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INTRODUCTION

In broad terms, Exploratory Data Analysis (EDA) can be
defined as the numerical and graphical examination of
data characteristics and relationships before formal,
rigorous statistical analyses are applied.  Although the
temptation to omit EDA in favor of delving into ANOVAs,
MANOVAs and the like is great, the role of EDA cannot
be underemphasized.  EDA rewards the user with a
better understanding of the intricacies of the relationships
among data.  In addition, EDA can be used to probe the
validity of  assumptions that are made by formal statistical
tests (eg., normally distributed data/residuals,
homogeneity of variances, additivity, etc.)  EDA can be
envisioned as the setup for more formal analyses.  It
provides all the prerequisites for a final, no-surprises
formal analysis of the data.

As stated above, both numerical and graphical methods
are employed in EDA.  For numeric methods, one might
begin with descriptive statistics (mean, median) and
progress to more formal analyses of the relationships
between data (regression, correlation).  For graphical
methods, one can advance from frequency distributions
to simple 2-way scatter plots to n-way scatter plots to
response-surface plots.  A combination of numeric and
graphical methods leads to normal probability (quantile)
plots, histogram/distribution plots and beyond.

At this time, the usual warning must be imparted:  It is up
to the reader to determine the appropriate EDA methods
for the data.  Ignorance is not bliss!

EDA:  UNIVARIATE METHODS

This section of the paper will emphasize some of the
numeric and graphical methods that could be employed
in EDA of a single variable.  The methods described here
are not meant to be all-inclusive; rather, they are intended
to provide a starting point for further in-depth analyses.

Numerical Methods

Regardless of the number of variables, the most
informative SAS  PROC for any numeric analysis (and
the best starting point) is UNIVARIATE.  This procedure
contains a wealth of information that can be utilized in
EDA.  The procedure provides statistics that detail the
central tendency, spread, extremes and distributional
characteristics of the data.  Figure 1 presents an analysis
of hits for American League baseball players from 1988.
The code used to generate this output is shown below:

PROC UNIVARIATE DATA=BASEBALL PLOT NORMAL;

ID NAME;
VAR HITS;

RUN;

Examination of the central tendency statistics (mean and
median) and the spread statistics (standard deviation and
interquartile range, Q3-Q1) can shed some light on the
distribution of the data.  The extremes can be used to
identify potential outliers.  Incorporation of the ID
varname statement in PROC UNIVARIATE results in the
five high and low extremes being identified by the values
of varname.  The statistics skewness and kurtosis
compare the shape of the distribution of the data to that
of normally distributed data.  It should be noted that these
statistics have been shown to be heavily influenced by
sample size and outliers.  Other shape statistics have
been suggested (Walega, 1993).

The addition of the NORMAL option to the PROC
UNIVARIATE statement generates a statistical test for
normality.  The statistic employed is the Shapiro-Wilk W
for sample sizes < 2000, otherwise the Kolmogorov
statistic is used.  It is suggested that tests for normality be
conducted conservatively, with significance levels of 0.10
or 0.15 used to reject the hypothesis of normally
distributed data.  In addition, care must be used in the
interpretation of these tests, as they are sensitive to both
sample size and to the presence of outliers.

Graphical Methods

As with numeric methods, graphs developed for
univariate data usually identify the central tendency,
spread and distribution of the data.  Methods that can be
used to elucidate this information include histograms and
stem-and-leaf, box and empirical distribution plots.  Each
of these will be discussed in further detail below.

Sample histograms can be produced by PROC CHART,
while more complex, high-resolution histograms can be
generated by the SAS/GRAPH  GCHART procedure.
Histograms are useful for displaying the distribution of
data within selected intervals.  They are often used to
provide a preliminary estimate of the fit of the data to a
normal distribution. The key to using histograms is the
selection of the number of midpoints.  Too few, and it is
difficult to extract information about the distribution of the
data.  Too many, and the overall picture of the distribution
becomes clouded. PROC GCHART can be used to
enhance histograms through the addition of labels,
specialized counting statistics, and other display



enhancing options, although a simple chart is usually
sufficient.

Stem-and-leaf displays (see Figure 2) are similar to
histograms in that both divide the data into intervals, thus
providing a frequency distribution of the data.  The steam-
and-leaf plot goes on to provide the actual data values in
the display while showing the distribution of the data.
The PROC UNIVARIATE statement, in conjunction with
the PLOT option, will generate stem-and-leaf plots.
Although not as widely employed as a histogram, the
stem-and-leaf plot is useful because:  Actual data are
shown, the stem-and-leaf plot is generated along with the
remainder of the UNIVARIATE output and YOU DON’T
HAVE TO DO ANY PROGRAMMING TO GENERATE IT!

