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Abstract

We propose an exploratory data analysis approach when data are observed as in-

tervals in a nonparametric regression setting. The interval-valued data contain richer

information than single-valued data in the sense that they provide both center and

range information of the underlying structure. Conventionally, these two attributes

have been studied separately as traditional tools can be readily used for single-valued

data analysis. We propose a unified data analysis tool that attempts to capture the

relationship between response and covariate by simultaneously accounting for variabil-

ity present in the data. It utilizes a kernel smoothing approach, which is conducted

in scale-space so that it considers a wide range of smoothing parameters rather than

selecting an optimal value. It also visually summarizes the significance of trends in the

data as a color map across multiple locations and scales. We demonstrate its effective-

ness as an exploratory data analysis tool for interval-valued data using simulated and

real examples.

Keywords: Exploratory data analysis, Interval-valued data, Nonparametric regression,

Scale-Space, Visualization.
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1 Introduction

With the rapid advancement of computing technology and storage capacity, both the size of

data and the complexity of their structure have significantly increased. These enormous data

are sometimes converted into new types of data such as intervals, histogram, and trees for an

effective summary (Billard and Diday, 2003; Wang and Marron, 2007; Noirhomme-Fraiture

and Brito, 2011). An analysis of these types of data using traditional statistical approaches

often encounters unsatisfactory outcomes, and thus it is imperative to develop appropriate

statistical methodologies for these data sets.

Interval-valued data are observed with lower and upper bounds, representing uncertainty

or variability. Interval-valued data often arise in sampling or aggregation in large data sets.

This aggregation reduces large, complex data sets to a size that is more manageable for

practitioners by keeping only the extracted information. Interval-valued data offer richer

and more complex information than single-valued data because they contain both trend

and variation. Examples of interval-valued data include blood pressure values reported in

medical records of patients, the maximum and minimum stock prices in a day, and selling

prices of cars or houses.
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Figure 1: Scatterplot of the Hawaii climate data in 2013. The x- and y-axes represent tem-

perature in Fahrenheit and sea level pressure in millibars as interval-valued data generated

from daily means collected at 29 climate/weather stations.
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To provide the motivation of the proposed work, we introduce a real example analyzed in

Section 4.2. The example concerns the relationship between the daily mean sea level pressure

and the daily mean temperature in Hawaii. The relationship between these two variables is of

interest to climatologists, e.g. see Bayr and Dommenget (2013) and references therein. Our

goal is to conduct a quick exploratory data analysis as an initial step without considering any

other factors. The original data (publicly available from the National Climatic Data Center

at http://www.ncdc.noaa.gov/) were collected in the single-valued form in 2013 from 29

stations, yielding 117,709 observations. From these single-valued data we calculate the 10th

and 90th percentiles of the 29 stations each day for both temperature and pressure, producing

a total of 365 interval-valued observations. Figure 1 depicts the aggregated interval-valued

data. It is hard to see whether there exists any trend between the two variables from the

scatterplot. Also, it is not clear whether the trend, if any, is statistically significant, or is

just created by the artifacts of sampling noise or variation in the intervals.

Interval-valued data analysis (Billard and Diday, 2003) has gained considerable attention

in regression (de Carvalho et al., 2004; Lima Neto et al., 2004, 2005; Lima Neto and de Car-

valho F. A. T., 2010; Blanco-Fernández et al., 2011; Yang et al., 2011; Blanco-Fernández

et al., 2013; Jeon et al., 2015), multivariate analysis (Lauro and Palumbo, 2000; Palumbo

and Lauro, 2003; Douzal-Chouakria et al., 2011; Le-Rademacher and Billard, 2012), and time

series contexts (Maia et al., 2008; Arroyo et al., 2011). In parametric regression problems,

Billard and Diday (2000) propose a center method that fits an ordinary regression model

to centers of intervals and Lima Neto and de Carvalho (2008) fit two separate regression

models for centers and ranges of the intervals. Bivariate models have also been considered.

