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“Garbage in, garbage out "  is the rule of data processing. This means that wrong input data or 
data with serious flaws will always leads to incorrect conclusions, and often, incorrect or 
harmful actions. In most of practical situations, it is hard to get good basic data, even in 
simple, non controversial situations and with the best of intentions. With the available basic 
data, the job of its processing, statistician needs help of various computing equipments such 
as computer, calculator and mathematical tables etc. Due to the limitations of computing 
capabilities of these equipments the calculations performed are not always accurate and are 
subject to some approximations. This means that howsoever fine techniques a statistician may 
use, if computations are inaccurate, the conclusions he draws from an analysis of numerical 
data will generally be wrong and very often misleading. It is essential therefore, to look into 
the sources of inaccuracies in numerical computations and the way to avoid them. In addition 
to this, before the data is actually processed, it must be ensured that the underlying 
assumptions for the desired analysis are satisfied because it is well known that the classical 
statistical techniques behave in the optimum manner under predefined set of conditions and 
perform badly for the practical situations where they depart significantly from the ideal 
described assumptions. For these situations thus there is a need to look at the data carefully 
before finalising the appropriate analysis. This involves checking the quality of the data for 
the errors, outliers, missing observations or other peculiarities and underlying assumptions. 
For these rectifications, the question also arises whether the data need to be modified in any 
way. Further, the main purpose of classification of data and of giving graphical and 
diagrammatical representation is to indicate the nature of the distribution i.e. to find out the 
pattern or type of the distribution.   Besides the graphical and diagrammatical representation, 
there are certain arithmetical measures which give a more precise description of the 
distribution. Such measures also enable us to compare two similar distributions and are 
helpful for solving some of the important problems of statistical inference.  
 
Thus there is a need to look into these aspects i.e. inaccuracies, checking of abnormal 
observations, violation of underlying assumptions of data processing and summarization of 
data including graphical display. 
 
Types of Inaccuracies  
It is convenient at the start to make a distinction between different types of accuracies in 
computational work. A blunder is a gross inaccuracy arising through ignorance. A statistician 
who knows his theory rarely commits a blunder. But even when he knows the procedure in 
detail and use machines for computations, he sometimes makes mistakes. There is a third type 
of inaccuracy, which we shall call an error. This is different from the other two types in that it 
is usually impracticable and sometimes even impossible to avoid. In other words an error is 
an observation which is incorrect, perhaps because it was recorded wrongly in the first place 
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or because it has been copied or typed incorrectly at some stage. An outlier is a ‘wild’ or 
extreme observation which does not appear to be consistent with the rest of the data. Outliers 
arise for a variety of reasons and can create severe problems. Errors and outliers are often 
confused. An error may or may not be an outlier, while an outlier may not be an error.  
 
The search for errors and outliers is an important part of Initial Data Analysis (IDA). The 
terms data editing and data cleaning are used to denote procedures for detecting and 
correcting errors. Generally this is an iterative and ongoing process. 
 
Some checks can be made ‘by hand’, but a computer can readily be programmed to make 
other routine checks and this should be done. The main checks are for credibility, 
consistency and completeness. Credibility checks include carrying out a range test on each 
variable. Here a credible range of possible values is pre specified for each variable and every 
observation is checked to ensure that it lies within the required range. These checks pick up 
gross outliers as well as impossible values. Bivariate and multivariate checks are also 
possible. A set of checks, called ‘if-then’ checks, can be made to assess credibility and 
consistency between variables. 
 
Another simple, but useful, check is to get a printout of the data and examine it by eye. 
Although it may be impractical to check every digit visually, the human eye is very efficient 
at picking out suspect values in a data array provided they are printed in strict column 
formation in a suitably rounded form. When a suspect value has been detected, the analyst 
must decide what to do about it. It may be possible to go back to the original data records and 
use them to make any necessary corrections. In some cases, such as occasional computer 
malfunctions, correction may not be possible and an observation which is known to be an 
error may have to be treated as a missing observation. 
 
Extreme observations which, while large, could still be correct, are more difficult to handle. 
The tests for deciding whether an outlier is significant provide little information as to whether 
an observation is actually an error. Rather external subject-matter considerations become 
paramount. It is essential to get advice from people in the field as to which suspect values are 
obviously silly or impossible, and which, while physically possible, are extremely unlikely 
and should be viewed with caution. Sometimes additional and further data may resolve the 
problem. It is sometimes sensible to remove an outlier, or treat it as a missing observation, but 
this outright rejection of an observation is rather drastic, particularly if there is evidence of a 
long tail in the distribution. Sometimes the outliers are the most interesting observations. 
 
An alternative approach is to use robust methods of estimation which automatically 
downweight extreme observations. For example, one possibility for univariate data is to use 
Winsorization, in which an extreme observation is adjusted towards the overall mean, 
perhaps to the second  most extreme value (either large or small as appropriate). However, 
many analysts prefer a diagnostic approach which highlights unusual observations for further 
study. Whatsoever amendments are required to be made to the data, there needs to be a clear, 
and preferably simple, sequence of steps to make the required changes in data. 
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Missing observations arise for a variety of reasons. A respondent may forget to answer all the 
questions, an animal may be killed accidentally before a treatment has shown any effect, a 
scientist may forget to record all the necessary variables or a patient may drop out of a clinical 
trial etc. It is important to find out why an observation is missing. This is best done by asking 
‘people in the field’. In particular, there is a world of difference between observations lost 
through random event, and situations where missing observations are created deliberately. 
Further the probability that an observation, y, is missing may depend on the value of y and/or 
on the values of explanatory variables. Only if the probability depends on neither then the 
observations are said to be missing completely at random (MCAR). For multivariate data, it 
is sometimes possible to infer missing values from other variables, particularly if redundant 
variables are included (e.g. age can be inferred from date of birth). 
 
Errors may arise from one or more of the following sources : (a) the mathematical 
formulation is only an idealized and very seldom an exact description of reality; (b) 
parameters occurring in mathematical formulae are almost always subject to errors of 
estimation; (c) many mathematical problems can only be solved by an infinite process, 
whereas all computations have to be terminated after a finite number of steps;  (d) because of 
the limited digit capacity of computing equipment, computations have to be carried with 
numbers rounded off conveniently. However, it is not necessary to try to avoid all errors, 
because usually the final answer need be correct only to a certain number of figures. The 
theory of calculations with approximate numbers will be subjected to the following errors: 
 
Rounding Off: Because of the limited digit capacity of all computing equipments, 
computations are generally be carried out with numbers rounded off suitably. To round off a 
number to n digits, replace all digits to the right of the n-th digit by zeros. If the discarded 
number contributes less than half a unit in the n-th place, leave the n-th digit unaltered; if it is 
greater than half a unit, increase the n-th digit by unity; if it is exactly half a unit, leave the n-
th digit unaltered when it is an even number and increase it by unity when it is an odd 
number. For example, the numbers 237.582, 46.85, 3.735 when rounded off to three digits 
would become 238, 46.8 and 3.74, respectively. 
 
