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Abstract. Modeling and analysis of information system vulnerabilities helps us 
to predict possible attacks to networks using the network configuration and vul-
nerabilities information. As a fact, exploiting most of vulnerabilities result in 
access rights alteration. In this paper, we propose a new vulnerability analysis 
method based on the Take-Grant protection model. We extend the initial Take-
Grant model to address the notion of vulnerabilities and introduce the vulner-
abilities rewriting rules to specify how the protection state of the system can be 
changed by exploiting vulnerabilities. Our analysis is based on a bounded poly-
nomial algorithm, which generates the closure of the Take-Grant graph regard-
ing vulnerabilities. The closure helps to verify whether any subject can obtain 
an access right over an object. The application of our results have been exam-
ined in a case study which reveals how an attacker can gain an unauthorized ac-
cess right by exploiting chain of vulnerabilities. 

1   Introduction 

The distribution and complexity of computer networks and the large number of ser-
vices provided by them, makes computer networks vulnerable to cyber attacks. Cur-
rently several tools exist which analyze a host vulnerabilities in isolation, but to pro-
tect networks against attacks, we need to consider the overall network vulnerabilities 
and the dependency between services provided by the hosts. 

Services may provide an acceptable level of security when considered in isolation, 
but a combination of these secure services may lead to subtle attack scenarios. For ex-
ample, the file transfer protocol (ftp) and the hypertext transfer protocol (http) offered 
simultaneously in a same host, may allow the attacker to write in a web directory us-
ing the ftp service. This causes the web server to execute a program written by the at-
tacker. Consequently, comprehensive analysis of network vulnerabilities needs con-
sidering individual hosts as well as their relationships. 

The complexity of analyzing network vulnerabilities can be augmented as the 
number of hosts and services increases. Facing current enormous networks, auto-
mated approaches are necessary to analyze vulnerabilities. 
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Some approaches have been proposed in the literature to analyze network vulner-
abilities from the point of view of the relations between individual hosts and network 
configurations [1], [2],   [3], [4], [5] . Such approaches mainly use model checking and 
graph-based techniques to generate and analyze an attack graph; the task has been 
done in exponential time. In  [6],  [7] polynomial time approaches have been suggested 
for the same problem without any specific upper bound on polynomial degree. 

In this paper, we extend the Take-Grant protection model to address the concept of 
vulnerabilities, which allow an entity to change the protection state of the system and 
violate security policies. We propose a framework to model vulnerabilities based on 
their preconditions and postconditions, and an algorithm to analyze the model in 
bounded polynomial time with the size of protection system graph. The proposed al-
gorithm can generate possible attack scenarios as well. 

The remainder of this paper is organized as follows: Firstly, the previous works on 
Take-Grant protection model and network vulnerability analysis are reviewed. Then, 
our Vulnerability Take-Grant model is introduced as an extension to the Take-Grant 
model. The way to exploit some vulnerabilities can be represented in the extended 
model is shown in section 5. Our approach to vulnerability analysis comes in the next 
section. The application of Vulnerability Take-Grant model in a real network will be 
also examined in section 7. Finally, we conclude and propose future areas of research. 

2   Related Work 

The Take-Grant protection model was first developed by Jones et al. [8] in which the 
safety problem1 could be solved in linear time. They provided the necessary and suffi-
cient conditions under which rights and information could be transferred between two 
entities of the protection system and a linear time algorithm to test those conditions. 
Applications of the Take-Grant model to various systems have been explored sepa-
rately [9], [10], [11], [12], and [13]. Extending the initial Take-Grant model also has 
been experienced by Frank and Bishop [14]. They proposed a method of extending 
the Take-Grant model to add notion of the cost of information or right flows and find-
ing the most likely path in order of costs. Besides decidability, time complexity of the 
deciding algorithm has also been emphasized in nearly all previous works. These fea-
tures have made the Take-Grant model more attractive than other formal access con-
trol models. 

Based on the authors’ knowledge, the Take-Grant protection model has not been 
used for host or network vulnerability analysis so far. Previous approaches for net-
work vulnerability analysis mainly used model checking and graph-based techniques 
whose time complexity is either exponential or polynomial. Such approaches mainly 
depend on some off-the-shelf tools for scanning individual host vulnerabilities. Vul-
nerability scanner tools such as Nessus [15] scan hosts to discover vulnerabilities in 
the configuration. However, they do not investigate how a combination of configura-
tions on the same host or among hosts on the same network can contribute to the vul-
nerabilities.  

