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Study of human activities in space and time has been an important research topic in transportation
research. Limitations of conventional statistical methods for analysis of individual-level human activities
have encouraged spatiotemporal analysis of human activity patterns in a space–time context. Based on
Hägerstrand’s time geography, this study presents a space–time GIS approach that is capable of repre-
senting and analyzing spatiotemporal activity data at the individual level. Specifically, we have developed
an ArcGIS extension, named Activity Pattern Analyst (APA), to facilitate exploratory analysis of activity
diary data. This extension covers a set of functions such as space–time path generation, space–time path
segmentation, space–time path filter, and activity distribution/density pattern exploration. It also pro-
vides a space–time path based multi-level clustering method to investigate individual-level spatiotempo-
ral patterns. Using an activity diary dataset collected in Beijing, China, this paper presents how this
Activity Pattern Analyst extension can facilitate exploratory analysis of individual activity diary data to
uncover spatiotemporal patterns of individual activities.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Studying human activities in space and time has been an impor-
tant topic in transportation research (e.g., Szalai, 1972; Kitamura,
1988; Golob and McNally, 1997; Robinson and Godbey, 1997; Bhat
and Koppelman, 1999; Joyce and Stewart, 1999; Lu and Pas, 1999;
Stinson, 1999; Goulias, 2002; Pendyala and Goulias, 2002). Activity
diary data have served as a major data source in many of these
studies. An activity diary dataset records activities conducted by
sample individuals within a particular time period (e.g., one day
or multiple days), including information such as when an activity
began and ended, where an activity took place, characteristics of
each activity, and individuals who participated in those activities
(Michelson, 1973). As a result, an activity diary dataset provides
a means to record individual activities in a spatial and temporal
context. With a detailed activity diary dataset, it is possible to gain
insight into human activity patterns that can help researchers ex-
plore and better understand how individuals interact with other
people and the environment.

Activity patterns often are analyzed with statistical methods
(e.g., Cullen et al., 1972; Chapin, 1974; Shapcott and Steadman,
ll rights reserved.
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1978; Klepeis et al., 2001; Chai et al., 2002; Vrotsou et al., 2007;
Jim and Chen, 2009). Although these statistical methods are very
useful in studying aggregate characteristics of individual activities,
they are less helpful in analyzing individual activity patterns and
interactions in a space–time context. As activities occur in both
space and time (Anderson, 1971), it is essential to treat space
and time jointly in activity studies (Pred, 1977). An integrated
space–time analytical environment also allows researchers to
investigate individual activities as processes rather than separate
events. Thus, exploratory data analysis functions supported by an
integrated space–time framework can make important contribu-
tions to activity-based transportation studies.

Hägerstrand’s time geography offers a useful conceptual
framework to study individual activity patterns under various
constraints in a space–time context (Hägerstrand, 1970, 1978,
1989). Its space–time path concept, which represents the spatial
movements of an individual over time, presents an effective form
to model spatiotemporal characteristics of individual activities.
There have been a number of efforts incorporating time-
geographic concepts into a geographic information system (GIS)
environment to represent and analyze individual activities in both
spatial and temporal dimensions (e.g., Miller, 1991, 1999; Kwan
and Hong, 1998; Kwan, 2000; Kwan and Lee, 2003; Buliung and
Kanaroglou, 2006; Yu, 2006; Neutens et al., 2007, 2008a,b; Kang
and Scott, 2008; Yu and Shaw, 2008; Shaw et al., 2008; Shaw and
Yu, 2009; Kraak and Huisman, 2009). These efforts demonstrate
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that time geography and GIS together can provide a useful analyt-
ical environment to visualize and explore individual-level activity
data in a space–time context. As individual-level activity diary
datasets are becoming easier and more affordable to collect due
to the advancement of location-aware technologies, there is a
growing need for a spatiotemporal analytical environment that
can help researchers investigate complex human activity and
interaction patterns hidden in activity dairy datasets. Built upon
previous studies, we develop a space–time GIS implemented as
an ArcGIS extension to facilitate spatiotemporal exploratory analy-
sis of activity diary datasets. Using a large activity diary dataset
collected in Beijing, China in 2007, this study demonstrates that
this extension is capable of managing, querying, analyzing, and
visualizing complex activity data at the individual level in a
space–time GIS environment.

