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Exploratory Data Analysis

Exploration often plays a central role in the early
stages of scientific inquiry. One can rarely produce
models of complex, unfamiliar phenomena on first con-
tact with data. One must interpret suggestive features
of the data, observe patterns these features indicate,
and generate hypotheses to explain the patterns. Suc-
cessive steps through the process can lead gradually to
a better understanding of underlying structure in the
data [Hoaglin et al., 1983; Good, 1983].

Exploratory data analysis (EDA) encompasses a
wide range of statistical tools [Tukey, 1977). Sim-
ple exploratory results include histograms that de-
scribe discrete and continuous variables, schematic
plots that give general characterizations of relation-
ships, partitions of relationships that distinguish dif-
ferent modes of behavior, functional simplification of
low-dimensionality relationships, and two-way tables
such as contingency tables. These partial descriptions
give different views of the data for a more complete,
refined picture of underlying patterns.

EDA techniques have found application across a
variety of scientific domains. In well-known stud-
ies, researchers have used EDA to attack problems
in grouping corporations [Chen et al., 1974], reduc-
ing TELSTAR data [Mallows, 1983], testing validity
of approaches to ozone reduction [Cleveland et al.,
1974], and examining disease characteristics [Diaconis,
1985]. Our own use of EDA has led us to a better
understanding of complex Al systems {Cohen, 1995;
St. Amant and Cohen, 1994].

Viewed as search, EDA poses a difficult problem.
Suppose we define search operators to be the menu op-
erations in a statistics package. We now have a range
of flexible, powerful possibilities available: arithmetic
composition of variables, such as those used in func-
tion finding; model-based variable decomposition, as
performed by linear regression; partitioning and clus-
tering operations, such as those used in numerical and
conceptual clustering systems; feature extraction oper-
ations such as statistical summaries; various transfor-

This research is supported by ARPA/Rome Laboratory
under contract F30602-93-C-0100.

81

mation and data reduction operations. Unfortunately,
this power is obtained at a price. The branching factor
is large—think of the number of menu options active
at any time. Furthermore, some operators may be re-
peated indefinitely, giving an unbounded search space.

Though difficult and painstaking, exploration is of-
ten manageable in human hands. Basic techniques and
strategies for EDA can be communicated through text-
books in fairly straightforward terms. Specific charac-
teristics of exploration make this possible: relatively
few general principles guide exploratory procedures;
difficult problems are often decomposed into smaller
or simpler parts; exploration is constructive, often re-
lying on partial results and incremental improvement
to reach solutions. We can draw a natural analogy
between exploration and planning.

We are developing an Assistant for Intelligent Data
Exploration (AIDE) to assist human analysts with
EDA [St. Amant and Cohen, 1995]. AIDE adopts a
script-based planning approach to automating EDA.
Data-directed mechanisms extract simple observations
and suggestive indications from the data. Scripted
combinations of EDA operations are then applied in
a goal-directed fashion to generate simpler, deeper, or
extended descriptions of the data. Control rules guide
the EDA operations, relying on intermediate results for
their decisions. The system is mixed-initiative, capa-
ble of autonomously pursuing high- and low-level goals
while still allowing the user to guide or override its de-
cisions.

The work presented here is based on a partially com-
plete implementation of AIDE. All the specific mecha-
nisms discussed have been implemented, and we have
used AIDE to perform preliminary exploration on real
data. We have not yet begun a systematic evaluation,
however.

Themes in Exploration

Existing approaches to exploration fall into two classes:
autonomous machine discovery systems that perform
clustering or function-finding [Gennari et al., 1989;
Biswas et al., 1991; Langley et al., 1987; Schaffer,
1990), and user-driven statistics packages. These ap-



proaches occupy opposite endpoints on a spectrum of
control. In applying a machine discovery system to a
task, the user specifies the goals of the analysis im-
plicitly in the form of the data input to the system.
Opportunities for changing the goals that guide explo-
ration are limited. In a user-driven statistical system,
in contrast, the user has complete control. Unfortu-
nately, the burden is completely on the user to guide
the system through every decision in the analysis.

We argue that a mixed-initiative system, in which
the user and a semi-autonomous system share control,
can produce better results than either acting alone.
Flexible control is the essential problem in exploration.
We can attribute much of the success of the field of sta-
tistical consulting to the generality of statistical prob-
lem solving strategies—in our terms, the generality of
control knowledge for data exploration. Because statis-
tical experts can often proceed with surprisingly little
information about the domain of the data [Thisted,
1986], we believe that control knowledge, as opposed
to domain knowledge, is a large part of their expertise.