                                                           
1 The safety problem is defined in [22] as follows: Given an initial configuration of a protection 

system, whether a subject s can obtain some access right r over an object o? 
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The NetKuang system tries to assess beyond host vulnerabilities. It is an extension 
to a previous work on building a rule-based expert system, named Kuang [1] .Dacier 
[2] proposed the concept of privilege graphs. Privilege graphs are explored to con-
struct an attack state graph, which represents different ways in which an intruder may 
reach a certain goal, such as root access on a host. 

Ritchey and Ammann [3] used model checking for vulnerability analysis of net-
works via the model checker SMV. They could obtain only one attack corresponding 
to an unsafe state. The experiment was restricted to only specific vulnerabilities. 
However, the model checking approach has been used in some other researches to 
analyze network vulnerabilities  [6], [16]. The model checking has the scalability 
problem which some researchers tried to overcome [6]. Ramakrishnan and Sekar [4] 
used a model checker to analyze a single host system with respect to combinations of 
unknown vulnerabilities. The key issue in their research was checking of infinite 
space model using model abstraction. Swiler et al. presented a method in [17] for 
generating attack graphs. Their tool constructs the attack graph by forward explora-
tion. 

In [5] CSP was used to model and analyze TCP protocol vulnerabilities. In this ap-
proach, the model checker FDR2 was used to verify some simple security properties 
and find attack scenarios. CSP has been used widely in modeling and analyzing secu-
rity protocols [18] and verifying intrusion detection systems [19].Noel et al. presented 
TVA in [7] and [20] and investigated it more in [21]. In this approach, exploits are 
modeled as pre/post-conditions and a specific tool has been used to construct the at-
tack graph. Encoding each exploit individually resulted in a large and complex model. 

In our approach, similar vulnerabilities are represented in a single model. For ex-
ample, all buffer overflow vulnerabilities are treated similarly. Moreover, this reduces 
the size of the model and cost of analysis. Moreover, our approach finds the attack 
paths using an algorithm in bounded polynomial time with the size of protection sys-
tem graph. 

3   Take-Grant Protection Model 

The Take-Grant protection model is a formal access control model, which represents 
transformation of rights and information between entities inside a protection system. 
This model was presented first by Jones et al. [8] to solve the “Safety Problem”. They 
showed that using Take-Grant model, the safety problem is decidable and also can be 
solved in linear time according to the number of subjects and objects of the system.  

In this model the protection state is represented as a directed finite graph. In the 
graph, vertices are entities of the system and edges are labeled.  Each label indicates 
the rights that the source vertex of the corresponding edge has over the destination 
vertex. Entities could be subjects (represented by ●), objects (represented by ) or 
play the both roles (represented by ⊗). The set of basic access rights is denoted as 
R={t,g,r,w} which t, g, r and w respectively stand for take, grant, read, and write ac-
cess rights. To model the rights transfer, Take-Grant protection model uses a set of 
rules called de-jure rules. These rules transfer the Take-Grant graph to a new state 
which reflects the modification of protection state in an actual system. The de-jure 
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rules are take, grant, create and remove.  The take and grant rules are described 
briefly as: 

1. Take rule: Let x, y, and z be three distinct vertices in a protection graph G0 and let 
x be a subject. Let there is an edge from x to y labeled γ where t∈ γ, an edge from y 
to z labeled β. Then the take rule defines a new graph G1 by adding an edge to the 
protection graph from x to z labeled α, where α⊆β. Fig 1.(a) shows the take rule 
graphically. 

2. Grant rule: Let x, y, and z be three distinct vertices in a protection graph G0 and let 
x be a subject. Let there is an edge from x to y labeled β where g∈ γ, an edge from 
x to z labeled β.  Then the grant rule defines a new graph G1 by adding an edge to 
the protection graph from y to z labeled α, where α⊆β. Fig.1(b) shows the grant 
rule graphically. 

Having the take right over another subject or object means that its owner can achieve 
all rights of the associated subject or object unconditionally. However, obtaining the 
rights through the grant rule requires cooperation of the grantor. 

t β t β

α

g β β

α

g

 

Fig. 1. (a) take rewriting rule. (b) grant rewriting rule. 