The rest of this paper is organized as follows. The next section
provides a brief review of research related to the development of
a space–time GIS for exploring individual activity diary datasets.
Section 3 discusses the functions available in the Activity Pattern
Analyst extension developed in this study for examining spatio-
temporal patterns of human activities hidden in activity diary
datasets. Section 4 uses an activity diary dataset collected in
Beijing to present a case study illustrating the benefits of employing
this space–time GIS approach to gain insight of human activity pat-
terns. Concluding remarks are presented in the final section.

2. Related research

An individual-level activity diary dataset stores both spatial and
temporal information of individuals’ activities and offers a valuable
source to gain understanding of disaggregate and aggregate activ-
ity patterns in space and time. When the sample size of an activity
diary dataset is large, it presents a challenge of extracting useful
information from the dataset to reveal complex human activity
and interaction patterns. Exploratory data analysis can serve as a
useful first step for researchers to gain insight of the data and for-
mulate hypotheses for further studies (Gahegan, 2000; Guo et al.,
2005).

Hägerstrand (1970) proposed an approach of studying human
activities conducted under various constraints in a space–time
context, which becomes known as time geography. This time geog-
raphy approach represents individual activities in an integrated
space and time environment (Gren, 2001). This space–time system
is a three-dimensional orthogonal system that consists of two spa-
tial dimensions and a temporal dimension (Fig. 1) (Shaw et al.,
2008). The 2D spatial dimensions track locational changes of indi-
viduals, while the temporal dimension arranges human activities
according to their chronological order. The space–time path con-
cept, which provides an efficient form to represent an individual’s
movement history in a space–time system (Miller, 2004), denotes a
series of characteristics of an individual’s daily activities including
location, time, duration, sequence, frequency and type of activities
Activities:

a:  (7:30-8:00am)
     go to work 
b:  (9:00-11:30am)
     group meeting
c:  (12:00-12:30pm)
     lunch
d:  (17:00-17:40pm)
     leave work
e:  (17:40-18:00pm)
     do the grocery
f:  (18:00-18:20pm)
     drive home
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Fig. 1. Space–time system and space–time path.
(Kwan, 2002; Scott, 2006; Ren and Kwan, 2009). Time geography
considers that everything being done, including ‘‘do nothing’’, is
an activity (Ellegåd, 1999). Therefore, every point on a space–time
path is associated with at least one activity. To be consistent with
this definition, an activity in this paper can be either a mobile
activity that moves from one location to another location or a sta-
tionary activity that is conducted at a fixed location. A stationary
activity appears as a vertical line segment and a mobile activity
shows as a tilted line segment in a space–time path (Fig. 1).

With the modern geocomputational and visualization capabili-
ties, GIS have been recognized as a potential approach to imple-
menting the time geography framework and supporting
assessment of spatiotemporal characteristics of human activities
(Pipkin, 1995). Attempts have been made to store and manage
individual activities in GIS to support basic queries of spatial and
temporal characteristics (e.g., Shaw and Wang, 2000; Wang and
Cheng, 2001; Frihida et al., 2002; Buliung and Kanaroglou, 2004).
In recent years, a number of studies have incorporated time-geo-
graphic concepts into GIS to study individual accessibility (e.g.,
Kwan and Hong, 1998; Kwan, 1998; Miller, 1999; Weber and
Kwan, 2002; Weber, 2003; Neutens et al., 2007, 2008a,b; Forer,
1998; Huisman, 2006; Kraak and Huisman, 2009; Miller and
Bridwell, 2009), to implement visualization of space–time paths
(e.g., Kwan 1999a,b, 2000; Kwan and Lee 2003; Yu, 2007) and to
explore human activities and interactions (e.g., Yu, 2005, 2006;
Buliung and Kanaroglou, 2006; Yu and Shaw, 2007, 2008; Kang
and Scott, 2008; Kang et al., 2009). In particular, several GIS tool-
kits have been implemented accordingly (e.g., Buliung and
Kanaroglou, 2006; Shaw et al., 2008; Yu and Shaw, 2008; Kang
and Scott, 2008). These studies indicate that a space–time GIS
(i.e. 2D space + 1D time) offers a powerful environment to repre-
sent the key concepts of time geography. Moreover, analysis func-
tions developed in a space–time GIS framework present new
methods of studying complex spatiotemporal human activity pat-
terns and interactions (Yu and Shaw, 2008; Shaw and Yu, 2009).

