
S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 256 – 268, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Network Vulnerability Analysis Through Vulnerability
Take-Grant Model (VTG)

Hamid Reza Shahriari, Reza Sadoddin, Rasool Jalili,
Reza Zakeri, and Ali Reza Omidian

Network Security Center, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran*

{shahriari, rzakery, omidian}@mehr.sharif.edu
saededdi@ce.sharif.edu, jalili@sharif.edu

Abstract. Modeling and analysis of information system vulnerabilities helps us
to predict possible attacks to networks using the network configuration and vul-
nerabilities information. As a fact, exploiting most of vulnerabilities result in
access rights alteration. In this paper, we propose a new vulnerability analysis
method based on the Take-Grant protection model. We extend the initial Take-
Grant model to address the notion of vulnerabilities and introduce the vulner-
abilities rewriting rules to specify how the protection state of the system can be
changed by exploiting vulnerabilities. Our analysis is based on a bounded poly-
nomial algorithm, which generates the closure of the Take-Grant graph regard-
ing vulnerabilities. The closure helps to verify whether any subject can obtain
an access right over an object. The application of our results have been exam-
ined in a case study which reveals how an attacker can gain an unauthorized ac-
cess right by exploiting chain of vulnerabilities.

1 Introduction

The distribution and complexity of computer networks and the large number of ser-
vices provided by them, makes computer networks vulnerable to cyber attacks. Cur-
rently several tools exist which analyze a host vulnerabilities in isolation, but to pro-
tect networks against attacks, we need to consider the overall network vulnerabilities
and the dependency between services provided by the hosts.

Services may provide an acceptable level of security when considered in isolation,
but a combination of these secure services may lead to subtle attack scenarios. For ex-
ample, the file transfer protocol (ftp) and the hypertext transfer protocol (http) offered
simultaneously in a same host, may allow the attacker to write in a web directory us-
ing the ftp service. This causes the web server to execute a program written by the at-
tacker. Consequently, comprehensive analysis of network vulnerabilities needs con-
sidering individual hosts as well as their relationships.

The complexity of analyzing network vulnerabilities can be augmented as the
number of hosts and services increases. Facing current enormous networks, auto-
mated approaches are necessary to analyze vulnerabilities.

* This research was in part supported by a grant from I.P.M (No. CS1383-4-04).

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 257

Some approaches have been proposed in the literature to analyze network vulner-
abilities from the point of view of the relations between individual hosts and network
configurations [1], [2], [3], [4], [5] . Such approaches mainly use model checking and
graph-based techniques to generate and analyze an attack graph; the task has been
done in exponential time. In [6], [7] polynomial time approaches have been suggested
for the same problem without any specific upper bound on polynomial degree.

In this paper, we extend the Take-Grant protection model to address the concept of
vulnerabilities, which allow an entity to change the protection state of the system and
violate security policies. We propose a framework to model vulnerabilities based on
their preconditions and postconditions, and an algorithm to analyze the model in
bounded polynomial time with the size of protection system graph. The proposed al-
gorithm can generate possible attack scenarios as well.

The remainder of this paper is organized as follows: Firstly, the previous works on
Take-Grant protection model and network vulnerability analysis are reviewed. Then,
our Vulnerability Take-Grant model is introduced as an extension to the Take-Grant
model. The way to exploit some vulnerabilities can be represented in the extended
model is shown in section 5. Our approach to vulnerability analysis comes in the next
section. The application of Vulnerability Take-Grant model in a real network will be
also examined in section 7. Finally, we conclude and propose future areas of research.