Significant Figures: In a rounded-off number, significant figures are the digits 1, 2,..., 9. Zero 
(0) is also a significant figure except when it is used to fix the decimal point or to fill the 
places of unknown or discarded digits. Thus in 0.002603, the number of significant figures is 
only four. Given a number like 58,100 we cannot say whether the zeros are significant figures 
or not; to be specific we should write it in the form 5.81 x 104, 5.810 x 104 or 5.8100 x 104 to 
indicate respectively that the number of significant figures is three, four or five. 
 
Error Involved in the Use of Approximate Numbers : If   u  is the true value of a number and 
u0  an  approximation  to  it,  then  the  error  involved  is   E = u - u0 . The relative error is e 

=
u
uu 0−    and the percentage error is p = 

u
uu )(100 0− .  
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Mistakes in Computation  
How and Where Mistakes Arise: The only way to avoid mistakes is, of course, to work 
carefully but a general knowledge about the nature of mistakes and how they arise helps us to 
work carefully. Most mistakes arise at the stage of copying from the original material to the 
worksheet or from one worksheet to another, transferring from the worksheet onto the 
calculating machine or vice versa, and reading from mathematical tables. It is a good idea in 
any computational program to cut down copying and transferring operations as much as 
possible. A person who computes should always do things neatly in the first instance and 
never indulge in the habit of doing “rough work” and then making a fair copy. Computational 
steps should be broken up into the minimum possible number of unit operations - operations 
that can be carried out on the calculating machine without having to write down any 
intermediate answer. Finally the work should be so arranged that it is not necessary to refer to 
mathematical tables every now and then. As far as possible, all references to such tables 
should be made together at the same time : this minimizes the possibility of referring to a 
wrong page and of making gross mistakes in reading similar numbers from the same table. In 
many mathematical tables, when the first few digits occur repeatedly, they are separated from 
the body of the table and put separately in a corner; a change in these leading digits in the 
middle of a row is indicated by a line or some other suitable symbol. We should be careful to 
read the leading digits correctly from such tables. 
 
Classification of Mistakes: Mistakes in copying, transferring and reading fall into three broad 
classes: digit substitution, juxtaposition and repetition. One mistake is to substitute hurriedly 
one digit for another in a number, for instance, 0 for 6, 0 for 9, 1 for 7, 1 for 4, 3 for 8, or 7 for 
9. The only remedy is to write the digits distinctly. Another mistake is to alter the 
arrangement of the digits in a number, to write 32 for 23 or 547 for 457. The third type of 
mistake occurs when the same number or digit occurs repeatedly. For instance, 12,225 may be 
copied as 1225 or in the series of numbers 71, 63, 64, 64, 64,  . one  or more of the 64’s may 
be forgotten. We should be especially careful to avoid these mistakes. 
 
Precautions: Certain general precautions should be taken to avoid mistakes in computations. 
Whenever possible, we should make provision for checking the accuracy of computation. One 
way is to make use of mathematical identities and compute the same quantity by different 
methods. Computations should be properly laid out, in tabular form, with check columns 
whenever possible. Further before starting on the detailed computations a few extra minutes 
may be taken for computing mentally as rough answer. This serves a check on the final 
computation. To summarize, we may lay down the following five principles for avoiding 
mistakes in computation: 
• Write the digits distinctly. 
• Cut down copying and transferring operations. 
• Use tabular arrangement for computations. 
• Keep provision for checking. 
• Guess the answer beforehand. 
 
A last word of warning may be helpful. If a mistake is made, it is almost impossible to locate 
and correct the mistake by going through the original computation, even if this is done a 
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number of times. The best way out is to work the whole thing afresh, perhaps using a different 
computational layout altogether. 
 
Data Quality 
The quality of the data is of paramount importance and needs to be assessed carefully 
particularly for the suspicious-looking values, missing observations etc. If there are missing 
observations then the reasons for their missing and what can be done about them? needs to 
answered properly. The next question asked is that How were the data collected? What was 
the format of the questionnaire designed for the sample survey? Were the questions included 
in the questionnaire practicable to get the reliable information from the respondents? This will 
help to a great extent in scanning the data for its guanine ness. 
 
Data processing and data editing require careful attention to ensure that the quality of the data 
is as high as possible.  However, it is important to realise that some errors may still get 
through, particularly with large data sets. Thus diagnostic procedures at the later model-
building stage should be carried out to prevent a few data errors from substantially distorting 
the results. With ‘dirty’ data containing outliers and missing observations, limited but useful 
inference may still be possible, although it requires a critical outlook, a knowledge of the 
subject matter and general resourcefulness on the part of the statistician. 
 
Summary Statistics 
After the data have been properly checked for its quality, the first and foremost analysis is 
usually for the descriptive statistics. The general aim is to summarize the data, iron out any 
peculiarities and perhaps get ideas for a more sophisticated analysis. The data summary may 
help to suggest a suitable model which in turn suggests an appropriate inferential procedure. 
The first phase of the analysis will be described as the initial examination of the data or initial 
data analysis. It has many things in common with explanatory data analysis (EDA) which 
includes a variety of graphical and numerical techniques for exploring data. Thus EDA is an 
essential part of nearly every analysis. It provides a reasonably systematic way of digesting 
and summarizing the data with its exact form naturally varies widely from problem to 
problem. In general, under initial and exploratory data analysis, the following are given due 
importance. 
 
Measures of Central Tendency  
One of the most important   aspects   of   describing   a distribution is the   central   value   
around   which  the observations are distributed. Any arithmetical measure which is intended 
to represent the center or central value of a  set of observations is known as measure of central 
tendency. 
  
The Arithmetic Mean (or simply Mean ) 
Suppose  that  n  observations  are  obtained  for  a  sample from a population. Denote the 
values of the n observations  by x1, x2.....xn;  x1   being  the  value  of  the  first  sample 
observation, x2   that of second observation and  so  on.  The   arithmetic mean or mean or 
average denoted by x  is given by  
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The symbol Σ ( read as ‘sigma’ ) means sum the individual values x1 ,x2,...,xn  of the variable, 
X.  Usually the limits of the summations are not written, since it is always understood that the 
summation is over all n values. Hence we can write 

n
x

= x ∑  

 
The above formula enables us to find the mean when values x1, x2 ,....,xn   of  n discrete   
observations  are available. Sometimes the data set are given in the form of  a  frequency 
distribution table then the formula is as follows:  
 