Lima Neto et al. (2009, 2011) develop bivariate generalized linear models for symbolic data

and Silva et al. (2011) propose a copula-based regression model. Ahn et al. (2012) apply a

resampling scheme to account for the variation in the interval-valued data and conduct sta-

tistical inference in a parametric regression setting. Most of the existing statistical methods

for interval-valued data aim to predict future observations, but little work has been done

for exploratory data analysis. Hence, it is necessary to develop a proper tool to explore

interval-valued data, which would assist prediction and statistical inference in later steps.

We take a kernel-based nonparametric approach for exploring trends in interval-valued

data. One could apply a nonparametric smoothing technique to lower and upper bounds, or

to centers and ranges separately, but it does not fully utilize the information available in the

data, and it could be difficult to interpret separate analyses. Therefore, it would be desirable

to develop a unified data analysis tool and extract meaningful trends in the interval-valued
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data by taking the internal variation into account.

In nonparametric kernel smoothing problems, the selection of smoothing parameters has

been a critical issue, which could be more challenging for interval-valued data because the

range of the intervals as well as the noise error are extra sources of variation. In order to

circumvent this difficulty we take a scale-space approach (Lindeberg, 1994) and develop a

SiZer (SIgnificant ZERo crossing of the derivatives) tool (Chaudhuri and Marron, 1999) for

interval-valued data. SiZer investigates significant features in the data at multiple smoothing

levels instead of choosing a single, optimal one, and visually summarizes its statistical infer-

ence results as a color map, called SiZer map for easy and quick interpretation. Therefore,

it allows data analysts to discover all the information in the data that is available at each

smoothing level.

Since the seminal work of Chaudhuri and Marron (1999), SiZer tools have been extended

to various statistical methods and applied to a broad set of real applications. For example,

Hannig and Lee (2006) study median regression function and detect outliers in the data,

and Park et al. (2010) generalize it to the quantile function. SiZer tools have been de-

veloped for jump points detection (Kim and Marron, 2006), survival analysis (Marron and

de Uña Álvarez, 2004), generalized linear models (Li and Marron, 2005; Ganguli and Wand,

2007; Park and Huh, 2013), smoothing spline (Marron and Zhang, 2005), additive models

(González-Manteiga et al., 2008), and comparison of multiple curves (Park and Kang, 2008;

Park et al., 2015). For time series data, Park et al. (2004), Rondonotti et al. (2007), and Park

et al. (2007, 2009a,b) apply a scale-space approach while accounting for serial correlation in

the data. Also, Bayesian multiscale smoothing techniques are used in Erästö and Holmström

(2005), Godtliebsen and Øig̊ard (2005), Øig̊ard et al. (2006), Erästö and Holmström (2007),

and Sorbye et al. (2009). The SiZer idea has been extended to two dimensional imaging data

as well (Godtliebsen et al., 2002, 2004; Duong et al., 2008; Vaughan et al., 2012; Holmström

and Pasanen, 2012).

The objective of the proposed work is to develop a SiZer tool, which conducts exploratory

data analysis using nonparametric kernel smoothing at multiple scales and offers statistical

inference for finding meaningful structure in interval-valued data. In order to make statistical

inference that accounts for the variation in interval-valued data we propose three different

ways of constructing a confidence interval at each location and at each scale by combining

bootstrap and Monte Carlo resampling schemes. These resampling approaches enable one to

fully make use of the variability in interval-valued data and obtain the sampling distribution

of relevant smoothing estimators.
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The remainder of the paper is organized as follows. Section 2 reviews the conventional

SiZer for single-valued data and introduces interval-valued data analysis using centers and

ranges separately. Section 3 proposes a new SiZer tool for interval-valued data. Section

4 presents simulation results and real data analysis with the proposed tool. The paper

concludes with discussion in Section 5.

2 Conventional SiZer

Suppose that n pairs of single-valued data {(Xi, Yi), i = 1, ..., n} are independently observed.

