect on a number of steps, never solely on the
current page. Consistently placing interactive elements either in the top area or on the
right “teaches” a user where to look for tunable parameters and buttons to perform
analysis steps.

Assisting information appears as help messages in the output field, tooltips (hover
over) for widgets and results, and progress bars. Their design and substance was
influenced by user research, which showed that short, timely, and noticeable hints are
preferred to instructions (Krug 2014, 47-51; Tidwell 2011, 364-368).

Help messages contain the smallest amount of information capable of guiding the
user to the next step. They appear in a sequence, prompting users about each of
the steps that are required before a particular output can be seen (see an example in
Figure 5a). For example, the graphs are usually sorted by ROC AUC, which means
that this calculation should happen before plots are displayed. In turn, a target vari-
able should be selected for assigning AUC values. Besides improving user experience,
these messages display errors or silent errors that shiny produces when objects can-
not be rendered. The color blue was found to be adequate for help messages as it
is distinct from the general green/gray palette, but has no connotation with errors,
which are displayed in red. On the technical side, help messages in the output fields
are implemented with validate(need(logical condition, "message")) from the
shiny package. If a condition is not fulfilled (e.g. no target variable chosen), then
a corresponding message appears. Validations are often piped to display them in a
sequence.

Tooltips allow users to reduce visual noise and to make efficient use of screen space.
Descriptive guiding information about the widgets and outputs appears when and
where the user needs them while he or she is interacting with the app (see an example
in Figure 5b). The initial solution for tooltips used a shiny function helpText (). The
usability tests demonstrated that they appear too slowly to be consistently discovered
by users. Use of functions from the shinyBS package (Bailey 2015) overcame the
lag problem. Moreover, the appearance of these comments is customizable and they
are more visually appealing. This change in technical implementation improves the
users’ experience when they have a doubt and require assistance. The addTooltip()
is used for short notes about widgets (e.g. explains near zero variance cut offs), while
addPopover () annotates the output (e.g. gives description of balanced accuracy).

Finally, the status/progress bar (see Figure 5¢) indicates when and what procedure is
running. The Data Science team members are active R users, which implies that they
are used to be informed about a calculation being in process. Moreover, a procedure
can be interrupted with a stop sign. As mentioned earlier, interfacing with R through
a shiny app has the disadvantage of making it impossible to stop a procedure. Nev-

ertheless, the user is informed about the currently running process. Time-consuming
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operations are wrapped into withProgress() from the shiny package. This function

Y

displays a predefined message, e.g. “Calculating K-means cluster indicies...”, and a
progress bar. In case there is a loop procedure, information about the k’s iterations is

displayed with incProgress(), e.g. “Number of clusters: 4”.

r Threshold (or cutoff) value
H ¥ controls how predicted posterior
Pe rformance metrics probabilities are converted into 4
Please choose model 2 and press 'Train claseletes b | x

model 2' Choose probability threshold (cutoff) Training model 2...
0 1
c—
(a) Help message (b) Tooltip (c) Status bar

Figure 5: In-app assisting information

Users’ actions are restricted by widgets and controls: buttons (binary action, e.g.
download updated dataset), radio buttons (e.g. linkage method), drop-down menus
(e.g. models), multiple selection lists (e.g. Excluded variable(s)), sliders (e.g. value of
ROC AUC), spin boxes (numeric field and small buttons to increase or decrease value,
e.g. number of principal components), etc. The choice of values, plausible ranges and
defaults were chose to balance ease of use and flexibility.

No action can be directly undone, but most of the steps can be performed repeatedly
with different settings. The only exception is the substitution of extreme values by
missings and turning missing values in nominal variables into an additional category,
which are irreversible. The inability to cancel an operation mentioned in section 3.2
is reflected in the user interface. Unfortunately, a user finds no button or keyboard
shortcut to interrupt a time-consuming operation. Possible side effects of long waiting
is likely to hinder active experimentation and exploration (Tidwell 2011, 269-274).

The interface was designed not only to serve current users, but also to allow future
amendments. The horizontal tab structure in the Preprocessing and Clustering is

easily extendable if the implementation of new methods is required.

3.5 User research
The research methods adopted in the development of the DDP are qualitative in

nature and focus on understanding user behavior. These research methods are:

« focus groups, which is a way to discover opinions, wishes and needs of the target
audience based on their experience with the existing product or reaction to a
new action; and

« usability tests, which are a way to detect problems that confuse and frustrate
users, and consist in the observation of how a user performs typical tasks and in-
teracts with a web site, electronic devices, etc. (Krug 2014, 113, 119; Kuniavsky
2003, 201-207, 259).
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Scholars find that qualitative research methods are more suitable for revealing user
behavior, context and limitations of a product than quantitative techniques. Moreover,
qualitative methods tend to be less expensive, faster, require smaller sample sizes,
and can be adapted midway through the process. Direct observation, focus groups,
individual interviews, usability testing and a combination of these activities are useful
at different stages of a product’s design (Goodwin 2009, 54-57; Cooper et al. 2007,
49-57).

The user research was an integral part of the software development project. The plan
started with the creation of a schedule and budget. The first presentation of the DDP
app and a focus group session took place a month after the start of the development.
Usability testing and further group discussions occurred four and five months into the
development.

The focus groups provided more general feedback and functioned as brainstorming
sessions. Initially, the DDP handled only binary classification, but one of the group
discussions concluded a need for covering multiclass problems as well. Group dy-
namics can be difficult to manage: some people participate in group discussion with
reservation, talk drifts to unproductive topics, etc. (Goodwin 2009, 56). Despite the
usefulness of a group discussion for general ideas, specific design questions are better
understood in usability tests.

Usability tests were adopted due to their flexible nature and rich results even with
a low number of testers (Krug 2010, 19-22). Actual future users performed usability
tests in two stages with four sessions each. Each session lasted for about an hour. Users
were encouraged to analyze their own datasets and to think aloud. Live observation
and assessment of screen and voice recordings resulted in a list of comments, grouped
into themes about each tab, performance issues, sidebar, miscellaneous and those that
do not require any changes to the software. Next, comments were prioritized and
worked through, if required. Issues were discussed in short follow-up talks with the
Data Science team members.

Some users appreciated repeated visualizations and were comparing distributions
of attributes in regard to the target variable and to cluster membership. The pres-
ence of alternative graphical displays, such as density estimators and box plots, was
acknowledged as desirable, because they show data differently and because some an-
alysts prefer one of the visualizations over others. One user recognized clustering of
the correlation matrix as particularly helpful. A few team members compared use of
the tool to their routine EDA in R and remarked how they were impressed by the
large amount of results they can get in a short time. Such comments did not require
any changes in the software, but supported confidence in the choices made. Other
feedback can be organized into two groups: interface-related and content-related.