2 Related Work

The Take-Grant protection model was first developed by Jones et al. [8] in which the
safety problem1 could be solved in linear time. They provided the necessary and suffi-
cient conditions under which rights and information could be transferred between two
entities of the protection system and a linear time algorithm to test those conditions.
Applications of the Take-Grant model to various systems have been explored sepa-
rately [9], [10], [11], [12], and [13]. Extending the initial Take-Grant model also has
been experienced by Frank and Bishop [14]. They proposed a method of extending
the Take-Grant model to add notion of the cost of information or right flows and find-
ing the most likely path in order of costs. Besides decidability, time complexity of the
deciding algorithm has also been emphasized in nearly all previous works. These fea-
tures have made the Take-Grant model more attractive than other formal access con-
trol models.

Based on the authors’ knowledge, the Take-Grant protection model has not been
used for host or network vulnerability analysis so far. Previous approaches for net-
work vulnerability analysis mainly used model checking and graph-based techniques
whose time complexity is either exponential or polynomial. Such approaches mainly
depend on some off-the-shelf tools for scanning individual host vulnerabilities. Vul-
nerability scanner tools such as Nessus [15] scan hosts to discover vulnerabilities in
the configuration. However, they do not investigate how a combination of configura-
tions on the same host or among hosts on the same network can contribute to the vul-
nerabilities.

1 The safety problem is defined in [22] as follows: Given an initial configuration of a protection

system, whether a subject s can obtain some access right r over an object o?

258 H.R. Shahriari et al.

The NetKuang system tries to assess beyond host vulnerabilities. It is an extension
to a previous work on building a rule-based expert system, named Kuang [1] .Dacier
[2] proposed the concept of privilege graphs. Privilege graphs are explored to con-
struct an attack state graph, which represents different ways in which an intruder may
reach a certain goal, such as root access on a host.

Ritchey and Ammann [3] used model checking for vulnerability analysis of net-
works via the model checker SMV. They could obtain only one attack corresponding
to an unsafe state. The experiment was restricted to only specific vulnerabilities.
However, the model checking approach has been used in some other researches to
analyze network vulnerabilities [6], [16]. The model checking has the scalability
problem which some researchers tried to overcome [6]. Ramakrishnan and Sekar [4]
used a model checker to analyze a single host system with respect to combinations of
unknown vulnerabilities. The key issue in their research was checking of infinite
space model using model abstraction. Swiler et al. presented a method in [17] for
generating attack graphs. Their tool constructs the attack graph by forward explora-
tion.

In [5] CSP was used to model and analyze TCP protocol vulnerabilities. In this ap-
proach, the model checker FDR2 was used to verify some simple security properties
and find attack scenarios. CSP has been used widely in modeling and analyzing secu-
rity protocols [18] and verifying intrusion detection systems [19].Noel et al. presented
TVA in [7] and [20] and investigated it more in [21]. In this approach, exploits are
modeled as pre/post-conditions and a specific tool has been used to construct the at-
tack graph. Encoding each exploit individually resulted in a large and complex model.

In our approach, similar vulnerabilities are represented in a single model. For ex-
ample, all buffer overflow vulnerabilities are treated similarly. Moreover, this reduces
the size of the model and cost of analysis. Moreover, our approach finds the attack
paths using an algorithm in bounded polynomial time with the size of protection sys-
tem graph.

3 Take-Grant Protection Model

The Take-Grant protection model is a formal access control model, which represents
transformation of rights and information between entities inside a protection system.
This model was presented first by Jones et al. [8] to solve the “Safety Problem”. They
showed that using Take-Grant model, the safety problem is decidable and also can be
solved in linear time according to the number of subjects and objects of the system.

In this model the protection state is represented as a directed finite graph. In the
graph, vertices are entities of the system and edges are labeled. Each label indicates
the rights that the source vertex of the corresponding edge has over the destination
vertex. Entities could be subjects (represented by ●), objects (represented by) or
play the both roles (represented by ⊗). The set of basic access rights is denoted as
R={t,g,r,w} which t, g, r and w respectively stand for take, grant, read, and write ac-
cess rights. To model the rights transfer, Take-Grant protection model uses a set of
rules called de-jure rules. These rules transfer the Take-Grant graph to a new state
which reflects the modification of protection state in an actual system. The de-jure

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 259

rules are take, grant, create and remove. The take and grant rules are described
briefly as:

1. Take rule: Let x, y, and z be three distinct vertices in a protection graph G0 and let
x be a subject. Let there is an edge from x to y labeled γ where t∈ γ, an edge from y
to z labeled β. Then the take rule defines a new graph G1 by adding an edge to the
protection graph from x to z labeled α, where α⊆β. Fig 1.(a) shows the take rule
graphically.

