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Introduction
The antique origins of Algebraic Geometry lie in the study of solution sets of

polynomial equations, in which complex, symplectic, and arithmetic geometry
are bound tightly together. Many of the most spectacular recent developments
in the subject have occurred through the consideration of these aspects in tan-
dem: for example, the duality between symplectic and complex geometry that
is mirror symmetry, and the Beilinson conjectures [1] on the transcendental
invariants of generalized algebraic cycles defined over number fields. Beilin-
son [2] (and independently Bloch) also made conjectures on the structure of
algebraic cycle groups over C; here the arithmetic content only becomes ap-
parent when one looks at recent efforts to construct the filtration they predict.
Likewise, the arithmetic side to the Hodge Conjecture (cf. [3]) is revealed by
its bifurcation into absoluteness of Hodge cycles (proved for abelian varieties
by Deligne [4]) and validity of the (slightly weakened) conjecture for varieties
over Q̄, emphasized in recent work of Voisin [5].

The invariants appearing in these longstanding and celebrated problems are
formalized Hodge-theoretically — that is, in terms of integrals of algebraic dif-
ferentials on the variety called periods. Roughly speaking, the conjectures can
be thought of as predicting the existence of certain algebraic cycles explaining
what algebraic structure these otherwise transcendental periods do have. But
cycles are more ubiquitous (and useful!) than this formulation might suggest,
manifesting themselves through generalized normal functions in diverse con-
texts, from number theory (modular forms [6] and higher Green’s functions [7];
Apéry numbers [8]) to mathematical physics (asymptotics of local instanton
numbers [9]; prediction of open Gromov-Witten invariants [10]; Feynman inte-
grals [11, 12]; topological string theory [13]) and differential equations. What
is more, the discovery of a “motivating cycle” can be the key to proving prop-
erties of such functions and generating more examples. This is a first major
theme of my research.

The periods described above are typically packaged in a linear-algebraic ob-
ject called a Hodge structure (or mixed Hodge structure), and this is used to
do far more than predict the existence of cycles. For instance, they can be used
to study degeneration of algebraic varieties in one or more variables via limit-
ing mixed Hodge structures. A more representation-theoretic approach to the
algebraic structure of periods is obtained by considering the (linear-algebraic)
symmetry groups of Hodge structures. These Mumford-Tate groups and their
classification [14] lead (particularly in higher weight) to strong constraints
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on degeneration types [15] and to the prediction of exotic families of alge-
braic (e.g. Calabi-Yau) varieties [16]. More importantly, the study of related
homogeneous classifying spaces for Hodge structures turns out to have signif-
icant applications to the infinite-dimensional representation theory of real Lie
groups.

In what follows, I will elaborate on the three major themes of cycles, degen-
erations, and classifying spaces from the standpoint of Hodge theory: first as
they have appeared in my research to date; and then briefly as to how I plan
to develop them in the future.

Summary of Research
Background on invariants of algebraic cycles. Algebraic cycles on a va-
riety are simply formal sums of irreducible subvarieties of some fixed codi-
mension; they are considered modulo rational equivalence (divisors of rational
functions) in the cycle groups (known as Chow groups). Their study began
historically with divisors (codimension-1 cycles) on algebraic curves, and the
famous Bezout, Riemann-Roch and Abel-Jacobi theorems. The last of these
says that the degree-0 divisors (modulo divisors of functions) are parametrized
by an abelian variety, the Jacobian. When divisor and curve vary together in
an algebraic family, one gets certain holomorphic sections of the corresponding
family of Jacobians, termed normal functions by Poincaré [17]. These were
subsequently used by Lefschetz to prove his (1, 1) theorem [18] on fundamental
classes of divisors on smooth projective varieties, which the Hodge Conjecture
attempts to extend to cycles of codimension >1.

In the late 60’s, Griffiths [19] introduced Abel-Jacobi (AJ) invariants with
values in “intermediate Jacobians” for such cycles, together with an accompa-
nying generalization of normal functions. The intuition built up for higher-
codimension cycles by analogy with divisors was quickly demolished as one
learned more about these AJ maps. Their target was no longer algebraic;
they failed to be surjective, meaning that Lefschetz’s proof would not general-
ize (to prove Hodge); and they failed spectacularly (by a theorem of Mumford
[20]) to be injective, meaning that they could not detect a huge swath of cycle
classes.