A nonparametric regression setting is given as

Yi = f(Xi) + σ(Xi)ϵi, i = 1, ..., n, (2.1)

where f is an unknown regression function, σ2(x) = V ar(Yi|Xi = x) is a conditional variance

function, and ϵi independently follows N(0, 1).

The conventional SiZer (Chaudhuri and Marron, 1999) is an effective multiscale tool for

discovering any important features hidden in the single-valued data. Its target changes from

an underlying true function (e.g. f in (2.1)) to a smoothed function (e.g. fh below) depending

on a scale parameter (e.g. bandwidth), and analysis is done across multiple locations and

scales. It utilizes the local linear smoothing method (Fan and Gijbels, 1996) to estimate the

unknown function f in the model (2.1) and its derivative f ′ at a given location x for a given

scale (bandwidth) h. More specifically, one can obtain (β̂0, β̂1) at (x, h) by minimizing

n∑
i=1

[Yi − (β0 + β1(x−Xi))]
2Kh(x−Xi) (2.2)

where Kh(·) = K(·/h)/h and K is the standard normal density function. Then, since

β̂0 ≈ fh(x) =
∫
f(u)Kh(x − u)du and β̂1 ≈ f ′

h(x) =
∫
f ′(u)Kh(x − u)du, (β̂0, β̂1) is an

estimate of (fh(x), f
′
h(x)).

SiZer conducts statistical inference on the slopes to find meaningful trends and reports

its significance testing results in a SiZer map. Since a scale-space approach assumes that the

truth exists at each scale (Lindeberg, 1994), SiZer studies the estimated slopes with different

locations and bandwidths and conducts the statistical hypothesis tests H0 : f ′
h(x) = 0 at

each (x, h). The corresponding 100(1− α)% confidence band is given as

f̂ ′
h(x)± qhŜD(f̂ ′

h(x)) (2.3)
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where the estimate of the standard deviation (SD) is given by the conditional weighted

sample variances (Fan and Gijbels, 1996). The modified Gaussian quantile with multiple

testing adjustment is given as (Hannig and Marron, 2006),

qh = Φ−1

((
1− α

2

)1/(θg))
(2.4)

where Φ is the cumulative distribution function of the standard normal, g is the number of

pixels in each row of a SiZer map, and the cluster index θ is given as

θ = 2Φ

(√
3 log g

∆̃

2h

)
− 1,

which measures the equivalent number of independent observations. Here, ∆̃ denotes the

distance between the pixels of the SiZer map. See Hannig and Marron (2006) for more

details. The nominal level α=0.05 is used in our numerical examples.

SiZer uses colors to present the statistical test results in a SiZer map. The pixel at (x, h)

is colored black if the confidence band in (2.3) is above zero, implying that the smoothed

function fh(x) is increasing at the corresponding point x and scale h. It is colored white if

the confidence band is below zero, implying that the smoothed function fh(x) is decreasing

at (x, h). If the confidence band contains zero, the slope at (x, h) is not significantly above

or below zero and the pixel is colored intermediate gray. SiZer utilizes the effective sample

size (ESS)

ESS(x, h) =

∑n
i=1Kh(x−Xi)

Kh(0)
, (2.5)

to determine whether the number of observations is sufficient to make any statistical decision

at (x, h). If ESS(x, h) < 5, the pixel is colored darker gray and shows no testing result.

The conventional SiZer for single-valued data can also be used for interval-valued data.

For example, it can be applied to centers and ranges separately. In what follows, we apply

the conventional SiZer to the Hawaii climate data introduced in Section 1.