2. Grant rule: Let x, y, and z be three distinct vertices in a protection graph G0 and let
x be a subject. Let there is an edge from x to y labeled β where g∈ γ, an edge from
x to z labeled β. Then the grant rule defines a new graph G1 by adding an edge to
the protection graph from y to z labeled α, where α⊆β. Fig.1(b) shows the grant
rule graphically.

Having the take right over another subject or object means that its owner can achieve
all rights of the associated subject or object unconditionally. However, obtaining the
rights through the grant rule requires cooperation of the grantor.

t β t β

α

g β β

α

g

Fig. 1. (a) take rewriting rule. (b) grant rewriting rule.

4 The Vulnerability Take-Grant Model

The initial Take-Grant model is extended to address the notion of vulnerability. To
use advantages of the Take-Grant model, it is critical to preserve the model abstrac-
tion. Without loss of generality, just for simplicity, here we only consider vulnerabili-
ties which increase the attacker access rights.

The set of all possible vulnerabilities for a single host (which henceforth will be re-
ferred as VLN) can be found easily using vulnerability scanner tools such as Nessus.
The vulnerability function associates a set of vulnerabilities to each vertex. More for-
mally:

VLNVnerabilityvul 2: → (1)

where V stands for the Vulnerability Take-Grant graph vertices and 2VLN is the power
set of VLN.

Henceforth, we refer to Vulnerability Take-Grant graph as VTG graph. Beside the
initial Take-Grant rights, we need the following access rights:

260 H.R. Shahriari et al.

1. x, which represents the execution right of a subject over an object.
2. o, which stands for ownership and represents the ownership of a subject over an

object. This right specifies which subject currently owns an object.
3. h, which stands for hosting and represents a machine hosts an entity.

Thus, we extend the right set to be R = {t, g, r, w, x, o, h}.
We define the function rights to show the set of rights each entity has over another

entity. More formally:

RVVvurights 2:),(→× (2)

In this model, vulnerabilities of each entity are denoted by the label of related ver-

tex. We present some examples of the model in the next section.

5 Modeling Vulnerabilities

The Vulnerability Take-Grant model is used to model vulnerabilities which their ex-
ploit can be demonstrated by a change in access rights. The change is represented by
some rules we call them vulnerability rewriting rules (VRR). To demonstrate how
vulnerabilities can be modeled using VTG, some groups of vulnerabilities are used as
examples following by their graphical representation. In later sections of this paper,
we focus more on the model.

5.1 Buffer Overflow Vulnerabilities

Buffer overflow vulnerabilities (BOF) are reported as the most exploited ones among
network attack [23]. We model all vulnerabilities of this type as a rewriting rule. As-
sume a process p (having BOF) is running on the host m with the privilege of user ac-
count a; and the attacker A has the execution right over p. Now A can exploit BOF
and execute his arbitrary code with the privilege of the user account a.

Fig. 2(a) depicts the buffer overflow rewriting rule and demonstrates how exploit-
ing the BOF vulnerability results in a change in access rights. As shown, after exploit-
ing BOF, the attacker achieves the new take access right (t) over user account a. We
use the notation {BOF} as a vertex label to represent this vulnerability.

5.2 Weak Password Vulnerability

The weak password vulnerability (WP) arises when a user account with a weak pass-
word exists on a host m and the host provides a login service to other users (similar to
what is common is web-based services). Assume the user u has an account a on host
m and has chosen a weak password for it. Also assume this host provides a login ser-
vice which provided by process p. Now the attacker A can guess the password of user
u and take all the privileges of user account a.