New Hodge-theoretic invariants. To remedy this situation and detect the
nontrivial cycles in ker(AJ), consider their field of definition: cycles defined
a priori over C have, in fact, a “minimal” field of definition finitely generated
over Q̄. Exchanging this field extension for additional geometry by taking the
“Q̄-spread”, one can then compute certain graded pieces of AJ invariants of
the spread-out cycle. Useful in this connection is Arapura’s result that the
Leray filtration is motivic [21].

Drawing on (and bridging a significant technical gap between) work of
Griffiths-Green [22] and Lewis [23], in [24], [25], and [26] I gave explicit geo-
metric and Hodge-theoretic descriptions of higher Abel-Jacobi maps defined
in this way on the kernel of AJ , or more precisely, on the graded pieces of
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Lewis’s candidate Bloch-Beilinson filtration (BBF). These maps are related
nontrivially to differential characters and transcendence theory in [24], iter-
ated integrals in [26], and a new candidate BBF using kernels of higher normal
functions in [27]. Moreover, as a simple consequence of my result on exterior
products of cycles [25], one gets a class of 0-dimensional cycles on products
of smooth curves of positive genera not previously known to be rationally in-
equivalent to zero, with nonzero image under a higher AJ map (improving a
result of [28]).

Regulators on higher Chow complexes. The generalized cycle groups
alluded to above in connection with [1] are called the algebraic K-groups or
higher Chow groups of a variety X. Their elements may be represented by
“relative” algebraic cycles on X × (Ga, {0, 1})n, or by homology groups of
the higher Chow complex [29]. These groups are equipped with cycle-class
maps into (real resp. integral) Deligne cohomology called (real resp. integral)
regulators; the integral regulators, which carry more information, are also
known as Abel-Jacobi (AJ) maps. The real regulators are the main ingredient
in Beilinson’s conjectures, and a general formula for these had been derived
by Goncharov [30]. His formula was not the end of the story, however, since
the AJ map had potential applications to polylogarithms, height pairings,
and detecting torsion cycles; and (because it varies holomorphically) also to
differential equations and physics.

In [31] and [32] I computed the rational AJ map directly for the relative
algebraic cycles, and used this (together with techniques from commutative
algebra and Hodge theory) to prove its vanishing on all higher cycles arising
from Milnor K-theory on sufficiently general complete intersection varieties.
(The vanishing result is related to Nori’s work on Hodge-theoretic connectiv-
ity [33]; related results for families of abelian varieties of Hodge type follow
from recent work with Keast [34].) This rational AJ computation was then
developed into a morphism of complexes called the KLM map with Lewis and
Müller-Stach in [35], based on a difficult moving lemma [27]. Our work (and
my thesis) was cited by Levine in the K-theory handbook [36]. One basic
application [38] is to construct explicit higher Chow cycles with Hodge real-
ization exactly the extension of Q(0) by Q(n) with period Lin(ζ) (for any n
and any root of unity ζ); more will be described below.

Subsequently the KLM map has been extended in various ways. Using geo-
metric measure theory, Lewis and I reworked it into a map of double complexes
computing AJ on motivic cohomology of many singular algebraic varieties [27];
this was used crucially in my work with Doran [9] and Griffiths-Green [39]
described below. A version for simplicial complexes was given in [40] and em-
ployed to give (with my undergraduate student P. Lopatto) a simple geometric
proof of the Kummer-Spence functional equation for the trilogarithm, and to
construct a rational regulator directly on the complex computing homology of
the general linear group. And at last, forthcoming work of my student Muxi Li
will yield an integral version of the KLM map, putting O. Petras’s computa-
tions of integral generators for Kind

3 of number fields [37], as well as the many
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expected consequences of [38] for torsion in integral motivic cohomology, on
solid ground.

