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ABSTRACT 

Multidimensional datasets often include categorical information. When most dimensions 

have categorical information, clustering the dataset as a whole can reveal interesting patterns 

in the dataset. However, the categorical information is often more useful as a way to partition 

the dataset: gene expression data for healthy vs. diseased samples or stock performance for 

common, preferred, or convertible shares. We present novel ways to utilize categorical 

information in exploratory data analysis by enhancing the rank-by-feature framework. First, 

we present ranking criteria for categorical variables and ways to improve the score overview. 

Second, we present a novel way to utilize the categorical information together with clustering 

algorithms. Users can partition the dataset according to categorical information vertically or 

horizontally, and the clustering result for each partition can serve as new categorical 

information. We report the results of a longitudinal case study with a biomedical research 

team, including insights gained and potential future work. 

 

Color figures are available at www.cs.umd.edu/hcil/ben60
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1 INTRODUCTION 

In many analytic domains, multidimensional datasets frequently include categorical 

information that plays an important role in the data analysis.  In our work in bioinformatics, 

many of the biologists we collaborate with have datasets that include categorical information, 

such as labels for healthy vs. diseased samples.  In that case, the goal is to compare gene 

expression levels (quantitative measurements of gene activity) to determine which genes 

might have higher or lower expression levels in the diseased samples as compared to the 

healthy samples. Other biology researchers compare male and female patients because some 

genes are differentially expressed in one gender but not in the other. We have received similar 

requirements from stock market analysts, meteorologists, and others.  

The inclusion of such categorical information in a multidimensional dataset imposes a 

different challenge to the way researchers analyze the dataset. First, different test statistics are 

necessary for the dataset. For example, a chi-square test is typically used for testing an 

association between categorical variables while a linear correlation coefficient is typically 

used for testing an association between real (continuous) variables. Secondly, stratification by 

categorical information is crucial to delve into such datasets, without which features hidden in 

the stratified subgroups cannot be identified during exploratory data analysis. Ignoring or 

mistreating such information could result in a flawed conclusion costing days or even months 

of effort. 

Most statistical packages support functionalities for categorical data, but biologists and 

biostatisticians are in need of exploratory visualization tools with which they can interactively 

examine their large multidimensional datasets containing categorical information. To address 
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these issues and requests, we developed new features in our order-based data exploration 

framework, or rank-by-feature framework (Seo & Shneiderman, 2005b) in the Hierarchical 

Clustering Explorer (HCE, www.cs.umd.edu/hcil/hce/, also see Section 2), which enabled 

users to effectively explore multidimensional datasets containing categorical entities or 

variables.  

First, we added to the rank-by-feature framework new ranking criteria for categorical or 

categorized variables in multidimensional datasets. The score overview (see Section 2) that 

gives users a brief overview of the ranking result was also improved by introducing size-

coding by strength in addition to the color coding. The inclusion of strength information from 

a ranking criterion for categorical data can make the score overview of the rank-by-feature 

framework more informative at a glance. 

Second, we enabled users to stratify their datasets according to the categorical information 

in the datasets. We support two different partitioning mechanisms according to the direction 

they split the datasets: vertical and horizontal partitioning. In this paper, we assume that the 

input dataset is organized in a tabular way such that the rows represent items or entities and 

the columns represent dimensions or attributes. Users can stratify their datasets vertically by 

separating columns according to the categorical information conveyed by a special row and 

then conduct comparisons among items in different partitions. We call this vertical 

partitioning. For example, biologists are often interested in partitioning samples according to 

their phenotypes (normal vs. diseased) in case-control microarray projects. Clustering of the 

rows is then performed in each partition to generate two clustering results of the rows, each of 

which is homogeneous (i.e. only includes the same value for the special categorical row). By 

comparing the partitioned clustering results, users can get meaningful insights into finding an 
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interesting group of genes that are differentially or similarly expressed in the normal and the 

diseased groups.  

Users can also stratify their datasets horizontally by separating rows according to a 

column of a categorical attribute such as gender and ethnicity. We call this horizontal 

partitioning, where the rows of the dataset are partitioned and each partition has the same set 

of columns. For example, in genome-wide association studies where the study subjects are in 

the rows and the genotype and the phenotype information are in the columns, it is often 

inevitable to partition the subjects (or the rows) according to the gender or the ethnicity 

column before performing any statistical tests to the dataset. Without such a partitioning, 

associations hidden in a subgroup cannot be revealed. Similar to vertical partitioning, 

clustering of columns can also be done in each partition to compare the clustering results. 

We evaluated these new features added to the rank-by-feature framework through a 

longitudinal case study with a biomedical research team. While comparing clustering results 

of partitions can still provide insights into the dataset, it turns out from our longitudinal case 

study that researchers are also interested in using categorical information in more dynamic 

ways. First, they want to stratify datasets both vertically and horizontally in evaluating 

ranking criteria in the rank-by-feature framework. Second, they also want to compare multiple 

score overviews for the levels of a given categorical variable. In response to users’ interests, 

we allow flexibility in users’ stratification tasks. Users can assign variables to two different 

groups to study relationships between the variables in the two groups. In the score overview, 

variables in one group are arranged along the x-axis and variables in the other groups are 

arranged along the y-axis. Users can also have one score overview for each level of the 

categorical variable, for example, one for male and one for female if partitioned by the gender 
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variable. Interactive coordination between score overviews for the levels will highlight the 

difference between levels. These improvements in the rank-by-feature framework enable 

users to identify important patterns hidden in the data, which may have been missed without 

the partitioning.  

In the following section, we first summarize our previous work on HCE and the rank-by-

feature framework upon which this paper is based. After presenting related work in the next 

section, we explain the ranking criteria for categorical information and the improved score 

overview where cells are appropriately size-coded. We then explain two partitioning methods 

and a new ranking criterion (“Cluster Similarity”) to compare clustering results with partitions. 

Next, a longitudinal case study with a biomedical research team is summarized and discussed 

in detail. Lastly, we present the conclusion and future work. 

2 HISTORY OF HCE AND RANK-BY-FEATURE FRAMEWORK 

This section summarizes HCE and the rank-by-feature framework to give readers some 

background for the work presented in this paper. HCE was, at the beginning, designed to help 

a group of researchers at the NIH with examining and understanding hierarchical 

agglomerative clustering results, which are presented in a form of a binary tree, or 

dendrogram. We later discovered that this problem was prevalent among microarray 

researchers around the globe. Two dynamic query controls were conceived in HCE to help 

users better understand hierarchical clustering results (Figure 1). The first control is the 

“Minimum Similarity Bar” which users can drag to change the similarity threshold so that 

only the subtrees satisfying the threshold show. Users can interactively determine the most 

reasonable separation of clusters. The second control is the “Detail Cutoff Bar” which users 

can drag to manage the level of detail. The subtrees (or clusters) below the detail cutoff bar 
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are rendered using their averages. It helps users see the global pattern of the clustering results 

at a glance. 