Furthermore, planning offers powerful insights into
the EDA process. While planning may initially seem
unsuited to a problem in which the nature of desired
results is often unknown, there are nevertheless strong
similarities to EDA. EDA makes use of general proce-
dures and explicit intermediate goals, derives results
constructively, and relies strongly on problem decom-
position. Consider the alternative: however sophisti-
cated a statistical package may be, it inevitably treats
operations selected by the user as independent of one
another, though each result may depend on the en-
tire structure of earlier results. EDA involves the se-
lection of operations in light of dependencies imposed
by earlier actions and requirements of potential future
actions—a fair description of Al planning.

If we view EDA as a planning problem, we find
that the goals of exploratory procedures fall into four
general categories: description, simplification, deep-
ening, and extension. Procedures that meet descrip-
tion goals generate results directly interpretable by hu-
man analysts, standard descriptive statistics and struc-
tures such as means, histograms, and tables. Simplify-
ing procedures facilitate description: removing outliers
from a relationship, for example, simplifies the appli-
cation of a functional description to the relationship.
Deepening procedures look beneath surface descrip-
tions for further structure. Applying a deepening pro-
cedure is analogous to looking through a microscope,
trading a global perspective for local detail. Searching
for structure within clusters and examining residuals
for patterns are two common examples of deepening.
Finally, extension procedures combine or extend local
descriptions to a larger context. Observing that one
vartable falls into five clusters and another into four
clusters is part of description; observing that the clus-
tering criteria are similar and then consolidating the
two descriptions is a form of extension. We briefly re-
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turn to these ideas later in this paper.

Mechanics of Data Manipulation

At the lowest level of representation we find symbols,
strings, and numbers, the atomic data collected dur-
ing an experiment. These elements are stored in rela-
tional form. Exploration often exploits implicit knowl-
edge about structure in data, knowledge inconvenient
to represent in pure relational form. In the relational
representation used in AIDE, dataset attributes may di-
rectly contain other datasets. Attributes and datasets
may be annotated with relevant (e.g. meta-data) in-
formation. Specializations of the basic dataset give
variables (univariate datasets), relationships (multi-
variate datasets), graphs (datasets/variables contain-
ing bivariate relationships), and more complex struc-
tures.

Three classes of primitive data manipulation oper-
ations apply to a dataset: attribute transformations,
dataset compositions/decompositions, and dataset re-
ductions. These operations are parameterized and may
be combined in different ways for surprisingly complex
data manipulations.

An attribute transformation generates new at-
tributes for a dataset through the combination of ex-
isting ones. Suppose that the “Persons” dataset con-
tains records of different persons, including attributes
“earned income” and “unearned income”. Then we can
generate a new attribute by addition, calling the new
attribute “total income”. While this transformation
combines two attributes to make a third, we may also
break down a single attribute into two or more. We
could find an example of the latter type of attribute
transformation in an attempt to predict income as, say,
a linear function of age. “Total income” would then be
separated into “age-predicted” and “age-residual” val-
ues. Univariate transforms, such as log transforms for
symmetry, are also useful attribute transformations.

A dataset decomposition divides the rows of a dat-
set into separate partitions, generating several datasets
from a single one. A dataset composition performs
the inverse operation. We may decompose the “Per-
sons” dataset, for example, by the attribute “sex” for
a closer view of the similarities and differences between
the sexes with regard to income, as well as the behavior
of income among men and among women. The newly
generated datasets resulting from a decomposition are
usually stored in a new attribute of a new dataset.

A dataset reduction combines the elements of a
dataset into a single value, or a fixed number of val-
ues. For example, the mean statistic is a reduction of
a variable to a single value, while Pearson’s r reduces a
bivariate relationship to a single value. Reductions can
be more complex: we can view a simple linear regres-
sion as reducing a relationship to a slope, an intercept,
a significance value, and so forth.

Designing a system around such general structures
and operations is not simply an attempt at conciseness



or elegance. Rather, the design is geared specifically
toward the kinds of operations appropriate for EDA.
Consider generating a histogram for a categorical vari-
able z in dataset d. We select a dataset decomposition
that generates partitions of d, one for each value of z.
Our operations now work on the aggregation of these
partitions in a new, composite variable z’ in a new
dataset d’. An attribute transformation of z', which
reduces each partition by the count statistic, gives the
height of each bin; another transformation of =’ based
on the mode statistic gives a label to associate with
each bin. These distinct values and their counts can
be displayed directly in histogram form.