Users contributed to the improvement of text information displayed in the app.
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If users needed to reread a formulation, this behavior was considered a signal for a
change. Moreover, sometimes they said that a given expression was unclear, prompting
a change in the interface. For example, the name of a subtab was changed from “Zero
and near zero variable predictors” to “Constant and almost constant predictors”. The
first version was rather technical and users had to pause to understand the meaning.
Some widgets also were renamed, e.g. the slider in the Missing values tab change its
label from “Percent of missing values” to “Show variable with % of missing values
over”. The text outputs about the substitution of extreme values by NA were edited
after the first series of usability tests. Over time, some free text information was
turned into tabular format.

Visual indication of computationally intensive operations warned users about possi-
ble waiting time. Potentially long-running operations can only start be triggered after
pressing a button. Initially, the color of the button red in order to signal possible
consequences. However, usability tests indicated that using red is not an effective way
to communicate the message: most of the participants could not interpret the button
color. As a result, this visual solution was rejected.

End users were encouraged to test the software in different ways and their trials
resulted in marked improvements in app performance. A continuous variable was
assigned as a target variable, and a correlation analysis was undertaken before the
removal of constant predictors, to name a few. Such illegitimate actions are currently
checked with the validate() function and a help message is displayed if an invalid
action is attempted.

Probably to the most consistent misunderstanding occurred at the Modeling tab.
Widgets and controls were positioned on the comparison page in the initial version. It
was necessary to choose the settings and switch to the Model 1 or Model 2 tabs to see
results. Meanwhile, users were expecting to see results on the same page, where the
button to train a model was pressed. Fortunately, this shortcoming of the software
tool was detected in the first set of usability test sessions. The corrected version of
the Modeling step was tested during the second series of sessions.

The end users of the software also contributed to the set of offered analytical meth-
ods: they suggested the inclusion or exclusion of particular procedures. The initial set
of predictive performance measures included neither Brier score nor predictive nega-
tive and positive values. Following a colleagues feedback, the list of the resampling
methods was extended with a 50/50 holdout. Such split into train and test sets min-
imizes a potentially harmful effect of erroneous class labels, because they are equally
likely to be both sets. The idea to include the number of observations that a particular
procedure uses also came from a member of the Data Science team. Furthermore, end
users suggested removing random forest importance in the Variable importance tab,

arguing they would prefer a univariate screening at an early stage of the exploration.
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In summary, colleagues’ feedback led to improvements of the app, provided guidance
in design, and helped to tailor the software to the Data Science team’s specific needs.
The team’s involvement in the app’s development has built their trust in the tool
and served as an introduction for them to the software. Conducting usability tests
iteratively ensured that the severest problems were the first to be fixed, and allowed
later testing to fine tune smaller problems. Conversely, group discussions addressed

general issues and concerns, and brought new ideas to light.

4 Data analysis

During development, the software tool was tested with multiple real and artifi-
cial datasets in order to improve the tool’s resilience. Due to confidentiality of SHS
VIVEON’s client datasets, it is not possible to show an analysis of data used within
the company. Instead, this section showcases the developed app using a public dataset
similar in theme and complexity to those encountered by the software’s end users.

Thematically, the company often deals with data from the e-commerce and telecom-
munication industries. The firm is tasked with making accurate predictions of shortfall
in payment, churn, and promotion campaign effectiveness. Some researchers noted
that datasets from open repositories such as UCI are easier to analyze than many real
world problems (Japkowicz and Shah 2011, 11). To more accurately reflect one of SHS
VIVEON’s client datasets, this analysis employs public datasets from machine learn-
ing competitions where data was provided directly by enterprises. The chosen dataset
is sourced from the Data Mining Cup (2010) and it fulfills the thematic and complex-
ity requirements. Additionally, it contains a business oriented measure to evaluate
predictive models.

As described in the competition documentation, a media dealer sells traditional
books, audio- and e-books, films, music, and other items. The company’s goal is to
maximize revenue by improving the effectiveness of one of its promotional activities
and customer loyalty measures: vouchers that offer a discount on a second order. The
characteristics from the first purchase should be used to identify those customers who
would not re-purchase without an incentive. These customers would then be sent
discount vouchers.

For the purpose of this demonstration, the media dealer is imagined to be one of
SHS VIVEON'’s client. The first dataset is provided by the client and a member of
the Data Science team builds an impression about the information contained in the
data, checks the data quality, evaluates the predictive power of attributes, and thinks
of ways to improve the predictability of the second order. Appendix B contains a list

of the reports of all tabs, metadata, and the extended dataset that can be found on

the enclosed CD.
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4.1 Initial assessment of the data

The first step is uploading the dataset. The use of the default column separator,
a comma, resulted in reading data as one row. The second option of this setting,
a semicolon, successfully read in the data. According to information in the Import
summary tab, the dataset contains 32,428 observations and 38 variables.

The metadata provided by the Data Mining Cup organizers is reproduced in Table 4.
The target variable, target90, indicates whether a customer made a new order within
90 days. The attributes characterize the customer (e.g. salutation and email domain),
the purchase (e.g. payment and delivery type, shipment weight, number and type of
purchased items), and any associated promotional activities (e.g. newsletter, redeemed
voucher, advertising code) for each observation. The meaning of some variables, such
as advertisingdatacode and model, is unclear. The meaning of number of remitted,
canceled and used items also raises questions. The provided documentation does not
mention any specific encoding for missing values and empty fields are marked as NA as

a result of the import.

Column name Type Description

customernumber nominal Unique customer number

date date Date of first order

salutation nominal Salutation: 0 = Ms.; 1 = Mr.; 2 = Company
title nominal Title: 0 = Not available; 1 = Available
domain nominal Email provider domain: 0 = aol.com; 1 = ar-

cor.de; 2 = freenet.de; 3 = gmail.com; 4 =
gmx.de; 5 = hotmail.de; 6 = online.de; 7 =
onlinechome.de; 8 = t-online.de; 9 = web.de; 10

