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Statement of Contributions 

The first contribution of this research is capturing driver behavior in congested 

and incident-prone situations, thus incorporating drivers’ risk-taking attitude in the model 

equations.   The model formulated in this paper does not exogenously impose safety 

constraints to prevent accidents from occurring. Models used in practice typically 

preclude accidents, contrary to real-life situations. One more implication of this  

contribution is capturing that drivers do not perfectly register existing stimuli without 

subjectively weighing different alternatives based on their personality (aggressive versus 

conservative drivers). This allows risky behavior as an inherent result of the model. 

Moreover, the corresponding acceleration choice emerges as a probabilistic decision 

making process facing uncertainty; the method by which the resulting accident causing 

behavior is weighed can be calibrated based on recorded traffic data. 

From a practitioner stand point, the main challenge in realizing the above 

contribution and incorporating the corresponding parameters is the degree of complexity 

that would be added to the eventual model which would preclude its usefulness in actual 

practice. Accordingly, the second contribution of this research is to put forward a “logic” 

that is robust enough to advance the state of knowledge related to the driving task but 

simpleand fastenough so that it can be readily implemented, calibrated and validated. The 

resulting model is intended to provide a competitive stochastic alternative to existing 

simpler models that lack cognitive dimensions.  
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Highlights 

• A car-following model is formulated using a prospect theory value function. 

• Risk taking and proneness to accidents are quantified through the offered 

framework. 

• Realistic traffic properties are reproduced after extensive numerical 

approximations. 

• While capturing heterogeneity, the model is calibrated against NGSIM trajectory 

data.  

• Traffic break-down followed by congestion flow-density data scattering are  

observed
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From Behavioral Psychology to Acceleration Modeling: Calibration, 

Validation, and Exploration of Drivers’ Cognitive and Safety 

Parameters in a Risk-Taking Environment  

Samer H. Hamdar* (hamdar@gwu.edu) , Hani S. Mahmassani and Martin Treiber  

ABSTRACT 

 We investigate a utility-based approach for driver car-following behavioral 

modeling while analyzing different aspects of the model characteristics especially in 

terms of capturing different fundamental diagram regions and safety proxy indices. The 

adopted model came from an elementary thought where drivers associate subjective 

utilities for accelerations (i.e. gain in travel times) and subjective dis-utilities for 

decelerations (i.e. loss in travel time) with a perceived probability of being involved in 

rear-end collision crashes. Following the testing of the model general structure, the 

authors translate the corresponding behavioral psychology theory - prospect theory - into 

an efficientmicroscopic traffic modeling with more elaborate stochastic characteristics 

considered in a risk-taking environment. 

 After model formulation, we explore different model disaggregate and aggregate 

characteristics making sure that fidelity is kept in terms of equilibrium properties. 

Significant effort is then dedicated to calibrating and validating the model using 

microscopic trajectory data. A modified genetic algorithm is adopted for this purpose 

while focusing on capturing inter-driver heterogeneity for each of the parameters. Using 

the calibration exercise as a starting point, simulation sensitivity analysis is performed to 

reproduce different fundamental diagram regions and to explore rear-end collisions 

related properties. In terms of fundamental diagram regions, the model in hand is able to 

capture traffic breakdowns and different instabilities in the congested region represented 

by flow-density data points scattering. In terms of incident related measures, the effect of 

heterogeneity in both psychological factors and execution/perception errors on the 

accidents number and their distribution is studied. Through sensitivity analysis, 

correlations between the crash-penalty, the negative coefficient associated with losses in 

speed, the positive coefficient associated with gains in speed, the driver’s uncertainty, the 

anticipation time and the reaction time are retrieved. The formulated model offers a better 

understanding of drivers behavior, particularly under extreme/incident conditions. 

Keywords: 

Car-Following, Congestion, Driver Behavior, Heterogeneity, Prospect Theory, Risk, 

Uncertainty 
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1. INTRODUCTION 

 In 2008, an acceleration-based car-following model was proposed that 

incorporates the risk-taking attitudes of drivers and uses prospect theory to evaluate the 

perceived consequences of applying different acceleration rates, a probability of collision 

and a crash penalty term are explicitly introduced in the formulation (Hamdar et al., 

2008). This paper builds on this approach for exploring the characteristics of the 

formulated car-following model in terms of its ability to capture congestion regions, 

equilibrium characteristics, inter-driver heterogeneity and collective accident-prone 

behaviors on a freeway section. Being calibrated against real-life trajectory data (FHWA 

– 2004 a,b,c), different bottleneck and incident scenarios are modeled: bottleneck 

scenarios are tested via deceleration exerted by the leader and on-ramp merging; incident 

scenarios are tested via rear-end collision and fixed object crashes. Special interest is 

given to studying the resulting fundamental diagram especially traffic breakdown and the 

congestion disturbances. The effect of both psychological factors and 

execution/perception errors on the accidents number and their distribution along a 

freeway length is also studied. Through sensitivity analysis, insights into the relationships 

between the crash-penalty, the negative coefficient associated with losses in speed, the 

positive coefficient associated with gains in speed, the driver’s uncertainty, the 

anticipation time and the reaction time are provided.  

 Theobjective of this research is to offer a comprehensive study of how the model 

performs in describing homogeneous and heterogeneous traffic flow under different 

traffic conditions (including extreme/incident conditions) giving a better insight into the 

psychological/cognitive reasoning adopted. Accidents are created as an inherent result of 

the utility function by relaxing some of the usually adopted safety constraints.  

 The first contribution of this research is capturing driver behavior in congested 

and incident-prone situations, thus requiring incorporating drivers’ risk-taking attitude in 

the model equations.   The model formulated in this paper does not exogenously impose 

safety constraints to prevent accidents. Models used in practice typically preclude 

accidents, contrary to real-life situations. One more implication of this  contribution is 

capturing that drivers do not perfectly register existing stimuli without subjectively 

weighing different alternatives based on their personality (aggressive versus conservative 

drivers). This allows risky behavior as an inherent result of the model. Moreover, the 

corresponding acceleration choice emerges as a probabilistic decision making process 

facing uncertainty; the method by which the resulting accident causing behavior is 

weighed can be calibrated based on recorded traffic data. 