We have developed a scripting language to im-
plement procedures like this one, based on work in
knowledge-based signal processing [Carver and Lesser,
1993). The histogram procedure is implemented by the
script in Figure 1.

Producing structures in this way has two abstract
benefits: complex procedures can often be seen as nat-
ural extensions of existing procedures, and natural con-
nections between conceptually similar structures be-
come clear. Consider now producing a contingency ta-
ble for z and y. We follow essentially the same proce-
dure as for the histogram, this time simultaneously de-
composing z and y, which produces a two-dimensional
dataset of partitions. Again we transform by the count
statistic. Calculating the z,y values for each bin in-
volves an additional step but is straightforward. The
desired contingency table data is the result, as shown
in Figure 2. '

By combining operators in higher-level scripts, these
procedures restructure the search space. The problem
shifts from selecting an appropriate primitive opera-
tor to selecting an appropriate macro operator. The
introduction of macro operators alleviates the search
problem but unfortunately does not eliminate it.

Plan Level Control

The scripts we have presented so far are more struc-
tured than the discussion has indicated. Scripts are ap-
plied to satisfy specific goals. The histogram and con-
tingency scripts, for example, meet goals of describing
data with specific properties. Beyond simple sequences
of primitive operations, scripts combine operations and
subgoals using control constructs for sequencing, map-
ping, conditionalizing, and iteration. These constructs
give scripts the flavor (and power) of a high level pro-
gramming language.

Given the addition of subgoals and appropriate con-
trol constructs, we can view the histogram and con-
tingency scripts as instances of a more general plan.
We first break a relationship (univariate in the case
of the histogram) into smaller or simpler components
through a data decomposition. We then describe each
component, by application of one or more reductions.
We recombine the results (managed automatically by
the representation) to provide a description of the data.
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This plan is shown in Figure 3.

This plan is more than a consolidation of the two
perhaps trivial procedures for building histograms and
contingency tables. It appears in different guises in
a variety of related situations. If we were to build a
box plot for a relationship between a discrete and a
continuous variable, we would simply use the calcula-
tion of letter values when describing each component,
rather than the “count” statistic used in the original
scripts. If we wished to see the behavior of a continu-
ous variable with respect to two discrete variables, in
a two-way table of means, then we would simply bring
this variable into the original data decomposition, and
calculate the mean of the continuous variable per com-
ponent in the description phase. Note the advantage
of being able to mix primitive operations, such as data
decomposition, with subgoals, such as selecting a de-
scriptive reduction. More complex constructions are
managed in similar ways.

Even at the more abstract level of planning we still
face a search problem. A large number of plans may
apply at any point. Two complementary sources of
knowledge come into play to guide plan selection: in-
dications and directives.

Indications are suggestive characteristics of the data,
most often involving evaluation of a statistic or de-
scriptive structure. Indications establish goals for ex-
ploration. For example, curvature in the residuals of
a linear fit indicates that a higher order functional fit
may be appropriate. The indication establishes the
goal of finding this fit, which may grow into quite an
involved process. Indications constrain plan selection
based on internal characteristics of data.

Directives, in contrast, impose ezternal considera-
tions on exploration. Directives can supply knowledge
about properties that are not explicit in the data. For
example, a directive may inform AIDE that a set of
observations collected at hourly intervals in a research
lab can be viewed as a time series, or that a plau-
sible grouping of the observations is into daytime and
nighttime values, or that observations at 10:00AM may
be unusual because of coffee breaks. Directives can
also supply knowledge about desirable properties of
descriptive results of exploration. For example, a com-
mon simplifying assumption made in causal modeling
is that relationships between variables are linear [Gly-
mour et al., 1987]. Appropriate exploration directives
check for gross departures from linearity and suggest
appropriate transforms.