<<insert Figure 1 about here>> 

Then we added scatterplots to HCE. Users can select two variables, one for the x-axis and 

the other for the y-axis, to see their relationships in a scatterplot which was coordinated with 

the clustering result view. Users can select a group of items in any view and they are 

highlighted in other views. As scatterplots were integrated into HCE, it became clear that 

scatterplots with two variables could be one of the simplest and most comprehensive means to 

visually examine large multidimensional datasets. The problem, however, is that a large 

multidimensional dataset has too many potential scatterplots.. A dataset with n variables has 

n(n-1)/2 possible 2D scatterplots.  The rank-by-feature framework was a solution to the 

problem. Instead of looking at scatterplots in a random order, the rank-by-feature framework 

encouraged users to set a goal first and then look at the scatterplots in an orderly way.  

The statistician John Tukey envisioned a similar approach called “Scagnostics” (Tukey & 

Tukey, 1985) about 20 years ago, in which he suggested ranking scatterplots according to 

some statistical criteria. However, the rank-by-feature framework (Figure 2) was the first to 

bring the idea into reality with an open-ended framework, where user interface designs and 

information visualization techniques played an important role. The framework was also 

extended to cover histograms (1D) as well as scatterplots (2D). It consists of four GUI 

components: a combo box for ranking criterion selection, a score overview for 1D/2D ranking 

results overview, an ordered list control for the same ranking results display, and a histogram 

and scatterplot browser (the projection browser).  
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Using this framework, users can explore multidimensional datasets by ranking 1D and 2D 

projections (or histograms and scatterplots) according to user-selected criteria, such as 

correlation coefficient, normality, uniformity, outlierness, least squares errors, etc. Novel 

statistical ranking criteria had to be created, such as “quadracity” to find positive or negative 

quadratic relationships. The results of these rankings are shown not only in a list control 

(score list) but also in a color-coded lower triangular matrix (score overview), which provides 

a natural space for user-controlled exploration. Users simply move their cursors over the 

bright yellow or black squares and the scatterplots or histograms appear within 100msec in 

the adjoining panel (projection browser). Many users find this a compelling and rapid way to 

explore their data. After a session reviewing data with collaborators, one commented that 

“what you did in an hour would have taken us a month.”   

<<insert Figure 2 about here>> 

The rank-by-feature framework was later generalized to become a set of principles called 

the GRID (Graphics, Ranking, and Insight for Discovery)  principles for interactive 

exploration of multidimensional datasets (Seo & Shneiderman, 2005a). GRID principles 

extend Moore and McCabe’s principles (Moore & McCabe, 1999) for statistical exploratory 

data analysis to take in aspects of user interaction and information visualization. These 

principles can help users clarify their goals and examine multidimensional datasets using 

order-based exploration strategies instead of opportunistic ways. GRID principles are 

summarized as follows: “1) study 1D, study 2D, then find features and 2) ranking guides 

insight, statistics confirm.” A survey and three case studies with users in biology, statistics, 

and meteorology showed the efficacy of the GRID principles and the rank-by-feature 
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framework (Seo & Shneiderman, 2005a). Note that the original rank-by-feature framework 

provided ranking criteria only for real variables.  

The HCE software has also contributed to muscular dystrophy research, identifying novel 

genes that are likely to participate in the progression of the disease. This work and other HCE 

developments have been done in close collaboration with researchers at the Research Center 

for Genetic Medicine, Children's National Medical Center. Biomedical researchers have 

found HCE to be a valuable tool in their research, and has led to four papers in refereed 

bioinformatics journals (Seo et al., 2004; Seo, Gordish-Dressman, & Hoffman, 2006; Seo & 

Hoffman, 2006; Zhao et al., 2003).  

3 RELATED WORK 

Most visualization tools use categorical variables to label displays distinctively according 

to the categorical information by using different sizes, colors, or shapes. Friendly  suggested 

several visualization techniques and graphical displays for categorical data (Friendly, 2000), 

which include Fourfold display, Mosaic displays, and Association plots. There is a book on 

the visualization of categorical multivariate data especially in the social sciences (Blasius & 

Greenacre, 1998), which presents models for categorical data, visual representations and 

modeling processes. Rosario et al. proposed a pre-processing approach to “assign order and 

spacing” among categorical variables for displaying them in general purpose visualization 

tools (Rosario, Rundensteiner, Brown, Ward, & Huang, 2004). 

While there has been a large number of clustering algorithms for numerical data, there has 

been much less work on clustering categorical data. Similarity between two items with 

categorical attributes should be calculated differently from that between items with only real 
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attributes. Typically, co-occurrence measures and link analyses are used to build a graph 

structure from a categorical dataset, and then a graph partitioning algorithm or a traditional 

clustering algorithm generates clusters (Gibson, Kleinberg, & Raghavan, 2000; Guha, 

Rastogi, & Shim, 1999).  

Dimension selection, partitioning and management for multidimensional/multivariate 

datasets are related to our work. Selection and partitioning of the attributes (or variables) in a 

multidimensional/multivariate dataset (Elomaa & Rousu, 1999; Guo, Gahegan, Peuquet, & 

MacEachren, 2003; Liu & Motoda, 1998) have been studied in the KDD and machine 

learning research fields to improve the algorithm performance by focusing on a smaller but 

more informative group or by using each partition for a different purpose during the 

learning/discovery process. Yang et al. proposed and implemented an interactive hierarchical 

approach for ordering, spacing and filtering dimensions (or attributes) by hierarchically or 

manually clustering them in order to reduce clutter and support multi-resolution display 

(Yang, Peng, Ward, & Rundensteiner, 2003).  

There is some related work that seeks to compare hierarchical structures, such as the Tree 

Juxtaposer (Munzner, Guimbretiere, Tasiran, Zhang, & Zhou, 2003) that highlights differing 

items and subtrees between two versions of a tree. The goal of showing relationships between 

two different hierarchies such as a geographical hierarchy and a jobs hierarchy was supported 

by coordinated views in PairTrees (Kules, Shneiderman, & Plaisant, 2003 ). Users could 

select a node in the geographic hierarchy such as a state in the U.S., and that would produce 

highlights in the jobs hierarchy to identify which jobs were held by residents of the selected 

state. Similarly, if a job node were selected, that would produce a highlight in the geographic 

hierarchy to identify where those jobs were most frequent.  
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Adjacency matrix representations, such as the MatrixExplorer (Henry & Fekete, 2006) 

and the Matrix Browser (Ziegler, Kunz, & Botsch, 2002), show relationships between items, 

typically link relationships between nodes in a graph. These adjacency matrices are of order n 

x n for an n node graph. Adjacency matrices for bi-partite graphs with n nodes in one partition 

and m nodes in the second partition are close to what we are using in this work. Selections 

from two hierarchies were also shown in Matrix Zoom (Abello & van Ham, 2004) which has 

similarities to our work. However, our emphasis is to enable users to compare clustering 

results to identify items that are noticeably different in performance across partitions. 