Arithmetic Mean of Grouped Data 
Suppose that there are k classes or intervals. Let x1, x2 ,..., xk  denote the class mid-points   of   
these k  intervals and let f1, f2, ..., fk denotes the corresponding frequencies of these classes.  
Then the arithmetic mean x  
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Properties of the arithmetic mean 
(a) The  Sum of the deviations of a set  of  n  observations x1 , x2,..., xn  from their mean x  

is zero.  Let  di as deviation of  xi  from x  then  

 ∑∑
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(b) If x1 ,x2,...,xn are n observations, x  is their mean and di = xi - A is the deviation of xi 

from  a given  number A, then  

 x  = A + 
n
di∑  

(c) If  the  numbers  x1 , x2 ,..., xn  occur  with   the  frequencies  f1 , f2,..., fn  respectively   
and   di = xi - A, then 

 x  = A + 
∑
∑

i

ii
f

df
 

(d)  If in a frequency distribution all the k class  intervals  are  of  the  same  width  c, and  
di =  xi - A denote the deviation of  xi from A, where A is the value of a certain mid-
point and x1, x2 ,..., xk   are the class mid-points  of the k-classes, then di  = c ui   where 
ui  = 0, ± 1, ± 2,.....  
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Example 1: For the frequency distribution of weights of sorghum ear-heads given below, 
calculate the mean value. 
 Frequency distribution of weights of 190 sorghum ear-heads 

Weight of ear-head (in g) (X) No. of ear-heads(f) 
40-60 6 
60-80 28 
80-100 35 
100-120 55 
120-140 30 
140-160 15 
160-180 12 
180-200 9 

Total 190 
 

Computation of mean by direct method 
Mid point   x f f.x. 

50 6 300 
70 28 1960 
90 35 3150 
110 55 6050 
130 30 3900 
150 15 2250 
170 12 2040 
190 9 1710 

Total 190 21360 
 
The mean weight of ear-heads is given by, 

 

g  
190

21360=  

n
fxx

4.112=

∑
=
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Computation of mean by short-cum method 
x f u fu 
50 6 -3 -18 
70 28 -2 -56 
90 35 -1 -35 
110 55 0 0 
130 30 1 30 
150 15 2 30 
170 12 3 36 
190 9 4 36 

Total 190 (-109 + 132 = 23) 
 
In this example, the maximum frequency is 55 and the mid-value against this value is 110.  
Hence, A = 110.   
 
The mean weight of sorghum ear-heads is then, 

 ⎟
⎠
⎞

⎜
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⎛ ×
∑
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n
fuAx  
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19
46110 +=       =   112.4 g 

 
The result is same as in the direct method. 
 
Example 2: For the frequency distribution of seed yield of sesamum given in the following 
table.  Calculate the mean yield per plot. 
 
 Frequency distribution of seed yield of sesamum from 100 plots 

Yield per plot (in g)  No. of plots 
65-84 3 
85-104 5 
105-124 7 
125-144 20 
145-164 24 
165-184 26 
185-204 12 
205-224 2 
225-244 1 

Total 100 
In this example, the classes are not continuous.  Since the yield is given in nearest gram we 
may take the classes continuous in the following manner.  Take the upper-limit of the first 
class and the lower-limit of the next class and divide their sum by 2.  Thus we have (84 + 
85)/2 = 84.5.  This value will be the upper limit of the first class and lower limit of the next 
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class. Care should be taken to keep the class intervals unaltered.  Thus the lower limit of the 
first class will be 64.5 and the upper limit of the last class will be 244.5. 
 
Computation of mean for grouped data 

Yield (in g) X Mid value x f u fu 
64.5-84.5 74.5 3 -4 -12 
84.5-104.5 94.5 5 -3 -15 
104.5-124.5 114.5 7 -2 -14 
124.5-144.5 134.5 20 -1 -20 
144.5-164.5 154.5 24 0 0 
164.5-184.5 174.5 26 1 26 
184.5-204.5 194.5 12 2 24 
204.5-224.5 214.5 2 3 6 
224.5-244.5 234.5 1 4 4 

Total  100  -61+60 = -1 
 
The mean yield per plot is 
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⎠
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Example 3: The data in the following table are the number of seeds germinated out 5 in each 
of 50 pots. Find the mean number of seeds that germinate. 
 Number of seeds germinated out of  5 in each of 50 pots 

No. of seeds 
germinated 

X 

No. of 
pots(f) 

d fd 

0 4 -2 -8 
1 13 -1 -13 
2 16 0 0 
3 9 1 9 
4 5 2 10 
5 3 3 9 

Total 50                                7 
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The Median 
The  median  of  a set of  n  measurements  or  observations x1 , x2 ,..., xn  is the middle value 
when the measurements  are arranged  in an array according to their order of  magnitude. If  n 
is odd, the middle value is the median. If n  is  even, there  are two middle values and the 
average of these  values is the median. The median is the value which divides the  set of  
observations into two equal halves, such that 50% of  the observations  lie  below  the  median  
and   50%  above   the median. The median is not affected by the actual values of the 
observations but rather on their positions. 
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The Median of Grouped Data 
The formula of median of grouped data is as  
 

Median = Lm + cx
f

fN

m
o
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∑− )(2/   

where    N  =  Total frequency  = ∑fi 
   fm       = frequency of the class where the median lies.  

Lm      = Lower class boundary of the class  where  the  median lies. 
(∑f)0  = Sum of frequencies of classes below ( or lower than) the class where the 

median lies. 
   c        = Width of the median class interval. 
 
Example 4: If weights of sorghum ear-heads are 45, 60, 48, 100, 65 g, then the data 

arrangement will be 45, 48, 60, 65, 100. Since, there are 5 items, the median is 
2

)15( + th item, 

that is, 3rd item. It is 60 g. 
 
Example 5: If the weights of sorghum ear-heads are 45, 48, 60, 65, 65, 100 g, then the 

median is 
2

)16( +  = (3.5)th item. That is, 

 Median = 3rd item + (4th item - 3rd item) × (0.5) 
   = 60 + (65 - 60) ((0.5) 
   = 60 + 2.5 or 62.5 g 
 
Example 6: For the frequency distribution of weights of sorghum ear-heads given in the 
following table, calculate the median. 
 
      The frequency distribution of weights of 190 sorghum ear-heads 

Weight of ear-head (in g) No. of ear-heads 
40 - 60     6 
60 - 80   28 
80 - 100                         35 
100 - 120   55 
120 - 140                         30 
140 - 160   15 
160 - 180   12 
180 - 200     9 

Total 190 
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This table can further be arranged as 
Weight of ear-head 

 (in g) 
No. of ear-heads Less than class Cumulative 

frequency 
40 - 60     6 < 60 6 
60 - 80   28 < 80 34 
80 - 100   35 < 100 69 

   
→  n

2
 = 95 

100 - 120   55 < 120 124 
120 - 140   30 < 140 154 
140 - 160   15 < 160 169 
160 - 180   12 < 180 181 
180 - 200     9 < 200 190 

Total 190   
 
In our example, (n / 2) = (190 / 2) = 95. This value lies in between 69 and 124, and less than 
classes corresponding to these values are 100 and 120, respectively. Hence the median class is 
100 - 120 and the lower limit of this class is 100. The cumulative frequency upto 100 is 69 
and the frequency of the median class, 100 - 120 is 55.  
 
