
CS301 SP2007 - Assignment 2

Network Vulnerability Analysis

Daniel Tauritz, Ph.D.
Robert Buehler

January 29, 2007

Synopsis

The goal of this assignment is for you to become familiarized with (I) implementing an Evolutionary Algo-
rithm (EA) with binary representation & operators, (II) conducting scientific experiments involving EAs,
(III) statistically analyzing experimental results from stochastic algorithms, and (IV) writing proper techni-
cal reports. The problem that you will be solving belongs to the domain of Critical Infrastructure Protection:
Network Vulnerability Assessment modeled as a Set Cover problem. The deliverables of this assignment are
(1) your EA implementation with separate user manual in .ZIP or tar ball format and (2) accompanying
report in PDF or Word format. The user manual should specify how to compile, execute and configure
your EA. This is an individual assignment. You must implement your EA from scratch in a programming
language of your choice. You are free to use libraries/toolboxes/etc, except EA specific ones such as Matlab’s
EA toolbox, C++/Java EA libraries, etc. Your report may be created by filling in one of the two templates
provided or any way which is consistent with the provided templates, and should be written and typeset in a
professional manner (LATEX is recommended but not required). The deadline for submitting via Blackboard
your (1) implementation with user manual to be graded is Sunday 4 February 2007, and (2) report to be
graded is Sunday 11 February 2007.

Problem

One of many ways to assess network vulnerability is to determine its robustness in the face of an attack by
computing the number of routers that need to be “captured” in order to disconnect all the end hosts within
a certain logical region. This can be more formally stated as follows: let N be the set of all network nodes,
R the set of all routers, H the set of all end hosts, and N = R ∪ H (a node is either a router or an end
host, not both simultaneously), then we can define the set P of all paths over network nodes ending in an
end host; each path is a sequence y of nodes from R that ends in a node from H; furthermore, each node in
N appears in at least one path. The question is now: what is the smallest subset S of R which contains at
least one node from each path in P? This is equivalent to the classic Set Cover problem which can be stated
as follows: given a universal set U and subsets X1, X2, . . . , Xm of U , find the minimum cardinality subset S
of X1, X2, . . . , Xm such that ∪Y ∈SY = U .

1



Implementation

Implement an EA solution for the Network Vulnerability Assessment employing a binary representation and
appropriate binary operators. A number of network scenarios will be provided in the form of data files to
experiment with. Here is an example data file:

1 4 5 9 10 12
2 12 8 11 6 7
3 7 4 6

Each row in the data file represents a single path. The first element of each row indicates an end host, with
end hosts numbered in ascending order from 1 till the number of end hosts. The other row elements indicate
routers, numbered arbitrarily but always higher than the number of end hosts. An optimal solution for this
example scenario is the set (4,6). Another optimal solution is (7,12).

Instead of hard coding all the EA parameters you are to employ a separate configuration file (this facil-
itates experimentation with different parameter values). These EA parameters include, but are not limited
to, parameters for initialization, parent selection, reproduction, competition and termination. Furthermore,
your configuration file should also include experiment parameters including, but not limited to, number of
runs, file name of the data file for a network scenario (i.e., a list of paths), and logging parameters.

The results of running your EA on this problem will be stored in a log file. In addition to the results,
the log file needs to also contain all the information required to duplicate that particular experiment! Result
logging for an EA is typically of the following form: every K evaluations you log the average population
fitness and the highest fitness. So if the total number of evals is 5000 and you log every 100 evals, your log
file will contain 5000/100=50 result entries. This will allow you to plot your results. Further you need to
average your experimental results over at least 30 runs in order to be able to apply a statistical test of the
difference of two means such as the t-test. It is up to you whether you want to store the results for all the
different runs or only the averages. In the case of the latter, dont forget to log the standard deviations as
well. You also need to keep track of the fittest individual ever encountered and save the solution encoded in
it to the end of the log file.

Report

Your report will completely state the problem you are attempting to solve (which is already conveniently
provided for you in the report templates), provide your experimental setup in sufficient detail to allow
exact duplication of your experiments (i.e., producing the exact same results) as well as justify your choice
of EA design and strategy parameters, list your results in both tabular and graphical formats to compare
convergence quality and convergence speed both in terms of the population fitness average and the population
fitness max versus number of evaluations. Describe the statistical analysis (employ f-test and two-tailed t-test)
of your results, showing which parameter sets provide the best results and explaining the rationale. Conclude
your report by stating your most important findings in the conclusion section. Provide a bibliography with
your citation details.

2



Grading

The maximum number of points you can get is 100. Note: This is an individual assignment! Plagiarism will
not be tolerated. The point distribution is as follows:

Implementation, configuration file and parsing 5
Implementation: population initialization 2
Implementation: fitness evaluation 3
Implementation: selection algorithms 10
Implementation: reproduction operators 5
Implementation: termination conditions 5
Implementation: log output and file creation 5
Implementation: good programming practices 5
Implementation: code reliability 5
Implementation: user manual 5
Implementation total 50
Report: spelling 1
Report: grammar 2
Report: clarity 7
Report: typesetting 5
Report: experimental setup 10
Report: results 5
Report: discussion and statistical analysis 10 and 5
Report: conclusion 3
Report: bibliograph 2
Report total 50

Late penalty

The penalty for late submission is a 5 point deduction for every 24 hour period. So 1 hour late and 23 hours
late both result in a 5 point deduction. 25 hours late results in a 10 point deduction, etc.

3