Another source of related work is on reorderable or permutation matrices (Siirtola & 

Makinen, 2005), which are often referred to as heatmaps in commercial systems such as 

Spotfire (Spotfire). Kincaid suggested an extended permutation matrix for microarray studies 

(Kincaid, 2004), where cells were size-coded as well as color-coded by fold change and users 

could sort the rows according to similarity measures and/or supplemental annotations. Our 

use of heatmaps is tied to the clusters in two dendrograms, and the similarity index we use 

represents features that are of interest to users seeking to identify items that are noticeably 

different in performance across partitions. Moreover, our extended heatmaps encode two 

different quantities (significance & strength) into size and color instead of using one value for 

both.  

A further distinction in our work in terms of clustering results comparison is the two 

levels of analysis. We start by trying to match clusters, and then drill down to identify the 

items that account for the similarity. The capacity to see the clusters and select individual 

items rapidly enables exploration of datasets with thousands of items. Also the capacity to see 

where items from a cluster in one partition fall in the other partition reveals differences across 
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partitions. For example, by selecting a cluster with high gene expression levels for healthy 

patients, users can determine if some of these genes have lower expression levels in diseased 

patients. 

In terms of evaluation methods, one of the most popular methods in the HCI community is 

a controlled user study, where subjects are asked to perform small specific tasks in a 

controlled laboratory environment within a relatively short time. However, the uncontrollable 

nature of human subjects and other independent variables makes controlled user studies 

subject to unexpected bias and variance. As an alternative way to evaluate advanced 

information visualization tools, longitudinal case studies or field studies have been performed 

with subjects in their real work environments (Gonzales & Kobsa, 2003; Saraiya et al., 2006; 

Seo & Shneiderman, 2006). Although a case study result might not be generalizable to other 

users in different situations, success stories and problems reported in a case study could 

benefit other designers and potential users by providing valuable insights gained during the 

case study. 

4 RANKING WITH CATEGORICAL VARIABLES 

In this section, we present new ranking criteria to evaluate relationships between variables 

when at least one variable is categorical. In addition, we present a way to improve the score 

overview for those criteria by size-coding as well as by color-coding cells in the score 

overview. Variables in multidimensional datasets are usually distinguished into two 

categories: categorical and quantitative (or real):  

• Categorical variables can be further defined as nominal or ordinal variables. Their 

values are elements of a bounded discrete set. For example, ‘type of songs’ is a 
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nominal categorical variable since all possible values can be drawn from an 

enumerated set, {rock, jazz, pop, hip-hop, R&B, classical, others}, but that set has 

no valued order, i.e. rock does not have a greater value than jazz. An ordinal 

categorical variable also has values that can be drawn from an enumerated set, but 

the values in that set are ordered. If the set has only two elements, those variables 

are called binary.  

• Quantitative variables are continuous as they can take on any of a number of 

values, i.e. age can take on any values from a large range, and there are more 

specific distinctions in the continuous variables.  They also support mathematical 

operations such as addition. 

Previously, HCE only dealt with quantitative variables. Categorical variables require 

different treatments. If we can encode categorical values as integer values and treat them as 

quantitative values (for example, rock=1, jazz=2 and so on), then we can calculate for 

example the Pearson correlation coefficient between a continuous variable and a categorical 

variable. But the result is meaningless because the Pearson correlation coefficient measure is 

applicable only to quantitative variable pairs.  

When we examine relationships between a pair of variables (categorical or quantitative), it 

is better to start with more general relationships than correlation coefficients. The correlation 

coefficient is only one of many possible associations between variables. One of the most 

common statistical methods to measure associations between two categorical variables is the 

chi-square test. Any non-categorical variable can be transformed to a categorical variable by 

binning or quantizing the values. Thus, it is possible to measure associations between 
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categorical and quantitative variables. Since the term “association” means dependency in 

statistics, the chi-square statistic is a measure of dependency between two variables. 

Let’s assume that we measure an association between two variables, x and y. x has n bins 

(or categories) {xbi| i=1..n} and y has m bins (or categories) {ybj| j=1..m}. Then the chi-square 

statistic is calculated as follows: 

∑∑
= =

−
=

n

i

m

j ij

ijij

E
EO

1 1

2
2 )(

χ , where  is the observed frequency of a value belonging to both 

xb

ijO

i and ybj, and  is the expected frequency of a value belonging to both xbijE i and ybj. 

Like other statistics, the chi-square statistic also returns a p-value which represents the 

significance of an association. Smaller p-values mean greater significance. While the chi-

square statistic and p-value confirms that there is some association, the nature or the strength 

of association is not revealed by the test statistic. The nature of association can be identified 

by investigating visual displays or through other ranking criteria such as “number of items in 

ROI.”  There are several methods to evaluate the strength of associations. The mutual 

information measure from information theory is a good candidate, or other statistics like 

Cramer’s V and Contingency coefficient C can be used (Press, Flannery, Teukolsky, & 

Vetterling, 1992).  

The score overview can be improved by visualizing more than one measure at the same 

time. For example, each cell can be color-coded by the significance of association, and size-

coded by the strength of association, or vice versa.  Figure 3 shows an improved score 

overview for the ranking by association. The strength of association is coded by color in (a), 

(b), and (c). The original score overview (a) is improved by introducing the significance 
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measure for size-coding. In Figure 3 with a breakfast cereal dataset, all variables (for 

nutritional information) except three categorical variables (SHELF, TYPE, MFR-

manufacturer) were transformed to be categorical variables by binning before applying the 

association measures. 

<<insert Figure 3 about here>> 

According to Mackinlay (Mackinlay, 1986), color saturation is more perceptually accurate 

to represent ordinal data types than area is. Thus, the ranking measure (strength of association 

for Figure 3) would be better coded by color saturation, and confidence measure (significance 

of association for Figure 3) would be better coded by size. Users can better identify more 

meaningful (or significant) and interesting scatterplots in (b) or (c) than in (a). Many 

associations look strong in (a), but not all of them are statistically significant. The significance 

information is not available in (a), but after size-coding the significance information, less 

significant associations get less attention, so significant strong associations can be more 

clearly recognized. 