Just as for algebraic cycles, one needs higher regulators to capture the in-
formation missed by AJ , and these were introduced and used to detect new
higher Chow cycles in [27], improving in particular a result of Collino and
Fakhruddin [41] about indecomposable higher cycles on Jacobians of curves.

Families of algebraic varieties. A C∞ form on a smooth complex projec-
tive variety (or more generally a Kähler manifold) decomposes into a sum of
(p, q) components according to the number of dz’s and dz̄’s. The correspond-
ing Hodge decomposition of the complex cohomology groups, records complex
structure moduli of the variety, generalizing Riemann’s period matrices of
algebraic curves. Going further, the variation of Hodge structure (VHS) as-
sociated to a family of varieties (with smooth generic fiber), gives a powerful
tool for studying their local and global behavior. For instance, under what
circumstances can one have a non-isotrivial family of varieties of a certain
type with no singular fibers? For elliptic curves Kodaira [42] showed that this
is impossible; whereas Atiyah [43] gave a positive example in the case of K3
surfaces.

Griffiths, Green and I considered this problem for Calabi-Yau (CY) three-
folds in [44], motivated by the role of CY families in string theory and the
important work [45]. Using the Grothendieck-Riemann-Roch theorem and
curvature computations for canonically extended Hodge bundles, we proved
that (over a curve) there are no such families if the Euler characteristic of
the CY’s in question is at least −24, and derived constraints on the numbers
and types of singular fibers. Furthermore, fundamental work of Schmid [46]
and Steenbrink [47] had showed that one could associate a limit mixed Hodge
structure (LMHS) to the singular fibers in such a family. For CY 3-folds with
h2,1 = 1, we classified the possible Z-LMHS in [48] (leading to a Torelli the-
orem in [44]) and computed these in some examples using data from physics
papers (e.g. [49]). Subsequent work with da Silva and Pearlstein [50] made
use of results of Iritani [51] to determine LMHS for the hypergeometric CY
families studied by Doran and Morgan [45].

Associated to a family of algebraic varieties is a (non-algebraic) family of
intermediate Jacobians, a holomorphic horizontal section of which gives a nor-
mal function. (In particular, a family of homologically trivial algebraic cycles
on the family of varieties gives rise to such a section.) By a recent result
of Griffiths and Green [52], the behavior of certain normal functions in the
neighborhood of degeneracies of a family has a tight relation to the Hodge
conjecture. This has inspired a blizzard of important works [53]-[60] on singu-
larities, limits, and zero-loci of admissible normal functions (ANF), surveyed
in [61] with G. Pearlstein. A key result has been my construction with Griffiths
and Green of a “Néron model” for graphing ANFs over a curve [39] (generaliz-
ing fundamental work of Clemens [62]), and our corresponding interpretation
(for families of algebraic cycles) of limits of AJ maps [39]. Our Néron model
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was subsequently generalized in various ways [63], [64], [65] to a base of arbi-
trary dimension; while the limit AJ result was extended to families of higher
Chow cycles (which give rise to higher normal functions) and non-semistable
degenerations in [13].

Algebraic K-theory, modular forms, and physics. The genus-zero
Gromov-Witten (GW) numbers Nd(∈ Q) are enumerative invariants of the
symplectic structure on (for example) a complex variety, which arose as path
integrals computing topological string amplitudes in physics. Local GW invari-
ants of open CY 3-folds were introduced in [66] to understand the contribution
made to the Nd by an embedded toric Fano surface; it was found experimen-
tally [67] that their exponential growth rate (as the degree d runs to ∞) was
related to special values of L-functions. Meanwhile, in his study of (loga-
rithmic) Mahler measure for families of Laurent polynomials defining elliptic
curves, Rodriguez-Villegas [68] (amplified by [69],[70]) had noticed that for
certain “tempered” families, precomposing a lift of the Mahler measure with
an automorphic function produced an integral of an Eisenstein series.