= yahoo.com; 11 = yahoo.de; 12 = others

datecreated date Date account opened

newsletter nominal Newsletter subscribed: 0 = No; 1 = Yes
model nominal Model 1; 2; 3

paymenttype nominal Payment type: 0 = Payment on invoice; 1 =

Cash payment; 2 = Transfer from current ac-

count; 3 = Transfer from credit card

deliverytype nominal Delivery type: 0 = Dispatch; 1 = Collection
invoicepostcode nominal Invoice address postcode

delivpostcode nominal Delivery address postcode

voucher nominal Voucher redeemed: 0 = No; 1 = Yes

advertisingdatacode nominal Advertising data code
case ordinal ~ Value of goods: 1 = Low; 5 = High

numberitems numeric Number of ordered items
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Column name Type Description

gift nominal Gift option: 0 = No; 1 = Yes

entry nominal Entry into the shop: 0 = Shop; 1 = Partner
points nominal Points redeemed: 0 = No; 1 = Yes
shippingcosts nominal Shipping costs incurred: 0 = No; 1 = Yes
deliverydatepromised date Delivery date (promised)
deliverydatereal date Delivery date (real)

weight numeric Shipment weight

remi numeric Number of remitted items

cancel numeric Number of canceled items

used numeric Number of used items

w0 numeric Number of bound books ordered

wl numeric Number of paperbacks ordered

w2 numeric  Number of school books ordered

w3 numeric Number of ebooks ordered

wd numeric Number of audio books ordered

wh numeric  Number of audio books ordered (download)
w6 numeric Number of films ordered

w7 numeric Number of musical items ordered

w8 numeric Number of hardware items ordered

w9 numeric Number of imported items ordered

w10 numeric Number of other items ordered

target90 nominal Reorder within 90 days: 0 = No; 1 = Yes

Table 4: Description of variables from the Data Mining Cup (2010) dataset

As soon as the response variable is chosen by the corresponding widget, its distribu-
tion is displayed in the Import summary tab (Figure 19). The fraction of reorders in
the data amounts to 18.7%, which either corresponds to the actual number of recurring
orders or is a characteristic of the provided sample of data. In any case, balancing the
dataset at the step of building classifiers can be beneficial.

The dataset consist of first purchases by each customer and the number of records
coincides with the number of unique customers. Consequently, the customernumber

is not useful for prediction and it is excluded via the Ezcluded variable(s) widget.

4.1.1 Verification of variable types

A large fraction of attributes are nominal or numeric, a few are dates, and one is
ordinal. All columns representing time were correctly identified as dates and dichoto-
mous variables were detected as nominal (factor). A comparison of the metadata

with the summary table in the app demonstrated the need to correct variable types
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of some features. Many nominal variables are coded by integers and were wrongly
imported as such. Ordering the summary table by the number of unique values speeds
up the detection of further nominal variables: salutation, model, and paymenttype.
Moreover, domain, invoicepostcode, delivepostcode, and advertisingdatacode
were cast as factors. The attribute w8 is numeric by nature, but was detected as a
factor, because it contains only two distinct values, 0 and 1. At the same time, it can
be interpreted as a flag variable, indicating whether any hardware items were ordered.
Nevertheless, to maintain consistency among the different types of ordered items, w8
is cast as an integer. Assignment of the correct variable types at the very beginning
of the analysis ensures that methods are applied to a correct set of variables, e.g.
payment types that are encoded by integers are not used in PCA.

The variable case is ordinal and has values ranging from 1 to 5, representing a low
to high for the value of goods. As the software does not support ordinal variables,
it should be treated either as a higher interval level of measurement or downgraded
to a nominal one. Intrinsically, value is a continuous concept so making the case a
higher interval could be justified. On the other hand, downgrading it could be more
advantageous because distances between categories are not meaningful and the number
of distinct values is low. Luckily, the app allows users to look at this variable from

both perspectives.

4.1.2 Exclusion of attributes with little variability

The summary table in the Import summary tab indicates that many attributes
have numerous repetitive values. The variable points is a constant, meaning that
no customer in the training set redeemed points. Although no further information is
provided, this attribute may refer to a customer loyalty program. If any points are
gained from purchases, then zero values are plausible for the initial orders. In any case,
this constant attribute is useless for the prediction of reorder. Over 99% of customers
do not have or have chosen not to fill in their title information. Although presence of
this field in the order form may be important from a customer relations perspective,
a variable consisting of almost all zeros in unlikely to be a helpful predictor. The
variable gift describing the gift option also contains almost no non-zero values. For
the above reasons, these three attributes are excluded from further analysis.

Among the numeric attributes, several of them contain very little usable information.
The summary table in the Import summary tab has a column “Percent of most frequent
value” that shows how frequently the most commonly occurring value appears in the
dataset for a given attribute. Many numeric attributes contain data that is over 95%
homogeneous. These variables are integer-valued and mostly have a couple of dozens
unique values. In the most extreme case, the number of hardware items ordered (w8)
includes only two distinct values, with the most frequent one amounting to 99.98%.

Based on the summary table, we can assume that only a few hundreds of customers
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made any hardware purchase at all. Such a lack of diversity within the data of an
attribute is unlikely to produce predictive results. The matrix plot (Figure 6) reveals
that the columns corresponding to these variables are almost white, indicating that
they contain a high percentage of zeros. The analysis of the dataset can be complicated

by the sparsity of this part of the data matrix.
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Figure 6: Matrix plot sorted by deliverydatereal attribute

The number of distinct values and the percentage of the most frequent value in the
summary table reveal potential problems with attributes of all variable types. A more
elaborate detection of almost constant predictors among the numeric variables com-
bines the percentage of unique values with the frequency ratio. The default parameters
of these two settings suggest a near-zero variance for used, w3, w4, w6, w7, w8, cancel,
w10, and remi. For example, the frequency ratio of remi is 32.82 and the percentage of
unique values is 0.04 (see the complete table in Figure 23). Because the main focus of
an analysis is the data’s potential predictive power, it is important to take into account
variable importance and the distribution of these variables on two levels of the target
variable. They are ranked quite low in variable importance and the parallel box plots
do not show large differences in distributions. Given these points, they are excluded
from further analysis. These variables gave information about which different kinds
of media content, e.g. films and ebooks, were purchased by the customer, and such
information may yield some predictive power. Therefore, Section 4.5 considers feature

construction in order to include information about different types of ordered items.

4.1.3 Exploration of location attributes
The competition documentation does not mention where the customers of the media

dealer are located. Because of this, metadata and postal code attributes were analyzed
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in order to derive location information. This may be relevant and interesting because
the place of residence may embody some information about promotional activities,
the company’s position in the media market, and potential cooperation with local
institutions (e.g. schools) in different areas. In other words, the expectation is not
that customers’ propensity to reorder differs due to location itself, but rather that the
place of residence may act as a proxy for unobserved factors.