Therefore,  

 Median = ( )
⎥⎦
⎤

⎢⎣
⎡ ×

−
+ 20

55
6995100     =   ⎥⎦

⎤
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26100   

                         
                       = 100 + 9.45 or 109.45 g 
The Mode 
The mode is  the observation  which occurs most  frequently in a set. In grouped data mode is 
worked out as 

 Mode = l + ⎟
⎟
⎠

⎞
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+
c

ff
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where  
l    = Lower limit of the modal class. 
fs   = the frequency of the class succeeding the modal class . 
fp   = the frequency of the class preceding the modal class 
c    = Width of the class interval. 
The mode can be determined analytically in the case of continuous distribution. For a 
symmetrical distribution, the mean, median and mode coincide. For a distribution skewed  to 
the left ( or negatively skewed distribution ), the mean, the median and the mode are in that 
order (as they appear in  the dictionary ) and for a distribution skewed to the right (  or 
positively  skewed  distribution) they occur in  the  reverse order, mode, median and mean. 
There   is   an empirical formula for   a   moderately asymmetrical skewed distribution, it is 
given by 

Mean - Mode = 3 (Mean - Median) 
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Example 7: If the yield of paddy from different fields are 6.0, 4.9, 6.0, 5.8, 6.2, 6.0, 6.3, 4.8, 
6.0, 5.7 and 6.0 tonnes per hectare, the modal value is 6.0 tonnes per hectare. 
 
Example 8: For the frequency distribution of weights of sorghum ear-heads given in the 
following table, calculate the mode. 

Weight of ear-head (in g) No. of ear-heads 
40 - 60     6 
60 - 80   28 
80 - 100                         35  → fp 
100 - 120   55 
120 - 140                         30  → fs 
140 - 160   15 
160 - 180   12 
180 - 200     9 
Total 190 

 
For calculating the mode for grouped data first  find out the modal class. The modal class is 
the class against the maximum frequency. In our example, the maximum frequency is 55 and 
hence the modal class is 100 - 120. 
 
In our example, l = 100, fp = 35 and fs = 30. Hence, 
 

 Mode = ⎥⎦
⎤

⎢⎣
⎡ ×

+
+ 20

3035
30100   =  ⎥⎦

⎤
⎢⎣
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65
600100  = 109.23 g 

 
The Geometric Mean 
There  are  two other averages, the  geometric  mean  and harmonic  mean which are 
sometimes used. The  Geometric  Mean (  GM ) of a set of observations is such that  its  
logarithm equals the arithmetic mean of the logarithms of the values of the observations. 
 GM = (x1  x2..... xn)1/n 
log GM = 1/n  (∑ log xi) or in frequency distribution, log GM = 1/n (∑ fi log xi) 
 
Example 9: Let 2, 4, 8, 16 be the 4 items.  Their geometric mean is calculated as follows: 

x Log x 
2 0.3010 
4 0.6021 
8 0.9031 
16 1.2041 
Total 3.0103 

 Mean (of log values) = 
n

xlog∑  = 
4

0103.3  =  0.7526 

 Antilog(0.7526)        = 5.66 Therefore, G.M.       = 5.66 
 
In case of frequency distribution, 
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The  geometric mean  can be obtained only if  the  values assumed by the observation  are 
positive( greater than zero). 
 
Harmonic mean 
The Harmonic Mean ( HM ) of a set of observations  is such that its reciprocal is the 
arithmetic mean of the  reciprocals of the  values of the observation  
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Example 10: There are 5 agricultural labourers.  They can complete weeding operations on a 
100 square meter land in 4, 5, 5, 6 and 7 hours, respectively.  If these 5 labourers are 
employed for weeding in 500 square meter area, in how many hours will they complete the 
work? 
For such problems we compute harmonic mean. 
 

 H.M. = 
)7/1()6/1()5/1()5/1()4/1(

5
++++

 

          = 
143.0167.020.020.025.0(

5
++++

 

             =  
960.0
5  = 5.21 hours 

 
The harmonic mean is rarely computed for a frequency distribution. 
 
Weighted Mean 
If there are n observations, x1, x2, x3,…,xn with corresponding weights w1, w2, w3,…,wn, then the 
weighted mean is given by, 

 
w
wxxw ∑

∑
=  

 
Example 11: The average yield of IR 20 paddy from two localities are 55 quintals and 65 
quintals per hectare respectively.  The averages were based on 20 hectares and 10 hectares 
respectively.  What is the combined average yield per hectare? 
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The simple average of 55 and 65 quintals will give us (55+65)/2 = 60 quintals per hectare.  
This is not correct.  We have to compute the weighted mean. 
 

 
1020

)1065()2055(
+

×+×
=wx  

 

                 
30

1750
30

6501100
=

+
=  

 
        = 58.3 quintals per hectare 

In computing the mean, we take the frequency of a class as its weight.  That is 
f
fxx

∑
∑

= .  

Hence, it is a special case of weighted mean. The three means are related by  
 A.M. ≥  G.M. ≥  H.M. 
 
Important characteristics of a good average 
Since an average is a representative item of a distribution it should possess the following 
properties : 

1. It should take all items into consideration. 
2. It should not be affected by extreme values. 
3. It should be stable from sample to sample. 
4. It should be capable of being used for further statistical analysis. 

 
Mean satisfies all the properties excepting that it is affected by the presence of extreme items. 
For example, if the items are 5, 6, 7, 7, 8 and 9 then the mean, median and mode are all equal 
to 7. If the last value is 30 instead of 9, the mean will be 10, whereas median and mode are 
not changed. Though median and mode are better in this respect they do not satisfy the other 
properties. Hence mean is the best average among these three. 
 
When to use different averages 
The proper average to be used depends upon the nature of the data, nature of the frequency 
distribution and the purpose. 
 
If the data is qualitative one, only mode can be computed. For example, when we are 
interested in knowing the typical soil type in a locality or the typical cropping pattern in a 
region we can use mode. On the other hand, if the data is quantitative one, we can use any one 
of the averages 
 
If the data is quantitative, then we have to consider the nature of the frequency distribution. 
When the frequency distribution is skewed (not symmetrical) the median or mode will be 
proper average. In case of raw data in which extreme values, either small or large, are present, 
the median or mode is the proper average. In case of a symmetrical distribution either mean or 
median or mode can be used. However, as seen already, the mean is preferred over the other 
two. 
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When we are dealing with rates, speed and prices we use harmonic mean. If we are interested 
in relative change, as in the case of bacterial growth, cell division etc., geometric mean is the 
most appropriate average. 

 
Measures of Dispersion 
We know that averages are representatives of a frequency distribution but they fail to give a 
complete picture of the distribution. They do not tell anything about the scatterness of 
observations within the distribution. 
 