Fig. 2(b) depicts the password cracking rewriting rule and demonstrates how ex-
ploiting the WP vulnerability results in a change in access rights. As shown, after ex-
ploiting WP, the attacker achieves the take access right (t) over user account a. We
use the notation {WP} as a vertex label to represent this vulnerability. In addition, we

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 261

use the vertex label {Login} to show the login service provided by process p. In fact,
providing the login service is not a vulnerability, but the same notation is used for Fig.
2(b) depicts the password cracking rewriting rule and demonstrates how exploiting
the WP vulnerability results in a change in access rights. As shown, after exploiting
WP, the attacker achieves the take access right (t) over user account a. We use the no-
tation {WP} as a vertex label to represent this vulnerability. In addition, we use the
vertex label {Login} to show the login service provided by process p. In fact, provid-
ing the login service is not a vulnerability, but the same notation is used for vulner-
abilities and services to preserve consistency and simplicity of the model.

Fig. 2. Modeling vulnerabilities: (a) Buffer Overflow (b)Password Cracking (c) rhost vulnerability

5.3 Trust Vulnerabilities

Sometimes a user trusts another user and allows him/her to access resources. One of
the best examples of such vulnerabilities is the rhost facility in UNIX. The rhost vul-
nerability occurs when a user trusts another user on a host or on the network. On op-
erating systems such as UNIX and Windows NT based operating systems, users are
allowed to define a list of their trustees in a file. In UNIX-based operating systems,
typically this file is named .rhosts and is located in the user’s home directory. These
trustees take all the access rights of the user who trusts them.

The attacker does not need to run any program or malicious code to exploit this
vulnerability. Fig. 2(c) demonstrates how this vulnerability can be modeled in VTG.
Assume user account v is trusted by user account u. This trust is shown in VTG graph
by a take edge from u to v. The vertex label {rhost} is used to represent this vulner-
ability. It should be mentioned that this vulnerability does not need any new rewriting
rule, because no action is required to exploit it and we can add the related edges and
vertex labels while we are building the VTG graph.

262 H.R. Shahriari et al.

6 Analyzing the Model

In this section, we present a method for network vulnerability analysis using VTG
model and investigate its efficiency for a set of vulnerabilities. Our analysis is based
on the following question:

“Is it possible for attacker A to achieve access right r over y or not?”

or more formally, having the initial VTG G0, is there a VTG graph Gk having an
edge in Gk labeled r, and the sequence of transitions ├* , such that G0├* Gk ?

Rights in the Take-Grant protection model (and of course in VTG), can be trans-

ferred either conditionally or unconditionally. It is also the case in application of this
model in vulnerability analysis. The attacker can exploit some vulnerabilities uncon-
ditionally while some others involve cooperation of other system subjects which grant
some rights either unknowingly or intentionally. Our focus, here, is to consider un-
conditional capability of an attacker to acquire rights. To be precise, we are interested
in the following question:

“Can attacker A achieve access right r over y unconditionally?”

Conditional transformation of rights has been investigated in the previous works on
Take-Grant protection model. Authors in [8] and [24] dealt with this question pro-
vided that all the subjects in the system would cooperate. Snyder introduced the con-
cept of "stealing" of rights and provided the necessary and sufficient conditions under
which rights could be stolen if no owner of right r would grant it to other subjects or
objects.

Grant rules are useless when our focus is on unconditional transformation of
rights. What we mean by unconditional transformation of rights can be defined more
formally in VTG by the predicate can●access:

Definition 1. The predicate can●access(α, x, y, VTG0) is true for the right α , the
vertex x (as subject), the vertex y (as subject or object), and the graph VTG0; if there
exist protection graphs VTG1, …, VTGn such that VTG0├* VTGn using only take and
vulnerability rewriting rules, and there is an edge from x to y labeled α in VTGn.