Figure 2(a) depicts SiZer plots using the mid-points of the interval-valued data to inves-

tigate the center relationship between the daily sea level pressure and the daily temperature

for 2013. In the top panel, the horizontal axis represents the temperature and the verti-

cal axis the sea level pressure. The dots display the mid-points of the intervals and the

thin curves the family of smooths, which are the local linear smooths f̂h(x) with different

h values (i.e. at different scales). These curves show an overall decreasing trend and some

oscillating trends that vary depending on the scale, but it is not obvious which features are
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Figure 2: We apply the conventional SiZer to the centers (a) and the ranges (b) of the Hawaii

climate data, sea level pressure vs. temperature, depicted in Figure 1. The dotted white

curves in the SiZer maps display the window widths for each scale, ±2h.
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really present. The bottom panel displays the SiZer map summarizing statistical inference

on the slopes of the smoothed curves in the top panel. The horizontal axis represents the

same horizontal locations as in the family of smooths in the top panel. The vertical axis

represents the level of smoothing on a log scale, log10 h. Note that each row of the SiZer map

corresponds to one of the thin curves in the top panel. In the map, the pixels at the coarsest

scale (the largest h) are colored white, which confirms that the overall decreasing trend is

statistically significant at the large scales. Another white feature appears in the middle at

medium scales, which suggests that the decreasing trend in those regions is also statistically

significant at the corresponding scales. The other regions are colored either intermediate or

darker gray, which shows no significance or no decision, respectively. Figure 2(b) depicts

SiZer plots using the ranges of the interval-valued data to investigate the range relationship

between the sea level pressure and the temperature. Note that the horizontal axes in these

plots are different from those in Figure 2(a) because the ranges of sea level pressure and

temperature are the response and the covariate, respectively. The family of smooths in the

top panel shows an overall decreasing trend and some oscillating curves. However, none of

these features turn out to be statistically significant in the SiZer map in the bottom panel

because only intermediate or darker gray colors are present in the map. Therefore, we can

conclude that there is no particular relationship between the ranges of sea level pressure and

temperature.

This analysis demonstrates that the conventional SiZer is still useful for analyzing interval-

valued data and finding the relationship between response and covariate using their centers

and ranges. However, it would be desirable to develop a unified scale-space tool that takes

both centers and ranges into account simultaneously.

3 SiZer for Interval-Valued Data

Let {(Xi, Yi), i = 1, ..., n} be interval-valued observations with Xi = [XLi, XUi] (XLi ≤ XUi)

and Yi = [YLi, YUi] (YLi ≤ YUi). Assume that the points within the intervals are uniformly

distributed. In this section, we propose three SiZer inference approaches for interval-valued

data, namely MC, BMC-q, BMC-SD SiZers. In particular, each approach reflects the internal

variation in the interval-valued data into the confidence band in (2.3) differently. Ahn et al.

(2012) apply a resampling scheme to interval-valued data to fully utilize the variability within

intervals and make inference on regression coefficients in a parametric setting. However,

their approach is limited in the sense that it cannot be used for single-valued data; this
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is because their inference relies on lengths of intervals. We design SiZer inference that

could be applied to both single-valued and interval-valued data using Monte Carlo and/or

Bootstrap resampling approaches. We note that it is a common practice to assume a uniform

distribution for the internal distribution (Billard and Diday, 2007), but a non-uniform (e.g.

normal) distribution can be applied to the proposed SiZers and we suggest it as our future

work.

3.1 MC SiZer

This method uses a Monte Carlo resampling approach to estimate f̂ ′
h(x) and ŜD(f̂ ′

h(x)) in

(2.3) for interval-valued data. More specifically, for m = 1, . . . , B1,

(i) generate a single-valued random regression sample (Xi,m, Yi,m) by assuming the uniform

distribution within the intervals Xi = [XLi, XUi] and Yi = [YLi, YUi] for each i =

1, . . . , n.

(ii) Apply the local linear smoothing technique in (2.2) and obtain f̂
′

h,m(x) and ŜD(f̂
′

h,m(x)).

Then, the final estimates are given as

f̂ ′
h(x) =

1

B1

B1∑
m=1

f̂
′

h,m(x), ŜD(f̂ ′
h(x)) =

1

B1

B1∑
m=1

ŜD(f̂
′

h,m(x)). (3.1)

Since single-valued points are randomly generated from the observed intervals, it accounts

for the internal variation within them. We use the same quantile qh in (2.4) in the MC SiZer

inference.