Suppose that we have the distribution of the yields (kg per plot) of two paddy varieties from 5 
plots each. The distribution may be as follows: 
Variety I 45 42 42 41 40 
Variety II 54 48 42 33 30 
 
It can be seen that the mean yield for both varieties is 42 kg. But we can not say that the 
performance of the two varieties is same. There is greater uniformity of yields in the first 
variety whereas there is more variability in the yields of the second variety. The first variety 
may be preferred since it is more consistent in yield performance. From the above example, it 
is obvious that a measure of central tendency alone is not sufficient to describe a frequency 
distribution. In addition to it we should have a measure of scatterness of observations. The 
scatterness or variation of observations from their average is called the dispersion. There are 
different measures of dispersion like the range, the quartile deviation, the mean deviation and 
the standard deviation. 
 
Range 
The simplest measure of dispersion is the range. The range is the difference between the 
minimum and maximum values in a group of observations for example, suppose that the 
kapas yields (kg per plot) of a cotton variety from five plots are 8, 9, 8, 10 and 11. The range 
is (11 - 8) = 3 kg. In practice the range is indicated as 8 - 11 kg. 
 
Range takes only the maximum and minimum values into account and not all the values. 
Hence it is a very unstable or unreliable indicator of the amount of deviation. It is affected by 
extreme values. In the above example, if we have 15 instead of figure 11, the range will be (8 
- 15) = 7 kg.  In order to avoid these difficulties another measure of dispersion called quartile 
deviation is preferred. 
 
Quartile Deviation 
We have already defined the quartiles. We can delete the values below the first quartile and 
the values above the third quartile. It is assumed that the unusually extreme values are 
eliminated by this way. We can then take the mean of the deviations of the two quartiles from 
the second quartile (median). That is, 

 ( ) ( ) ( )
22

131223 QQQQQQ −
=

−+−  

This quantity is known as the quartile deviation (Q.D.). 
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Example 12: The following are the paddy yields (kg/plot) from 14 plots: 30, 32, 35, 38, 40, 
42, 48, 49, 52, 55, 58, 60, 62 and 65 (after arranging in ascending order). 

   Q. D. = ( )
2

13 QQ −  = g25.9
2

5.18
2

25.3775.55
==

−  

The quartile deviation is more stable than the range as it depends on two intermediate values. 
This is not affected by extreme values since the extreme values are already removed. 
However, quartile deviation also fails to take the values of all deviations. 
 

Mean Deviation 
Mean deviation is the mean of the deviations of individual values from their average. The 
average may be either mean or median. For raw data the mean deviation from the median is 
the least. Therefore, median is considered to be most suitable for raw data. But usually the 
mean is used to find out the mean deviation. The mean deviation is given by 

M.D. = 
n

xx∑ −
  for raw data and M.D. = 

n
xxf∑ −

  for grouped data  

All positive and negative differences are treated as positive values. Hence we use the modulus 
symbol . We have to read xx −  as “modulus x - x ”. If we take x - x  as such, the sum of 
the deviations, ∑ − )( xx will be 0. Hence, if the signs are not eliminated the mean deviation 
will always be 0, which is not correct. 
 
Example 13: The kapas yields (in kg per plot) of a cotton variety from seven plots are 5, 6, 7, 
7, 7, 8 and 9. The mean deviation for this data is computed as follows: 
 

Mean = ( 5 + 6 + 7 + 7 + 7 + 8 + 9 ) / 7 = 49 / 7 = 7 kg 

M.D. = kg
7
6

7
79787777777675
=

−+−+−+−+−+−+−
 

Example 14:  From  field with large number of seasamum plants of a variety, 100 plants were 
selected at random. The seed yields (in g) per plant were recorded. The results are presented 
in the following Table. Find the mean deviation for the data. 
Seed yield  
(X) in g 

Number of 
plants (f) 

Mid class (x) 7.6−=− xxx  f x x−  

2.5 - 3.5 4 3 3.7 14.8 
3.5 - 4.5 6 4 2.7 16.2 
4.5 - 5.5 10 5 1.7 17.0 
5.5 - 6.5 26 6 0.7 18.2 
6.5 - 7.5 24 7 0.3 7.2 
7.5 - 8.5 15 8 1.3 19.5 
8.5 - 9.5 10 9 2.3 23.0 
9.5 - 10.5 5 10 3.3 16.5 
Total 100   132.4 
 

M.D. = 
n

xxf∑ −
 = 132.4 / 100 = 1.324 g 

 
The steps of computation are as follows : 
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Step 1: If the classes are not continuous we have to make them continuous. In this case they 
are continuous. 

Step 2: Find out the mid values of the classes (mid - X = x). 
Step 3: Compute the mean. 
Step 4: Find out xx −   for all values of x. 
Step 5: Multiply each xx −  by the corresponding frequencies. 
Step 6: Use the formula. 
 
The mean deviation takes all the values into consideration. It is fairly stable compared to 
range or quartile deviation. Since, the mean deviation ignors signs of deviations, it is not 
possible to use it for further statistical analysis and it is not stable as standard deviation which 
is defined as: 
 
Standard Deviation 
Ignoring the signs of the deviations is mathematically not correct. We may square the 
deviation to make a negative value as positive. After calculating the average squared 
deviations, it can be expressed in original units by taking its square root. This type of the 
measure of variation is known as Standard Deviation. 
 
The standard deviation is defined as the square root of the mean of the squared deviations of 
individual values from their mean. Symbolically, 

Standard Deviation (S.D.)   or  σ = 
n

xx 2)(∑ −
   or =

( )

n
n
x

x∑ ∑−
2

2

 

This is called standard deviation because of the fact that it indicates a sort of group standard 
spread of values around their mean. For grouped data it is given as 

Standard Deviation  (S.D.) or  σ = 

( )

n
n

xf
xf∑ ∑−

2
2

 

 
The sample standard deviation should be an unbiased estimate of the population standard 
deviation because we use sample standard deviation to estimate the population standard 
deviation. For this we substitute n - 1 for n in the formula. Thus, the sample standard 
deviation is written as 

 s = 
1

)( 2

−

−∑
n

xx
 or s = 

( )

1

2
2

−

−∑ ∑

n
n
x

x
 

For grouped data it is given by 
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 s = 

( )

1

2
2

−

−∑ ∑

n
n

xf
xf

      Alternatively, s = 

( )
C

n
n

df
df

×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−∑ ∑

1

2
2

 

where, 
 C = class interval 
 d = (x - A) / C as given under mean. 
 
The square of the standard deviation is known as the variance. In the analysis of variance 

technique, the term ∑ ∑−
n

x
x

2
2 )(

 is called the sum of squares, and the variance is called 

the mean square. The standard deviation is denoted by s in case of sample, and by σ (read 
‘sigma’) in case of population. 
 
Example 15:  For the data in example 1, the standard deviation is computed as follows : 

kgx 7
7

9877765
=

++++++
=  

The deviations (x - x ) are (5 - 7), (6 - 7), (7 - 7), (7 - 7), (7 - 7), (8 - 7) and (9 - 7). Therefore, 
 

 s = 
17

)2()1()0()0()0()1()2( 2222222

−
+++++−+−  = 

6
10  = 1.29 kg 

 
The second method is, 

 s = 

( )

1

2
2

−

−∑ ∑

n
n
x

x
  

    = 
17

7
)49()9877765(
2

2222222

−

−++++++
 

 

    = 
6

7
2401353−

 = 
6

343353−  = 10
6

 =1.29 kg 

 
The variance is given by, 2s  = 1.67 kg2 
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Example 16:  For the data given in the example 2 compute the standard deviation and 
variance. 
 