 From a practitioner stand point, the main challenge in realizing the above 

contribution and incorporating the corresponding parameters is the degree of complexity 

that would be added to the eventual model which would preclude its usefulness in actual 

practice. Accordingly, the second contribution of this research is to put forward a “logic” 

that is robust enough to advance the state of knowledge related to the driving task but 

simpleand fastenough so that it can be readily implemented, calibrated and validated. The 
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resulting model is intended to provide a competitive stochastic alternative to existing 

simpler models that lack cognitive dimensions.  

 In other words, the main challenge faced is translating the behavioral psychology 

prospect theory into a concise acceleration formulation given the importance of such 

structure for the calibration and the simulation exercise; this challenge is faced through 

the use of a GA calibration heuristic that allows calibrating the model for each “feasible” 

vehicle and attempting to capture a heterogeneity pattern. The structure of this paper will 

then follow; a background review on incidents and pertinent car-following models is 

presented in the following section. The framework of the work is shown in the third 

section where the corresponding car-following model is presented. The review and the 

framework will motivate testing the model in terms of equilibrium conditions. After 

calibrating the model, the fifth section includes the simulation results and the 

corresponding data analysis before concluding with some future research needs. 

 

2. BACKGROUND REVIEW  

 In the year 2000, the monetary cost relatedto traffic accidents reached 

230.6billion USD (U. S. Dollars) in the U.S.A., only (NHTSA, 2007). Based on the 

National Highway Traffic Safety Agency (NHSTA) studies, 5 accident types of interest 

can be identified: 1) rear impacts (29.6% of US accidents), 2) angle or side impacts (28.6 

% of US accidents), 3) fixed object crashes (16.1 % of US accidents), rollovers (2.3% of 

US accidents), head-on collisions (2 % of US accidents) and collision with 

pedestrians/bicyclists (1. 8 % of US accidents) (3). In car-following, the focus is on the 

tailgating behavior that may lead to rear-end collisions (Type 1). However, existing car-

following models are designed to be accident free and therefore are, by definition, 

unsuited to capture driver behavior during incident scenarios (FHWA, 2004; Hamdar and 

Mahmassani, 2008); Moreover, a limited amount of research focused on the cognitive 

and risk-taking attitudes in driver behavior including the heterogeneity aspect that leads 

to scattering of flow-density data points and a more favorable environment for incidents.  

 The main assumption in “standard” car-following models is that the behavior of 

the following vehicle (e.g. change in acceleration) is directly related to a stimulus 

observed/perceived by the driver, defined relative to the lead vehicle (e.g. difference in 

speeds, headways etc.). This idea was adopted in the car-following models of Chandler, 

Gazis and Herman (Chandler et al., 1958, Gaziz et al., 2959 and Herman et al., 1959), 

known as the General Motor (GM) models. These first models are not complete in the 

sense that they are not applicable to all traffic situations including, e.g., free traffic or 

approaching standing vehicles or obstacles. Later investigations proposed improved 

models by introducing a “safe” time headway and a desired speed. The Gipps model 

(Gipps, 1981), and the intelligent-driver model (IDM) (Treiber et al., 2000) contain 

intuitive parameters that can be related to the driving style such as desired accelerations, 

comfortable decelerations, and a desired “safe” time gap. Furthermore, they include 

braking strategies that prevent accidents under a given heuristic. Subsequent studies have 

extended these models, by introducing additional parameters intended to capture 
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dimensions such as anticipation, learning, and response to several vehicles ahead. Other 

models such as the human driver model (HDM) (Treiber et al., 2006) also model human 

deficiencies, including variable reaction times and the size and persistency of estimation 

errors of the input stimuli depending on the traffic situation. The Wiedemann model 

captures the indifference of the drivers to small changes in the stimuli. It also allows 

different execution modes including emergency braking (Wiedemann and Reiter, 1992). 

 Calibrating the above models need different levels of effort based on data 

availability, the number of parameters to calibrate, the calibration method and the model 

structure. For example, calibrating the Wiedemann Model requires estimating 18 

parameters found in 17 different equations. On the other hand, in the IDM model, drivers 

behavior is captured by one equation with 5 parameters to estimate. 

 Before recent developments in collecting microscopic data (allowing the NGSIM 

research effort, FHWA 2004, 2005 a, b and c), a rare amount of data was available to 

calibrate the existing microscopic car-following models stated above. One of these data 

sets was collected by wire-linked vehicles on a test track at the General Motors Technical 

Center (Hamdar et al., 2009). Another technique was by using a camera attached to a 

helicopter. The gathered pictures were input to a time consuming manual processing 

system (Ossen and Hoogendoorn, 2007). Lately, image processing software and 

Differential Global Positions System (DGPS) have become available. This gave new 

tools to researcher to collect more accurate and detailed individual driver information. 

 Once the data is available, different calibrations techniques can be applied. In the 

“traditional” model calibration process, the “car-following” model parameters need to be 

adjusted until an acceptable (qualitative and quantitative) match is found between the 

simulated model dynamics and the observed drivers' behavior. Engineering judgment and 

trial-and-error methods are still widely used especially in the industry (Chu et al., 2004). 

More systematic approaches including the gradient method (Hourdakis et al., 2002) and 

Genetic Algorithm (Cheu et al., 1998) address the model calibration procedure as an 

optimization problem: a combination of parameter values are searched so an objective 

function (error term) is minimized. Lately, most research is oriented to capture intra and 

inter driver heterogeneity and time correlation in the parameters estimates (Ossen and 

Hoogendoorn, 2007). 

 

3. FRAMEWORK: the Car-Following Model 

 In this section, the general structure of the stochastic acceleration model is 

introduced. The detailed implementation details and the individual parametric equations 

of this model can be seen in (Hamdar et al., 2008). Some analyticaland 

numericalderivations are not presented in this paper for conciseness. 