3.2 BMC-q SiZer

The quantile qh in (2.4) is theoretically driven using the Gaussian approximation when data

are single-valued (Hannig and Marron, 2006). It is not guaranteed that the familywise error

rate would be controlled using this quantile for interval-valued data. Hence, we consider a

tractable approach directly from the given data instead of Gaussian approxima-

tion. The BMC-q SiZer empirically approximates the quantile qh using bootstrap sampling

as well as estimates f̂ ′
h(x) and ŜD(f̂ ′

h(x)) using Monte Carlo sampling as in (3.1). The

bootstrap method has proven to be a powerful tool in many applications, and

is accepted as an alternative to asymptotic approaches. There is a rich set of
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literature on bootstrap; for example, Mammen (1992)) and Horowitz (2001)

summarize its theoretical properties, including consistency, and illustrate cases

when bootstrap works well and when it does not. Our algorithm is given as follows.

(i) Sample the interval-valued data (X∗
i , Y

∗
i ) from the original data (Xi, Yi), i = 1, . . . , n

with replacement.

(ii) For m = 1, . . . , B1, generate a single-valued random regression sample (X∗
i,m, Y

∗
i,m) by

assuming the uniform distribution within the intervals X∗
i = [X∗

Li, X
∗
Ui] and Y ∗

i =

[Y ∗
Li, Y

∗
Ui] for each i = 1, . . . , n. Apply the local linear smoothing technique in (2.2) and

obtain f̂
′∗
h,m(x) and

f̂
′∗
h (x) =

1

B1

B1∑
m=1

f̂
′∗
h,m(x).

(iii) Calculate the Z∗-statistic:

Z∗(x, h) =
f̂

′∗
h (x)− f̂ ′

h(x)

ŜD(f̂ ′
h(x))

where f̂ ′
h(x) and ŜD(f̂ ′

h(x)) are given in (3.1).

(iv) Repeat (i)-(iii) B2 times.

(v) Using the B2 repetitions, obtain the empirical distribution of maxx |Z∗(x, h)| and the

quantile qh.

The BMC-q SiZer also uses f̂ ′
h(x) and ŜD(f̂ ′

h(x)) in (3.1) for its confidence bands. A similar

idea for estimating qh based on bootstrap sampling can be found in Chaudhuri and Marron

(1999).

3.3 BMC-SD SiZer

The BMC-SD SiZer uses the bootstrap sampling method to estimate ŜD(f̂ ′
h(x)) . The

algorithm is given as follows.

(i) Sample the interval-valued data (X∗
i , Y

∗
i ) from the original data (Xi, Yi), i = 1, . . . , n

with replacement.
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(ii) For m = 1, . . . , B1, generate a single-valued random regression sample (X∗
i,m, Y

∗
i,m) by

assuming the uniform distribution within the intervals X∗
i = [X∗

Li, X
∗
Ui] and Y ∗

i =

[Y ∗
Li, Y

∗
Ui] for each i = 1, . . . , n. Apply the local linear smoothing technique in (2.2) and

obtain f̂
′∗
h,m(x) and

f̂
′∗
h (x) =

1

B1

B1∑
m=1

f̂
′∗
h,m(x).

(iii) Repeat (i) and (ii) B2 times.

(iv) Using the B2 repetitions, obtain the standard deviation of f̂ ′
h(x):

ŜD(f̂ ′
h(x)) = standard deviation (f̂

′∗
h (x)).

The BMC-SD SiZer also uses f̂ ′
h(x) in (3.1) and the theoretically driven quantile qh given in

(2.4) for its confidence bands. One can develop a SiZer that approximates both SD and qh,

but we choose not to implement it due to heavy computation load.

Remarks. In our numerical study, we use B1 = B2 = 100. Also, the bandwidths used in

our numerical examples are 11 equally spaced values on a logarithmic scale of the range of x.

For three proposed SiZers, the effective sample size (ESS) is estimated by the Monte Carlo

sampling approach. For m = 1, . . . , B1,

(i) generate a single-valued random regression sample (Xi,m, Yi,m) by assuming the uniform

distribution within the intervals (Xi, Yi) for each i = 1, . . . , n.