To answer the predicate can●access(α, x, y, VTG0), it is needed to construct
VTG’s closure regarding to de-jure and vulnerability rewriting rules. First, we define
the concept of closure:

Definition 2. Let A be the set of some rewriting rules. We define GA the closure of G
if all possible rules of A have been applied in GA and no more rewriting rules can be
applied in it.

The initial state of VTG graph is changed by both de-jure and vulnerability rewrit-
ing rules. Let’s Gdejure be the closure of G regarding to de-jure rewriting rules and
GVRR be the closure of G regarding to vulnerability rewriting rules. It may be possible
to apply one set of rewriting rules after constructing a closure using the other set of
rewriting rules.

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 263

To capture all the possible attack paths, a complete closure is needed. We use the
following psudo-code to construct a complete closure in which all the possible rewrit-
ing rules have been applied and no new rule can be applied anymore.

Gen_complete_Closure(G)
1- Let list F initially contain all ordered pairs of the from (e, r) where e
 denotes edges labeled t, and r denotes the associated right.
2- While (! IsEmpty(F))
 //applying all possible de-jure rules
3- While (! IsEmpty(F))
4- Let (e,r) = head(F)
5- For each take rule applicable through e
6- Add the resulting edge and its associated right to F, if it has
 not been inserted yet.
7- Delete (e,r) from F
 //applying BOF rewriting rules
8- for all v ∈ V
9- if BoF ∈ vulnerability (v) then
10- Add an edge labeled t from all accounts having access to v to
 the owner of v.
11- Add the above edge and its associated right to F, if it has not
 been added yet.
 //applying password cracking rewriting rules
12 - for all M ∈ Hosts //Hosts is the set of all machines in the system

13- Add an edge labeled t from all accounts having login access
 to M to accounts having weak passwords in M.
14- Add the above edge and its associated
 right to F, if it has not been added yet.

Theorem 1 deals with the correctness and time complexity of Gen_complete-

Closure algorithm.

Theorem 1. Gen_Complete_Closure constructs the complete closure of G correctly in
O(V4).

Proof: At first, we prove that lines 2-7 deal with constructing Gi
dejure given the input

graph Gi at the beginning of the ith round of the algorithm. We should prove that the al-
gorithm adds all the possible edges and rights and no multiple edges exist between verti-
ces. Let L={(R1,r1), (R2,r2),…(Rn,rn)} be a sequence of applied rules leading to a correct
Gi

dejure closure, where R and r stand for related rules and rights respectively. Assume
there are some rights in L which are not produced by our algorithm and let
(Rk , rk), nk ≤≤1 , to be the first such ordered pair appearing in L. We define the rights t
in Fig. 1 the basic right of the take rule. The basic right of Rk should have been already
added to graph by one of the rules R1 to Rk-1. These rules have been applied by our algo-
rithm similarly; so the basic right of Rk has been added to F and should be considered by
the algorithm which leads in addition of rk and contradicts the initial assumption that rk

has not been added by Gen_complete_Closure Algorithm. Moreover, the condition of
line 6 in the algorithm makes sure that no ordered pair will be added to F repeatedly.

264 H.R. Shahriari et al.

No we show that lines 9-14 of the algorithm constructs Gi
VRR(closure of G regard-

ing to buffer overflow and password cracking vulnerability rewriting rules) correctly
given the input graph Gi in the ith round of the algorithm. It is obvious that all the
buffer overflow and password cracking rewriting rules are applied once by the algo-
rithm. It’s sufficient to prove that there is no need to consider any vulnerable vertex in
VTG more than once. The applied rewriting rules add an edge labeled t to VTG. This
operation doesn’t make a previously considered vertex a candidate for applying a new
vulnerability rewriting rule, because having an edge labeled t is not a part of precondi-
tion of any vulnerability rewriting rule.