 

 In the free-flow regime, the main factor governing the acceleration behavior of 

adriver is his or her desired speed 0v  (Gipps, 1981). The acceleration applied by a driver 
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toreach this speed starting at a speed v and having a maximum possible acceleration 

value maxa is given by 









−=

0

max 1
v

v
av free

& .           Equation 1 

In other words , the acceleration is always to be restricted by a free-flow acceleration 

function where intvv
dt

dv
free

&& += and intv&  is the acceleration adopted when interactions 

between vehicles is present. 

 The acceleration in dense or congested traffic is mainly controlled by interactions 

with the leading vehicle. In this model, the acceleration is modeled by a stochastic 

process that is characterized by the following: 

1- The expected acceleration value )(ˆ ta  

2- the variance )(2 taσ  

3- and by the correlation time corrτ  

 

At each given time, the stochastic acceleration intv& is distributed according to a 

continuous logit model whose distribution function is conditioned to the actual  

speed )(tv , the space gap )(ts to the leader, and the relative speed to the leader )(tv∆ to 

the leader ( 0>∆v when approaching): ),,(LOGIT~int vvsv ∆& . 

The conditional probability density ),,|(int vvsaf ∆ of the Logit model is given by 

∫
∆

∆

=∆

'
),,|(

),,;'(

),,;(

int
dae

e
vvsaf

vvsaU

vvsaU

β

β

.  Equation 2 

The (generalized) utility U  of the model is composed of the generalized (or perceived) 

prospect-theoretic acceleration utility )(aU PT whose form is derived by the prospect 

theory, and a penalty )(aUcrash for the risk of accidents: 

),,;()(),,;( vvsaUaUvvsaU crashPT ∆+=∆ .  Equation 3 

We specify the utility component by 

( )( ) ( ) )1*(5.021*1)(tanh*)1(*5.0*)(
−

++−+=

γ

xxwwxxU mmPT , Equation 3.1 

where 
0a

a
x = , 
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and 

cccrash wpvvsaU =∆ ),,;( ),( vvk ∆ . Equation 3.2 

In the prospect theoretic utility PTU , a weighing function is adopted to evaluate the 

subjective utilities of different accelerations (Tversky and Kahnemann, 1986). The gains 

and losses are expressed as a function of acceleration, or, equivalently, in terms of 

expected speed gains and losses over a specific period of time (Figure 1). The non-varied 

model parameter 0a  indicates the subjective scale of the acceleration: accelerations 

0int av <&  are considered to be “near the reference point” leading to increased sensitivity 

(Figure 1). Otherparameters of interest in the corresponding value function are the weight 

associated with negative acceleration (
−w or mw ) and the nonlinear sensitivity component 

γ. The weight associated with the gains ( +w ) is assumed to be one, so is the weighting of 

losses relative to that of gains(relative measure between +w and mw ).In other words, for γ 

= 1 (no increased sensitivity at the reference acceleration), the function expressed in 

Equation 3.1 has linear asymptotes just retaining the different positive and negative 

weighing, and a smooth transition of width 0a around zero. Additionally, when mw = 1, 

the utility becomes linear as 
0

)(
a

a
xxU PT == . 

The second term on the right hand side of Equation 3 denotes the crash-related utility. In 

contrast to )(aUPT  which is monotonously increasing with the acceleration a ,  crashU is 

monotonously decreasing with a  since a higher acceleration, and the ensuing higher 

future speed, increases the risk of rear-end collisions. The utility crashU  consists of the 

estimated probability of a crash cp , a seriousness term reflecting the expected adverse 

consequences of an accident ),( vvk ∆ and a crash weight cw . The gradient of the crash 

utility is given explicitly by Equation 13.The estimated crash probability cp  is the 

probability of a rear-end collision within the time horizon τ  assuming that i) the chosen 

acceleration a of the follower remains unchanged within this interval, ii) the speed of the 

leader is constant, and iii) this speed is only known imprecisely in terms of an unbiased 

Gaussian distribution of relative error (variation coefficient) α.In other words, when 

estimating the crash probability, drivers are assumed to predict the future position of a 

leader where the variation of this speed is dictated by an estimation uncertainty 

ll vv ασ =)(  of the speed of the leader lv .On the other hand, ),( vvk ∆ increases both with 

the speed v  and the approaching rate v∆   at present. For simplicity, we neglect these 

variations and we set the term ),( vvk ∆  to be equal to a constant weight.Regarding cw , a 

higher cw corresponds to conservative individuals while a lower corresponds to drivers 

willing to take a higher risk. 
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 Notice that we assume the utility to be dimensionless. Furthermore, its derivative

da

dU
U ≡' with respect to acceleration is of the order of 1/ 0a  where 0a =1m/s

2
. 

Consequently, 
β

1
has the order of magnitude of the intra-driver uncertainties of the 

acceleration.  

3.1. Expectation Value 

 For sufficiently high values of β (which we will assume henceforth), the 

expectation value â of the distribution for intv& can be approximated by its mode value, 

i.e., by the acceleration at the maximum of its probability density: 

∫ ∆=∆≈∆=∆ ),,;(maxarg),,(*),,|(),,(ˆ
int vvsaUvvsadavvsaafvvsa . Equation 4 

As usual, the value )(* ta for maximum utility can be determined by the condition: 

0))(),(),(*;(' =∆ tvtvtsaU .  Equation 5 

The dependencies between )(aUPT  and ),,;( vvsaUcrash ∆ usually lead to a unique 

maximum of the generalized utility at some acceleration *a . The condition in Equation 5, 

however, generally will be satisfied for two values of the acceleration, where the higher 

one pertains to a minimum of the utility (unsafe driving mode). Therefore, as mentioned 

and explained in (Hamdar et al., 2008), a good initial guess for *a is essential. 

3.2. Variance and Correlation Time 

Assuming again a sufficiently large value of the Logit uncertainty parameter β , the 

variance of the distribution characterized by the probability density in Equation 2 can be 

calculated with the method of the asymptotic expansion. The result is: 

,
))(),(),(),(*(''

1
)(2

tvtvtstaU
ta

∆

−
=
β

σ

 

Equation 6 

where the second derivative ),,*,('' vvsaU ∆ can be calculated analytically. The 

correlation time is given directly by the model parameter corrτ . 