Seed yield  
(X) in g 

Number of 
plants 

(f) 

Mid 
class 

(x)

(x -A)/C
= d

f d  f d2 

2.5 - 3.5 4 3 -3 -12  36 
3.5 - 4.5 6 4 -2 -12  24 
4.5 - 5.5 10 5 -1 -10  10 
5.5 - 6.5 26 6 0 0  0 
6.5 - 7.5 24 7 1 24  24 
7.5 - 8.5 15 8 2 30  60 
8.5 - 9.5 10 9 3 30  90 

9.5 - 10.5 5 10 4 20  80 
Total 100 70  324 

 
Here A = 6 and C = 10. The standard deviation is given by 
 

 s = 

( )
C

n
n

df
df

×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−∑ ∑

1

2
2

 

 

   = 1
1100

)100/70(324 2
×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−  = g66.17676.2

99
275

99
49324

===⎥⎦
⎤

⎢⎣
⎡ −  

 
Therefore the variance is s2 = 2.77 g2 

 

The standard deviation is the most widely used measure of dispersion. It takes all the items 
into consideration. It is more stable compared to other measures. However, it will be inflated 
by extreme items as is the mean. 
 
The standard deviation has some additional special characteristics. It is not affected by adding 
or subtracting a constant value to each observed value. It is affected by multiplying or 
dividing each observation by a constant. When the observations are multiplied by a constant, 
the resulting standard deviation will be equivalent to the product of the actual standard 
deviation and the constant. (Note that division of all observations by a constant, C is 
equivalent to multiplication by its reciprocal, 1/C. Subtracting a constant C is equivalent of 
adding a constant, - C.) 
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Example 17: Suppose we have a set of numbers 1, 2, 3, 4 and 5. Then we have the following 
results 
 
Original values After adding a constant, 2 After multiplying a constant, 2 
x ( )x x−  ( )x x−

2 x ( )x x−  ( )x x−
2 x ( )x x−

  ( )x x−
2 

1 -2 4 3 -2 4   2 -4 16 
2 -1 1 4 -1 1   4 -2   4 
3   0 0 5   0 0   6   0   0 
4   1 1 6   1 1   8   2   4 
5   2 4 7   2 4 10   4 16 
Total=1
5 

 10 25  10 30  40 

s = 4/10  = 1.58 
 

s = 4/10  = 1.58 
 

s = 4/40 = 3.16 = 2(1.58) 
 

 
When the values are multiplied by 2, the resultant standard deviation is twice the actual one. 
 
The standard deviations can be pooled. If the sum of squares for the first distribution with n1 
observations is SS1, and the sum of squares for the second distribution with n2 observations is 
SS2,  then the pooled standard deviation is given by, 
 

 s (pooled) = 
221
21
−+

+
nn

SSSS  

 
Measures of Relative Dispersion 
Suppose that the two distributions to be compared are expressed in the same units and their 
means are equal or nearly equal. Then their variability can be compared directly by using 
their standard deviations. However, if their means are widely different or if they are expressed 
in different units of measurement, we can not use the standard deviations as such for 
comparing their variability. We have to use the relative measures of dispersion in such 
situations. 
 
There are relative dispersions in relation to range, the quartile deviation, the mean deviation, 
and the standard deviation. Of these, the coefficient of variation which is related to the 
standard deviation is important. The coefficient of variation is given by, 
C.V. = (S.D. / Mean) x 100 
The C.V. is a unit-free measure. It is always expressed as percentage. The C.V. will be small 
if the variation is small of the two groups, the one with less C.V. is said to be more consistent. 
 
The coefficient of variation is unreliable if the mean is near zero. Also it is unstable if the 
measurement scale used is not ratio scale. The C.V. is informative if it is given along with the 
mean and standard deviation. Otherwise, it may be misleading. 
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Example 18: Consider the distribution of the yields (per plot) of two paddy varieties. For the 
first variety, the mean and standard deviation are 60 kg and 10 kg, respectively. For the 
second variety, the mean and standard deviation are 50 kg and 9 kg, respectively. Then we 
have, for the first variety, 
C.V. = ( 10/60 ) x 100 = 16.7 % 
For the second variety, 
C.V. = ( 9/50 ) x 100 = 18.0 % 
It is apparent that the variability in first variety is less as compared to that in the second 
variety. But in terms of standard deviation the interpretation could be reverse. 
 
Example 19: Consider the measurements on yield and plant height of a paddy variety. The 
mean and standard deviation for yield are 50 kg and 10 kg respectively. The mean and 
standard deviation for plant height are 55 cm and 5 cm, respectively. 
 
Here the measurements for yield and plant height are in different units. Hence, the variability 
can be compared only by using coefficient of variation. For yield,  
C.V. = ( 10 / 50 ) x 100 = 20 % 
For plant height, 
C.V. = ( 5 / 55 ) x 100 = 9.1 % 
The yield is subject to more variation than the plant height. 
 
Skewness and Kurtosis 
The average and measure of dispersion can describe the distribution but they are not sufficient 
to describe the nature of the distribution. For this purpose we use other concepts known as 
Skewness and Kurtosis. 
 
Skewness 
Skewness means lack of symmetry. A distribution is said to be symmetrical when the values 
are uniformly distributed around the mean. For example, the following distribution is 
symmetrical about its mean 3. 
 
x  : 1 2   3 4 5 
frequency  (f ) : 5 9 12 9 5 
 
In a symmetrical distribution the mean, median and mode coincide, that is, 
mean = median = mode.  
 
The symmetrical and skewed distributions are shown by curves as 
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   Mean = Median = Mode      Mode >Med> Mean          Mean< Med<Mode 
 
Several measures are used to express the direction and extent of skewness of a dispersion. 
The important measures are that given by Pearson. The first one is the Coefficient of 
Skewness: 
 

 Sk = 
deviationdardS
medianmean

tan
)(3 −  

 
For a symmetric distribution Sk = 0. If the distribution is negatively skewed then Sk is negative 
and if it is positively skewed then Sk is positive. The range for Sk is from -3 to 3. 

The other measure uses the β (read ‘beta’) coefficient which is given by, β1 = 3
2

2
3

µ

µ
 where, µ2 

and µ3 are the second and third central moments. The second central moment µ2 is nothing but 

the variance. The sample estimate of this coefficient is b1 = 3
2

2
3

m

m
 where m2 and m3 are the  

sample central moments given by m2 = variance = 
  

1
)(

1
)( 22

−

−

−

− ∑∑
n

xxf
or

n
xx

 

 

and  m3 = 
1

)(
1

)( 33

−

−

−

− ∑∑
n

xxf
or

n
xx

 

 
For a symmetrical distribution b1 = 0. Skewness is positive or negative depending upon 
whether m3 is positive or negative. 
 