The metadata indicates that 9 out of 11 email address domains contain the extension
.de (see Table 4). Based on this observation, one can assume that those customers live
in Germany. While the postal code attributes are imported as type character, coding
them as nominal variables allows to inspect different values. The column “Levels” in
the summary table shows that the invoice postal code consists of two-digits numbers
and the delivery postal codes are either zero, or a two-digit numbers or one of two
strings, “N1” and “EN” (see Figure 7). Without having further details, the strings
may mean the Netherlands and England, while numbers may correspond to the first
two digits of the 5-digit postal codes in Germany or maybe some encoding due to
anonymization and privacy issues. If the German post codes hypothesis is true, the
single and double zero factors raise a question, as such codes do not exist. Because
there are nearly one hundred different categories codes offer an extremely high amount
of granularity, and unlikely to have generalizable predictive power. Assuming that,
aside from a few exceptions, the location attributes contain the first two digits of the
postal codes it would be possible to bin these codes so that they correspond to the

Germany federal states and explore what predictive power this may yield.
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N
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Variable distinct - Levels
type frequent (character) (character) values
values
value
0,00, 01, 02, 03, 04, 06, 07, 08, 09, 10, 11, 12,
13,14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
M 26, 27,28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
) > 39,40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52,
delivpostcode factor 101 352 0 Nl NA, NA,
NA 53,54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66,
67,68, 69,70,71,72, 73,74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93,94, 95, 96,97, 98, 99, EN, NI
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81,82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
94,95, 96, 97,98, 99

Figure 7: Information about location attributes from the summary table in the Import
summary tab

The location attributes demonstrate that the dataset contains some nominal vari-
ables with a large number of levels (up to a hundred). There is a trade-off between the

volume of available data and algorithm’s ability to recognize patterns in a given cat-
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egory. Moreover, if data for each category is scarce, this may detect some artifacts of
a sample. Considering the number of observations, the predictive power of attributes
may benefit from aggregation. Such preprocessing is outside of the scope of this initial
analysis. After exploring these attributes in more depth, it was decided to exclude the

invoice and delivery postal codes from further analysis.

4.1.4 Exploration of time attributes

The data presents a year of records, as marked by a range of order dates from
April 1, 2008 to March 31, 2009. The lowest values of all four time variables (date,
datecreated, deliverydatepromised, deliverydatereal) correspond to year 2008.
The summary table indicates that the latest promised delivery date is 4746-11-26
(supposedly November 26, 4746). The large range of values of deliverydatepromised
is reflected in the matrix plot by much whiter coloring than the other date columns (see
Figure 6). The maximum value for the actual delivery date is rather high, 2009-12-30,
i.e. this customer waited at least nine months for a delivery. Although not impossible,
such a time period seems rather unusual for media content and may require a follow-up
with domain experts from the media dealer.

Time is presented in the dataset by fixed date fields (e.g. when an account was cre-
ated). This is a natural way to store information in a database and may be preferable
to variables derived from them (i.g. time since an account was created). However,
dates are not recognized by the learning algorithms, so it is recommended to derive
some numeric or categorical variables from the date fields. As the software does not
offer this functionality, date fields are excluded from subsequent analysis after their

exploration and a sanity check.

4.1.5 Inspection of missing values

A failure to deal with missing values would result in under 1% of the original number
of complete rows being usable for analysis (see Figure 8). The dataset contains three
attributes with unobserved measurements, their percentage ranging from roughly 17%
to over 95%.

The delivery address postcode contains

the higheSt percentage of miSSing val- There are 207 (approximately 0.64%) complete observations.

ues. There are several reasons why this

. . . % of missing values
may be the case, which are visible from

. . . delivpostcode 95.7074
sorting of the matrix plot by delivery P
: . . dvertisingdatacod 79.8847
type. First, all orders with delivery- acvertisingdatacode
deliverydatereal 16.8743

type = 1 (“collection”) contain no deliv-
ery address. Unambiguous interpretation Figure 8: Numeric summary from  the
of the situation would require details on Missing values tab

the meaning of two delivery types, “dis-

patch” and “collection”. Probably, the latter means that the purchase was picked up
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at an offline store. If this idea is true, the field can be imputed by the postal code
of the shop, because this implies that the customer indeed located nearby. In fact,
sorting the matrix plot by payment type (the report can be found on the enclosed CD)
demonstrated that collected orders were paid in cash, which supports this hypothesis.
Second, a customer may leave the delivery address in the order form blank if both the
invoice and delivery addresses coincide. Assuming it is the case, the missing values for
the orders with delivery type “dispatch” could be imputed by copying the postal code
from the invoice attribute.

The missing values in the advertising code may indicate “none”; which can be intro-
duced as an additional category. Overall, there are over 40 different codes and details
about abbreviations, e.g. AP, BR, BQ, may help to build aggregate categories for
generalizable performance. The percentage of missing values in this attribute is high,
almost 80%. Omitting observations with a missing advertising code would potentially
strongly bias a dataset, especially if the hypothesis that missing values corresponding
to no advertising code is correct. Consequently, this attribute can be excluded or
missing values can be substituted with an additional category “missing”. Despite the
potential predictive power of this promotion-related variable, its high number of levels
favored its exclusion.

An inspection of the matrix plot sorted by actual delivery date shows a distinctive
pattern in some other variables (see Figure 6), e.g. date of account opening and of the
first order. Potentially more revealing is its relation to w5, the number of downloadable
audiobooks. Importantly, there are two variables describing audiobooks and, although
it is not completely clear, w4 may account for CD sales of this genre while w5 for
recordings available for download. Assuming this hypothesis is true, the delivery date
can be estimated by the order date as downloads are immediately available, regardless
of the actual download time.

In summary, the missing values in all three variables seem to have plausible expla-
nations. Additional information about the data collection process has the potential
to impute values. The inspection of the summary table in the Import summary tab
and the matrix plot in the Missing values tab increased the understanding of the data,
helped to resolve some ambiguities present in the provided metadata, and provided a
context for the missing values. It also pointed toward other potentially helpful pre-
processing steps, e.g. binning of postal codes. Moreover, this inspection highlighted

the usefulness of excluding some of the attributes.

4.1.6 Inspection of extreme values

The two methods for detection of extreme values in the Preprocessing tab produce
very different results (see Figure 9). The mean-based rule when run at its default
settings would decrease the number of complete cases by 2600 (about 8%). In contrast,

the median-based rule would reduce the entire sample by two thirds. This indicates
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some unusual structures within the data. For one, the high percentage of repeated
values plays a role. The decision rule based on medians would drastically reduce
the number of complete cases due to high percentage of the most frequent value.
To illustrate, attributes describing the number of specific items (w1, w2, w5, w9) are
characterized by both quartiles coinciding with the median of 0. In other words, over
75% (and often over 90%) of these variables have zero values and variability is almost

absent. Therefore any ¢ would remove all non-zero values.

Number of standars deviations

1 15
Extreme values are such values that are further from a mean than a particular number of standard deviations of a given -
variable. If you choose to substitute extreme values over 3 standard deviations (this number can be changed on the
right), then the number of complete cases in the data set would decrease from 32428 to 29828.

Decision rule with mean and standard deviation

Substitute the values by missings
Result: No extreme values were removed.

Number of median absolute
deviations

Extreme values are such values that are further from a median than a particular number of median absolute deviations 1 15
from the median (MADM) of a given variable. If you choose to substitute extreme values over 3 MADMs (this number can pre—

be changed on the right), then the number of complete cases in the data set would decrease from 32428 to 10289.