Indications help generate descriptions suggested by
the data, while directives help generate descriptions
appropriate for the goals of the analysis. Both guide
plan selection by their presence in the goal and con-
straint forms of each plan. This gives a static control
over plan selection: if a structure has a feature whose
value is below a specific threshold, or if the user has
specified that a linear description is desired, then some
specific set of plans is selected. Often, however, we find



(define-script variable-histogram-script (the-variable)
:satisfies (describe the-variable)
:constraints (. . .<discrete values>. . .)
:bindings ((partition-ds (partitions count value)))
:8cript (:sequence
(DECOMPOSE the-variable
#’ (lambda (x) x)
:output partition-ds)
(TRANSFORM partition-ds
#’(lambda (partition)
(REDUCE partition ’count)))
(TRANSFORM partition-ds
#’(lambda (partition)
(REDUCE partition ’mode)))))

Figure 1: Histogram script

(define-script contingency-table-script (the-relationship)
:satisfies (describe the-relationship)
:constraints (. . .<discrete values>. . .)
:bindings ((partition-ds (partitions count x y)))
:script (:sequence
(DECOMPOSE the-relationship
#’(lambda (x y) (values x y))
:output partition-ds)
(TRANSFORM partition-ds #’(lambda (partition)
(REDUCE partition ’count))
:key (attributes partitions))
(TRANSFORM partition-ds #’(lambda (partition)
(REDUCE partition ’mode :key (attributes x)))
:key (attributes partitions))
(TRANSFORM partition-ds #’(lambda (partition)
(REDUCE partition ’mode :key (attributes y)))
:key (attributes partitions))))

Figure 2: Contingency table script

(define-plan decompose-transform-reduce-script (structure)
:satisfies (describe structure)
:constraints (. . .<discrete values>. . .)
:internal (decomposition reduction components)
iscript (:sequence
(:subgoal (select-decomposition structure decomposition))
(:subgoal (apply-decomposition structure decomposition components))
(:iterate
(:sequence
(:subgoal (select-reduction decomposition reduction))
(:subgoal (transform-reduce components reduction))))))

Figure 3: Decomposition/description plan
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that the results leading to some point in the analysis
may influence the next step we take. Focusing heuris-
tics dynamically manage plan selection.

Focusing heuristics take advantage of the sequence
of operations leading up to a specific decision (the
plan context) and the attributes associated with the
data under consideration (the data context) to decide
which of the applicable plans and structures should be
pursued, which delayed, and which abandoned. These
heuristics search through the planning and data hier-
archy to provide the bridge from the high level guid-
ance of indications and directives to the lower level of
script operations. Focusing heuristics are implemented
as structures that are passed from plan to plan, carry-
ing relevant contextual information. Appropriate rep-
resentation for their internal form is an open issue.

Discussion

We find that the planning representation captures to
a large extent the notion of statistical strategy [Gale,
1986; Oldford and Peters, 1986; Hand, 1986]. In the AI
and statistics literature, statistical strategy refers to a
formal description of the actions and decisions to be
made while using statistical methods in the course of
a study. The simple example strategy we present here
is one of several we are pursuing. It should suggest the
more complex chains of reasoning AIDE is capable of
carrying out.

Here is a more involved example, described at a
coarse level: A user begins with a dataset describ-
ing the behavior of a system during an experiment.
The user generates a graphical, partial causal model of
the variables. As AIDE explores each relationship, it
finds that (z,y), given as a direct relationship in the
model, has a small negative correlation (in comparison
with other correlations), but strong indications of clus-
tering. AIDE partitions the relationship and explores
each. In one partition AIDE produces a description of =
and y as linear, with a high positive correlation; in the
other partition z remains essentially constant. AIDE
explores other model relationships, checking whether
similar partitioning and descriptions hold, and finds
that for several this is the case. AIDE furthermore
finds a binary variable which closely matches the par-
titioned variable, as can be seen in a contingency table.
AIDE partitions the entire dataset, with this evidence
that the system behaves qualitatively differently in the
two subsets of observations. All of these decisions are
made visible to the user, to be adjusted or possibly
overridden. Exploration continues.

Central to AIDE is the opportunistic, incremental
approach to discovery described by Tukey, Mosteller,
and other advocates of EDA. There are some obvi-
ous difficulties with the approach: in many cases local
techniques can miss simple global patterns [Daniel and
Wood, 1980]; local techniques can lead to a plethora
of spurious results [Schaffer, 1990]; maintaining consis-
tency in an incrementally growing set of descriptions
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can be difficult. Nevertheless, most such objections ap-
ply only to a system that acts autonomously, focuses
on data but not on goals of the analysis, and pursues
exploration paths independent of external context and
context supplied by its own actions. We have designed
AIDE to address these concerns.
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