In the lengthy paper [9] with C. Doran, I constructed algebraic Kn-classes
called “toric symbols” in the total space of certain 1-parameter families of
CY hypersurfaces in toric Fano n-folds; under this heading fall CY 3-folds,
K3 surfaces, and elliptic curves. The families arise from Laurent polynomials
satisfying explicit combinatorial and arithmetic conditions, and existence of
the cycle class implies the rationality of periods of extended Haar measure in
[71]. In the case where the family was classically modular, we explicitly related
the cycles to Beilinson’s Eisenstein symbol; computing the KLM map on both
kinds of cycles (which improves on work of [72] in the latter case), this led to a
general and computationally effective explanation of the examples of [68]-[70].

Furthermore, reinterpreting a conjecture from the local mirror symmetry
literature [66],[73] in the elliptic curve case, Doran and I were able to explain
(and compute) the observed GW asymptotics by applying the AJ map (from
[27]) to the restriction of the toric symbol to a singular fiber. (For this we
received a citation from S.-T. Yau in his Scholarpedia article on Calabi-Yau
manifolds [74].) Similar techniques were applied recently in [13] to check a
prediction of a conjecture relating spectral theory and enumerative geometry
[75].

The local mirror symmetry conjecture was later proved with Bloch and
Vanhove in [12] by combining Iritani’s work [51] and a delicate degeneration
argument proposed in [76], as part of work applying the KLM formula to
evaluate Feynman integrals: as a sum of elliptic trilogarithms in [11] (for the
equal-mass three-banana graph); and in terms of the local Gromov-Witten
prepotential for the del Pezzo surface of degree 6 in [12] (for the unequal-mass
sunset graph). These papers have so far received around 60 citations, largely
in the physics literature! I should also mention here that in his thesis [77], my
student Yu Yang showed how to use similar techniques to tackle the Feynman
integral for the wheel with three spokes and related graphs.
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Another case where both toric and modular constructions work well is that
of the indecomposable K1 of a K3 surface. The most natural source for fami-
lies of such classes should be cycles supported on semistable singular fibers of
elliptically fibered K3’s. In [79], [80] we carry out regulator computations for
two different examples, opening up intriguing connections to Tauberian theory
and to higher Green’s functions and the thesis of A. Mellit [7]. Forthcoming
work of my student Tokio Sasaki will give a constructive proof of the Hodge
D-Conjecture for K1 cycles on certain families of surfaces, which also takes
advantage of toric geometry.

Thus far, the story has focused primarily on cycles and varieties, with Hodge
theory playing its traditional supporting role of providing invariants. In what
follows, we change gears and emphasize the complex geometry, arithmetic, and
representation theory associated to the classifying spaces for Hodge structures
themselves.

Background on period maps. A period domain D is a classifying space
for polarized Hodge structures with given Hodge numbers, and is always a
homogeneous space for the action of (the real points of) a reductive algebraic
group G. For a family of algebraic varieties, the period matrices (correspond-
ing to cohomology in a given degree) yield a period map from the coefficient
parameter space S to a quotient of D = G(R)/H by an arithmetic group
Γ ≤ G(Q). The local lifts of its image (to D) satisfy the infinitesimal period
relation (IPR), due to Griffiths, which can be thought of as a differential ideal
in Ω∗(D). Those domains (or subdomains) on which this IPR is (or pulls
back to) zero, are called “classical,” and include the Siegel upper-half-spaces
classifying level-1 Hodge structures.

Now, each D has an algebraic structure arising from the Hodge (period in-
tegral) parameters, which is quite different from what one needs to algebraize
its quotient and the period map ϕ. In the classical cases, this is remedied by
the construction of automorphic forms for Γ, which essentially give algebro-
geometric coefficients (i.e., functions embedding Γ\D in projective space) as
functions of period integrals. Non-classical period domains, in contrast, are
frequently non-Hermitian-symmetric, and may have no nontrivial holomorphic
automorphic forms with respect to a given Γ, meaning that only the image
ϕ(S) (and not all of Γ\D) is algebraic. Consequently, many arithmetic aspects
of VHS and period maps (related to conjectures of Hodge, Bloch-Beilinson,
André-Oort, Grothendieck) remain mysterious. See [78] for an expository ac-
count.