No multiple rights (and their associated edges) will be added by algorithm, hence
the list F will contain O(V2) ordered pairs at most. To apply the necessary take rules
in line 5, it is sufficient to consider all the adjacent edges to the current edge e, and it
will take O(V) at most. The cost of adding new edges and their associated rights
would be of O(1) because it only requires checking the associated edges in the con-
structed graph. Every edge and its associated right will be added to and removed from
list F at most once, thus time complexity of lines 2-7 is O(V3) in overall. The cost of
applying buffer overflow and password cracking rewriting rules will be of O(V) and
O(V2), respectively. We have just shown that the outer loop of the algorithm will be
executed at most V2 times. Thus the time complexity of lines 8-14 will be of O(V4).
Consequently, the time complexity of the algorithm is O(V4).■

Having a complete closure, we can answer the can●access predicate which was de-
fined at the beginning of this section in O(1). Therefore the following theorem holds:

Theorem 2. Let A be the union of the take and vulnerability rewriting rules. We can
construct GA in polynomial time and verify the can●access predicate in constant time.

It is worthy of note that the initial cost of constructing the complete closure will be
paid once and the attacker’s capability to access the network resources can be an-
swered in constant time afterwards. Moreover, the algorithm can be modified to gen-
erate attack path. The attack path can be tracked by assigning text labels to rights
when applying rewriting rules. The assigned text describes how the vulnerabilities are
exploited or the de-jure rules are applied as well as the subjects and objects involved
in the rules. Fig. 3 depicts how we can generate a new label from two previously gen-
erated ones. Assume that rights p and q have been already added by rewriting rules
and text labels Label(p)and Label(q) contain the attack scenarios which lead to addi-
tion of these rights respectively. Moreover, assume we can now apply a new rewriting
rule and obtain the new right r. The associated text label of r, Label(r), can be of the
following form:

Label(r) = {Label(p), Label(q), ”having access rights p and q, we can apply re-
writing rule x and achieve right r” }

Subsequently, Label(r) contains the complete attack scenario acquiring right r.

pq

r
Label(p)Label(q)

Label(r)

Fig. 3. Generating attack scenario labels

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 265

7 Case Study

In this section, we represent the application of Vulnerability Take-Grant model and
the acquired results in vulnerability analysis of a typical network. Besides the previ-
ously introduced rewriting rules, we need some general rules to analyze the real world
vulnerabilities. One of these general rules which addressed here arises from the fact
that each user’s access rights are subset of root’s access rights. This fact can be shown
in VTG model as a set of take edges drawn from root account to other user accounts
defined on the same host.

Fig. 4 shows a local network. The attacker is outside the network. The firewall
configuration allows remote users to just have access to web and mail services. The
attacker goal is to gain access to Ali’s files hosted on Saman. On the machine NSC,
HTTP and SMTP services are listening to the associated ports. These services are run-
ning with the user privileges apache and root respectively. Also SSH and SMB ser-
vices are running on the machine FS with user privilege root and RPC service is run-
ning on Saman with the same user privilege.

Using the Nessus scanner, we found that the services HTTP on NSC, SMB on
Saman and RPC on FS have buffer overflow vulnerability. Moreover, we found that
the user account root on the machine FS suffers from weak password vulnerability
and the user Ali has added the account manager from machine FS to its .rhost file.

This network’s VTG model is represented in Fig. 5. To avoid congestion, unneces-
sary relations between hosts are ignored in the figure, and the new rights added as the
impacts of the vulnerabilities are showed by dotted edges, and the attacker final path
is showed by dashed edges.

By using Gen_Complete_Closure alghorithm described in the previous section and
applying the rewriting rules on the above VTG graph, GA is generated.