The total number of parameters that need to be calibrated is seven. These parameters are 

presented in Table 1.  The corresponding prospect theoretic utility function PTU may be 

observed below: 
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Figure 1: Prospect theoretic utility function PTU for the proposed car-following 

model with the parameters from Table 1. 

 

4. FUNDAMENTAL DIAGRAM AND EQUILIBRIUM CONDITIONS 

 The fundamental diagram, i.e., the steady-state relation for speed or flow as a 

function of density (or spatial gap), is given by the full model with following equilibrium 

conditions: 

• The speeds of all vehicles are the same, and constant over time: i.e., 

o acceleration 00 =v& , 

o speed difference (approaching rate to the leader) 0=∆v , 

• nostochasticity is allowed, i.e., ∞→β . 

 

4.1. Microscopic Relations 

 The equilibrium relation is formulated as a relation between the gap s  and the 

speed v , e.g., )(svv e= or )(vss e= . Assuming 0≤
∂

∂

v

v&
(which should be satisfied for all 

sensible micro-models) (Treiber and Kesting 2013), the above equilibrium condition 

leads to: 

))(,min()( 0 svvsve = ,  Equation 7 

where the steady-state speed )(sv in the interacting rangeis defined by 

0),0,,(int =∞→=∆ βvvsv& .  Equation 8 
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Table1:  Car-Following Model Parameters and Corresponding Symbols for the 

Simulation Exercise: the parameters in the top part (above the horizontal line) are 

the actual model parameters to be calibrated; the parameters in the lower part are 

secondary parametersthat are not subject to calibration. 

Parameter Symbols and Initial Values 

Sensitivity Exponents of the Generalized Utility 3.0=γ  

Asymmetry Factor for Negative Utilities 4=mw  

Speed Uncertainty Variation Coefficient 08.0=α  

Weighing Factor for Accidents 100000=cw  

Maximum Anticipation Time Horizon s5=τ  

Logit Uncertainty Parameter (Intra-Driver Variability) 5=β  

Correlation Time of Intra-Driver Variability scorr 20=τ  

Maximum Acceleration 
maxa = 1.5 m/s

2
 

Desired Speed 300 =v  m/s 

Minimum Gap 30 =s m 

Acceleration Range Considered Near Interaction Point =0a 1 m/s
2
 

 

For the deterministic limit ∞→β  ,the interaction acceleration reads 

)))0,,;(arg(max(int vsaUv =& ,  Equation 9 

so the steady-state relation can be expressed by  

0|)0,,;(' 0==avsaU ,  Equation 10 

where the generalized utility ),,;( vvsaU ∆  is understood as a function of the acceleration 

a . 

Setting the seriousness term of the crash utility 1),( =∆vvσ , one obtains from Equation 3 

the condition: 

0)0,,;0()0()0()0( ''''
=+=+ vspwUUU ccPTcrashPT .  Equation 11 

The gradient of the PT utility at 0=a  is obtained according to: 

0

' 2

1

)0(
a

w

U

m

PT








 +

= . Equation 12 
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As stated in Section 3 (see Hamdar et al., 2008), the gradient of the utility due to the 

crash risk is given by: 

vv

ss
av

fwaU Nccrash
α

τ

α

τ

τ

2

2

1

)(

0

'

















 −
−+∆

−= , Equation 13 

or,  after inserting the steady-state conditions 0=a and 0=∆v : 

2

0

20'

22

)(

2
)0(








 −
−

−=






 −−
−= τα

απ

τ

ταα

τ v

ss

c

N

c

crash e
v

w

v

ss
f

v

w
U . Equation 14 

Inserting Equations (14) and (13) into (11) and solving for the steady-state gap s results 

in: 


























 +
+








+=

2

1
22

lnln2)( 0

0

m

c

w

w

v

a
vsvs

απ

τ

ατ . Equation 15 

4.2. Macroscopic Relations 

The congested (interacting) branch of the macroscopic fundamental diagram is obtained 

by applying the usual micro-macro relations: 

)(

1
)(

vsl
v

veh +

=ρ ,  Equation 16 

and 

)()( vvvQ ρ∗= .  Equation 17 

It should be noted that based on the initial parameter testing, the first log term in the 

square root term of Equation 15 is of the order of unity (unless the speed is very small), 

while the secondconstant log term is of the order of ten ( cw is in the range of 100 000). 

Therefore the equilibrium time headway 
v

vs
vTe

)(
)( = is nearly constant (Figure2) 

resulting in an approximately triangular fundamental diagram (Figure 3). 
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Figure 2: Equilibrium time headway vvsvTe /)()( =  for the proposed car-following 

model with the parameters from Table 1. 

 

Figure 3: Fundamental diagram for the accelerationmodel with the parameters 

from Table 1. 

As in other triangular-shaped fundamental diagrams, the capacity is mainly determined 

by the inverse of the time headway. The only parameter in the logarithmic term of 

Equation 15 influencing )(vs (and thus the capacity), and where a variation by several 

orders of magnitude is probable, is the crash weighing factor cw : all other logarithmic 

expressions are essentially zero compared to ln( cw ). Therefore, the effective time 

headway can be approximated by 

)ln(2: max

0

c

e

eff w
v

ss
T ατ≈

−

= .  Equation 18 
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Figure 4 plots the exact analytic value for effT calculated based on Equation 15 together 

with the approximation obtained from Equation 18– both as a function of the speed. One 

sees that the approximation breaks down only for very low values of v. By varying the 

model parameters while keeping the product defined by Equation 18 constant, once can 

change the dynamical model properties (e.g., string stability, sensitivities, and 

accelerations) independently of the static properties which are essentially defined by the 

capacity. 

 

Figure 4: Effective time headway vsvsT eeff /))(( 0−=  as a function of the speed in 

the congested regime. Compared is the exact analytic expression based on Equation 

15 with the constant approximation of Equation 18. 

After studying the suggested car-following model in terms of derivation and micro/macro 

properties, a detailed numerical analysis is presented in the following section. 