Similar coding schemes can be applied to other ranking criteria for quantitative variables. 

The quadracity ranking criterion uses the coefficient of x2 of the regression curve as the score 

for each pair of variables. We can use, for example, least square error measures as a 

significance measure for the quadracity ranking criterion (Seo & Shneiderman, 2005b). Figure 

4b more clearly reveals interesting and important scatterplots than the one without size-coding 

(Figure 4a). Many dark-shaded cells attract attention in Figure 4a, but not all of them retain 

their visibility after introducing the size-coding scheme in Figure 4b. 

<<insert Figure 4 about here>> 
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5 RANKING BY CLUSTER SIMILARITY FOR PARTITIONS 

Users often have to partition a multidimensional dataset according to categorical 

information. Then they have to compare the partitions to identify the differences between 

them. Such comparisons can be facilitated by clustering each of them and comparing the 

clustering results instead of comparing them directly. Considering that the clustering result for 

each partition can serve as new categorical information, we present in this section a novel way 

to utilize the categorical information together with clustering algorithms.  

We first define two partitioning methods, vertical and horizontal partitioning, according to 

the direction the original dataset is split. Once partitions are generated, users can apply 

clustering algorithms to each partition and compare the clustering results to find groups of 

items that are noticeably different in performance across partitions. Since a clustering 

algorithm can be thought of as a way to generate a new categorical attribute representing 

cluster identifiers, we can facilitate this process by introducing a new ranking criterion for 

categorical variables, or ranking by cluster similarity measure.  

5.1 Vertical and Horizontal Partitioning 

Numerous microarray projects are case-control studies. In other words, microarray 

projects usually include more than two different phenotypes of samples (e.g. normal samples 

vs. cancer samples), and each sample is usually represented as a column in a dataset. Then the 

phenotype information can be thought of as a category to stratify columns. The stratification 

partitions the original set of columns into two or more distinct subsets, each of which has only 

the columns with the same phenotype. We define this stratification as vertical partitioning 

(Figure 5), where each partition has the same set of rows (or genes). Users can start a vertical 

partitioning by assigning columns into two or more groups on the clustering dialog box in 
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HCE. Each partition can then be fed into the clustering algorithm to generate separate 

clustering results. By comparing those clustering results, a biologist could find an interesting 

group of genes that are similarly or differentially expressed in different groups of 

homogeneous samples. 

<<insert Figure 5 about here>> 

Unlike the case-control microarray projects, there are many datasets where a different 

partitioning is more meaningful. For example, genome-wide association studies often 

generate datasets where each row represents a subject and each column represents a property 

of the subjects (e.g. gender, ethnicity, weight, height, and genotype and phenotype 

information). For these projects, researchers are more interested in stratification by a 

categorical column such as gender or ethnicity. We define this stratification as horizontal 

partitioning (Figure 6), where each partition has the same set of columns. In doing so, 

researchers can identify important patterns that could not be found otherwise because they 

exist only in a part (or partition) of the dataset. In this case, clustering can then be performed 

in each partition of subjects to generate interesting groups of quantitative columns. Users can 

start a horizontal partitioning by designating a categorical column as a stratification variable 

on the clustering dialog box in HCE. 

<<insert Figure 6 about here>> 

As an example, we show how a partitioning is done in HCE using a real biological dataset 

on spinal cord injuries (Di Giovanni et al., 2005). A group of biologists studied the molecular 

mechanisms of spinal cord degeneration and repair. They analyzed the spinal cord above the 

injury site (at the thoracic vertebrae T9) at various time points up to 28 days post injury. Mild, 
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moderate and severe injuries were examined. We only use two categories of injury for this 

example; 10 control samples and 12 severe injury samples. 

In Figure 7, the spinal cord injury dataset was vertically partitioned into two groups 

according to the injury type (no injury vs. severe injury). In the input data file, the genes are in 

the rows and the samples are in the columns. The first ten columns represent the control 

samples (without injury), and the next 12 columns represent the severe injury samples. Each 

partitioned group has different samples but the two groups have the same genes.  Each 

window in Figure 7 shows a clustering result of genes within each partition with Euclidean 

distance measure.  

Once clustering is completed for each partition separately in HCE, users can define 

clusters for each partition by moving the minimum similarity bar (Figure 7). A typical user 

would create tens of clusters in each dendrogram view and then look for similarities and 

differences in items; a very tedious process. The user can then click on a cluster on a 

dendrogram to examine how elements in the cluster are distributed on other dendrograms. For 

example, when the user clicks on a cluster in Figure 7 (see the label A), all genes in the cluster 

are highlighted with orange triangles under the dendrogram display. In Figure 7, the selected 

cluster shares most of the genes with the cluster labeled B, but there are several dissenting 

genes shown outside the cluster B. To accelerate this could-be tedious work, we took 

inspiration from the rank-by-feature framework that ranks 1D and 2D projections according to 

some criteria such as correlation coefficient, entropy, or outlierness. The next section presents 

a new ranking criterion to facilitate this analysis process. 

<<insert Figure 7 about here>> 
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5.2 Ranking for Partitioned Datasets using Cluster Similarity 

Researchers can often gain deeper insights into multidimensional datasets with categorical 

information by comparing partitions according to categorical information. Clustering each 

partition makes such comparisons systematic and efficient. We consider the problem of 

comparing partitions a problem of comparing clustering results. Then, we address the problem 

by introducing a new ranking criterion in the rank-by-feature framework for cluster 

comparison. We first present a new ranking criterion for cluster similarity, and then we revise 

the score overview and the scatterplot accordingly. We then show two application examples 

of the enhanced rank-by-feature framework with the two partitioning methods defined in 

Section 5.1. 

Clustering can be thought of as generating a new categorical variable for cluster labels 

(e.g. cluster1, cluster2, and so on). The new variable could take part in the ranking by 

association to identify other variables that have strong dependence with the new variable, but 

we can also define a new ranking criterion for cluster comparison. Suppose two clustering 

results (CR1 and CR2) have been produced with two separate groups. We suggest a heuristic 

similarity measure to compare two clusters each of which is from CR1={CR1i|i=0..n1} and 

CR2={CR2j|j=1..n2}:  
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Other measures such as the correlation between average patterns of two clusters or the F-

measure (Rijsbergen, 1979) can be possible choices for measuring similarity between two 

clusters. The rank-by-feature framework is easily extended to include such cluster similarity 

measures. For the comparison of the two clustering results, the goal was to rank all clusters in 

one partition with clusters in the other partition by a similarity measure. If a user defines n 

clusters for the first partition and m clusters for the second partition, the score overview 

matrix of the rank-by-feature framework would have m x n cells, which could be color coded 

to show the similarity of clusters. The coordination between clustering result displays and the 

score overview enables users to identify interesting clusters, and a simple grid display clearly 

reveals correspondence between two clusters. 