There is a growing interest in exploring spatiotemporal charac-
teristics and patterns of activities at the individual level as individ-
ual activity datasets have become increasingly available to the
research community. Who share similar spatiotemporal activity
patterns? How does a group of people organize their daily travels
and activities differently in space and time from another group of
people (e.g., office workers vs. household wives)? Methods are
needed to help researchers identify and investigate these patterns
in an individual-level activity dataset. A number of measures have
been suggested to tackle these research needs. Examples of such
measures include Hausdorff distance (e.g., Huttenlocher et al.,
1993; Brakatsoulas et al., 2005), Fréchet distance (e.g., Alt and God-
au, 1995; Alt et al., 2003), the longest common subsequence (LCS)
algorithm (e.g., Agrawal et al., 1995; Chen et al., 2005) and the dy-
namic time warping (DTW) algorithm (e.g., Sankoff and Kruskal,
1983; Chen et al., 2005; Sakurai et al., 2005). Each of these mea-
sures basically examines the similarity between two curves using
different algorithms. However, when it comes to measuring simi-
larity of space–time paths, each of them has certain advantages
and disadvantages in providing appropriate measures that can
support effective investigations of individual activity patterns in
an integrated space–time environment. For example, the Hausdorff
distance and Fréchet distance only use the distance between point
pairs from two curves to compute their similarity. Such point-
based measures cannot capture detailed differences between two
space–time paths, which contain important activity features such
as activity time, duration, sequence and frequency. The longest
common subsequence algorithm can analyze activity data on a
nominal scale and identify the longest common subsequence of
activities (e.g., an activity sequence of home-work-home) on the
space–time paths which record individuals’ daily activities.
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However, other important characteristics of activities (e.g., spatial
and temporal locations of a person’s activities) are missing in the
measure. The dynamic time warping algorithm can identify similar
sequences which may vary in starting time and time duration by
manipulating the time dimension, but this approach becomes
inappropriate when the exact activity time and duration are essen-
tial factors in comparing individuals’ activity patterns during a spe-
cific time period (e.g., a 30-min work trip made during the morning
peak hours is deemed different from a 30-min wok trip made in the
late morning in many activity studies). Without explicitly consid-
ering space and time in an integrated manner, these measures
may have some weaknesses of identifying different spatiotemporal
patterns among space–time paths.

Some of these measures have been reported in recent studies
that compute the similarity among individual space–time paths
to compare their patterns. These studies have focused on, for
example, measures of selected characteristics of individual
space–time paths such as distance between locations (e.g., Sinha
and Mark, 2005; Andrienko et al., 2007; González et al., 2008),
moving speeds and directions (e.g., Laube et al., 2005), as well as
sequences of locations (e.g., Shoval and Isaacson, 2007) to examine
whether individual space–time paths are similar to each other. In
the meantime, these methods fall short of considering variables
such as activity duration or activity time related to space–time
constraints that people face in arranging their daily activities. In
addition, due to the high computational complexity of these algo-
rithms, their efficiency of computing path similarity measures of-
ten is severely hampered as the number of paths increases,
which is a common situation in working with large individual-level
spatiotemporal datasets. In this study, we propose a simple, yet ro-
bust, space–time GIS approach, which can serve as an alternative
to those computational intensive algorithms for exploring human
activity patterns.
3. Activity Pattern Analyst (APA)

In this study, we develop a space–time GIS to support explor-
atory analysis of activity data at the individual level and in a
space–time context. It is based on a space–time GIS design with
temporal dynamic segmentation (Yu, 2006; Shaw and Yu, 2009)
and implemented as an extension in ArcScene, which is the 3D
viewer of ArcGIS. We call this extension an Activity Patten Analyst
(APA). This APA extension includes a previously developed func-
tion of generating space–time paths as well as a series of query
and analysis functions for investigating hidden activity patterns
in an individual-level activity diary dataset.