Decision rule with median and median absolute deviation from the median (MADM)

Result: No extreme values were removed. ST by s

Figure 9: Output of the Preprocessing > Fxtreme values tab

A long right tailed distribution of almost all numeric attributes demonstrate a rarity
of high values. The right skew is evident by numerous points outside of upper box
plots whiskers (1.5 IQR) and no unusually low values. Moreover, there is often no
lower whisker and both quartiles coincide with the median. This demonstrates a
concentration of the mass of the values in a single number of a narrow range of values.
Furthermore, distributions of this shape make kernel density plots a poor graphical
display.

An examination of extreme values in the box plots reveals what are most likely
erroneous entries in some of the ordered items. According to the initial understanding
of the metadata, numberitems is the total number of ordered items, which is split into
categories, e.g. paperbacks, films, etc. However, maximum of this variable is 50 and
other high values are under 30 items, while maximum of particular class attains 84
(w1), 90 (w2) and 99 (w0). This either indicates errors in number of items in categories
or the meaning of numberitems is different.

Because these extreme values are likely to be the result of errors, it would be best
to substitute them with missing values before further analysis. Moreover, high single
values in numberitems, weight and w9 seems atypical for the data at hand. A goal to
remove only extremely high values in selected variables is achieved by first temporarily
excluding other numeric variables and then applying a substitution for values beyond

the highest number of standard deviations available in the software, 15. This unusually
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high number of standard deviations takes into account that, due to little variability, the
measure of spread is also very small. This operation results in reducing the number of
complete cases by 80 observations. A subsequent review of the box plots demonstrates
that the upper bound of different types of items has been reduced to under 50.

The weight attribute also contains some unusually high values. The upper bound is
clearly an extreme value, because other high values are around 10,000. The minimum
shipment weight is zero, which is realistic for orders with downloadable items only.
According to the matrix plot, low values of shipment weight plausibly relate to a sub-
stantial number of downloadable audiobooks as well as ebooks. Although the metadata
contains no measurement units for this variable, its spread suggests measurement in

grams.

4.2 Exploring relationships between variables

4.2.1 Relationships between an attribute and the target variable

The association measures based on the reduction of error in prediction (Goodman
and Kruskal A and n?) are zero for all attributes. Values of ROC AUC in the variable
importance are low, from 0.5 to 0.54 (Figure 10). This means that even the higher
ranked attributes are of little help in predicting reorders. In addition to this variable
ranking, the relationships between single attributes and the target variable are exam-
ined graphically and with the help of association measures. First categorical (Figure
11) and then numeric variable (Figure 12) are considered.

Vouchers were used in approximately
15-20% of initial orders, which has almost ROCAUC

no association with reorder: the attribute — numberitems3

newsletter - L ]
voucher is ranked low by the variable im-  shiepingeosts °
deliverytype - L ]
portance and the values of Cramér’s V is model o
L . . entry - ]
0.03. Intuitively, experiencing the bene-  paymenttype - .
case L]
fit of this promotion has the potential of wi | o
. . 17 weight - L]
increasing the willingness to reorder. Ac- <alutation °
. . . . voucher - L ]
cording to the matrix plot, turning in a w6 .
. - [ ]
voucher seems to couple with some adver- 1
w94 @

tising code. Overall, the variety of adver- — T T T T T T
0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545
tising codes (over 40 kinds) and their re-
lationships with other attributes suggest Figure 10: Attribute ranking from the
that there are multiple promotional cam- Variable importance tab
paigns going on simultaneously and cus-
tomers’ decision to repurchase may be influenced by incentives other than a voucher.
Consequently, the dataset is potentially missing important predictors.

A customer’s subscription to the media distributor’s newsletter is a rather strong pre-
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dictor (ranked second by the variable importance, Cramér’s V is 0.08) and the mosaic
plot demonstrates a higher reorder rate by those who receive this type of communi-
cation (see a plot for the newsletter attribute in Figure 11). Possibly, newsletters
have relevant content or special offers and somehow motivated customers to repurchase.
However, a confounding variable, such as general interest in the analyzed media dealer,
may determine willingness to subscribe and to reorder. While the merchant can be
interested in the effectiveness of their promotional efforts, the current task of the data
analysis is to improve prediction.

Customers who paid in cash for the initial payment repurchased more often in com-
parison to those who used other types of payment (see a plot for paymenttype in Figure
11). Distribution of the remaining payment types (namely payment on invoice, trans-
fer from current account, and from credit card) in relation to the target are nearly the
same. This trend is not necessarily connected to the payment types themselves, as the
collected items were all paid for in cash and the percentage of repurchases among the
customers who collected orders is higher. Furthermore, both variables, paymenttype
and deliverytype, were only weakly associated with the target variable (Cramér’s V
is 0.06 and ROC AUC of 0.53). In summary, these attributes seem to encode similar
information in relation to the target variable.

The absolute majority of the customers (about 80%) did not incur any shipping
costs with their order and, indeed, this fact is associated with a higher reorder rate
(Cramér’s V is 0.07). Some of the customers without any shipping costs picked up
their orders at a local shop, while others with free delivery, which is ceteris paribus
an advantage. No information about the conditions associated with free delivery are
available, but according to the matrix plot it seems to weakly correlate to a lower
number of items and somehow rather low value of goods (case = 2).

Out of common sense, the email address domain information would not have a
relationship with the reorder rate and, indeed, the estimate of association is weak
(Cramér’s V is 0.02). Moreover, some levels of this nominal variable contain few ob-
servations and a category “others” indicates that there were even less frequent domains.
For these reasons, this attribute is excluded from further analysis. Nevertheless, the
media dealer can consider web-marketing at different websites and this information
can be relevant.

The ordinal attribute case should be treated either as nominal or numeric in the
software. Sorting of the matrix plot by this variable demonstrated that the five cate-
gories of goods’ value are fairly evenly distributed with a somewhat lower fraction of
the highest rank. There is no absolutely clear co-occurrence with other variables, but
percentage in vouchers is relatively high in the lowest value category. The description
of case does not specify how it was derived. In particular, whether it corresponds

to the cost of goods sold, the purchase price before or after discounts, etc. If the
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Figure 11: Mosaic plots from the Categorical variables tab

value of case is calculated after applying a discount, then the presence of a higher
percentage of vouchers in the lowest values is not surprising. If case is treated as
numeric, the box plot is symmetric on the both levels of the target variable (Figure
12). If the case attribute is treated as nominal, the clustered bar plot demonstrates
similar distributions at two levels of the target. Association is not strong (Cramér’s V
is 0.05), but the mosaic plot shows a slightly higher percentage of repeated purchases
in the highest value of goods of the initial order (Figure 11). This may be connected
to a higher interest in media items in general. The continuous nature of the value of
goods favors the quantitative treatment of the attribute, so it is treated as integer for
the consequent analysis.