Kurtosis 
A measure of the peakness or convexity of a curve is known as Kurtosis. 
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It is clear from the above figure that all the three curves, (1), (2) and (3) are symmetrical 
about the mean. Still they are not of the same type. One has different peak as compared to that 
of others. Curve (1) is known as mesokurtic (normal curve); Curve (2) is  known as 
leptocurtic (leading curve) and Curve (3) is known as platykurtic (flat curve). Kurtosis is 

measured by Pearson’s coefficient, β2 (read ‘beta - two’).It is given by  β2 = 
µ
µ

4

2
2 . The sample 

estimate of this coefficient is    b2 = 
m
m

4

2
2  where, m4 is the fourth central moment given by m4 

= 
( ) ( )x x
n

or
f x x
n

−

−

−

−
∑ ∑4 4

1 1
 

 
The distribution is called normal if b2 = 3. When b2 is more than 3 the distribution is said to 
be leptokurtic. If b2 is less than 3 the distribution is said to be platykurtic. 
 
Example 20: The measures of skewness and kurtosis are given as below:  
x f (x - x  ) = d f d f d2 f d3 f d4 
3     4 -3.7 -14.8   54.76 -202.612   749.6644 
4     6 -2.7 -16.2   43.74 -118.098   318.8646 
5   10 -1.7 -17.0   28.90 -  49.130     83.5210 
6   26 -0.7 -18.2   12.74 -    8.918       6.2426 
7   24   0.3     7.2     2.16       0.648       0.1944 
8   15   1.3   19.5   25.35     32.955     42.8415 
9   10   2.3   23.0   52.90   121.670   279.8410 
10     5   3.3   16.5   54.45   179.685     592.9605 
Total 100      0 275.00  -  43.800 2074.1300 
 

 m2 or Variance = 
11

)( 22

−
=

−

− ∑∑
n

df
n

xxf
 = 275.000 / 99 = 2.7777 

 m3 = 
11

)( 33

−
=

−

− ∑∑
n

df
n

xxf
 = - 43.800 / 99 = - 0.4424 
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 m4 = 
11

)( 44

−
=

−

− ∑∑
n

df
n

xxf
 = 2074.1300 / 99 = 20.9508 

 

 b1 = 
4376.21

1957.0

)7777.2(

)4424.0(
3

2
=

−  = 0.0091 

 

 b2 = 
7156.7
9508.20

)7777.2(

9508.20
2
=  = 2.7153 

Since b1 is 0.0091, it is only slightly skewed. It is negatively skewed since m3 is negative. The 
value of b2 is 2.7153 which is less than 3. Hence the distribution is platykurtic. 
 
Exploring of data 
The first step of data analysis is the detailed examination of the data. There are several 
important reasons for examining data carefully before the actual analysis is carried out. The 
first reason for examination of data is for the mistakes which occur at various stages right 
from recording to entering the data on computer. The next step is to explore the data. The 
technique of exploratory data analysis is very useful in getting quick information, behaviour 
and structure of the data. Whereas the classical statistical techniques are designated to be best 
when stringently assumptions hold  true. However it is seen that these techniques fail 
miserably in the practical situation where the data deviate from the ideal described conditions. 
Thus the need for examining data is to look into methods which are robust and resistant 
instead of just being the best in a narrowly defined situation. The aim of exploratory data 
analysis is to look into a procedure which is best under broad range of situations. The main 
purpose of exploratory data analysis is to isolate patterns and features of the data which in 
turn are useful for identifying suitable models for analysis. Another feature of exploratory 
approach is flexibility, both in tailoring the analysis to the structure of the data and in 
responding to patterns that successive steps of analysis uncover. 
 
Graphical Representation of Data 
The most common data structure is a collection of batch of numbers. This simple structure, in 
case of large number of observations, is sometimes difficult to study and scan thoroughly with 
just looking into it. In order to concise the data, there are number of ways by which the data 
can be represented graphically. The histogram is a commonly used display. The range of 
observed values is subdivided into equal intervals and then the cases in each interval are 
obtained. The length of the interval is directly proportional to the number of cases within it. A 
display closely related to the histogram is the stem-and-leaf plot. 
 
Stem-and-leaf Display 
The stem-and-leaf plot provides more information about the actual values than does a 
histogram.  As in the histogram, the length of each bar corresponds to the number of cases 
that fall into a particular interval. However, instead of representing all cases with a same 
symbol, the stem-and-leaf plot represents each case with a symbol that corresponds to the 
actual observed value. This is done by dividing observed values into two components - the 
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leading digit or digits, called the stem and the trailing digit called the leaf. The main purpose 
of stem-and leaf display is to throw light on the following : 
 (1) Whether the pattern of the observation is symmetric. 
 (2) The spread or variation of observation. 
 (3) Whether a few values are far away from the rest. 
 (4) Points of concentration in data. 
 (5) Areas of gaps in the data. 
 
Example 21: For the data values 22.9, 26.3, 26.6, 26.8, 26.9, 26.9, 27.5, 27.6, 27.6, 28.0, 
28.4, 28.4, 28.5, 28.8, 28.8, 29.4, 29.9, 30.0. Display stem and leaf diagram. 
 
For the first data value of 22.9 
 
Data value  Split  Stem  and  Leaf 
    22.9   22/9    22        9 
Then we allocate a separate line in the display for each possible string of leading digits (the 
stem), the necessary lines run from 22 to 31. Finally we write down the first trailing digit (the 
leaf) of each data value on the line corresponding to its leading digits. 
  (Unit = 1 day ) 
22 :  9 
23 :   
24 :   
25 :   
26 :  3 6 8 9 9 
27 :  5 6 6 
28 :  0 4 4 5 8 8 
29 :  4 9 
30 :  0 3 
31 :  2 8 
Sometimes, there are too many leaves per line (stem) then in that case it is desired to split 
lines and repeat each stem. 
 0 * (Putting leaves 0 through 4) 
 0 . (Putting 5 through 9) 
 1 * 
 1 . 
 2 * 
 2 . 
In such a display, the interval width is 5 times a power of 10. Again, even if for two lines it is 
crowded then we have a third form, five lines per stem. 
 0* 
 t 
 f 
 s 
 0. 
With variables 0 and 1 on the * line, 2 (two) and 3 (three) on the t line, 4 (four) and 5 (five) 
on the  f  line, 6 (six) and 7 (seven) on the  s  line and 8 and 9 on the  .  line. 
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The Box-plot 
Both the histogram and the stem-and-leaf plots are useful for studying the distribution of 
observed values. A display that further summarizes information about the distribution of the 
values is the box-plot. Instead of plotting the actual values, a box plot displays summary 
statistics for the distribution. It plots the median, the 25th percentile, 75th percentile and 
values that are deviating from the rest. Fifty percent of the cases lie within the box.  The 
length of the box corresponds to the interquartile range, which is the difference between the 
Ist and 3rd quartiles. The box plot identifies extreme values which are more than 3 box-
lengths from the upper or lower edge of the box. The values which are more than 1.5 box-
lengths are characterized as outliers. The largest and the smallest observed values are also 
part of the box-plot in terms of edges of lines. The median which is a measure of location lies 
within the box. The length of box depicts the spread or variability of observations. If the 
median is not in the center of the box, the values are skewed. If the median is closer to the 
bottom of the box than the top, the data are positively skewed. If the median is closer to top 
then the data are negatively skewed. 
 