Mumford-Tate groups and domains. Mumford-Tate groups are the natu-
ral (Q-algebraic) symmetry groups of HS, in the sense of stabilizing the Hodge
substructures of all tensor powers of a HS (or MHS) H and its dual. They were
introduced by Mumford in [81] to give a Hodge-theoretic characterization of
certain families of abelian varieties studied by Kuga and Shimura, and in that
context turned out to have spectacular applications to the Hodge conjecture
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and Shimura varieties. In higher weight they have been less explored, and in a
recent monograph [14] with Griffiths and Green we have attempted to address
this. (In particular, this allows for many more types of group G than in the
period domain case, bringing representation theory to the fore.) A first key
result of our work states that a Q-simple algebraic group G is a MT group of
a polarized HS if and only if G(R) has a compact maximal torus T ; these are
precisely the cases where G has nontrivial discrete series representations.

Contained within a general period domain are natural subvarieties defined
over algebraic extensions K/Q, the Mumford-Tate (M-T) domains, which are
the orbits of points p ∈ D under the action of the M-T group of the HS Vp.
In [14] we give a general algorithm for classifying these subdomains, which
blends representation theory of Lie algebras, Hodge theory, and the Galois
theory of CM fields. The Galois-theoretic connection arises from the fact
that all MT domains contain polarized Hodge structures with CM (complex
multiplication),2 which therefore become natural base points of MT domains.
(Furthermore, we prove a lemma computing dimensions, rational points, and
Lie algebras of MT groups of arbitrary CM Hodge structures.) Applying the
algorithm to HS of weight 3 with Hodge numbers (1, 1, 1, 1) yields eight distinct
classes of MT domains, one of which is defined by a Hodge tensor of degree
four and exhibits fascinating arithmetic behavior.

More broadly, reformulating the theory of period maps arising from VHS
in terms of MT domains as in [14] clarifies many issues, from the nature of
global monodromy to the meaning of the conjectures mentioned above. It
gives insight into recent constructions of geometric variations with exceptional
monodromy [83, 84, 85], and was used to give a direct geometric proof of G2

monodromy for a family of surfaces from [85] by my student Genival da Silva
Jr. In conjunction with a result of Kostant [87], it leads to a (very short)
classification of Hermitian VHS which can admit nontorsion normal functions
(and higher normal functions) under a finite pullback [34]. Keast and I use this
to obtain vanishing results for AJ-images of cycles on families of (e.g. Weil and
quaternionic) abelian varieties, in analogy to the theorem of Green and Voisin
for projective hypersurfaces [88]; we also prove a new countable-generation
result for Griffiths groups of Weil abelian 6-folds.

My work with Griffiths and Green has also had some influence on those
working in moduli theory, differential geometry, and transcendence theory (e.g.
[16],[89],[90],[91]). In particular, Robles’s paper [89] showed that the horizontal
subvarieties in a MT domain D = G(R)/H (H compact) are infinitesimally
“in the linear span” of the horizontal Schubert varieties X in its compact dual
Ď := G(C)/P (P parabolic). So it was natural to ask: when are they (compact
duals of) MT subdomains? Such an X would of course be smooth, and also
Hermitian symmetric; but in general, smooth Schubert varieties need not be
homogeneous. In [92], Robles and I make use of a recent result of Hong and

2On the other hand, my student Ryan Keast observed in [82] that many CM Hodge
structures are never contained in positive-dimensional horizontal MT subdomains or rational
nilpotent orbits.
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Mok [93] to show that any smooth horizontal Schubert variety in Ď is in fact
a homogeneously embedded Hermitian symmetric domain.

Automorphic cohomology and boundary components. When holomor-
phic automorphic forms are absent for a given M-T domainD, one can consider
instead its automorphic cohomology [94] — that is, the higher Dolbeault (co-
herent) cohomology groups of Γ\D, which can typically be computed in terms
of discrete series and limits thereof. These groups play a central role in some of
Carayol’s work ([95], [96], [97]), which explored (for G = SU(2, 1)) nonclassical
domains as a possible source of arithmetic structure on automorphic represen-
tations (of G(R)) with archimedean component a totally degenerate limit of
discrete series (TDLDS). The protagonists in this story are the subspacesHq

◦ of
“cuspidal” classes in automorphic cohomology groups Hq(Γ\D,O(Lµ)), where
D has the special form G(R)/T (T compact Cartan). A key role is played by
Penrose transforms, which (in his case) map spaces of Picard modular forms
to non-classical automorphic H1 spaces.