There are six major components in this APA extension (Fig. 2).
The first component is space–time path generation which is used
to build individual space–time paths from a given individual-level
activity dataset. Such an input dataset can be derived from either
Activity Pattern Analyst

space-time path
filter

space-time path
 generation

space-time path
segmentation

activity distribution /
density analysis

A Space-Time GIS Environment

activity
query

space-time path
clustering analysis

Fig. 2. Components of the Activity Pattern Analyst (APA) extension.
activity diary data collected from a traditional questionnaire sur-
vey or activity data collected with global positioning system
(GPS) tracking devices. If the locational information in a dataset
is based on street addresses, a geocoding process is needed before
the dataset can be used for the path generation function. This com-
ponent creates a space–time GIS database that serves as the foun-
dation of the other five components in this APA extension. The
second component is a space–time path filter. It is used to extract
subsets of individual space–time paths based on their non-spatial
attributes (e.g., gender, age, education, occupation, income) as well
as their spatial characteristics such as residential location. This
component is implemented with various spatial and non-spatial
query functions. A subset of individual space–time paths can be se-
lected by applying a set of attribute and/or spatial selection func-
tions. The third component is space–time path segmentation that
is based on the concept of temporal dynamic segmentation (Yu,
2006; Shaw and Yu, 2009). Users can specify any time period and
this function will dynamically extract both spatial and non-spatial
data of the user-specified time period and attach the data to the
corresponding segment on individual space–time paths. The above
three components allow users to convert activity diary data and
organize the data in a space–time GIS such that users can manage,
query and visualize the data to interactively explore hidden spatio-
temporal patterns of human activities.

The other three components in the APA extension are developed
for pattern detection. The fourth component is activity query,
which dynamically associates activity data of each individual to
the corresponding locations on each individual’s space–time path.
For instance, Fig. 1 shows that an individual participated in a group
meeting between 9:00 and 11:30 a.m. at the workplace. The dura-
tion of an activity and its location are dynamically mapped from
the GIS database onto the individual’s space–time path using the
temporal dynamic segmentation method. This overcomes a short-
coming of the classical space–time path representation that shows
only individual movements in space over time and does not pro-
vide explicit spatiotemporal information about the actual actions
taken place along the space–time path. By displaying different
types of activities in different colours, this activity query compo-
nent can identify many distinct characteristics of human activities
on individual space–time paths and thus facilitate interactive visu-
alization of individual and/or group activity patterns.

The fifth component is activity distribution/density analysis,
which dynamically retrieves the spatial distribution of all individ-
uals at any user-specified time point. This component is used to
facilitate analysis of aggregate pattern of human activities both
in space and across time. Based on the point distribution of individ-
ual activity locations at a given time, we can apply a kernel density
estimation to derive an aggregate activity distribution surface. The
search radius used in this analysis is specified by users based on
their knowledge of the specific problem domain. By comparing
aggregate activity distribution surfaces between different time
points, we can explore the change patterns as well as find the loca-
tions that gained or lost activities during the time period.

The sixth component is space–time path clustering analysis. It
provides a space–time path based clustering method that groups
space–time paths of similar geometry into the same cluster. This
method provides an exploratory analysis approach which can help
researchers identify useful activity patterns hidden in a large indi-
vidual-level activity diary dataset. As it is difficult to compare the
similarity of space–time paths represented as 3D features in the
space–time system (Fig. 3a), standardized paths are used as the in-
put to the clustering analysis in this study. We first transform each
individual space–time path in the 3D space–time GIS into a 2D
path in a time–distance plane coordinate system. As shown in
Fig. 3b, all paths are adjusted to their residential locations so that
they all start from the origin point of the time–distance coordinate
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Fig. 3. Space–time path based similarity measure.
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system. Therefore, each transformed path tracks how far a person
moved away from his/her residential location for various daily
activities over the study period. Although this transformation
drops absolute activity locations and movement directions in geo-
graphic space, the path shape and other important features of indi-
vidual space–time paths such as activity time, duration, sequence,
frequency, and type are preserved. Moreover, as the residential
location is the most important reference location for people to
arrange their daily activities, the transformed paths in the
time–distance coordinate system indicate the spatiotemporal
characteristics of how people conduct their activities with
reference to their home location.

Based on the transformed paths, we develop an area-based sim-
ilarity measure to compare the shapes between two paths and
compute the overlapping areas between each pair of paths along
the time dimension. It is inspired by a similarity theory originated
in psychology, which treats objects as feature collections and mea-
sures similarity among the objects as a feature-matching process
(Tversky, 1977) that can be expressed by the equation below:

D ¼ c
aþ b� c

ð1Þ

where a is the feature set of object A; b is the feature set of object B;
c is the overlapping feature set between A and B; the similarity
measure D is the ratio of the overlapping features to the whole fea-
tures that belong to A and B. We therefore can define the similarity
measure D for each pair of paths with the same equation, where a is
the entire area between path A and the time axis (i.e., the horizontal
axis) in the time–distance plane coordinate system (Fig. 3b); b is the
entire area between path B and the time axis in the time–distance
plane coordinate system; and c is the overlapping area of a and b.
If two space–time paths have an identical shape, the similarity mea-
sure D = 1 since a = b = c in this case. On the other hand, D = 0 if two
space–time paths do not share any overlapping area.