`

`

`
`

`

Attacker

NSC

FS

Devil

SamanDena

Firewall

Fig. 4. The example network topology

As mentioned above, the Attacker’s goal is to access Ali’s file on the Saman. At-
tacker is allowed to access Ali’s file if and only if there is an edge from Attacker to
Ali in GA including right r in its set of access rights. The attack path which brings the
Attacker to the Ali’s file is shown in dashed line in Fig. 5. We can obtain the attack
path by using the previously described technique. One possible attack scenario is as
follows:

266 H.R. Shahriari et al.

Attacker

x

x

h
h

h

h

root

apache

o

o

http

smtp

NSC

Devil

h

h

h

ssh

rpc

root

{BoF}

{WP}

h

h
h

o
smb

f

Saman

{BoF}

manager

h

root

r Ali

h

x

x

x

o

o

{BoF}

{rhost}

t

`

t

t

t

FS

t t

t

r

` t
r

t

Fig. 5. Part of GA, generated for the case study network using Gen_Complete_Closure

1. The Attacker exploits the HTTP buffer overflow vulnerability on the machine
NSC and gains the user privilege apache on this machine.

2. Now the Attacker has access to SSH service on machine FS and can try to guess
root password.

3. After finding the root password, the Attacker has all the rights of user account
manager on machine FS.

4. Pretending to be manager, the Attacker acquires Ali’s access rights on machine
Saman.

5. Consequently, the Attacker reaches its final goal, which is having access to file f
on machine Saman.

8 Conclusions and Future Works

In this paper, we introduced a new method for network venerability analysis which is
based on the Take-Grant protection model. This method affords the possibility of rep-
resenting the protection state of a network with a formal model. The attacker’s capa-
bility to access the resources of network can be analyzed by the model. We also intro-
duced the complete closure concept to address all the possible ways of exploiting
vulnerabilities and presented an algorithm to construct the complete closure graph in
O(V4). With complete closure, the safety problem could be answered in constant time.
Besides analyzing vulnerabilities, the proposed method could generate possible attack
scenarios.

It is possible to use the model for more comprehensive analysis. Answering to
questions such as finding the critical vulnerable path, finding the shortest path of
accessing a right and finding minimum cost path of accessing rights (considering the

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 267

possibilities or difficulties of exploiting different vulnerabilities) can represent further
applications of Take-Grant model in vulnerability analysis. Reducing the time com-
plexity of the analysis can be considered as well. The proposed algorithm constructs
the complete closure in bounded polynomial time and answers to safety problem in
constant time. Considering the similarity of de-jure and vulnerability rewriting rules,
it may be possible to analyze the vulnerabilities by an algorithm just like can●steal in
linear time. The nature of Take-Grant model makes it most suitable for analyzing the
vulnerabilities based on changes in access rights. Extending this model to cover a
broader set of vulnerabilities will be of particular interest. This suggests several ave-
nues of research. First, it can be studied how to model the vulnerabilities which de-
crease the access rights. Secondly, it is interesting to generalize this method for ana-
lyzing vulnerabilities based on a suitable taxonomy of vulnerabilities and their
preconditions and postconditions.

References

1. D. Zerkle, and K. Levitt: NetKuang – A Muti-Host Configuration Vulnerability Checker.
Proceedings of the sixth USENIX UNIX Security Symposium, San Jose, CA, 1996.

2. M. Dacier, Y. Deswarte: Privilege Graph: An Extension to the Typed Access Matrix
Model. Proceedings of Third European Symposium on Research in Computer Security
(ESORICS 94), (Brighton, UK), Lecture Notes in Computer Science: Computer Security,
875, pp.319-334, Springer-Verlag, 1994.

3. R.W. Ritchey, P. Ammann: Using Model Checking to Analyze Network Vulnerabilities.
Proceedings of IEEE Symposium on Security and Privacy, pages 156–165, May 2001.

4. C.R. Ramakrishnan, R. Sekar: Model-Based Analysis of Configuration Vulnerabilities.
Journal of Computer Security, vol. 10, no. 1/2, pp. 189-209, 2002.