5. NUMERICAL RESULTS: Calibration and Data Analysis 

 The authors recognize the complexity involved when calibrating a car-following 

model using trajectory data, if the model’s acceleration function is not given explicitly. 

Multiple alternatives exist when choosing the optimization algorithm, the measures of 

performance, and the goodness of fit function (Punzo et al., 2012). Even though 

calibrating the model does not constitute the focus of this study, this section presents a 

thorough calibration exercise highlighting the car-following model properties. 

5.1. Data Description and Calibration 

 To calibrate the model, we have used trajectory data of the Federal Highway 

Administration’s (FHWA) Next Generation Simulation (NGSIM) project (FHWA, 2005 

a, b and c); Data for 5678 vehicles have been collectedon the 13
th

 of April, 2005, on a 

segment of the Interstate I-80 in Emeryville, San Francisco, USA. The vehicles 

considered were traveling North-Bound and were tracked using video cameras mounted 

on the Pacific Park Plaza (a 30 story building located on 6363 Christine Avenue).   
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 The videos were recorded using 7 video cameras (cameras 1 through 7).  Camera 

1 recorded the southernmost section of the I-80 segment included in the study area and 

Camera 7 recorded the northernmost section. 

Finally, the filtered trajectory points were grouped inthree 15 minutes’ intervals: 

1- Data Set 1: collected from 4:00 PM to 4:15 PM (2052 vehicles) 

2- Data Set 2: collected from 5:00 PM to 5:15 PM (1836 vehicles) 

3- Data Set 3: Collected from 5:15 PM to 5:30 PM (1790 vehicles) 

 

Data were recorded every 1/10 second. The area covered in these data sets includes an 

on-ramp but does not include an off-ramp and has a length of 1650 feet. The focus of this 

paper is on Data Sets 1 and 2 (FHWA, 2005a and b). 

5.2. Model Calibration with Heterogeneity 

 Since the model relies on utility maximization technique with a stochastic choice 

between different acceleration alternatives, the corresponding equations contain 

stochastic elements themselves and therefore are analytically intractable.Moreover, this 

also implies that the objective function (the sum of squared errors) is not smooth as a 

function of the parameters. For that reason, we have calibrated the model using a 

nonlinear optimization procedure that is based on a genetic algorithm (Hamdar et al., 

2009). The objective is to minimize the deviations between the observedand simulated 

trajectories when following the same designated leader, and avoiding secondary minima. 

Based on the stimuli considered in the acceleration model, the required trajectory 

data should include speeds for both the leading and the following vehicles of interest. 

Accordingly, a direct comparison between the measured driver behavior and the 

trajectories simulated by the car-following model - with the leading vehicle serving as 

externally controlled input - is possible. In the simulation set-up, the calibration is 

performed by taking different leader-follower pairs and comparing their driving dynamics 

with the behavior obtained from the simulated car-following model. The simulated 

relative speed and the distance gap are initialized to the empirically given relative speed 

and gap (prescribed values: Treiber and Kesting, 2013): 

)0()0( datasim vtv ∆==∆ ,  Equation 19 

)0()0( datasim sts == .  Equation 20 

The microscopic acceleration model is used to compute the acceleration and thus the 

trajectory of the following vehicle. The gap to the leading vehicle is computed as the 

difference between the simulated trajectory )(ts sim (front bumper position) and the 

recorded position of the rear-bumper of the leading vehicle )(ts data

lead : 

)()()( txtxts simdata

leader

sim
−= .  Equation 21 
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The above measure can be directly compared to the gap )(ts data provided by the data.It 

should be noted that the rear-end and the front-end bumper positions of the leaders and 

the followers can be extracted since the NGDIM data contains the corresponding vehicle 

lengths. 

In the calibration process, the difference between the observed driving behavior 

and the driving behavior obtained by the simulated car-following model should be 

minimized by choosing a set of “optimal” model parameters. Different error measures 

based on speed, relative speed, or the space gap, can be used. Normally, the error in the 

space gap  s  is adopted: when optimizing with respect to s , the average relative speed 

errors are automatically reduced. In contrast, when optimizing with respect to the relative 

speeds v∆ , the error in the distance gap may incrementally grow(Punzo et al., 2012). 

In this study, due to errors in recording the space gaps in the NGSIM data 

(Thiemann et al., 2008), the optimization procedure is performed with respect to the 

speed v ; since the NGSIM data are collected during the peak-hour PM congested period, 

the image processing of the recorded videos resulted in transforming some space 

headways into negative space gaps after subtracting the vehicle lengths. On the other 

hand, since the form of the objective function has a direct impact on the calibration 

results, three different error measures can be considered. The relative error is defined as a 

function of the empirical and the simulated time series ( )(tv sim and )(tv data  respectively): 

[ ]
2








 −
=

data

datasim
sim

rel
v

vv
vF ,  Equation 22 

where . refers to the temporal average of a time series of duration T∆ : 

∫
∆

∆
=

T

dttz
T

z
0

)(
1

.  Equation 23 

The relative error is more sensitive to small speeds v than to large speeds. The main 

reason behind such a sensitivity is that the measure is weighted by the inverse recorded 

speed datav . 

The second measure considered is the absolute error: 

[ ]
( )

2

2

data

datasim

sim

abs

v

vv
vF

−

=  . Equation 24 

Since the denominator is averaged over the whole trajectory interval, the absolute error 

[ ]sim

abs vF  is less sensitive to small deviations from the empirical data than the relative 

error [ ]sim

rel vF . On the other hand, the absolute error is more sensitive to largedifferences 
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in the numerator (large speeds reflecting large gaps). It should be noted that the error 

measures are normalized so they are independent from the duration T∆ . 