Using this definition, the similarity measure between any pair
of paths can be computed and a similarity matrix for all pairs of
paths can be constructed to perform a cluster analysis. For in-
stance, Fig. 4a shows four individual space–time paths of A0, A1,
A2 and A3, each of which represents a space–time path transformed
into the time–distance plane coordinate system. In order to clearly
show the shape of each space–time path, we organize them as sep-
arate, rather than overlapping, areas in Fig. 4a. Based on the simi-
larity measure D discussed above, we compute a similarity index
for each pair of paths and then construct a similarity matrix
(Fig. 4b). The larger the index, the more similar in shape the corre-
sponding pair of space–time paths. Different from those point-
based computational methods (e.g., Hausdorff distance and Fréchet
distance), this area-based path similarity measure takes path shape
into account and is able to incorporate the crucial characteristics of
individual space–time paths, such as activity time, duration, se-
quence, frequency as well as the activity distance in reference to
the residential location, to investigate spatiotemporal patterns of
human activities. In addition, this measure is not computational
intensive and easy to implement in a space–time GIS environment,
which makes it a good alternative method for large individual-le-
vel spatiotemporal datasets.

In this study, we propose a space–time path based multi-level
clustering method based on an agglomerative hierarchical cluster-
ing method with average linkage (Han and Kamber, 2006). As an
exploratory analysis, this method allows users to use their domain
knowledge and choose how many levels of clustering analysis to be
executed and how many clusters to be generated at each level dur-
ing the analysis process. In particular, according to the agglomera-
tive hierarchical clustering method, each cluster contains one
individual space–time path initially. The index between every
two clusters is calculated according to the area-based similarity
measure and a similarity matrix is constructed accordingly. Two
clusters with the largest index in the similarity matrix are aggre-
gated into a new cluster and the similarity matrix is correspond-
ingly recalculated. This process repeats until it reaches the user
specified number of clusters. Due to the definition of this area-
based similarity measure, the clustering method is sensitive to out-
liers in the set of paths and tends to form several small clusters,
each of which contains only a few individual space–time paths that
have the most unique patterns, and place the remaining individual
space–time paths in a large catch-all cluster. Therefore we can eas-
ily remove the outliers and repeat this clustering method to the
catch-all cluster at each level in order to find sub-clusters embed-
ded in the catch-all cluster at the next level. As the process reaches
deeper levels and outliers are removed from the set step by step,
clusters of individual space–time paths with distinctive patterns
start to emerge. Each cluster usually contains a significant number
of paths similar in shape, which exhibit representative activity pat-
terns. One special case that this space–time path based multi-level
clustering method must address is when both space–time paths
are perfect vertical lines in the 3D space–time GIS (i.e., both indi-
viduals stayed at a fixed location throughout the entire study per-
iod). In this case, all three terms (i.e., a, b and c) in Eq. (1) have a
value of 0. The equation of computing similarity measure D there-
fore becomes invalid. Our study takes care of this special case by
checking all space–time paths and placing such space–time paths
into a special cluster.
4. A case study of activity diary data collected in Beijing, China

Geovisualization is a powerful tool for exploratory data analysis
of large spatiotemporal datasets. Researchers often use graphical
representations to display intricate patterns in large datasets in
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Fig. 4. Space–time path based similarity matrix.

1 For interpretation of color in Figs. 1,2, and 5–10, the reader is referred to the web
version of this article.
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ways that stimulate visual thinking and suggest possible hypothe-
ses for further analysis (Hearnshaw and Unwin, 1994). This section
presents a case study using activity diary data collected in Beijing,
China to demonstrate the effectiveness of uncovering hidden spa-
tiotemporal activity patterns with the functions developed in the
Activity Pattern Analyst extension.