The parallel box plots of the numeric variables have rather similar distributions on
both levels of the target variable (Figure 12). Most of the attributes demonstrate
differences only in the values beyond the third quartile. Higher number of items and
weight are observed for customers, who did not repurchase. Such large orders are

overall atypical and may correspond to one time purchases.
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The numberitems has the highest rank in the variable importance, but the value of
ROC AUC is quite low, 0.54. The customers who did not reorder within 90 days tend
to have purchased fewer items in their initial order, in particular, minimum, median
and first quartile coincide at value of 1. The median of another subgroup is 2. No
information about any influence of the second purchase is available, but maybe such

customers regularly consume more media content on average and returned to buy

more.
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Figure 12: Parallel box plots from the Numeric variables tab

4.2.2 Relationships between attributes

Association between attributes is explored with the matrix plot, correlation plots
and PCA. Section 4.1 described relations between variables with missing values and
all others which generated ideas for imputation. Arranging the matrix plot by various
variables helped to clarify their meaning and uncover co-occurrences.

As noted in Table 4, the metadata only characterizes model as 1, 2 and 3. Sorting
the matrix plot by this variable revealed its relation to how customers entered the
shop: all orders in model 2 and the absolute majority in model 3 are made through
a partner (enty = 1). At the same time, model 1 corresponds to the entries through
the shop. This means these two variables, model and entry, contain almost the same
information.

The simultaneous inspection of a few other variables sheds light on the delivery type
and entry attributes. The type “collection” (deliverytype = 1) amounts to approxi-

mately a fifth of all orders and is associated with no shipping costs and cash payments.
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Plausibly, dispatched orders are paid on invoice or via a transfer. Additionally, a large
proportion of collected orders occurred though a partner. Sorting the matrix plot
by advertising code also points out that its presence almost never co-occurs with an
order through a partner. Possibly, a partner company offers pick up points for orders
and allows cash payments, but is not much integrated in promotional activities of the
media dealer.

The presence of many repetitive values and the shape of distributions of the nu-
meric attributes make correlation analysis and PCA not fully reliable. Nevertheless,
the strongest positive correlation is between the number of items and weight (Pearson
correlation is 0.776 and Spearman is 0.664, see Figure 24), which is plausible consid-
ering the products’ nature. Highly correlated attributes are likely to encode similar
information in relation to the response variable (Myatt and Johnson 2014, 143). This
may motivate end users to exclude one of the attributes that have a strong relationship
with each other. However, the strength of the association present in the dataset was
not considered high enough to justify the exclusion of any variables.

Overall, sample Spearman rank correlation coefficients are quite similar to the product-
moment correlations (compare Figures 13a and 13b). A rather high difference between
two measures is observed for the pair of shipment weight and the number of down-
loaded audio books. The Spearman coefficient is —0.557 while Pearson one is —0.284.
Such a difference may indicate curvature, extreme values or other structures in the
data. Moreover, the number of downloaded audio books is negatively correlated with
all the other numeric attributes. Intuitively, this type of media content is quite distinct

and negative correlation is justifiable.

numberitems numberitems

. weight weight
case case
w0 . w0
wl . wl

w2 w2
w9 w9

.vv5

w5

(a) Spearman (b) Pearson

Figure 13: Correlation plots of attributes excluding nearly constant predictors

Weak correlations pose a challenge for linear dimensionality reduction. There is little

variability in the numeric variable and, intuitively, PCA is not a helpful technique for
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the data. All numeric attributes that remain, numberitems, weight, w0, wl, w2,
w5, w9, and case correspond to a purchase itself and PCA offers a way to look at
their correlation structure. The eigenvalues drop to approximately 1 after the first
component. The scree plot criterion suggests only one component (Figure 26), which

explains 35% of the variance.

4.3 Understanding groups

The company works to make predictions on the customer level and uncovering groups
of customers without relation to their reorder decision has a potential to increase the
media dealer’s understanding of their clients. Each row of the data represents first
orders and, therefore, each observation corresponds to a customer. The Clustering
tab offers four data-driven grouping of individuals, which are, however, bound by the
implemented measures of proximity. Having no prior knowledge, Step 1 for choosing a
number of clusters was performed in every clustering method. The maximum number
of groups is limited by the capacity to interpret clusters and was set to eight.

Internal validity criterion available for K-means resulted in diverse recommenda-
tions. Silhouette width criteria and Calinski-Harabasz pseudo F'-statistic suggest two
clusters, Davies-Bouldin’s index — one, and the gap statistic — five. The average sil-
houette width exceeds 0.5 for two- and five-cluster solutions which corresponds to
reasonable structure (Kaufman and Rousseeuw 1990, 88). The enclosed CD contains
reports for K-means with both two and five clusters.

The two-cluster solution split all customers approximately in half. The second group
is characterized by higher value of goods and larger orders in general (attribute num-
beritems) and also in all subcategories but downloadable audiobooks, where higher
values for the first cluster are observed. This suggests a distinction of customers tastes
for physical items and downloadable content. The five-cluster solution clearly divides
customers into groups corresponding to five categories of values of goods of approxi-
mately equal size. The first cluster is characterized by the highers value of case and
overall tend to have purchased larger number of items. On the contrary, the second
cluster is described by the lowest values of goods and higher number of downloaded
audiobook (third quartile has a value of one in comparison to zero in other clusters).

Both internal criterion for CLARA method suggest six clusters with relatively high
value of the silhouette coefficient (interpreted as strong structure by Kaufman and
Rousseeuw, 1990). The CLARA method uses Manhattan distance, which is different
from K-means, but overall the solutions of these two clustering methods based on the
numeric variables are similar. A division by value of goods is also detected by the
CLARA method. The two smallest clusters (four and five) correspond to the lowest
value and are different in the kind of media content purchased, physical books and

downloadable items. The last group (about 12%) is characterized by purchases of high
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quantities of bound, paperback and school books and the highest values of goods. The
media dealer may be interested in attempting to increase its share of such customers,
due to this potential to generate high revenues.

The average silhouette width criterion suggests two PAM clusters with three clusters
also having a similar value of this statistic. However, in absolute value they are quite
poor, around 0.3, which corresponds to a weak structure (Kaufman and Rousseeuw,
1990). The two cluster solution divided the sample in roughly equal groups. According
to this clustering technique, customers most substantially differ in regard to their entry:
shop or partner (which also implies differences in model, because these attributes
contain similar information; see Section 4.2).

A dendrogram for the single linkage (a plot on the right in Figure 14) indicates
that a so called chaining problem is apparent for the dataset (as expressed by Gower
dissimilarities). Average linkage indicates small groups of observations (right part of
the dendrogram for the average linkage) that were merged with others at a rather
late stage of the agglomeration process. These customers seem to constitute a distinct
group and demonstrate that clustering has detection of unusual observations as its by-
product. The complete linkage seems to have relatively large decreases in dissimilarity
in the first few splits. The silhouette width criterion suggests three clusters for this
agglomeration method, which are also clearly seen from the dendrogram. As a result,
Step 2 of the hierarchical clustering was performed with complete linkage and three
clusters.