4   The Vulnerability Take-Grant Model 

The initial Take-Grant model is extended to address the notion of vulnerability. To 
use advantages of the Take-Grant model, it is critical to preserve the model abstrac-
tion. Without loss of generality, just for simplicity, here we only consider vulnerabili-
ties which increase the attacker access rights. 

The set of all possible vulnerabilities for a single host (which henceforth will be re-
ferred as VLN) can be found easily using vulnerability scanner tools such as Nessus. 
The vulnerability function associates a set of vulnerabilities to each vertex. More for-
mally:  

VLNVnerabilityvul 2: →  (1) 

where V stands for the Vulnerability Take-Grant graph vertices and 2VLN  is the power 
set of VLN. 

Henceforth, we refer to Vulnerability Take-Grant graph as VTG graph. Beside the 
initial Take-Grant rights, we need the following access rights:  
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1. x, which represents the execution right of a subject over an object. 
2. o, which stands for ownership and represents the ownership of a subject over an 

object. This right specifies which subject currently owns an object. 
3. h, which stands for hosting and represents a machine hosts an entity.  

Thus, we extend the right set to be R = {t, g, r, w, x, o, h}. 
We define the function rights to show the set of rights each entity has over another 

entity. More formally: 

RVVvurights 2:),( →×  (2) 

 
In this model, vulnerabilities of each entity are denoted by the label of related ver-

tex. We present some examples of the model in the next section. 

5   Modeling Vulnerabilities 

The Vulnerability Take-Grant model is used to model vulnerabilities which their ex-
ploit can be demonstrated by a change in access rights. The change is represented by 
some rules we call them vulnerability rewriting rules (VRR). To demonstrate how 
vulnerabilities can be modeled using VTG, some groups of vulnerabilities are used as 
examples following by their graphical representation.  In later sections of this paper, 
we focus more on the model.  

5.1   Buffer Overflow Vulnerabilities 

Buffer overflow vulnerabilities (BOF) are reported as the most exploited ones among 
network attack [23]. We model all vulnerabilities of this type as a rewriting rule. As-
sume a process p (having BOF) is running on the host m with the privilege of user ac-
count a; and the attacker A has the execution right over p. Now A can exploit BOF 
and execute his arbitrary code with the privilege of the user account a.  

Fig. 2(a) depicts the buffer overflow rewriting rule and demonstrates how exploit-
ing the BOF vulnerability results in a change in access rights. As shown, after exploit-
ing BOF, the attacker achieves the new take access right (t) over user account a. We 
use the notation {BOF} as a vertex label to represent this vulnerability.  

5.2   Weak Password Vulnerability 

The weak password vulnerability (WP) arises when a user account with a weak pass-
word exists on a host m and the host provides a login service to other users (similar to 
what is common is web-based services). Assume the user u has an account a on host 
m and has chosen a weak password for it. Also assume this host provides a login ser-
vice which provided by process p. Now the attacker A can guess the password of user 
u and take all the privileges of user account a.  

Fig. 2(b) depicts the password cracking rewriting rule and demonstrates how ex-
ploiting the WP vulnerability results in a change in access rights. As shown, after ex-
ploiting WP, the attacker achieves the take access right (t) over user account a. We 
use the notation {WP} as a vertex label to represent this vulnerability. In addition, we 
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use the vertex label {Login} to show the login service provided by process p. In fact, 
providing the login service is not a vulnerability, but the same notation is used for Fig. 
2(b) depicts the password cracking rewriting rule and demonstrates how exploiting 
the WP vulnerability results in a change in access rights. As shown, after exploiting 
WP, the attacker achieves the take access right (t) over user account a. We use the no-
tation {WP} as a vertex label to represent this vulnerability. In addition, we use the 
vertex label {Login} to show the login service provided by process p. In fact, provid-
ing the login service is not a vulnerability, but the same notation is used for vulner-
abilities and services to preserve consistency and simplicity of the model.  

 

Fig. 2. Modeling vulnerabilities: (a) Buffer Overflow (b)Password Cracking (c) rhost vulnerability 

5.3   Trust  Vulnerabilities 

Sometimes a user trusts another user and allows him/her to access resources. One of 
the best examples of such vulnerabilities is the rhost facility in UNIX. The rhost vul-
nerability occurs when a user trusts another user on a host or on the network. On op-
erating systems such as UNIX and Windows NT based operating systems, users are 
allowed to define a list of their trustees in a file. In UNIX-based operating systems, 
typically this file is named .rhosts and is located in the user’s home directory. These 
trustees take all the access rights of the user who trusts them. 