An extremely effective method for presenting a summary
of univariate data is the box plot (see Figure 2).  As
described by Tukey (1977), the box plot is a practical
means for the display of the following summary statistics:
central tendency (mean, median), spread (interquartile
range), shape and outliers.  The addition of the PLOT
option to the PROC UNIVARIATE statement will generate
box plots for each analysis.  If a BY by-variables
statement is included, the box plots for each level of the
by-variables will be grouped on a separate page of
output.  High-resolution box plots can be generated by
specifying I = BOX in the SYMBOL statement of PROC
GPLOT. The stem-and-leaf plot and the box plot, when
used in conjunction with the numeric analyses provided
by UNIVARIATE, create a powerful analytical tool that
can be used to further understand the distribution of data
from a single variable.

Data Transformations

Close examination of the data may indicate the need for
transformation to achieve the gold standard of normally
distributed data.  How to effect this transformation has
been greatly simplified by the development of specific
graphical methods that suggest to the analyst the
appropriate power transformation.

As stated earlier, many formal statistical analyses rely on
data that approximately follow a normal distribution,
specifically the residuals (errors).  While there are many
methods that can be used to effect a transformation of
the data to an approximately normally distributed form,
the family of power transformations have been the most
studied, and thus the best understood.

Unlike other data transformations. a power transformation
of the data does not  impact on the order of the data.
Rather, it changes the spacing between the data.  For
example, SQRT(x) and LOG(x) pull in the upper tail of a
distribution, with LOG(x) being more powerful than
SQRT(x).  The transformation Xn, where n is usually a
multiple of 0.5, spaces out the upper tail.  But how does
one determine the ‘best’ power transformation?

A family of plots called symmetry plots have been shown
to be very effective in providing the analyst with an
assessment of the distribution of data, information as to
the ‘best’ transformation to employ, and the ability to

assess the effect of the transformation.  The plots are
based on equivalent distances between corresponding
points to the median value.  When the data are
appropriately plotted, a linear regression line with a slope
of β indicates that the power for transformation to
symmetry is 1 - β.  For example, if the slope is 0.5, then
the power transformation is also 0.5, which suggests the
square root of the data will effectively transform the data
such that they follow approximately normal distribution.
Figure 3 shows a symmetry plot for home runs.  It
suggests that a square root transformation of the data will
be the most appropriate.

BIVARIATE/MULTIVARIATE METHODS

Most analyses involve measuring the effect that two or
more variables (independent) have on one or more
dependent variable.  In some cases, extensions to the
methodology presented in the previous section can be
employed.  However, in most cases more sophisticated
tools are required to effectively perform EDA.

Graphical Methods

Graphical EDA of bivariate data is just an extension of the
univariate methodology presented above.  Actually, the
graphical display of bivariate data is probably the most
frequently used aspect of EDA, and can be significantly
more useful than the numeric methods to be described
below.

Of the methods available, simple and enhanced scatter-
plots are the cornerstone of displaying data from two to
many variables.  Indeed, many multivariate methods for
graphing data expand on the simple scatterplot.  Not only
can bivariate displays be used for preliminary EDA, but
they are also employed as tools for regression
diagnostics and are used to validate model assumptions.

The simplest way to display data from 2 variables is to
use PROC PLOT to generate a scatterplot.  In most
instances the resolution of PROC PLOT is acceptable;
PROC GPLOT does achieve higher resolution, at a cost
of more programming.  PROCs PLOT and GPLOT can
also display the relationship between pairs of variables.
Labeling observations is useful if one intends to identify
outliers.  PROC PLOT does have the ability to label data
points; unfortunately, all data points are labeled.  For this
special case, the use of the Annotate facility of
SAS/GRAPH to label data points on a PROC GPLOT
scatterplot is recommended.  This method is the best way
for the user to set limits that define outlier data points.

Two extremely useful displays of bivariate data are:  the
marriage of the scatterplot and boxplot, and the marriage
of scatterplots and confidence ellipses (Friendly, 1991).
The scatterplot/boxplot display aids the user in the
visualization of the shape of the distributions of the 2
variables, and provides means to estimate the summary
statistics and detect the presence of outliers.  The
scatterplot/confidence ellipse provides information on the
relationship between several groups of data.  One must
take care when using this display; outliers, non-normal
data and non-linear relationships between the data may



distort the ellipses.  In that case, a non-parametric
version should be employed.