 In this case, the score overview changes to show measures between clusters instead of 

those between variables. The scatterplot browser also changes to display relationships 

between clusters instead of those between variables. Figure 8 shows two rank-by-feature 

framework user interface components for ranking by cluster similarity. In the score overview 

(a), each row or column represents a cluster in a clustering result. Each cell is color-coded by 

a cluster similarity measure like the one in equation 5.1. Similar cluster pairs can be 

preattentively identified in this display. For example, in Figure 8a, the darker cells indicate 

similar pairs of clusters. Intuitively, equation 5.1 means that the more similar the two clusters 

are in size and the more items they share in common, the bigger the ClusterSimilarity is. 

In the scatterplot (Figure 8b) for comparison of two clusters, each vertical or horizontal 

line represents an item in the clusters. An intersection point has a blue square if the vertical 

item and the horizontal items are the same. The fraction of vertical or horizontal lines with a 

blue dot visualizes the similarity between two clusters. In other words, if users see less empty 
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lines in the scatterplot, the two clusters are more similar. The linear alignment of the blue dots 

on the scatterplot view indicates approximately how similar the orders of items are in the two 

selected clusters. 

<<insert Figure 8 about here>> 

As an application example, this new ranking criterion (see equation 5.1) is applied to the 

same spinal cord injury dataset shown in Figure 7. Once two clustering results are generated 

in the same way as in Figure 7 after a vertical partitioning (one with the control samples and 

the other with the severe injury samples), two dendrogram views are shown side by side. 

Since the two dendrogram views are coordinated with each other and other views, users can 

click on a cluster in a dendrogram view and then the items in the cluster are highlighted with 

orange triangles in all other views including the other dendrogram view. Just by looking at 

where the orange triangles appear in the other dendrogram view, users can notice how items 

in a cluster are grouped in the other clustering result.  

However, this manual process becomes tedious as the number of clusters to compare 

increases. The ranking by cluster similarity facilitates this task by providing an overview of 

similarity measures for all possible pairs of clusters in the two clustering results. When users 

select the “Cluster Similarity” ranking criterion from the scatterplot ordering tab in HCE, a 

modeless dialog box pops up (Figure 9) and users can drag and drop the target-shaped icon on 

dendrogram views to choose two dendrograms to compare.  

<<insert Figure 9 about here>> 
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Once users select two clusters to compare, the ranking result by the cluster similarity 

measure for the spinal cord injury dataset looks like Figure 10. Each cell of the score 

overview represents the similarity of a pair of clusters. A mouse-over event on the overview 

highlights the corresponding clusters with a yellow bounding rectangle in the selected 

dendrograms. The revised scatterplot view shows the overview of the mapping of items 

between the two clustering results. Any change in the number of clusters by dragging the 

minimum similarity bar updates the current score overview instantaneously to reflect the 

change. 

<<insert Figure 10 about here>> 

The ranking by cluster similarity can also be applied after a horizontal partitioning. As an 

example, we use the same ranking criterion to a small multidimensional dataset ("Sleep in 

Mammals," http://lib.stat.cmu.edu/). This dataset has 62 mammals in the rows and 7 variables 

(body weight, brain weight, non-dreaming sleep hours, dreaming sleep hours, total sleep 

hours, maximum life span, gestation time, and overall danger index) in the columns. Overall 

danger index is a categorical variable which has two levels, "high" and "low." Users can 

partition the rows by this categorical variable and generate two partitions. By clustering each 

partition, users can generate two clustering results of the columns.  

<< insert Figure 11 about here>> 

In Figure 11, users generate two clusters using the minimum similarity bar in each 

dendrogram view. The score overview (at the bottom left corner) shows the similarity values 

for all four possible pairs of clusters. Two black cells indicate that there are two perfectly 

matching pairs of clusters, but the revised scatterplot view (at the bottom right corner) shows 
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that the arrangement of the items in the two clusters are not consistent. The second cluster in 

the left dendrogram shows that the nondreaming sleep hours dominates total sleeping hours 

for the mammals with the high overall danger index. This might mean that those mammals are 

too cautious to have a long dreaming sleep. 

6 CASE STUDY 

We teamed up with biomedical researchers at a large biology research laboratory to 

evaluate and improve the new rank-by-feature framework for multidimensional datasets with 

categorical information. The biomedical research team consisted of four members: (1) a male 

geneticist (Ph.D.) with a strong research record in muscular dystrophy research and genome 

wide expression profiling studies, (2) a female biomedical engineer (Ph.D.) with expertise in 

high dimensional data clustering and machine learning, (3) a female biostatistician (Ph.D) 

with expertise in statistics and epidemiology working on genome-wide SNP (Single 

Nucleotide Polymorphism)  association studies, and (4) a female information systems 

architect (MS in Computer Science) with many years of professional experience in 

developing infrastructure for various research projects in the laboratory. They were 

experienced HCE users and the biostatistician had used the rank-by-feature framework for her 

projects. They were all involved in designing and implementing a research framework for 

genome wide SNP association studies. They were enthusiastic about interactive visualization 

systems such as HCE.  

This case study was in continuation of our previous case study (Seo & Shneiderman, 

2006) with a larger dataset from the same SNP association study. In addition to investigating 

gene functions, the biomedical field has begun to focus on SNP studies, which will eventually 

detect important single nucleotide changes in gene sequences and may have a huge impact on 

 23



individual long-term and short-term healthcare. As more and more SNPs are identified and as 

high-intensity SNP chips are developed, it is becoming challenging to study and analyze such 

huge SNP association datasets. Since our case study participants have already started to face 

this problem, our case study included SNPs which were all categorical, some administrative 

categorical variables, and some quantitative traits.  

6.1 Problems, Tasks and the Dataset 

The genetic analysis of quantitative traits (or phenotypes) is fast becoming problematic 

with the current environment of whole-genome analyses with very large datasets. Historically 

these analyses were limited to a few genotypes and a few phenotypes and were easily 

accomplished using a standard statistical package where each genotype-phenotype association 

was evaluated independently. With the rise of data comprising genotypes from the entire 

genome, evaluating each genotype-phenotype association individually is no longer an option 

for the average researcher. This type of analysis requires advanced statistical knowledge and 

the ability to use a statistical package, such as SAS, where an understanding of the 

programming language is required. The average researcher wanting to detect genotype-

phenotype associations in a large dataset can no longer rely on many of the statistical 

programs they are familiar with. 