The attacker does not need to run any program or malicious code to exploit this 
vulnerability. Fig. 2(c) demonstrates how this vulnerability can be modeled in VTG. 
Assume user account v is trusted by user account u. This trust is shown in VTG graph 
by a take edge from u to v. The vertex label {rhost} is used to represent this vulner-
ability. It should be mentioned that this vulnerability does not need any new rewriting 
rule, because no action is required to exploit it and we can add the related edges and 
vertex labels while we are building the VTG graph. 
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6   Analyzing the Model 

In this section, we present a method for network vulnerability analysis using VTG 
model and investigate its efficiency for a set of vulnerabilities. Our analysis is based 
on the following question:  

“Is it possible for attacker A to achieve access right r over y or not?” 

or more formally, having the initial VTG G0,  is there a VTG graph Gk having an 
edge in Gk labeled r, and the sequence of transitions ├* , such that G0├* Gk  ? 

 
Rights in the Take-Grant protection model (and of course in VTG), can be trans-

ferred either conditionally or unconditionally. It is also the case in application of this 
model in vulnerability analysis. The attacker can exploit some vulnerabilities uncon-
ditionally while some others involve cooperation of other system subjects which grant 
some rights either unknowingly or intentionally. Our focus, here, is to consider un-
conditional capability of an attacker to acquire rights. To be precise, we are interested 
in the following question: 

“Can attacker A achieve access right r over y unconditionally?” 

Conditional transformation of rights has been investigated in the previous works on 
Take-Grant protection model. Authors in [8] and [24] dealt with this question pro-
vided that all the subjects in the system would cooperate. Snyder introduced the con-
cept of "stealing" of rights and provided the necessary and sufficient conditions under 
which rights could be stolen if no owner of right r would grant it to other subjects or 
objects. 

Grant rules are useless when our focus is on unconditional transformation of 
rights. What we mean by unconditional transformation of rights can be defined more 
formally in VTG by the predicate can●access: 

Definition 1. The predicate can●access(α, x, y, VTG0) is true for the right α , the  
vertex x (as subject), the vertex y (as subject or object), and the graph VTG0; if there 
exist protection graphs VTG1, …, VTGn such that VTG0├* VTGn using only take and 
vulnerability rewriting rules, and there is an edge from x to y labeled α in VTGn. 

To answer the predicate  can●access(α, x, y, VTG0), it is needed to construct 
VTG’s closure regarding to de-jure and vulnerability rewriting rules. First, we define 
the concept of closure:  

Definition 2. Let A be the set of some rewriting rules. We define GA the closure of G 
if all possible rules of A have been applied in GA and no more rewriting rules can be 
applied in it. 

The initial state of VTG graph is changed by both de-jure and vulnerability rewrit-
ing rules. Let’s Gdejure be the closure of G regarding to de-jure rewriting rules and 
GVRR be the closure of G regarding to vulnerability rewriting rules. It may be possible 
to apply one set of rewriting rules after constructing a closure using the other set of 
rewriting rules.  
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To capture all the possible attack paths, a complete closure is needed. We use the 
following psudo-code to construct a complete closure in which all the possible rewrit-
ing rules have been applied and no new rule can be applied anymore. 

 
Gen_complete_Closure(G) 
1- Let list F initially contain all ordered pairs of the from (e, r) where e  
       denotes edges labeled t, and r denotes the associated right. 
2-    While (! IsEmpty(F))  
       //applying all possible de-jure rules 
3-       While (! IsEmpty(F)) 
4-              Let (e,r) = head(F) 
5-              For each take rule applicable through e 
6-                 Add the resulting edge and its associated right to F, if it has  
                    not been inserted yet. 
7-              Delete (e,r) from F 
       //applying BOF rewriting rules 
8-       for all v ∈ V 
9-          if BoF ∈ vulnerability (v) then 
10-                Add an edge labeled t from all accounts having access to v to  
                     the owner of v.   
11-                Add the above edge and its associated right to F, if it has not  
                     been added yet. 
       //applying password cracking rewriting rules 
12 -      for all M ∈ Hosts //Hosts is the set of all machines in the system  

13-                Add an edge labeled t from all accounts having login access   
                     to M to accounts having weak passwords  in M. 
14-               Add the above edge and its associated  
                     right to F, if it has not been added yet. 