Spread-versus-level plot 
When a comparison of batches shows a systematic relationship between the average value or 
level of a variable and the variability or spread associated with it,  then it is of interest to 
search for a re-expression, or transformation of the raw data that reduces or eliminates this 
dependency. If such a transformation can be found, the re-expressed data will be better suited 
both for visual exploration and for analysis. This will further make analysis of variance 
techniques valid and more effective, when there is exactly or approximately equal variance 
across groups. The spread-versus-level plot is useful for searching an appropriate power 
transformation. By power transformation it is meant as power i.e. searching a power (or 
exponent)  p  as the transformation that replaces x by xp . The power can be estimated from 
the slope of line in the plot of log of the median against the log of the interquartile range i.e. 
IR α Md = c Md or log IR = log c + B log Md . The power is obtained by subtracting the slope 
from 1. (i.e. Power = 1 - slope). This is based on the concept that transformation Z =  x1-b of 
the data given re-expressed value Z whose interquartile range or spread does not depend at 
least approximately on the level. In addition to this graphical method of  judging the 
independence of spread and level, there is a test known as Levene Test for testing the 
homogeneity of variances. 
 
Although there is a wide variety of tests available for testing the equality of variances, but 
many of them are heavily dependent on the data being samples from normal populations. 
Analysis of variance procedures on the other hand are reasonably robust to departures from 
normality. The Levene test is a homogeneity of variance test that is less dependent on the 
assumption of normality than most tests and thus is all the more important with analysis of 
variance. It is obtained by computing for each case the absolute difference from its cell mean 
and then performing a one-way analysis of variance on these differences. 
 
Examination of Normality 
As the normal distribution is very important for statistical inference point of view so it is 
desired to examine the assumption to test whether the data is from a normal distribution. The 
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normality can be tested by plotting a normal plot. In a normal probability plot each observed 
value is paired with its expected value from the normal distribution. In a situation of 
normality, it is expected that points will fall on straight line. In addition to this a plot of 
deviation from straight line can also be plotted as detrended normal plot. A structure-less 
detrended normal plot confirms normality. These two plots give a visual basis for examining 
normality. Besides these visual displays, the statistical tests are Shappiro-Wilks and the 
Lilliefors. The Lilliefors test is based on the modification of the Kolmogorov-Smirov test for 
the situation when means and variances are not known but are estimated from the data. The 
Shapiro-Wilks test is more powerful in many situations as compared to other tests. 
 
Robust Location Estimation for Comparing Groups 
In comparison of groups based on exploratory data analysis, median (a resistant location 
estimator) and spread play a very crucial role because wild observations have no effect on 
them significantly. Besides estimating median or spread for simply exploring the data for 
comparison purpose, it is also desirable to consolidate them in very concise manner in terms 
of one or two reliable estimates of parameters which take into account all the observations. 
The simplest parameter one can think of, is that of arithmetic mean to estimate central 
tendency or location. Further it is well known that mean is heavily influenced by outliers. One 
very small or large observation may change mean drastically or in other words mean is not a 
resistant estimator of location. In addition to the resistant to wild observations, it is also of 
interest to look into a estimator which is robust against underlying distributional assumptions. 
 
A simple robust estimator of location is trimmed mean which is obtained by excluding the 
extreme values. Like median it is also not affected by extremes. The advantage of trimmed 
mean in comparison to median is that it utilises more observations or in other words it makes 
better use of the data. The trimmed mean is also thought of weighted mean in which 
observations included are attached weight of unity and observations excluded are attached 
with zero weights. For robust estimation an another alternative is to include the extremes with 
smaller weights than the cases that are closer to the center. There could be various ways of 
assigning weights to the observations and this leads to thus many generalized maximum-
likelihood estimators of location popularly known as M-estimators. Thus the logic of the M-
estimators is assigning of weights to observations which is inversely proportional to the 
distance from the center (or any measure of location). 
 
In robust estimation, the numerical values of estimates are essentially obtained by an iterative 
process because the estimators do not have closed forms like the mean or variance. Estimates 
are obtained by minimizing a function. This is achieved by assuming some starting value, say 
m0 of location and then computing a new estimate m*. Then this new estimate can become the 
starting value for another round, and the process continues until the estimates at two different 
iterations do not differ much. In the course of minimising a function, different weights are 
attached to different observations depending upon their deviation or relative deviation from 
the location estimate. For instance in Huber’s estimator the observations are attached equal 
weights of unity upto a critical point c, and thereafter weights decrease as standardised 
distance from the location estimate increase. 
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The different M-estimators differ from each other in respect of weights assign to 
observations. The Tukey biweight does not have a point at which weights shift abruptly from 
1. Instead weights decline to 0. Cases with values greater than c standardised units from the 
estimates are assigned zero weights. Hampel’s M-estimator has a more complicated weighting 
scheme than the Huber or Tukey biweights. In this case the range is divided by 3 cutoff points 
say  a, b, c. Cases below ‘a’ are given weights unity and cases above ‘c’ are given zero 
weights. Cases between ‘a’ and ‘b’, and ‘b’ and ‘c’ are assigned weights according to 
standardised distances. In case of Andrew’s M-estimator, there is no abrupt change in the 
assignment of weights. A smooth function replaces the separate pieces. 
 
There are mainly three categories of robust estimation of location. Their logic and underlying 
concepts are 
 
L-Estimators: A class of estimators, called L-estimators is defined by a linear combination of 
the order statistics. This class includes the sample mean, median and trimmed means as 
special cases. 
 
R-Estimators: R-Estimators are derived from rank tests for a shift between samples, 
estimating the shift by moving one sample along until the test is least able to detect a shift. In 
estimating location, the second sample is the mirror image of the actual sample, reflected 
about the estimate, so that an R-estimator of location minimises the shift between the sample 
and its mirror image, as measured by the rank test. 
 
M-Estimators: M-estimators minimise functions of the deviations of the observations from the 
estimate that are more general than the sum of squared deviations or the sum of absolute 
deviations. In this way the class of M-estimators includes the mean and the median as special 
classes. Viewed in another way, M-estimators generalise the idea of the maximum-likelihood 
estimator of the location parameter in a specified distribution. Thus it is reasonable to expect 
that a suitably chosen M-estimator will have good robustness of efficiency in large samples. 
In fact, the original theoretical development was motivated by achieving robustness in a 
neighbourhood of the normal distribution. 