Researchers often have to deal with datasets containing more than 50 phenotypes and 

more than 200 genotypes. The time required to analyze each of these genotype-phenotype 

associations is prohibitive. Once they consider that each genotype-phenotype comparison has 

several facets to the analysis, different genetic models, covariates and stratifying factors, the 

required time increases dramatically. To date, they have been dealing with the data volume 

simply by analyzing a limited number of genotype-phenotype comparisons at a time. Each set 
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of genotypes and phenotypes are analyzed using a bioinformatics tool such as Stata 

(StataCorp). The initial analysis consists of bivariate analyses between each phenotype and 

potential covariate and stratifying factors. Those which are significantly related are then used 

in the analysis of variance models for each genotype-phenotype pair.  

By using ANCOVA (Analysis of Covariance), researchers can calculate adjusted means 

for each phenotype (by stratifying by a genotype) and they can use those means to determine 

which genetic model is correct. Once the correct model is determined, covariates and 

stratifying factors and genetic models are chosen, and then the analysis proceeds with 

pairwise comparisons of the phenotype among each genotype. Finally, for each ANCOVA 

model, a measure of the variability attributable to the genotype is calculated using a 

likelihood ratio test comparing the full model with one constrained to exclude the genotype. 

The output of this analysis consists of several pages of results which then have to be 

organized into an easily understandable table or figure. Many of the results can be directly 

output to data files or tables, but any required figures usually need to be made individually. 

The dataset used in this case study was phenotype and genotype data from a study of 1242 

young adults (average age 24 years) participating in an exercise intervention for genetic 

association studies (FAMuSS study) (Thompson et al., 2004). This dataset included 23 SNPs 

(single nucleotide polymorphisms), weight and height, BMI, and semi-automated volumetric 

magnetic resonance imaging data of fat, muscle, and bone, both before and after a 12-week 

intervention. The subjects performed unilateral supervised resistance training of non-

dominant arms. 48 quantitative traits (phenotypes) have been selected as the test data for this 

case study. In the input data file, the subjects are in the rows, and all genotype and phenotype 

information are in the columns. 
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6.2 Methods and Goals 

We focused this case study on the usefulness of the new features of the rank-by-feature 

framework for multidimensional datasets with categorical information. We conducted one-

hour biweekly team meetings for two months with the biomedical research team. After the 

team meeting to introduce our case study, each member of our research team had a tutorial 

session for about 30 minutes. Follow-up questions and comments made the tutorial session 

extend up to an hour.  

After each biweekly meeting, team members were encouraged to use the new features in 

HCE for their projects until next meeting. While all of them tried to do so, the biostatistician 

was the most enthusiastic participant since her main job was to analyze the dataset with 

statistical tools. All participants except the biostatistician seemed to be using the new features 

less as time went by while they all shared comments and discussions at biweekly meetings. 

The biostatistician had used the new features with some other SNP association datasets, but 

other participants had stayed only with the given test dataset over the two month period. We 

think this is because the new features became more beneficial to the biostatistician as we 

improved the features throughout the study. Whereas, others did not expect direct benefits 

from this case study, but rather appeared as though they thought they were just helping us 

evaluate the system. 

We communicated with participants in person or by email. Whenever asked, we answered 

questions using live demonstrations if possible. Important suggestions or implementation 

requests were implemented as much as possible, so that participants could use an improved 

version before the next meeting. Since those improvements were all incremental, there were 

no serious usability issues regarding the change of interfaces and interactions. 
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We concentrated on the following aspects in conducting this case study: 

 How are categorical variables incorporated into the analysis process? 

 How do revised score overviews improve users’ analysis tasks? 

 What improvements are further anticipated? 

The next subsections describe case study results with the four researchers, but the most 

active contributor was the biostatistician who found the new features useful in her daily 

analysis tasks. 

6.3 Findings and Suggestions 

The biostatistician first checked the correlations between the measurements of dominant 

arms before and after the exercise intervention, which should not change much because the 

resistant training was done only with their non-dominant arms. She found a few measurement 

errors using the “Correlation Coefficient” ranking. Then, the biostatistician tried to partition 

the dataset vertically into the before and after exercise measurements since it was important to 

find meaningful changes after the exercise in the case study dataset. She assigned variables 

into two groups (before and after the exercise intervention) in the clustering dialog box to 

cluster them. Once the clustering was done, she adjusted the minimum similarity bar at the 

two dendrogram views until visibly meaningful separations were made at each view. After 

using coordination between the two views several times, she eventually tried the new ranking 

criterion, or “Cluster Similarity.”  

She examined the revised score overview to find a very similar pair of clusters (Figure 

12). One of them was a group of subjects who were very high in six measurements after the 

exercise intervention. However, in the revised scatterplot a few of the subjects in the group 
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were not present in the matching cluster of the other clustering result with the measurements 

before the intervention. The deviating subjects (see B in Figure 12) were easily identified 

when she clicked on the cluster (see A in Figure 12) to see them highlighted apart from other 

subjects who maintained the similar measurement pattern to the selected group. Those who 

showed a great change and deviated from the group in the pre-exercise measurement 

clustering result could be worth more attention afterwards because it could reveal an 

unexpected biologically significant association between a SNP and some phenotypes. 

<< insert Figure 12 about here>> 

While the cluster-similarity ranking interested participants to a certain degree, they were 

also intrigued by the fact that more dynamic stratifications were possible in the enhanced 

rank-by-feature framework. For example, they could stratify variables according to the types 

of information (genotype data or phenotype data) for the association score evaluation (i.e. 

vertical partitioning), and at the same time they could partition subjects by the gender column 

to generate multiple score overviews (i.e. horizontal partitioning). Multiple score overviews 

with a dynamic stratification enabled participants to gain in-depth insight into the case study 

dataset (Figure 13). The case study dataset consisted of measurements of muscle, fat and bone 

size in both genders and in several different ethnic groups. The enhanced rank-by-feature 

framework quickly showed the vast differences in muscle sizes between men and women. It 

also showed just how strongly related body weight was to these size measurements, 

confirming the hypothesis that body weight is very important as a covariate in any analysis. A 

surprising insight was also gained in that body weight, while extremely important for the 

analyses using single size measurements, is not as important when exploring changes in size 

before and after the exercise.  
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Similar insights were seen with other covariates and differences between men and women 

continued to be clearly shown through the visualization. In Figure 13, a participant selected 

“ANCOVA” as a ranking criterion and “gender” as the partitioning variable. Then HCE 

calculated ANCOVA models for all combinations in each partition to generate one score 

overview for each partition and one for the entire population without partitioning. They 

interactively examined the three coordinated score overviews (one for female, one for male, 

and one for the entire population). Since the dark-shaded cells indicated significant 

associations, the biostatistician easily identified such cells, for example, the one for 

AKT1_G738A (SNP) and EX_PRE_WA_VOL (baseline whole arm volume of the exercised 

non-dominant arm) at the score overview for female. Then she immediately noticed that the 

association was neither significant with the male population nor with the whole population by 

seeing the highlighted corresponding cells in the two other score overviews.  