My joint monographs [98, 99] with Griffiths and Green contain new results
on TDLDS, coherent cohomology, and Q̄-algebraicity. We frame Carayol’s
work in a more invariant and less computational setting, extending his Pen-
rose transforms to all groups of Hermitian type (and degrees of automorphic
cohomology) and his “isomorphy result” [96] to G = Sp4. We also prove an
algebraicity result for the “values” of automorphic cohomology classes at CM
points in a correspondence space, generalizing a classical result of Shimura. In
[100], I established an Sp4 analogue of [95] for cup products H1 ⊗H1 → H2,
which allows one to describe “all of the TDLDS-related automorphic cohomol-
ogy” for G = Sp4 in terms of spaces of Siegel modular forms.

My recent work with Pearlstein [15] is motivated by Carayol in a different
way. In the classical cases, one has a toroidal compactification of Γ\D [101] by
certain boundary components, which may be viewed as parametrizing limiting
mixed Hodge structures [102]. The very difficult “extension” of this to the non-
classical setting (a dream of Griffiths in [103]) has only recently been worked
out by Kato and Usui [104] for period domains, resulting in a log-analytic
partial compactification of the quotient Γ\D. In [15], we study boundary com-
ponents B̄(σ) (associated to nilpotent cones σ := R>0〈N1, . . . , Nr〉 ⊂ Lie(G))
in the more general MT setting, computing the MT group of the generic LMHS
they parametrize, and using this to present them as double-coset spaces. (The
specific implications for limiting periods of G2-VHS are worked out in [50],
and applied to the geometric example of Dettweiler-Reiter.) Now, Carayol’s
amazing realization in [95] was that a non-algebraic Γ\D could have algebraic
boundary components, and that one could try to algebraize its automorphic
cohomology via “Fourier coefficients” in the boundary cohomology! Moreover,
one can hope to generalize his example whenever Γ\D has a CM abelian vari-
ety boundary component, and in [15] we are able to determine precisely when
this happens.

This work was pushed further with Pearlstein in [105], whose subject is the
topological boundary of D in its compact dual Ď. The points of Ď carry a
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mixed-Hodge-theoretic interpretation, which we use to study the decomposi-
tion of ∂D into G(R)-orbits called naive boundary strata. A natural “Hodge-
theoretic accessibility” question is: which strata can a period map limit into?
By studying the “naive limit maps” F σ

lim : B(σ)→ ∂D, we obtain a complete
answer in root-theoretic terms. Subsequently Robles and I carried out an
analysis in the case where Ď is an adjoint variety (with minimal homogeneous
enbedding in Pg), which include the “interesting” nonclassical MT domains for
weight-two HS. All the strata of ∂D are “accessible”, but the B̄(σ) associated
to the codimension-one strata have a particularly beautiful description: they
are the intermediate Jacobian bundles attached to the maximal Hermitian
VHSs of CY type from [16]. We also examine the differential properties of
period maps into adjoint domains, especially the characteristic variety of the
associated VHS, and find a striking relationship between the latter and the
homogeneous Legendrian varieties of [106].

In a recent preprint with both Pearlstein and Robles [107], we introduce a
relation on real conjugacy classes of SL(2)-orbits in a MT domain D which is
compatible with natural partial orders on the sets of nilpotent orbits in the
corresponding Lie algebra and boundary orbits in the compact dual. A gen-
eralization of the SL(2)-orbit theorem of [108] to such domains leads to an
algorithm for computing this relation, which is worked out in several examples
and special cases including period domains, Hermitian symmetric domains,
and complete flag domains, and used to define a “secondary poset” of equiv-
alence classes of multivariable nilpotent orbits on D. The overall effect is to
demystify the constraints on several-variable degenerations of HS, and to pro-
vide a coarse classification of nilpotent cones (which until now had seemed a
totally “wild” problem).
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