 
Theorem 1 deals with the correctness and time complexity of Gen_complete-

Closure algorithm. 

Theorem 1. Gen_Complete_Closure constructs the complete closure of G correctly in 
O(V4).  

Proof: At first, we prove that lines 2-7 deal with constructing Gi
dejure given the input 

graph Gi at the beginning of the ith round of the algorithm. We should prove that the al-
gorithm adds all the possible edges and rights and no multiple edges exist between verti-
ces. Let L={(R1,r1), (R2,r2),…(Rn,rn)} be a sequence of applied rules leading to a correct 
Gi

dejure closure, where R and r stand for related rules and rights respectively. Assume 
there are some rights in L which are not produced by our algorithm and let  
(Rk , rk), nk ≤≤1 ,  to be the first such ordered pair appearing in L. We define the rights t 
in Fig. 1 the basic right of the take rule. The basic right of Rk should have been already 
added to graph by one of the rules R1 to Rk-1. These rules have been applied by our algo-
rithm similarly; so the basic right of Rk has been added to F and should be considered by 
the algorithm which leads in addition of rk and contradicts the initial assumption that rk

 

has not been added by Gen_complete_Closure Algorithm. Moreover, the condition of 
line 6 in the algorithm makes sure that no ordered pair will be added to F repeatedly. 
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No we show that lines 9-14 of the algorithm constructs Gi
VRR(closure of G regard-

ing to buffer overflow and password cracking vulnerability rewriting rules) correctly 
given the input graph Gi in the ith round of the algorithm. It is obvious that all the 
buffer overflow and password cracking rewriting rules are applied once by the algo-
rithm. It’s sufficient to prove that there is no need to consider any vulnerable vertex in 
VTG more than once. The applied rewriting rules add an edge labeled t to VTG. This 
operation doesn’t make a previously considered vertex a candidate for applying a new 
vulnerability rewriting rule, because having an edge labeled t is not a part of precondi-
tion of any vulnerability rewriting rule. 

No multiple rights (and their associated edges) will be added by algorithm, hence 
the list F will contain O(V2) ordered pairs at most. To apply the necessary take rules 
in line 5, it is sufficient to consider all the adjacent edges to the current edge e, and it 
will take O(V) at most. The cost of adding new edges and their associated rights 
would be of O(1) because it only requires checking the associated edges in the con-
structed graph. Every edge and its associated right will be added to and removed from 
list F at most once, thus time complexity of lines 2-7 is O(V3) in overall. The cost of 
applying buffer overflow and password cracking rewriting rules will be of O(V) and 
O(V2), respectively. We have just shown that the outer loop of the algorithm will be 
executed at most V2 times. Thus the time complexity of lines 8-14 will be of O(V4). 
Consequently, the time complexity of the algorithm is O(V4).■ 

Having a complete closure, we can answer the can●access predicate which was de-
fined at the beginning of this section in O(1). Therefore the following theorem holds: 

Theorem 2. Let A be the union of the take and vulnerability rewriting rules. We can 
construct GA in polynomial time and verify the can●access predicate in constant time. 

It is worthy of note that the initial cost of constructing the complete closure will be 
paid once and the attacker’s capability to access the network resources can be an-
swered in constant time afterwards. Moreover, the algorithm can be modified to gen-
erate attack path. The attack path can be tracked by assigning text labels to rights 
when applying rewriting rules. The assigned text describes how the vulnerabilities are 
exploited or the de-jure rules are applied as well as the subjects and objects involved 
in the rules. Fig. 3 depicts how we can generate a new label from two previously gen-
erated ones. Assume that rights p and q have been already added by rewriting rules 
and text labels Label(p)and Label(q) contain the attack scenarios which lead to addi-
tion of these rights respectively. Moreover, assume we can now apply a new rewriting 
rule and obtain the new right r. The associated text label of r, Label(r), can be of the 
following form: 

Label(r) = {Label(p), Label(q), ”having access rights p and q, we can apply re-
writing rule x and achieve right r” } 

Subsequently, Label(r) contains the complete attack scenario acquiring right r. 

pq

r
Label(p)Label(q)

Label(r)

 

Fig. 3. Generating attack scenario labels 
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7   Case Study 

In this section, we represent the application of Vulnerability Take-Grant model and 
the acquired results in vulnerability analysis of a typical network. Besides the previ-
ously introduced rewriting rules, we need some general rules to analyze the real world 
vulnerabilities. One of these general rules which addressed here arises from the fact 
that each user’s access rights are subset of root’s access rights. This fact can be shown 
in VTG model as a set of take edges drawn from root account to other user accounts 
defined on the same host.  