<< insert Figure 13 about here>> 

6.4 Discussion 

The benefits of the new rank-by-feature framework are two-fold from the biological 

standpoint. First, the ease with which HCE can simultaneously analyze large numbers of 

genotype-phenotype associations is an enormous benefit. Rather than taking substantial time 

to analyze only a limited number of associations, the new rank-by-feature framework allows 

users to easily scan all of the data for interesting and significant results. Those few 

statistically significant results can then be explored more fully. The biostatistician team 

member who joined a demonstration session after a biweekly team meeting said this tool 

could keep researchers from missing important associations, and could free them from tedious 

time-consuming manual tasks that use lengthy text outputs and static diagrams.  
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The second major benefit is its visual interface. Users can easily visualize those 

associations which are significant, rather than scanning many rows of numbers to pick out 

those which are most interesting. Simultaneously showing results between different groups on 

the same screen reduces the effort needed to compare several lists of numbers. Showing 

figures of each ANCOVA model, complete with the adjusted means, not only aids in the 

interpretation, but reduces the need to use other graphing software. A participant said,  

“HCE is a wonderful tool for comparing large numbers of genotypes and phenotypes in a 

time-friendly manner. Its visualizations make interpretation of the results easy and will allow 

ones’ time to be devoted to further exploring significant results rather than scanning large 

numbers of insignificant genotype and phenotype comparisons.”   

A participant also pointed out a potential limitation of the new tool, which is not the 

program itself, but the potential for misuse. By allowing the easy analysis of data using any 

covariate or genetic model (recessive, dominant, etc.), the possibility of fishing the data for 

any significant association exists. If the user does not have a strong background in genetics or 

statistics, one could easily find associations, which while being statistically significantly, may 

not be biologically plausible.  

We made a series of incremental improvements to the HCE visualization tool through 

team meetings and the following demonstration sessions. After the first meeting where 

datasets and tasks were explained, we decided to add ANCOVA to the rank-by-feature 

framework for the association between a categorical variable and a quantitative variable to 

make our case study more pragmatic. More importantly, since a certain association could exist 

only in a certain sub-category, researchers had to incorporate the partitioning methods into the 
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ANCOVA ranking criterion to detect biologically and statistically meaningful associations in 

the SNP association studies. Thus, we enabled users to dynamically stratify the dataset and 

examine multiple score overviews (one for each partition by a stratification variable) at once 

using interactive coordination between those score overviews. Users first choose the new 

ranking criterion, or ANCOVA, and then they can assign variables to appropriate categories 

including covariate and stratification variables. When users select the ANCOVA ranking, 

HCE replaces the scatterplot view with a bar chart view where each bar represents a level of a 

genotype. 

In a demonstration session with the case study dataset, we examined score overviews to 

find an association whose cell is dark brown, meaning the association was significant. 

However, when we saw the bar chart for the association, it did not look significant (Figure 

14a). After examining the dependent variable in the histogram ordering view, it turned out 

that an outlier drew the scale of the bar chart larger than necessary. While outlier detection 

and removal could also solve this problem, we decided to adjust the maximum value so that 

the bar with the maximum average value can reach the top (Figure 14b). After the adjustment, 

the bar chart looked more consistent with the color coding at the score overview.  

<<insert Figure 14 about here>> 

In a different occasion, a participant raised an important point regarding error bars 

displayed within a bar chart. Such error bars can assist researchers by visually confirming the 

statistical significance. We improved the bar chart by showing error bars using the adjusted 

standard error measure. We adjusted the standard error measure using the same formula used 
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to adjust means in ANCOVA. We still need to confirm that this adjustment of the standard 

error measure is statistically correct. 

HCE had been fairly stable during the case study, but there had been some usability 

problems raised by the case study participants. First, the inclusion of multiple data types in 

the input file increased the chance of malfunctions because of the input file formatting errors. 

A more thorough format checking routine and more specific error messages can help solve 

this problem in HCE (and other similar information visualization tools). Second, two 

participants had some difficulties selecting a dendrogram view by dragging and dropping an 

icon for the cluster similarity ranking (see Figure 9). A more distinctive selection marker 

around a dendrogram might help together with a noticeable message to show the current 

selection in the selection dialog box. Third, a couple of participants had difficulty 

understanding the concept of ANCOVA and the stratification by a categorical variable. These 

concepts could be difficult for some potential users to grasp, so effective training methods and 

more case studies would be helpful for new users and designers. 

Overall, our team members seem to have enjoyed the case study and the live 

demonstration sessions. Mentionable suggestions that deserve implementation in HCE include 

the adjusted error bars display on the bar chart and the partitioning by more than one 

categorical variable. Some participants’ quick comments and suggestions made good sense to 

us from the information visualization perspective. For example, one of the participants 

suggested that the bar chart view could be embedded in the score overview. It might be more 

effective to use a fisheye view for the score overview, where users can click on a cell to 

enlarge the cell and see its bar chart while shrinking surrounding cells. It is also necessary to 
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make the new rank-by-feature framework scaleable and generalizable to deal with the 

increasing volume of genome-wide association datasets. 

When it is hard to confine users’ tasks to a very specific set or when there are no 

alternative tools to compare with, a case study with real users and real datasets can be a good 

alternative evaluation method. Even though the result from one case study cannot be directly 

applied to different situations with different users and different tasks, other designers in a 

similar situation could gain valuable insight into the design and implementation process. The 

case study and interdisciplinary design process presented in this paper will eventually lead to 

a public domain software package able to quickly and intuitively interrogate large datasets of 

genome-wide genotype data for multiple phenotypes, and to discover relationships between 

phenotypes that result in an ensemble risk for common disease (metabolic syndrome). We 

hope that this case study can provide useful guidance to other designers and programmers 

with similar problems and datasets. 

 

7 CONCLUSION 

Stimulated by users’ requests for the capability to deal with multidimensional datasets 

containing categorical information, we designed and implemented extensions to the rank-by-

feature framework in the Hierarchical Clustering Explorer:  

• First, we enabled users to partition the data vertically or horizontally by categorical 

information in the dataset. To compare resulting partitions, users can either create 

clusters within each partition or evaluate each of them separately with various 

ranking criteria for categorical information. They can then look for similar or 
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differing clusters, or compare coordinated overviews for partitions. They can drill 

down to find the specific items that account for differences.  