5. H. R. Shahriari, R. Jalili: Using CSP to Model and Analyze Transmission Control Vulner-
abilities within the Broadcast Network. Proceedings of the IEEE International Networking
and Communication Conference (INCC'2004), June 2004, pp. 42-47.

6. P. Ammann, D. Wijesekera, S. Kaushik: Scalable Graph-Based Network Vulnerability
Analysis. Proceedings of 9th ACM Conference on Computer and Communications Secu-
rity, Washington, DC, November 2002.

7. S. Noel, B. O’Berry, C. Hutchinson, S. Jajodia, L. Keuthan, A. Nguyen: Combinatorial
Analysis of Network Security. Proceedings of the 16th Annual International Symposium
on Aerospace/Defence Sensing, Simu-lation, and Controls, Orlando, Florida, April 2002.

8. J. R. Lipton, L. Snyder: A Linear Time Algorithm for Deciding Security. Proc 17th Annual
Symp. on the Foundations of Computer Science (Oct. 1976), 33-41.

9. M. Bishop: Hierarchical Take-Grant Protection Systems. Proc. 8th Symp. on Operating
Systems Principals (Dec. 1981), 107-123.

10. A. Jones: Protection Mechanism Models: Their Usefulness. in Foundations of Secure
Computing, Academic Press, New York City, NY (1978), 237-254

11. L. Snyder: On the Synthesis and Analysis of Protection Systems. Proc. Sixth Symp. on
Operating Systems Principals (Nov. 1977), 141-150.

12. M. Wu: Hierarchical Protection Systems. Proc. 1981 Symp. On Security and Privacy
(Apr. 1981), 113-123.

13. M. Bishop: Conspiracy and Information Flow in the Take-Grant Protection Model. Jour-
nal of Computer Security, vol 4(4), 1996, pp 331-360.

14. J. Frank, M. Bishop: Extending The Take-Grant Protection System. Technical Report,
Department of Computer Science, University of California at Davis, 1996.

268 H.R. Shahriari et al.

15. R. Derasion, [online]: The Nessus Attack Scripting Language Reference Guide. 2000.
Available from: http://www.nessus.org.

16. O. Sheyner, J. Haines, S. Jha, R. Lippmann, J.Wing: Automated Generation and Analysis
of Attack Graphs. Proceedings of IEEE Symposium on Security and Privacy, Oakland,
CA, 2002.

17. L. Swiler, C. Phillips, D. Ellis, S. Chakerian: Computer Attack Graph Generation Tool.
Proceedings of DARPA Information Survivability Conference & Exposition II, June
2001.

18. P. Ryan, S. Schneider: Modeling and Analysis of Security Protocols - A CSP Approach.
Addison-Wesley, 2001.

19. G. Rohrmair, G. Lowe: Using Data-Independence in the Analysis of Intrusion Detection
Systems. Workshop on Issues in the Theory of Security (WITS’03), Warsaw, Poland,
April 2003.

20. S. Jajodia, S. Noel, B. O’Berry: Topological Analysis of Network Attack Vulnerability.
Managing Cyber Threats: Issues, Approaches and Challenges. V. Kumar, J. Srivastava, A.
Lazarevic (eds.), Kluwer Academic Publisher, 2003.

21. S. Noel, S. Jajodia: Managing Attack Graph Complexity through Visual Hierarchical Ag-
gregation. Proceedings of the ACM CCS Workshop on Visualization and Data Mining for
Computer Security, Fairfax, Virginia, October 2004.

22. J. S. Shapiro: The Practical Application of a Decidable Access Control Model. Technical
Report SRL-2003-04, John Hopkins University, 2003.

23. SANS Research Center, [online]: The SANS Top 20 Internet Security Vulnerabilities.
Available from: http://www.sans.org/top20/.

24. J. R. Lipton, and L. Snyder: A Linear Time Algorithm for Deciding Subject Security. J.
ACM. 24, 3 (Jul. 1977), 455-464.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