(ii) Calculate

ESSm(x, h) =

∑n
i=1 Kh(x−Xi,m)

Kh(0)
.

Then, the final ESS(x, h) is given as

ESS(x, h) =
1

B1

B1∑
m=1

ESSm(x, h).

If ESS(x, h) < 5, then the pixel is colored darker gray and no statistical decision is made at

the corresponding pixel.
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4 Numerical Examples

In Section 4.1, we examine the performance of three proposed SiZer tools, MC, BMC-q,

BMC-SD, under various simulation settings. In Section 4.2, we analyze the real example

introduced in Section 1.

4.1 Simulation
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(a) No trend (b) Nonlinear trend

Figure 3: The simulated examples with uniform ranges and constant variance function.

We randomly generate the centers of Xi, Xi,C , from U(0, 1), and the centers of Yi, Yi,C ,

from

Yi,C = f(Xi,C) + σ(Xi,C)ϵi,C ,

where ϵi,C independently follows the standard normal distribution. The regression function

f is chosen from the following two functions:

(C1) f(x) = 0 and (C2) f(x) = 1− 48x+ 218x2 − 315x3 + 145x4.

The variance function σ2 is also chosen from the following two functions:

(V1) σ2(x) = 0.22 and (V2) σ2(x) = −x2 + x+ 0.1.

We consider two scenarios for ranges: an independent case and a dependent case between

the ranges of X and Y :
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(R1) Xi,R ∼ U(0, 0.1) and Yi,R ∼ U(0.1, 0.3) and they are independent of each other.

(R2) Xi,R ∼ U(0, 0.1) and Yi,R = −X2
i,R +Xi,R + 0.1 + ϵi,R

where ϵi,R independently follows N(0, 0.012). Figure 3 displays the simulated data with (C1)-

(V1)-(R1) (no trend, constant variance function, independent ranges) and (C2)-(V1)-(R1)

(nonlinear trend, constant variance function, independent ranges). Each example has the

sample sizes n = 100, and we repeat each simulation combination 100 times and report the

SiZer map with the majority voting scheme (e.g. if the pixel is flagged as increasing 90 times

and not significant 10 times, then it is colored black).
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Figure 4: Three proposed SiZer maps for the case of no trend (C1), constant variance function

(V1), and independent ranges (R1).
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Figure 5: Three proposed SiZer maps for the case of no trend (C1), quadratic variance

function (V2), and independent ranges (R1).
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Figure 6: Three proposed SiZer maps for the case of no trend (C1), constant variance function

(V1), and dependent ranges (R2).
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Figure 7: Three proposed SiZer maps for the case of no trend (C1), quadratic variance

function (V2), and dependent ranges (R2).
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In Figure 4, three proposed SiZer maps are depicted for the case of no trend (C1),

constant variance function (V1), and independent ranges (R1). Almost all pixels are colored

intermediate gray in the three maps, which provides strong evidence of no significant features

across all locations and scales. This overall insignificance agrees with the expected result,

as the regression function was designed not to display any trend. The darker gray in both

bottom corners indicates that there are not sufficient intervals on those boundaries at small

scales to make SiZer inference. Figures 5–7 show similar SiZer maps with different variance

functions and ranges. From these plots we conclude that all three SiZer tools are robust to

different types of variance functions and range relationships.
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Figure 8: Three proposed SiZer maps for the case of nonlinear trend (C2), constant variance

function (V1), and independent ranges (R1).
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Figure 9: Three proposed SiZer maps for the case of nonlinear trend (C2), quadratic variance

function (V2), and independent ranges (R1).
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Figure 10: Three proposed SiZer maps for the case of nonlinear trend (C2), constant variance

function (V1), and dependent ranges (R2).
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Figure 11: Three proposed SiZer maps for the case of nonlinear trend (C2), quadratic vari-

ance function (V2), and dependent ranges (R2).

16



Figures 8-11 display three proposed SiZer maps when the center relationship is nonlinear.