Since the absolute error systematically overestimates errors for large gaps (at high 

speeds) while the relative error systematically overestimates deviations of the observed 

headway in the low speed range, a mixed error measure will be used as the objective 

function in this paper: 

[ ] ( )
data

datasim

data

sim

mix
v

vv

v
vF

2
1 −

= .  Equation 25 

Once the objective function to be minimized is defined, the genetic algorithm is 

applied as a search heuristic to find an approximate solution to the nonlinear optimization 

problem: 

i- A “chromosome” represents a parameter set of the car-following model 

introduced earlier in this work and a population consists of NGA such chromosomes. 

ii- In each chromosome generation, the fitness of each chromosome is 

determined via the objective function defined in Equation 25. 

iii- All pairs of chromosomes are exclusively generated from the current 

population and recombined to generate new chromosomes. 

iv- The cross-over point where two chromosomes are combined is randomly 

selected. 

v- Except for the chromosome with the best fitness score, all the genes 

(model parameters) are mutated (varied randomly) following a given probability. The 

resulting chromosomes (new generation) are used in the next iteration. 

vi- Initially, a fixed number of generations is evaluated. The evolution is then 

terminated when the best-of-generation score converges from one iteration to another 

for a given number of generations. 

 

In this research, the initial set of parents (10 parents) is initiated where the 

parameters are given values in the proximity of those provided and tested in Table 1.At 

each iteration, these parents produce 90 children chromosomes where the best 10 

candidates of the NGA population (NGA = 90 + 10) are kept to the next iteration. The 

calibration process continues until no improvement of more than 0.01 is observed for 20 

consecutive iterations, or when the error reaches the threshold of 15%. It should be noted 

that a mutation rate of 10% is applied in all iterations. 

As seen in Table 1, there are seven main parameters to be calibrated. The 

additional parameter incorporated in the process is the reaction time. Focusing on the car-

following instances in the offered trajectory data,the related summary results of the 

calibration exercise using data sets 1 and 2 are shown in Tables2 and3(i.e; all vehicle 

trajectories). The presented parameters arethe calibrated parameters that led toerrors 

below a 30%threshold. For illustration reasons, sample simulated versus trajectory data 

are shown in Figure 5.Notice that towards the end of the calibration simulation 
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(aroundtime-step 1000 in Figure 5), the simulated speeds and the simulated space gaps 

drop to zero. The time of this drop corresponds to the time when gap data ceases to exist 

in the NGSIM data sets(i.e., the cameras cannot detect anymore the corresponding lead 

vehicle). When such lead-vehicle data are not available (space gaps and relative speeds), 

the calibration exercise is terminated and no further contribution to the mixed error term 

is recorded.  

The first interesting finding is the important level of inter-driver heterogeneity 

although the distributions of parameters values are not clear Gaussian distributions. A 

clear peak appears in all distributions but with a vast range of parameters values. When 

examining the average values, the cognitive nature of parameters allows interesting 

interpretations; for example, drivers seem to put 4 times the negative weight (Wm ~ 4) on 

losses in speed than on gains (the corresponding weight is assumed to be equal to 1). 

Moreover, even though crashes are not avoided through the use of safety constraints, the 

calibrated high value of the crash weight Wc (~100000) reduces the possibility of 

accidents in this simulation exercise. On the other hand, notice that the mean and the 

standard deviation for the Gamma and the reaction timeRt parameters are close in value. 

This may suggest a possible exponential probability density function. Also notice that the 

correlation matrix shows mainly low correlation values between different parameters. 

This may indicate a high level of independence between parameters which is a desirable 

property. The corresponding parametric correlation is a subject of future research. 

 The distributions of the different calibrated parameters values are illustrated in 

Figures 6 (Data Set 1) and 7(Data Set 2); one may point that the Gamma parameter and 

the Rt parameter may have exponential or Weibull distribution functions(equal mean and 

standard deviation) while the rest of the parameters havea non-Gaussian shaped 

distribution functions with a governing peak value. 

Table 2: Summary Statistics for Calibrated Parameter Values Using Genetic 

Algorithm (GA) – Data Set 1. 

Parameter Units Mean Std. Dev. Minimum Maximum 

Gamma  (γ ) - 0.333991 0.339046 0 1.9 

Wm ( mw ) - 3.97208 2.6452 0.2 9.8 

Wc ( cw ) - 97077.4 21143.6 50000 149000 

T (τ ) seconds 5.08938 1.98571 1 10.9 

Alpha (α ) - 7.74E-02 3.93E-02 1.00E-02 0.46 

Beta ( β ) - 5.32671 2.097 1 10.9 

Tcorr ( corrτ ) seconds 19.9833 4.53906 10 29 

Reaction Time (Rt) seconds 0.587102 0.688398 0.1 3.2 
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Table 3: Correlation Matrix for Calibrated Parameters Using GA– Data Set 1. 

Correlation Gamma Wm Wc Tmax Alpha Beta Tcorr Rt 

Gamma 1 0.26 -0.07 0.4 -0.14 0.2 0.01 -0.009 

Wm 0.26 1 -0.02 0.15 -0.09 0.11 0.05 -0.04 

Wc -0.07 -0.02 1 -0.07 0.001 -0.03 0.01 -0.002 

T 0.4 0.15 -0.07 1 -0.18 0.04 -0.06 0.19 

Alpha -0.14 -0.09 0.001 -0.18 1 -0.08 -0.00007 -0.02 

Beta 0.2 0.11 -0.03 0.04 -0.08 1 -0.03 0.07 

Tcorr 0.01 0.05 0.01 -0.06 -0.00007 -0.03 1 0.04 

Rt -0.009 -0.04 -0.002 0.19 -0.02 0.07 0.04 1 

 

Table 4: Summary Statistics for Calibrated Parameter Values Using Genetic 

Algorithm (GA) – Data Set 2. 

Parameter Units Mean Std. Dev. Minimum Maximum 

Gamma  (γ ) - 0.31619 0.345064 0 1.9 

Wm ( mw ) - 3.85276 2.62247 0.2 9.9 

Wc ( cw ) - 97556.2 22059.5 50000 149000 

T (τ ) seconds 5.04476 1.95507 1 10.9 

Alpha (α ) - 7.72E-02 3.54E-02 1.00E-02 0.45 

Beta ( β ) - 5.37314 2.33261 1 10.8 

Tcorr ( corrτ ) seconds 20 4.45203 10 29 

Reaction Time (Rt) seconds 0.658857 0.726583 0 2.9 

 

Table 5: Correlation Matrix for Calibrated Parameters Using GA– Data Set 2. 