4.1. Data

Our research collaborators at Peking University in China con-
ducted an Urban Residents Activity Survey in the Beijing metropol-
itan area in October and November of 2007. They used a stratified
sampling strategy of ‘‘residential area – household – individual’’ to
select ten residential areas with different socioeconomic/demo-
graphic characteristics in the Beijing metropolitan area. Within
each selected residential area, 60 households were chosen based
on a systematic sampling design. This survey collected a 48-h ret-
rospective activity diary (Sunday and the next Monday) with face-
to-face interviews to record all activities performed by individuals
of at least 16 years old in the sampled households. Among the 600
participating households in this survey, 520 households (with a to-
tal of 1107 individuals) returned complete and valid responses. The
dataset consists of a total of 19691 stationary activities (i.e.,
excluding travel) that are divided into five categories – physiolog-
ical needs (e.g., sleep, have meals), household duties, work/school,
leisure, and all other activities. This activity diary survey also col-
lected data regarding the location and time associated with each
activity, along with socioeconomic/demographic characteristics of
all respondents.

4.2. Activity patterns in space and time

Visualizing spatiotemporal activity patterns of individuals with
different socioeconomic/demographic characteristics can help us
better understand the needs and constraints of different popula-
tion groups. This study first uses the ‘‘space–time path generation’’
function to build individual space–time paths from the activity
diary dataset. It then applies the ‘‘space–time path segmentation’’
and the ‘‘space–time path filter’’ functions to extract subsets of the
data based on different hypotheses assumed with the different
neighbourhoods and population groups in Beijing. Followed by
the ‘‘activity query’’ function to associate activities with individual
space–time paths, it allows us to interactively explore and investi-
gate spatiotemporal activity patterns and their interactions with
the built environment.

Fig. 5 shows an example of visualizing 1107 individual space–
time paths with 9701 colour-coded activities on a Monday. It
shows a general rhythm of human activities on a week day in
Beijing, China. Most people get up in the morning after a sleep (line
segments in purple colour1 in the lower part of space–time paths)
and then go to work/school (line segments in red colour). After about
a 1-h lunch break (short line segments in purple colour in the middle
part of space–time paths), they continue to work/attend school until
they leave their workplace/school in late afternoon. After that, activ-
ities become diversified. Some people stay at work while others car-
ry out household work (line segments in gold colour) or leisure
activities (line segments in green colour).

Fig. 5 also shows variations in activity patterns among individ-
uals. It therefore is important to be able to interactively select sub-
groups of people with different demographic, socioeconomic, and/
or spatial characteristics to better understand what might be caus-
ing these variations. Fig. 6 illustrates the activity patterns of resi-
dents in two different neighbourhoods selected from the dataset
presented in Fig. 5. Neighbourhood A (Fig. 6a) consists of residents
who are mainly government employees, while residents in Neigh-
bourhood B (Fig. 6b) are mainly low- or middle-income people. We
can clearly see the differences between these two neighbourhoods.
Residents in Neighbourhood A have a regular activity rhythm of 8-
h work during the day and leisure activities in the evening. Resi-
dents in Neighbourhood B exhibit a more complex activity pattern
with evening work hours. With the interactive visual exploratory
analysis functions available in the APA extension, researchers can
investigate activity patterns based on socioeconomic/demographic
characteristics of different population groups or various space–
time characteristics such as location, time, duration, sequence, fre-
quency, and type of activity. These exploratory visual analysis
functions developed from Hägerstrand’s time-geographic concepts
offer useful complements to conventional statistical analysis
methods.



Fig. 5. Visualization of activity types in space and time.

(a) Neighbourhood A (b) Neighbourhood B

Fig. 6. Spatiotemporal distributions of activity types for Neighbourhood A and Neighbourhood B.
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4.3. Activity distribution and density pattern

Spatial distributions of individual activities over time can be
used to study aggregate patterns of human activities. The ‘‘activity
distribution/density’’ function in APA is developed for exploring
activity distribution and density patterns across space and time.
This function dynamically interpolates locations of individual
activities at any user-specified time point as we move the GIS lay-
ers along the space–time paths (Fig. 7). We therefore can compare
individual activity locations at different time points to assess
changing activity distribution patterns over time.