Fig. 4 shows a local network. The attacker is outside the network. The firewall 
configuration allows remote users to just have access to web and mail services. The 
attacker goal is to gain access to Ali’s files hosted on Saman. On the machine NSC, 
HTTP and SMTP services are listening to the associated ports. These services are run-
ning with the user privileges apache and root respectively. Also SSH and SMB ser-
vices are running on the machine FS with user privilege root and RPC service is run-
ning on Saman with the same user privilege. 

Using the Nessus scanner, we found that the services HTTP on NSC, SMB on 
Saman and RPC on FS have buffer overflow vulnerability. Moreover, we found that 
the user account root on the machine FS suffers from weak password vulnerability 
and the user Ali has added the account manager from machine FS to its .rhost file. 

This network’s VTG model is represented in Fig. 5. To avoid congestion, unneces-
sary relations between hosts are ignored in the figure, and the new rights added as the 
impacts of the vulnerabilities are showed by dotted edges, and the attacker final path 
is showed by dashed edges. 

By using Gen_Complete_Closure alghorithm described in the previous section and 
applying the rewriting rules on the above VTG graph, GA is generated.  

`

`

`
`

`

Attacker

NSC

FS

Devil

SamanDena

Firewall

 

Fig. 4. The example network topology 

As mentioned above, the Attacker’s goal is to access Ali’s file on the Saman. At-
tacker is allowed to access Ali’s file if and only if there is an edge from Attacker to 
Ali in GA including right r in its set of access rights. The attack path which brings the 
Attacker to the Ali’s file is shown in dashed line in Fig. 5. We can obtain the attack 
path by using the previously described technique. One possible attack scenario is as 
follows: 
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Fig. 5. Part of GA, generated for the case study network using Gen_Complete_Closure 

1. The Attacker exploits the HTTP buffer overflow vulnerability on the machine 
NSC and gains the user privilege apache on this machine. 

2. Now the Attacker has access to SSH service on machine FS and can try to guess 
root password. 

3. After finding the root password, the Attacker has all the rights of user account 
manager on machine FS. 

4. Pretending to be manager, the Attacker acquires Ali’s access rights on machine 
Saman. 

5. Consequently, the Attacker reaches its final goal, which is having access to file f 
on machine Saman. 

8   Conclusions and Future Works 

In this paper, we introduced a new method for network venerability analysis which is 
based on the Take-Grant protection model. This method affords the possibility of rep-
resenting the protection state of a network with a formal model. The attacker’s capa-
bility to access the resources of network can be analyzed by the model. We also intro-
duced the complete closure concept to address all the possible ways of exploiting 
vulnerabilities and presented an algorithm to construct the complete closure graph in 
O(V4). With complete closure, the safety problem could be answered in constant time. 
Besides analyzing vulnerabilities, the proposed method could generate possible attack 
scenarios. 

It is possible to use the model for more comprehensive analysis. Answering to 
questions such as finding the critical vulnerable path, finding the shortest path of  
accessing a right and finding minimum cost path of accessing rights (considering the 
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possibilities or difficulties of exploiting different vulnerabilities) can represent further 
applications of Take-Grant model in vulnerability analysis. Reducing the time com-
plexity of the analysis can be considered as well. The proposed algorithm constructs 
the complete closure in bounded polynomial time and answers to safety problem in 
constant time. Considering the similarity of de-jure and vulnerability rewriting rules, 
it may be possible to analyze the vulnerabilities by an algorithm just like can●steal in 
linear time. The nature of Take-Grant model makes it most suitable for analyzing the 
vulnerabilities based on changes in access rights. Extending this model to cover a 
broader set of vulnerabilities will be of particular interest. This suggests several ave-
nues of research. First, it can be studied how to model the vulnerabilities which de-
crease the access rights. Secondly, it is interesting to generalize this method for ana-
lyzing vulnerabilities based on a suitable taxonomy of vulnerabilities and their 
preconditions and postconditions. 
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