An extension of the scatterplot to multivariate analyses is
the scatterplot matrix.  This display enhances the ability
to see the relationships between more than 2 variables.
All pairs of n variables can be displayed in an n x n grid,
with the n(n-1)/2 scatterplots shown on a single page of
output.  Obviously, resolution decreases as an n
increases.  Experience shows that n > 6 limits the
effectiveness of this display.  PROCs GPLOT and
GREPLAY, in conjunction with the Annotate facility of
SAS/GRAPH, are used to generate scatterplot matrices.
Figure 4 presents a scatterplot matrix for batting
average, SQRT(hits), SQRT(hr), years in the major
leagues (calculated as min(years,7)), SQRT(rbi) and
LOG(salary).

Other multivariate plots (ie, star, profile), can also be
used to display multivariate data.  However, they require
more programming, and the results can be more difficult
to interpret.  Two very useful ‘multivariate’ plots are the
multivariate normal probability plot and the multivariate
outlier plot.  Although both plots collapse multi-
dimensional data down to 2 dimensions, both can be
extremely useful.  Figures 5 and 6 display examples of a
multivariate normal probability plot and outlier plot,
respectively.

As we approach the stage of building a model(s) to
explain the relationships that we have observed, once
again it is graphics to the rescue.  A straightforward plot
called the Cp plot can be used to assist the analyst in
identifying models of interest that can then be formally
evaluated using PROC REG.

The Cp plot relies on output from PROC RSQUARE to
generate Cp values for all possible combinations of
variables that entered into a model.  For example, if the
variables batting average, SQRT(hits), SQRT(hr) and
SQRT(rbi) were of interest, RSQUARE would generate
14 different models, using any and all combinations from
one to four variables.  The values of Cp are plotted
against 1 plus the number of predictors in the model.
Models judged to have high potential have low values of
Cp.  Figure 7 presents an example where batting
average, years experience, SQRT(hits), SQRT(hr) and
SQRT(rbi) are used to determine LOG(salary).  In this
example, the models with the highest potential appear
below the line.

Numerical Methods

Examination of the linear relationship between two (or
more) variable requires the use of PROCs CORR and
REG.  PROC CORR starts a preliminary investigation of
the strength of the linear relationship between two
variables.  PROC REG allows us to delve deeper into the
possible linear relationships between two or more
variables, and thus build models that can help explain
these linear relationships.

PROC CORR provides parametric (Pearson) and
nonparametric (Spearman) measures that calculate the

correlation or partial correlation between variables.  The
code

PROC CORR DATA=BASEBALL PEARSON SPEARMAN
NOSIMPLE;

VAR AVG SQHITS SQHR SQRBI LOGSAL;
RUN;

generates a correlation analysis that examines the linear
relationship between the batting average, hits, home runs
and runs batted in.  One must carefully interpret the
results of any correlation analyses.  It is suggested that
graphical methods also be employed, as lack of
correlation indicates only a lack of a linear relationship
between two variables, not a lack of any relationship.

Once preliminary EDA analyses have been completed,
PROC REG can then be used to further examine the
relationships among the data, and to provide an estimate
of the value of a dependent variable given the predicted
value(s) of the independent variable(s).  PROC REG is
similar to UNIVARIATE in that the output can contain a
wealth of information about the linear relationship among
data (the only problem is to determine what you really
need!)  Unlike UNIVARIATE, use of the more advanced
options of the procedure necessitates some
understanding of statistics.

With PROC REG, various models can be developed that
may provide further insights into the relationships among
data.  The MODEL statement options FORWARD,
BACKWARD, and STEPWISE enter/delete variables
into/from the model, while the options MAXR, MINR,
RSQUARE and ADJRSQ employ the correlation
coefficients to determine the “best” model.  Then, after a
model has been fit, PROC REG can provide diagnostic
information on the fit of the data to the model and
information on the reliability of the assumptions made by
linear regression analyses.

DIAGNOSTICS

After a model for the data has been proposed, it is always
appropriate to test that the assumptions made by the
analytical method have been satisfied. For example, one
basic tenant of regression and general linear models
analyses is that the error terms are normally distributed
with mean 0 and variance σ2.  PROC REG, in addition to
providing the results of the proposed model, also
provides diagnostics in the form of statistical tests and
plots that can be used to validate the assumptions made
by linear regression. These assumptions can also be
examined through the use of PROC UNIVARIATE and
SAS/GRAPH.