From the SiZer maps in Figure 8, it is evident that the overall increasing trend (black) is

found at large scales and the oscillating trend (decreasing-increasing-decreasing-increasing)

is found at smaller scales in all three maps. We note that the size of the significant feature

depends on the degree of increasing/decreasing trend in the data (refer to Figure 3(b)).

Although three SiZer maps suggest the similar conclusion, it can be seen that the MC SiZer

shows the least significant features, and the BMC-SD SiZer shows the most. For the case of

the quadratic variance function and independent ranges, the difference among three SiZer

maps can be clearly noted because only the BMC-SD SiZer detects the small increasing

trend around x = 0.95 while the other two SiZers fail to flag this feature as significant in

their maps. It suggests that the standard deviation estimated from the bootstrap sampling

is more robust to different types of variance functions when small features appear in the

data than from the original estimate in (2.4). For the case of dependent ranges (Figures 10

and 11), we find similar results as in the independent case; i.e. more significant features are

detected in the BMC-SD SiZer map than in the MC, and only the BMC-SD SiZer finds the

small increasing trend around x = 0.95.

The simulation study demonstrates that the three proposed SiZer tools do not falsely

find the features and can detect real features across multiple scales in various simulation

settings. Among the three, it is clear that the BMC-SD SiZer has the most power.

4.2 Real Data Analysis

We analyze two real interval-valued examples in this section. As in Section 4.1, we compare

three proposed SiZers, MC, BMC-q, and BMC-SD.

The first example regards the Hawaii climate data depicted in Figure 1. Note that the

conventional SiZer analysis using the centers and ranges of the interval-valued is shown in

Figure 2. Figure 12 displays three proposed SiZer maps for the data. Both the MC and

BMC-q SiZers mostly show intermediate or darker gray colors, which indicates an absence

of statistically significant features in the data. However, the BMC-SD SiZer colors the top

row of the map white, indicating an overall decreasing trend at the coarsest scale, which

agrees with the conventional SiZer using centers in Figure 2(a). However, none of the three

SiZer maps show the feature found in the middle of Figure 2(a). This is also supported by

Figure 13 because the range values of temperature and sea level pressure are large around

temperature=72. Therefore, we conclude that the feature found in the middle might not
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Figure 12: Three proposed SiZer maps for the Hawaii climate data.
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Figure 13: Ranges versus Temperature in the Hawaii climate data.
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be real because of the internal variation. Regarding the overall decreasing trend found in

the conventional SiZer map using centers, the conclusion is split between the three SiZers.

One can argue that the decreasing trend may be spurious because the ranges of temperature

shows an apparent decreasing trend as temperature increases in Figure 13(a), and this change

of variation should be accounted for instead of interpreting the trend in centers only. On the

other hand, BMC-SD SiZer, which attempts to accurately calculate the standard deviation

in (2.3), flags the overall trend significant. Hence, this feature could be on the borderline of

the significance and should be carefully examined in a future study.
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Figure 14: Display of stock indices interval-valued data.

In the second example, we study the relationship between two stock indices Dow Jones

Industrials (DJ30) and Spanish IBEX (IBEX35) using the data analyzed in Cipollini et al.

(2013). In particular, we investigate the relationship between the realized variances of the

two stock indices, which is one of volatility measures in their paper. The original data are

observed in the single-valued form from January 1996 to February 2009, which yields 3,411

daily realized variance observations. From these single-valued data we create 158 interval-

valued observations by calculating the first and third quartiles of each month for both stock

indices. Figure 14 depicts the aggregated interval-valued data on a logarithm scale. There

19



is a clear monotonically increasing trend between two realized variances. It is of interest if

this trend is statistically significant or created by the artifacts of sampling noise or variation

in the intervals.
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Figure 15: We apply the conventional SiZer to the centers and the ranges of the stock indices

data.