Fig. 7a shows the activity distribution of 93 individuals in
Neighbourhood A and Fig. 7b illustrates the distribution pattern
of 91 individuals in Neighbourhood B. These two neighbourhoods
have roughly the same number of sampled individuals; however,
they have very different spatial distributions with respect to travel
directions and distances on a work day. As an example, we use the
‘‘activity distribution’’ function to derive activity locations at 5:30
a.m. and 10:30 a.m. respectively (see red dots where individual
space–time paths intersect with the base GIS map layer in Fig. 7a
and b). A comparison of these two distribution patterns clearly
indicates the residential locations versus daytime activity loca-
tions. Furthermore, we use rose diagrams in Fig. 7a and b to illus-
trate directional patterns of home-to-work/school trips in
Neighbourhoods A and B, respectively. In these rose diagrams,
directions are equally divided into 16 classes. The value of each
class represents the total number of individuals whose home-to-
work direction matches with the directional range of that class.
Users of the APA extension can conduct analyses based on any
demographic/socioeconomic characteristics of individuals and/or
attributes of residential neighbourhoods and workplaces to gain
additional insights of the hidden activity patterns.

In addition to representation of activity distributions as a collec-
tion of points, we can use kernel density surfaces to show aggre-



(a) Neighbourhood A (b) Neighbourhood B

Fig. 7. Neighbourhood A and Neighbourhood B shown as a side view.
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gate activity distribution patterns across space and time. For exam-
ple, the same two neighbourhoods presented in Fig. 7 are used to
generate density surfaces at 9:00 a.m. using the ‘‘activity distribu-
tion’’ function in the APA extension. Fig. 8a indicates a high con-
(a) Neighbourhood A

Fig. 8. Activity density patterns of Neigh

(a) Neighbourhood A

Fig. 9. Animated activity density patterns of
centration of activities while Fig. 8b shows a more spread
pattern. When the spatial distributions of human activities are dis-
played continuously in a time sequence such as every hour, we can
generate an animated display of changing aggregate activity distri-
(b) Neighbourhood B

bourhood A and Neighbourhood B.

(b) Neighbourhood B

Neighbourhood A and Neighbourhood B.



(a) Clustered individual space-time paths 

Fig. 10. Space–time path based clustering patterns.
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bution patterns across space and time (Fig. 9). This animated dis-
play function is useful for researchers to visualize complex activity
patterns hidden in the spatiotemporal dataset. Moreover, since the
GIS density surface is a raster layer and each cell in the layer has a



(b) Examples of outlier individual space-time paths 

Fig. 10 (continued)
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density value, we can use raster GIS algebraic operations to com-
pare the density surfaces. For example, we could subtract the den-
sity surface at 9:00 a.m. from the density surface at 3:00 a.m. in Fis.
9a and b. The output raster GIS layer indicates which locations
gained/lost activities between 3:00 a.m. and 9:00 a.m.

4.4. Space–time path clustering pattern

Fig. 10 demonstrates the ‘‘space–time path clustering analysis’’
function. For example, we apply the space–time path based multi-
level clustering analysis to derive six clusters (i.e. six rows in
Fig. 10a) as well as several outliers (e.g., four individual space–time
paths in Fig. 10b) based on the data presented in Fig. 5. In Fig. 10a,
the middle column shows the result of each of the six clusters as a
side view. In order to illustrate the spatiotemporal pattern of each
cluster, a representative sketch is provided in the left column to
show the distinct characteristic of each cluster. The right column
displays each cluster as a bird’s eye view. The clustering analysis
results clearly indicate that we can identify similarity within each
cluster and differences among different clusters. The first cluster
represents a group of individuals who stayed at home on the sur-
vey day. This is the special case discussed in the previous section.
The second cluster shows a population group who took multiple
short trips on the survey day. The remaining four clusters suggest
four other population groups who all had a regular work schedule
but travelled different distances to their workplaces. In the mean-
time, Fig. 10b shows some examples of individual space–time
paths that possess unique activity/travel patterns, compared to
those represented in Fig. 10a. They are examples of the outliers
captured by our space–time path based multi-level clustering
method. The upper-left one represents an individual who took long
and fast trips with short stays at the destinations on the survey
day. The upper-right one represents an individual who was busy
travelling from one place to another place on the survey day. The
lower-left path represents an individual who travelled to another
place without coming back home at night. The lower-right path
represents an individual who went to office first and then made
a trip during the work hours. The above examples illustrate that
the space–time path based multi-level clustering method can help
researchers uncover hidden spatiotemporal activity/travel patterns
within any user-specified time period and identify relevant charac-
teristics (e.g., commuting distance or trip timing) that distinguish
the clusters. Furthermore, this method can effectively and effi-
ciently identify outlier individuals whose space–time paths exhibit
peculiar activity/travel patterns.