Correlation Gamma Wm Wc Tmax Alpha Beta Tcorr Rt 

Gamma 1 0.23 0.04 0.34 -0.11 0.16 -0.03 -0.02 

Wm 0.23 1 0 0.19 -0.11 0.13 0.03 -0.05 

Wc 0.04 0 1 0.02 0.03 0.02 -0.07 0.06 

T 0.34 0.19 0.02 1 -0.24 0.13 0.05 0.16 

Alpha -0.11 -0.11 0.03 -0.24 1 -0.07 -0.06 0.02 

Beta 0.16 0.13 0.02 0.13 -0.07 1 0.00 0.12 

Tcorr -0.03 0.03 -0.07 0.05 -0.06 0.00 1 0 

Rt -0.02 -0.05 0.06 0.16 0.02 0.12 0 1 

 

 

 



Hamdar, Mahmassani and Treiber, 2013  TR-B: Methodological 

21 

 

 

 

Figure 5: Simulated versus observed speeds (upper graph – mixed error = 0.12) and 

space gaps (lower graph – mixed error = 0.29) for Vehicle 32 from data set 1  

However, when trying to estimate the corresponding distributions, no statistically 

significant function was found. In other words, at this stage, due to the lack of data, 

conclusive results on the distribution followed by each parameter values could not be 

reached (null hypothesis on the corresponding distributions tested for acceptance or 

rejection); In addition to the lack of data, themain reason behind such result is that, even 

though a significant heterogeneity (spread of parameter values across drivers) exists, the 

concentration of parameter values around one peak is too high for existing parametric 

distribution functions to capture. 
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5.3. Model Validation 

 In this section, we perform a simple validation to assess the robustness of the 

parameter values calibrated in the previous section. Since the acceleration model 

parameters (Table 1) are driver specific, and data sets 1 and 2 have a different number of 

vehicles, the parameter values corresponding to the peak values found in the calibration 

process are applied in the validation process. The validation results are provided in Table 

7. 

Table 7: Validation Error Terms 

Validation Error Mean Mixed Error Std of Mixed Error Minimum Maximum 

Data Set 1 0.3258 0.353026 0.036213 1.965293 

Data Set 2 0.3107 0.291286 0.048659 2.191862 

 

For both data sets 1 and 2, the mean mixed error term is equal to ~0.3. Compared to the 

error threshold of 15% specified in the genetic algorithm procedure, the validation error 

term is almost double the mean error found in the calibration exercise. This result 

indicates the significance of inter-driver heterogeneity. 

 Some of the validation errors reach values close to 200%. To examine this 

phenomenon, the distribution of the error term is plotted for data sets 1 and 2 in Figure 8; 

around 50% of the errors have a value less than 30% (~50% of the error values less than 

30%). This error threshold is comparable to that found in existing calibration studies 

(Kesting and Treiber, 2008) and is considered reasonable. For the remaining 50%, the 

main problem is the deterministic nature of assigning calibrated parameter values (peak 

values) to different drivers irrespective of their behavioral nature found in the calibration 

process (their initial calibrated parameters).In addition, inter-driver variations pertain to 

the discussed distributions of the parameters; an upper limit of the intra-driver variations 

can be assessed by the residual sum of squared errors (SSE). In terms of variances and 

assuming independence between inter- and intra-drive variations, the cross-

calibration/validation variance (or SSEcross) can be used to estimate the relative 

contributions: 

SSEcross=SSEintra + SSEinter  Equation 26 

Where SSEintra (the average SSE of all trajectories on calibration) characterizes the upper 

limit of the intra-driver variations, and SSEinterrepresents inter-driver variations. After 

filtering the trajectories that led to determinate error values, SSEcross and SSEintrawere 

computed for data sets 1 and 2 and the following was found: 

Data Set 1: SSEcross = 548.7836 and SSEintra = 118.3996 

Data Set 2: SSEcross= 390.0792 and SSEintra = 102.7188 

Such results indicate the considerable contribution of inter-driver heterogeneity to the 

cross-validation error variance. 
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Figure 6: Distribution of Utility-Based Model Parameters Using GA – Data Set 1 
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Figure 7:Distribution of Utility-Based Model Parameters Using GA – Data Set 2 
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Figure 8: error distribution across vehicles when using parameters of data set 2 on 

data set 1 (Data Set 1), and using parameters of data set 1 on data set 2 (data set 2). 

6. SIMULRATION AND SENSITIVITY ANALYSIS 

6.1. Flow-Density Relation 

 In this section, the car-following model is simulated using parameters values of 

the same order of the estimates found in the previous section. The car-following model is 

combined in this exercise with the MOBIL lane changing model for added robustness 

(Kesting et al., 2007): the acceleration rules are used for assessing the “safe” comfortable 

gaps to change lanes. The vehicles are “injected” on a two-lane freeway and a one-lane 

on-ramp merging together at location x = 10 km. The “freeway entrance” is at x=0 km, 

and x=6 km, 9 km, and 10 km are the positions of virtual detectors. The calibrated lane-

changing function is called at each simulation time step to determine the desirability of 

changing lanes. Figure 9illustrates the resulting fundamental diagram. 

 In the fundamental diagram, analytically, two main regions emerge: a free-flow 

region (green straight line) and a congested region (red straight line). When simulating 

the model, virtual one-minute detectors are placed to collect flow and density measures in 

three different scenarios based on the location of the merging of the on-ramp traffic and 

the main-stream traffic. When this location is close to the “freeway entrance” (x = 6 km), 

the transition between the free-flow region and the congested region is seen through a 

sharp traffic breakdown (sudden drop in volume – red line). This traffic breakdown is 

followed by scattered “non-synchronized” flow-density points in the congested region. 

As the on-ramp is further away from the free-way entrance, a smoother transition occurs 

where synchronized flow-density points appear. This kind of traffic dynamics imitate 

some of the observations that appear in real-life situations (Treiber et al., 2000). 
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FIGURE 9.Fundamental diagram of the combined car-following/MOBIL model 

with the parameters described in Table 1. The results are based on virtual one-

minute detectors at the indicated locations. The on-ramp bottleneck is at x=10 km. 