Graphical Methods

Within REG, many types of diagnostic plots are available.
A plot of the studentized residuals versus the predicted
values help the analyst determine if the variances are
homoscedastic (approximately equal).   A more
meaningful plot is the absolute value of the rstudent



residuals versus the predicted values, as the rstudent
residuals are, by their nature, not influenced by outliers.

An effective display that is used to examine the
distribution of data (or residuals) is the quantile plot.  The
NORMAL option on the PROC UNIVARIATE statement
(see Figure 2) produces such a plot.  This plot provided
information about the distribution of the data (or
residuals) as compared to a normal distribution.
Deviations from a straight line are suggestive of non-
normality.  For example, evidence of skewness (both
ends of plot deflect in same direction) or kurtosis (ends
deflect in opposite directions) can be seen in these plots.
Additionally, this plot permits the user to detect potential
outliers as well as systematic departures from normality.
The normal quantile plot produced by UNIVARIATE is,
however limited in the detail that it can provide.  A better
alternative would be to program the display via the
GPLOT procedure of SAS/GRAPH.

Numeric Methods

The COLLIN option in PROC REG can be specified to
test for collinearity (one regression variable being a linear
combination of other variables in the model).  Note that
evaluation of collinearity  is purely subjective, in that one
looks for a “large” increase in the Condition Index.

The SPEC option of PROC REG can be used to test for
heteroscedasticity of the variance (errors not
independent, variances not constant).  The results of the
analysis should be examined at a conservative p-value,
say from 0.10 to 0.20.

SUMMARY

This paper has attempted to give the reader a flavor for
the many Exploratory Data Analysis tools that are
available in Base SAS, SAS/GRAPH and SAS/STAT .
Realizing that this paper has skimmed the surface of EDA
methodology available today, hopefully the ideas
discussed in this paper will stimulate the reader to further
explore their data.
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FIGURE 1

Analysis of Baseball Salary Data
Descriptive Statistics for Key Determinants of Salary

                                        Univariate Procedure

Variable=HITS          Current Year Hits

                 Moments                                                Quantiles(Def=5)

 N               161  Sum Wgts        161                    100% Max       238       99%       223
 Mean       110.0497  Sum           17718                     75% Q3        144       95%       177
 Std Dev     45.3602  Variance   2057.548                     50% Med       112       90%       168
 Skewness    0.23364  Kurtosis   -0.60314                     25% Q1         70       10%        47
 USS         2279068  CSS        329207.6                      0% Min        36        5%        41
 CV         41.21792  Std Mean   3.574884                                              1%        37
 T:Mean=0   30.78413  Pr>|T|       0.0001                    Range          202
 Num ^= 0        161  Num > 0         161                    Q3-Q1           74
 M(Sign)        80.5  Pr>=|M|      0.0001                    Mode           101
 Sgn Rank     6520.5  Pr>=|S|      0.0001
 W:Normal   0.954613  Pr<W         0.0002

                                              Extremes

                                 Lowest    ID      Highest    ID
                                     36(MEACHAM )      200(CARTER  )
                                     37(RAYFORD )      207(BOGGS   )
                                     39(REED    )      213(FERNAND )
                                     39(DWYER   )      223(PUCKETT )
                                     39(BEANE   )      238(MATTING )

FIGURE 2

   Stem Leaf                     #     Boxplot                           Normal Probability Plot
     23 8                        1        |            235+                                                  *
     22 3                        1        |               |                                                * +
     21 3                        1        |            215+                                              * ++
     20 07                       2        |               |                                            **++
     19 8                        1        |            195+                                           *+
     18 3                        1        |               |                                         +*
     17 001279                   6        |            175+                                       ****
     16 003333888999            12        |               |                                   ****
     15 012244799                9        |            155+                                 ***+
     14 01244567889             11     +-----+            |                               ***
     13 01112566777899          14     |     |         135+                            ****
     12 000223688                9     |     |            |                           **+
     11 02333344788899          14     *--+--*         115+                         ***
     10 111123334689            12     |     |            |                       ***
      9 01222336689             11     |     |          95+                     ***
      8 022334455                9     |     |            |                   +**
      7 000336788                9     +-----+          75+                 +**
      6 0133668889              10        |               |              ++***
      5 012366679                9        |             55+            +****
      4 01113356667799          14        |               |       *******
      3 67999                    5        |             35+* * * * ++
        ----+----+----+----+                               +----+----+----+----+----+----+----+----+----+----+
    Multiply Stem.Leaf by 10**+1                               -2        -1         0        +1        +2
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