• Second, we added a new ranking criterion, or Cluster Similarity to the rank-by-

feature framework to facilitate the comparison task. The score overview and the 

scatterplot were enhanced accordingly. The improved score overview provided by 

a heatmap display combined with rapid coordination among windows provides 

support for this challenging task.  

• Third, we enabled users to interactively examine multiple score overviews after 

dynamic stratifications. This extension made it possible for researchers to identify 

patterns or associations hidden in the stratified subgroups, which cannot be 

revealed without stratification.  

We conducted a case study with a biomedical research team to evaluate and improve the 

new extensions to the rank-by-feature framework. The case study presented evidence that the 

rank-by-feature framework extensions for categorical multidimensional datasets were useful 

for genome-wide SNP association studies.  At the same time, it also suggested potential future 

work such as embedding the bar char view in the score overview using a fisheye view. Due to 

screen space limitations, the current implementation can handle approximately 100 clusters 

each containing approximately 100 items on an average PC. The current implementation is 

already useful, but scaling up using aggregation and distortion techniques is a natural next 

step.  
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Figure 1. Two dynamic query controls in the dendrogram view of HCE. The minimum 

similarity bar (top) to help users find the right number of clusters by 

separating the subtrees below the bar, and the detail cutoff bar (bottom) to 

help users control the level of detail by rendering the subtrees below the bar 

with their averages. (see  www.cs.umd.edu/hcil/ben60 for color figures) 

 40

http://www.cs.umd.edu/hcil/ben60


 

 

Figure 2. Rank-by-Feature Framework. Selecting a ranking criterion allows the user to 

see the ranking result in the score overview as well as in the score list. Moving 

the cursor over the overview or selecting a row in the list produces the 

corresponding scatterplot in the projection browser where one can also 

navigate the projections interactively.  
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(a) color only: Contingency coefficient C 

(b) color : Contingency coefficient C 
size : Chi-square p-value 

(c) color : Mutual information 
size : Chi-square p-value 

Figure 3. The score overview was enhanced for ranking by association (77 cereals 

dataset) in (b) and (c) from the original score overview shown in (a). The 

larger the rectangle, the more significant the association is in (b) and (c).  
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(a) without size-coding                                          (b) with size-coding 

Figure 4. Score overviews for quadracity ranking criterion (a multidimensional data set 

of demographic and health related statistics for 3,138 U.S. counties with 17 

attributes). On the left (a) is the original score overview, and on the right (b) 

is the score overview with least-square error as size-coding and quadratic 

coefficient as color-coding. Only a few pairs retain their visibility after the 

size-coding.  

 

 s1 s2 s3 s4 s5 s6 s7 s8

type A A A A A B B B 
gene1         
gene2         
……         
genen         

Figure 5: Vertical partitioning of the columns by the sample types A or B. 
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 A1 a2 a3 a4 a5 a6 a7 gender 
p1        male 
p2        male 
p3        male 

…..         
pn-1        female 
pn-2        female 

Figure 6: Horizontal partitioning of the rows by a categorical attribute ‘gender’.  

 

  AB 

Figure 7. Comparison of clustering results for two partitions in a spinal cord injury 

dataset (Di Giovanni et al., 2005): one with 10 control samples (left) and the 

other with 12 sever injury samples (right). A click on a cluster on a 

dendrogram highlights items in the cluster on both dendrograms with orange 

triangles below the heatmaps. The user has clicked on a cluster on the right 

side of the rightmost dendrogram (A). The triangles on the left side show 

where the corresponding items appear in the other clustering result. They are 

mostly within cluster (B) but five appear to the far left and four are to the 

right.  
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(a) score overview (b) scatterplot 

Figure 8. Score overview and scatterplot display for ranking by the cluster similarity 

measure as defined in equation 5.1. Each cell of the score overview encodes 

the ClusterSimilarity values for the corresponding pair of clusters. Each line 

represents an item and the lines are arranged in the order they appear in the 

clustering result. A blue square dot appears on the revised scatterplot if items 

from two clusters are matched.  
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Figure 9. Interactive selection of two clustering results (or dendrograms). When a user 

selects the “Cluster Similarity” ranking criterion in the scatterplot ordering, a 

modeless dialog box opens, and the user can drag the target-shaped icon over 

the dendrogram views to pick the two clustering results to compare.  
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Figure 10. An example of ranking by cluster similarity with a spinal cord injury dataset 

(Di Giovanni et al., 2005) where there are two levels of the severity of injuries 

(vertical partitioning). The left dendrogram shows the clustering result with 

the control samples, and the right dendrogram shows the clustering result 

with the severe injuries samples. When users select a pair of clusters on the 

score overview by moving the cursor over a cell, the selected clusters are 

highlighted with a yellow rectangle in the dendrogram view and the 

scatterplot is updated with the two clusters on x- and y-axes. 
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Figure 11. An example of a clustering results comparison with a small mammals sleep 

dataset containing 63 mammals with two partitions by overall danger index 

(horizontal partitioning). The score overview (at the bottom left) shows two 

pairs of matching clusters with the two dark cells. The selected cluster pair is 

seen in the scatterplot view (at the bottom right) where the lack of a similar 

structure is evident from the blue dots not being aligned along the diagonal 

line.  
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Figure 12. Cluster similarity ranking with a vertical partitioning (pre-exercise vs. post-

exercise) of a SNP association dataset. On the top left is the clustering result 

of subjects with volumetric measurements of non-dominant arms before the 

exercise, and on the top right is the same after the exercise. A distinctively 

similar cluster pair is selected in the score overview. The user selects one of 

them with very high values in six measurements after exercise (A). Most of 

subjects in the cluster are high in the measurements before the exercise, but a 

few of them are not (B).  
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Figure 13. Ranking by ANCOVA (Analysis of Covariance) with stratification by gender. 

The three score overviews on the top row are for female, male, and the entire 

population, respectively. Each score overview shows significantly different 

score distributions. When users mouse over a cell on the top left overview, 

corresponding cells in other overviews are highlighted and the corresponding 

bar chart is shown at the bottom right corner.  
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(a) original scale (b) adjusted scale 

Figure 14. Effect of scale in bar charts. The means in the left bar chart (a) do not look 

significantly different in the original scale, but the significance is apparent 

after the scale adjustment. GG, CT and TT represent genotypes and the 

number within the bar shows the sample size for each genotype. 
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