A description of the clusters in terms of individual variables demonstrates that cat-
egorical variables seem to differentiate clusters resulting from the complete linkage
better than the numeric ones. The smallest third group (around 20%) consists of
customers who collected their orders and paid for them in cash as this delivery type
and payment method are not present in other clusters. At the same time, both values
of the entry attribute (shop and partner) characterize the third cluster. An inspec-
tion of the numeric attributes demonstrates that customers from this group bought no
downloadable audiobooks, which is probably connected to the delivery method. The
first (around a quarter of customers) and the second clusters (over half) are similar in
terms of payment methods used, shipping costs, and use of a voucher. However, they
are different in entry: the first cluster is made up almost exclusively of customers who
entered the shop though a partner business while the second is made up of customers
who entered through the shop itself. As for buying behavior in terms of orders, on
average the customers from the first cluster purchased more items than those of other
groups. Overall, the hierarchical clustering with the complete linkage separated groups
of customers by particular characteristics. However, the reorder pattern is similar in
all groups and, consequently, this clustering does not add much to the predictability

of repeat purchases.
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Figure 14: Dendrograms and average silhouette width plots for hierarchical clustering
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4.4 Building classification models

An exploration of the relationships between variables showed that the dataset con-
tains some predictive power, but important influences are probably not observed. In
other words, a classifier that includes only the features that are present in the dataset
cannot account for all factors that influence the decision of a person to make a second
order. The task of accurate human behavior prediction based only on a customer’s
first order at an online store is probably unsolvable.

Nevertheless, a classifier can be useful even if a model is not particularly strong in
absolute terms. A business metric developed by a domain expert makes measuring
usefulness more straightforward. One possible approach is net revenue gain, after a
cost of the model is accounted for. Furthermore, a cost-benefit analysis raises the
question of whether further investment in improving a model is worthwhile. The
competition documentation includes a cost matrix (Figure 15 shows it reflected in the
tool). A voucher gives a discount of €5, therefore sending it to customers that would
repurchase without it results in a loss. The media dealer assumes that 10% of those that
would not otherwise reorder, would complete a €20 purchase on average. Accounting
for the discount, this results in a €1.5 gain. The cost matrix allows an analysis
to establish a base performance in the whole dataset of 26,377-1.5+6,051-(—5) =
9,310.5. Consequently, a predictive model resulting in a higher net revenue gain can
be considered useful.

Decisions about positive class, resampling and the use of original, down- or upsam-
pled datasets are made before any model is trained. The formulation of the cost matrix
suggests keeping target90 = 1 as a positive class. Positive predictions do not result
in sending out a voucher and therefore, zeros are assigned to TP and FP. The FN
prediction results in a loss, —5, and 1.5 is set for TN, see Figure 15. The monetary
evaluation also encourages the resampling method, 5 or 10-fold cross-validation, be-
cause the holdout approach would contain only a fraction of the data as a test set and
no direct comparison with base performance in terms of revenue is possible. For the

first iteration, a 10-fold cross validation and the original dataset are used.
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The analysis of attributes decreased the Enable cost/benefit analysis

number of fields due to missing Values, a hlgh True positive net benefit False negative cost

number of factor levels, near-zero variance 0 : 5 3
or format (dates). The variable importance False positive cost True negative net benefit
ranking allowed to concentrate on attributes 0 g 15 g

with the strongest predictive power, but no
variables with low ROC AUC were excluded

solely for this reason. This was done inten- Figure 15: Cost-value matrix

Apply cost/benefit matrix

tionally, because the variable importance rep-

resents only a univariate metric. Filtering out the attributes based on the strength of
relation to the target variable does not let learners explore the joint effect of variables.
If one choose best predictors, e.g. by univariate variable importance, this implies that
data indirectly has seen the target and therefor, the estimation of performance is not
honest. Unsupervised screening and consequent exclusion of attributes does not have
this effect, but supervised screening gives an advantage to the chosen variables (Hastie
et al. 2009, 245-247).

All learners outperformed the base performance in terms of net revenue gain of
€9,310.5. k-NN and a decision tree offered only a slight increase and, therefore, were
not considered for further comparison. Logistic regression and random forest achieved
a moderate increase of net revenue by 18% and 8% respectively. The maximum rev-
enue gains are calculated by finding the maximum of total value as a function of a
probability threshold, depicted in Figure 16a. The ROC curve of logistic regression is
also uniformly above the curve for the random forest (Figure 16b). The chosen cut-
offs for two learners are equal to 0.22, i.e. instances with predicted probability above
this value are predicted to reorder. Figure 17 demonstrates that logistic regression
performed better than a random forest in a variety of metrics.

In absolute terms, the performance of classifiers is rather poor. The AUC of the
logistic regression is 0.6, which is not much higher than random. The value of Cohen’s
K, 0.11, also does not qualify for a reasonable agreement between actual and predicted
outcomes. A visualization of predicted probabilities for different true outcomes, re-
order or not, confirm strong overlap of their kernel density estimators (Figure 18).

Nevertheless, the net revenue increase indicate classifiers’ usefulness.

4.5 Conclusions and further analysis

The completed analysis demonstrated that predictive models have a potential to
increase revenue. Overall no model can predict probabilities of a second order well.
At the same time, in terms of change in revenue, the learners achieved higher values
than the base amount of €9,310.5. The best result, an 18% increase, is achieved by

logistic regression.
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learners sion

Clustering methods suggested different numbers of groups and various distinguish-
ing characteristics, e.g. the value of goods or entry into the shop. The choice of the
number of clusters was guided by internal validity criterion and the results interpreted
on the basis of included variables. An evaluation of the results by domain experts and
experimentation with distance measures has the potential to discover even more dis-
tinctive groups. The initial analysis demonstrated interpretable results and provided
the media dealer with insights and ideas about their customer base.

In the next iteration, different approaches to strengthen the “signal”, and conse-
quently increase revenues, can be explored. The first approach would be collaboration

with domain expert (e.g. from the media dealer) in order to engineer new features.
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Hypotheses about the imputation of missing values require validation from the media
dealer. The second approach would involve cleaning the dataset (e.g. dates from year
4746), imputation of missing values and univariate transformations (e.g. aggregation
of categories of nominal variables, binning of numeric features). The third approach
could be to build derive variable as a function of one or multiple attributes.

The high number of levels in nominal variables poses a challenge for making general-
izations about their relationship with the response variable. Therefore, reclassification
of such variables has the potential to increase their predictive power. The first ap-
proach uses domain knowledge and business logic. To illustrate, street-level addresses
can be aggregated into larger geographical ares, e.g. cities, however, this may remove
some insightful dependencies. Sometimes location is believed to represent a unique
characteristic, having its own predictive power. For example, 50 US states can be
transformed into an ordinal variable, describing economic level (Larose and Larose
2015, 42-43).