Figure 15(a) depicts SiZer plots using the mid-points of the interval-valued data to inves-

tigate the center relationship between two stock indices. In the top panel, the horizontal axis

represents the logarithm of the realized variance for Dow Jones Industrial and the vertical

axis for Spanish IBEX. The family of smooths in the top panel shows an overall increasing

trend for all scales. In the SiZer map in the bottom panel, the pixels at large and medium

scales are colored black, which confirms that the strong increasing trend across locations is

statistically significant at those scales. The pattern in the SiZer map suggests a nonlinear

trend because significant features appear from large to middle scales at the beginning, in-

crease to small scales in the middle region, and then decrease in the later half. The pixels

in the later half at small and medium scales are colored darker gray, which indicates insuf-

20



ficient data points for statistical decision. Figure 15(b) depicts SiZer plots using the ranges

of the interval-valued data to investigate the range relationship between two stock indices.

The family of smooths in the top panel shows an overall increasing trend, and the SiZer

map shows its statistical significance at large scales. It can be seen that this trend is not

as strong as that in the center relationship because it is not significant at medium scales.

The oscillating trends at smaller scales in the top panel correspond to either intermediate or

darker gray, which suggests that they are not significant or there are insufficient data points

for statistical inference.
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Figure 16: Three proposed SiZer maps for the two stock indices data.

Figure 16 shows SiZer maps for three proposed tools. All three SiZer maps also show that

there exists a strong increasing trend when accounting for variability within the intervals.

The significant features in the BMC-q SiZer map are rather flat, which might imply a linear

trend, whereas the MC and BMC-SD SiZer maps display similar patterns as that of the

conventional SiZer for the centers. The BMC-SD SiZer shows the most significant features

at the finer scales, which is consistent with the results from the simulation study in Section

4.1. We suggest a rigorous test of (non)linearity for interval-valued data as our future work.

In conclusion, the SiZer analysis is able to detect the overall increasing relationship between

Dow Jones Industrials and Spanish IBEX stock indices.

5 Discussion

We have proposed three exploratory data analysis tools for interval-valued data in scale-

space. They all repeatedly utilize Monte Carlo sampling to account for the internal varia-
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tion, and aggregate the estimates to produce SiZer maps that summarize statistical inference

across multiple locations and scales. MC SiZer uses the known formulae for the quantile and

standard deviation of the derivative estimate in the confidence band (2.3), which are origi-

nally derived for the conventional SiZer. These calculations might be inaccurate because they

are derived based on the Gaussian approximation, and thus can be improved via bootstrap

sampling. BMC-q SiZer obtains the quantile that controls the familywise error rate from

the empirical distribution of the data, and BMC-SD SiZer directly calculates the standard

deviation of f̂ ′
h(x) from the bootstrap samples. Our simulation study in Section 4 shows that

BMC-SD SiZer is most powerful among the three SiZers, and MC SiZer is least powerful.

We suggest a more thorough theoretical and empirical study of these three SiZers and a

development of other SiZers for interval-valued data as our future work.

Another interesting future direction is to develop a scale-space tool based on the non-

parametric approach proposed by Jeon et al. (2015). This approach directly works with

interval-valued data rather than generateing single-valued data. It utilizes mixture of Gaus-

sian densities to obtain the conditional distribution of the response given a predictor. Once

this distribution is obtained, they estimate a regression function (trend) via expectation.

Because the estimation depends on a smoothing parameter, a scale-space idea is applicable

to this approach. If a scale-space idea were implemented, it could potentially find meaningful

local features hidden in the data, as demonstrated in their paper. However, its implemen-

tation might encounter two serious obstacles. First, it is not straightforward to estimate

the derivative of a regression function given the conditional distribution. It is even more

challenging to theoretically derive the quantile or the standard deviation of the derivative.

Second, a computational method such as bootstrapping can be used to construct a confidence

interval, but the computational burden could become impractical because the approach is al-

ready computationally intensive for the estimation of a trend itself. This heavy computation

might work against the purpose of exploratory data analysis. Nevertheless, a development

of SiZer using the Jeon et al.’s approach would be an interesting and non-trivial research

question, and a good addition to scale-space tools.
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