
Project Proposal: Generative Adversarial Networks

Justin Dong
Emily Reed

October 2019

1 Introduction

An artificial neural network is a composition of nonlinear functions trained on a set of
data whose output corresponds to the approximation of a function or a classification
pattern for the given data. In his 1989 paper Approximations by Superpositions of a
Sigmoidal Function, Cybenko proved that a function of the given form,

f(x) =
n∑
j=1

w
(2)
j σ(w

(1)
j x+ b

(1)
j ) (1)

is capable of approximating any continuous function on Rn under certain weak condi-
tions on σ, where σ : R→ R is a continuous univariate function and w(1), w(2), b(1) ∈
Rn [3]. Note that this function describes a one-layer neural network. We can write a
multilayer feedforward network generally as follows with the goal of determining the
parameters w and b.

x1 = x

x` = σ(w(1)x`−1 + b(1)), ` = 1, ..., L− 1

xL = wL ∗ xL−1 + bL

In addition, Cybenko proved a similar result for binary classifiers. This universal
approximation property has been the key in the success of fields such as natural
language processing [6], speech recognition [5], and computer vision [7] among others.
A more recent application of neural networks is in the creation of generative-type
models. In particular, generative adversarial networks (GANs) allow us to generate
samples with the same statistics as a given training set. First introduced by Ian
Goodfellow et al. in 2014, the authors used GANs to generate handwritten digits and
realistic human faces [4]. Recently, GANs have been used for a variety of applications
such as deep fakes. These deep fakes generate faced-swapped fake videos and images
by generating the same statistics of the given real videos and images [1].

1



Our goal for the semester will be to understand and implement a basic GAN as
described in [4] in order to produce realistic handwritten digits. Time-permitting,
we will also implement Wasserstein GANs [2], which utilize a different metric when
training the networks which has shown improved results over traditional GANs.

2 Background

In this section, we introduce generative adversarial networks, or GANs. The frame-
work for a GAN consists of two neural networks, a generative model G and a discrim-
inative model D. The generative model is described by the mapping G(z; θg), where
G is a differentiable function with the associated parameters θg. On the other hand,
the discriminative model is described by the mapping D(x; θd) where D(x) represents
the likelihood between 0 and 1 that x came from a prespecified data distribution pdata,
with the associated parameters θd.

The goal of the generator is to map samples from a prior distribution pz (generally
taken to be a Gaussian or uniform distribution) to an approximation of the target dis-
tribution pdata while minimizing the expected value of log(1−D(G(z))) with respect
to the prior distribution. This quantity is minimized when the discriminator D(G(z))
outputs a likelihood close to 1, meaning that the generator is able to produce a data
sample to fool the discriminator. Contrarily, the goal of the discriminator is produce
a number signifying the likelihood that x came from pdata while training to maximize
the expected values of log(D(x)) and log(1−D(G(z))). Note that log(D(x)) is maxi-
mized when D(x) is close to 1, indicating that the discriminator can correctly identify
data from the target data distribution. Additionally, the value log(1 − D(G(z))) is
maximized when D(G(z)) is close to 0, implying that the discriminator can correctly
determine that the generated output from G is fake.

These two models are trained against each other in a two-player minimax game
in the following form which we will call the objective function V (D,G),

V (D,G) = Ex∼pdata(x)[logD(x; θd)] + Ez∼pz(z)[log(1−D(G(z; θg); θd)] (2)

where pz is a pre-specified prior distribution on which the generator acts and pdata
is the distribution from which our training data has been generated [4]. In practice,
GANs of this form are difficult to train due to the fact that optimizing D within the
inner loop of training is computationally impractical and can result in overfitting.
This leads to the outline of an algorithm for implementing this minimax game as
outlined in [4] below. Note that we complete k steps of training the discriminator
for every one step of the generator. Also, in order to approximate the expected
values given in the objective function, Monte Carlo approximation with importance
sampling is used at each iteration.

2



Algorithm 1: Minibatch stochastic gradient descent training of generative
adversarial nets. The hyperparameter k describes the number of steps to
apply to the gradient.

1 for number of training iterations do
2 for k steps do

• Sample minibatch of m noise examples {z(1), ..., z(m)} from the noise prior
distribution pg(z)

• Sample minibatch of m examples {x(1), ..., x(m)} from the data generating
distribution pdata(x)

• Update the discriminator by ascending its stochastic gradient:

∇θd
1

m

m∑
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
(3)

3 end

• Sample minibatch of m noise samples {z(1), ..., z(m)} from the noise prior
distribution pg(z).

• Update the generator by descending its stochastic gradient:

∇θd
1

m

m∑
i=1

log(1−D(G(z(i)))) (4)

4 end

3 Methodology

We begin the semester by coding a single layer neural network for approximating 1D
functions without TensorFlow in order to fully understand the underlying mathemat-
ics fundamental to these neural networks. Next, we plan to implement a convolutional
neural network in TensorFlow for image classification. Finally, we plan to implement
a GAN using convolutional neural networks as the structure for our two adversarial
models in order to generate realistic handwritten digits. In order to implement the
GAN, we will first start with implementing the discriminator model and train it to
distinguish between the samples from the data distribution and the prior distribution.
Later, we will add the generator model. Finally, time-permitting we would like to
implement a Wasserstein GAN (WGAN) for the same problem.

3



References

[1] faceswap-gan, GitHub repository, (2019). https://github.com/shaoanlu/

faceswap-GAN.

[2] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein gan, arXiv preprint
arXiv:1701.07875, (2017).

[3] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathe-
matics of control, signals and systems, 2 (1989), pp. 303–314.

[4] e. a. Goodfellow, Ian, Generative adversarial networks, Advances in Neural
Information Processing Systems (NIPS), (2014).

[5] e. a. Graves, Alex, Speech recognition with deep recurrent neural networks,
International Conference on Acoustics, Speech and Signal Processing, (2013).

[6] M. C. Hirschberg, Julia, Advances in natural language processing, Science,
349 (2015), pp. 261–266.

[7] e. a. Krizhevsky, Alex, Imagenet classification with deep convolutional neural
networks, Advances in Neural Information Processing Systems 25 (NIPS), (2012).

4