We also can examine the socioeconomic/demographic charac-
teristics of individuals in each of the six clusters in Fig. 10a to gain
further insights into these clusters. For instance, the first cluster
consists of mainly grandparents who help take care of grandchil-
dren at home or people who work at home. The second cluster re-
flects mainly housewives who make multiple short trips to
neighbourhood markets, drop off/pick up school children, or visit
friends in nearby neighbourhoods. The other four clusters indicate
people who have regular work hours but different commuting dis-
tances. The patterns derived from the space–time path based mul-
ti-level clustering method suggest that most people in Beijing have
a relatively regular spatiotemporal activity/travel pattern on a
weekday. Moreover, the spatiotemporal exploratory analysis func-
tions in the APA extension allow us to examine how these patterns
differ among different groups of people and the distinct character-
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istics associated with these different patterns and different popula-
tion groups.
5. Conclusion

This study develops an ArcGIS extension of Activity Pattern
Analyst that operationalizes Hägerstrand’s time-geographic con-
cepts with a set of spatiotemporal exploratory analysis functions
for examining individual activity/travel patterns. With an inte-
grated space–time system of representing individual activities, this
extension offers useful functions for transportation researchers to
investigate people’s everyday lives as a process over time rather
than aggregate snapshots. This paper illustrates how we can orga-
nize individual activity/travel diary data into a space–time GIS and
apply the APA functions to uncover various interesting spatiotem-
poral patterns hidden in an activity diary survey dataset collected
in Beijing, China in 2007. As demonstrated in the case study, the re-
vealed patterns can help researchers gain insights of the activity
diary dataset and suggest possible hypotheses of explaining the
observed patterns. Such a space–time GIS implementation can be
a very useful complement to the conventional statistical and math-
ematical approaches of developing activity-based travel demand
models. In addition, the APA extension presented in this paper is
applicable to many other studies involving spatiotemporal tracking
data at the individual level such as GPS tracking data of vehicles
(i.e., automobiles, trains, airplanes, ships, etc.), mobile phone track-
ing data of individual movements, or radio frequency identification
(RFID) tracking data of freight shipments.

A space–time path based multi-level clustering method is pre-
sented and implemented in this study to explore hidden patterns
in large individual-level spatiotemporal datasets. A specific index
is developed to measure the similarity of two space–time paths
after they are transformed into a 2D time–distance plane coordi-
nate system. As the paths possess a continuous representation of
time, this index incorporates the process of activity location
changes in its structure. Using the standardized paths which are
adjusted to their residential locations, we are able to use this index
to capture the differences among people in a Beijing survey dataset
regarding their spatial and temporal arrangements of daily activi-
ties. Based on this similarity index, the proposed space–time path
based multi-level clustering method can effectively identify the
paths that share similar activity patterns as well as the outlier
paths that possess unique activity patterns, in terms of where,
when, and how long the activities occur. The case study presented
in this paper demonstrates the effectiveness of this space–time
path based clustering analysis method in revealing interesting
activity patterns hidden in an activity diary dataset.

The space–time GIS approach offers an integrated space–time
analysis environment that can effectively represent and organize
individual-level activity dairy data in the form of space–time paths.
It opens up many new opportunities for researchers to analyze the
data and investigate spatiotemporal patterns of human activities.
With these opportunities, we also face challenges of developing
effective and useful analysis functions that can further our under-
standing of human activities in a space–time context. As an initial
attempt to perform clustering analysis on space–time paths, this
study presents one similarity measure only and applies it to the
transformed paths for clustering analysis. We plan to enhance this
Activity Pattern Analyst extension in at least two directions. First of
all, we will develop different similarity measures with each mea-
sure aiming at distinguishing particular types of cluster patterns
effectively and efficiently (e.g., activity frequency, sequence, tim-
ing, location choice, etc.). Second, although this study demon-
strates that we can analyze space–time paths in an integrated
space–time GIS, it remains a major research challenge of develop-
ing a robust time object that can interact with the spatial objects
dynamically in a temporal GIS. Progress in these directions will
provide more powerful data management, analysis and visualiza-
tion functions to help transportation researchers study human
activity and interaction patterns in a space–time context.
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