An described above, the location information from invoice and delivery postal codes
can be aggregated to represent the German federal states. A challenge of high number
of categories in advertisingdatacode may be resolved by turning it into a binary
variable: advertising code present or absent.

The second way of reclassifying categories relies directly on the target variable: levels
with similar relation to the response variable can be grouped. Section 4.3 describes
the fact that the rate of reorder was more or less the same for all electronic payments.
Therefore, it may be useful to combine payment on invoice, account transfers, and
credit transfers into one class.

As mentioned above, many numeric attributes describing the different kinds of items
purchased had been removed from the initial analysis due to their near-zero variance.
However, the derivation of new variables may allow them to be incorporated. A few
ideas include aggregation (e.g. group physical items and those related to ebooks,
downloads), conversion into binary variables (whether this item type was ordered),
building a proportion of total number of items, etc. Turning remi and cancel into
binary variables would not solve the issue of high percentage of repetitive values.
After the meaning of these variables is verified with the data providers, they may be
incorporated into a new variable, characterizing the total number of items ordered
(totalnumberitems = numberitems - remi - cancel).

Time information represented by dates is a rich source for building new features. In
particular, time differences is a natural way to combine information from attributes.
A reorder means that a customer returned to the website. A time difference between
creating an account and the first order may turn out to be a proxy for a return
behavior. If this intuition is correct, the customers who made a pause between making

an account and their first order may be more likely to reorder. Nevertheless, the
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same behavior may have been due to problems with payment and in such a case
the lapse of time between account creation and purchase would be an indication of
a negative experience. Leaving aside these speculations, building a numeric variable
for the number of days between account registration and first order is a way to use
time information. Another idea would be to calculate the discrepancy between the
promised and real delivery dates. This can be done with or without the imputation
of deliverydatereal described above, but definitely after substitution of extreme
values in deliverydatepromissed. Furthermore, the choice of the merchant to track
reorders only within 90 days is arbitrary. It would likely be productive to lengthen the
timeframe for logging reorders, while also incorporating more data about the customers

and their purchasing habits.

5 Conclusion

Solving any problem with the help of data is an iterative process. The developed
tool offers a quick way to make the first iteration for predictive modeling. The current
release of the software provides a comprehensive set of core functionalities allowing
users to carry out an initial EDA. The software gives analysts a first glimpse of the
predictive power of the data, fluidly, without spending excessive effort to execute
repetitive programming. Designed for classification tasks, the tool grants the analyst
the ability to assess data’s suitability for outcome prediction and to concentrate on
examining the strongest predictors.

End users access the app through a web-based graphical interface, organized as a
series of tabs, each dedicated to a specific aspect of analysis. The software deliverables
empower decision makers by providing them with a variety of visual and statistical
representations of the data. The results of the analysis are downloadable as .html
reports enriched by users comments and as an extended dataset, e.g. with added
cluster membership.

The software includes panels dedicated to missing values, variable importance, nu-
meric and categorical variables, clustering, and predictive modeling. Both the author’s
research and the suggestions of the members of the Data Science team at SHS VIVEON
AG contributed to the choice of features for the app. Some rather simple techniques
were elected to be included in the app so that users could run the data through these
functions in order to gain a better understanding of the types of information they are
working with, and to perceive the complexity of the problems they are trying to solve.

User research in form of focus groups and usability tests involved bringing end users
into the development process. Colleagues’ feedback provided the basis for the im-
provement of the app, allowing it to be tailored specifically to meet their needs. This
feedback confirmed that the interactivity, speed, and ease of use were advantageous

for analysts when they used the tool.
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The implementation in R enabled flexible development and ensured the possibility
of modification of the tool by the members of the Data Science team in the future.
Numerous packages mentioned throughout this thesis provided access to a wide variety
of descriptive statistics, clustering, and predictive modeling. The tool was turned into
an R package and installed on the internal server of the company during its final stage
of the project.

Future development of the tool may include both functional and performance im-
provements, for example, the extension of functionality to quantitative response vari-
able. The inclusion of spacial aspect of data (if present) may also be a desired feature.
Performance improvements may include search for R functions that are optimized for
large datasets and improving memory-efficiency of the programming code. Higher cal-
culation speed improves user’s experience and may encourage the analysts to follow

the leads in the data without computational limitations.

Appendices

A Software screenshots
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B List of files on the enclosed CD

Software outputs
Extended dataset (with PCA and clustering results)
dmc2010 train.csv-data-2017-02-19.csv
Metadata
dmc2010 train.csv-metadata-2017-02-19.csv
Report of the Import summary tab
dmc2010__train.csv-01-import-summary-2017-02-19.html
Report of the Missing values tab (matrix plot sorted by deliverydatereal)
dmc2010_ train.csv-02-missing-values-2017-02-19_ 1.html
Report of the Missing values tab (matrix plot sorted by paymenttype)
dmc2010__train.csv-02-missing-values-2017-02-19_ 2.html
Report of the Variable importance tab
dmc2010_train.csv-03-variable-importance-2017-02-19.html
Report of the Numeric variables > Preprocessing tab
dmc2010__train.csv-04-preprocessing-2017-02-19.html
Report of the Numeric variables > Correlation plots tab
dmc2010 _ train.csv-05-correlation-plots-2017-02-19.html
Report of the Numeric variables > PCA tab
dmc2010 train.csv-06-PCA-2017-02-19.html
Report of the Numeric variables > Plots tab
dmc2010_ train.csv-07-numeric-plots-2017-02-19.html
Report of the Categorical variables > Plots tab
dmc2010_ train.csv-08-catergorical-plots-2017-02-19.html
Report of the Clustering > K-means tab (two-cluster solution)
dmc2010__train.csv-09-kmeans-clustering-2017-02-19 2. html
Report of the Clustering > K-means tab (five-cluster solution)
dmc2010__train.csv-09-kmeans-clustering-2017-02-19_5.html
Report of the Clustering > CLARA tab
dmc2010_ train.csv-10-clara-clustering-2017-02-19.html
Report of the Clustering > PAM tab
dmc2010_train.csv-11-pam-clustering-2017-02-19.html
Report of the Clustering > Hierarchical tab
dmc2010_ train.csv-12-hierarchical-clustering-2017-02-19.html
Report of the Modeling > Model 1 tab (Logistic regression)
dmec2010 train.csv-13-modell1-2017-02-19.html
Report of the Modeling > Model 2 tab (Random forest)
dmc2010 train.csv-14-model2-2017-02-19.html
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Report of the Modeling > Model comparison tab

dmc2010_ train.csv-15-model-comparison-2017-02-19.html
In-app documentation

DDP-documentation-2017-02-19.html

Otbher files

Dataset by Data Mining Cup (2010)
dmc2010 train.csv

Competition task by Data Mining Cup (2010)
dmc2010_ task.pdf

Features description by Data Mining Cup (2010)
dmc2010_features.pdf
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