6.2. Inter-Driver Heterogeneity 

 In the inter-driver heterogeneity related simulation sensitivity analysis, the base-

case scenario is taken with the calibrated parameters. The main cognitive parameters of 

interest are the crash-penalty, the negative coefficient associated with losses in speed, the 

positive coefficient associated with gains in speed, the driver’s uncertainty, the 

anticipation time and the reaction time. 

 The acceleration model is simulated with a simulation time-step of 0.1 second 

.The vehicles are “injected” into a 10 km two-lane freeway section. The initial flow-rate 

is controlled by an exponential inter-arrival time with a given mean. Since the interest is 

in capturing all the regions of the fundamental diagram (free-flow and uncongested), at 

different road sections, a kilometer bottleneck is created through the allowance of an 

unstable and abrupt vehicle deceleration. This also favor the creation of rear-end collision 

for testing the influence of the different model parameters. Figure 10-a shows the 

resulting flow-density data points and hysteresis triangle if formed accordingly. 

 To test the effect of inter-driver heterogeneity, two families of scenarios are 

offered. The first family is related to homogenous traffic where the parameters values for 

all vehicles are constant and correspond to the peak of values of the parameters 
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distributions found in the calibration exercise. The second family is related to 

heterogeneous traffic where the parameters values have a normal distribution where the 

mean corresponds to the peak found in the calibration results; Figure 10-b shows a 

slightly increasing flow-density data points scattering if compared to the homogeneous 

scenario simulation.Such slight increase in scattering of the flow-density data points 

while keeping the corresponding triangular fundamental diagram characteristics 

underlines the robustness of the model. 

 

Figure10-a: Flow-density relation.The results are based on virtual one-minute 

detectors at the indicated locations. 

 

Figure10-b: Flow-density relation with and without heterogeneity 
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6.3. Crash-Investigation 

 Further extensive sensitivity analysis is performed to test the effect the parameters 

values and heterogeneity on the crash creation and distribution. The basic results are 

shown in Table 8. 

 Incidents are created while there is an interplay between the weight parameters 

(Wm, W+ and Wc) and the time parameters (Tau = anticipation time and RT = reaction 

time). Regarding the weight parameters, the relative decrease of Wm (a lesser value than 

0.098 < 1) with respect to W+ (= 1 initially) starts producing incidents. On the other 

hand, when increasing W+ to 2 (until we have a linear value function with Wm = W+), 

no incidents are created even when tailgating is favored and higher throughput is 

observed: the incident creation in rear-end collisions is related to a deceleration behavior 

rather than an acceleration behavior. Finally, as observed in the homogeneous case (2
nd

 

row), the relative weight between Wm and W+ contribute in creating the incident while 

the crash weight’s (Wc) role seems to be producing the flow dynamics and instability; 

such instabilities (stop and go, tailgating) constitutes an encouraging environment for 

incident scenarios. On the other hand, reaction time and anticipation time contributes for 

the creation of incident in a different manner; when comparing the reaction time 

scenarios in the heterogeneous traffic versus the homogeneous traffic, it is the 

heterogeneity in the reaction time that produced the highest number of incidents. This 

may suggest the role of correlation between two successive vehicles in stabilizing traffic 

conditions. As for the anticipation time, when low anticipation times are used or when a 

high discrepancy between the anticipation times of two successive vehicles exists, the 

probability of incidents creation increase.Accordingly, inter-driver heterogeneity is a 

major aspect than needs to be understood when studying safety in vehicular traffic. 
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Table8:  Sensitivity Analysis Results: Heterogeneity VS Crash Distribution. 

Bottleneck Scenario 
Inter-Driver Heterogeneity 

Inter-Driver Heterogeneity 1 Inter-Driver Heterogeneity 2 

Parameter (mean, std, range) # Accidents (mean, std, range) # Accidents 

Wm 1, 0.5, 2 30 0.5, 0.5, 1 9 

W+ 1, 0.5, 2 0 2, 0.5, 2 0 

Wc 100000, 10000, 40000 0 100, 50, 200 0 

Beta Utility Uncertainty 5, 0.5, 2 0 100, 25, 100   

Tau 4, 0.5, 2 (1.3 sec) 0 4, 1.5, 7 (1.3 sec) 4 

Reaction Time 2, 1, 3.8 249 1, 0.5, 0.9 0 

Bottleneck Scenario 
Constant Change - All Vehicles 

Change 1 Change 2 

Parameter Value # Accidents Value # Accidents 

Wm 1 0 3 0 

W+ 2 0 5 0 

Wc 50000 0 500 0 

Beta Utility Uncertainty 100 0 0.1 0 

Tau 2 0 1 0 

Reaction Time 5 27 1 0 

  Change 3 Change 4 

Wm 0.1 9 0.5 0 

W+ 20 0 100 0 

Wc 5 0 0.5 0 

Beta Utility Uncertainty 100000 0 0 0 

Tau 1 (inter-arrival 0.1) 0 1  (1.3 seconds  RT) 4 

Reaction Time 1.3 0 2 0 

 

7.CONCLUSIONS AND FUTURE RESEARCH NEEDS 

 In this paper, studying and calibrating a stochastic car-following model while 

testing it for validity in terms of capturing congestion dynamics and incidents creation is 

presented. Based on the extensive numerical analysis, this study showed that the GA 

approach is suitable to calibrate car-following models with complex structures and 

capturing inter-driver heterogeneity. Using a utility-based stochastic model, the study 

shows that inter-driver heterogeneity exists with different weights attributed to the gains 

and losses associated with different acceleration terms ( mw and cw  of Table 1). Such 

phenomena contributes to a higher scattering of flow-density data points (instabilities) 

with little influence on the capacity (~1900 vehicles/hr/lane) and the triangular shape of 

the resulting fundamental diagram (hysteresis triangle). 
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 After testing the model for incidents creation, the presented utility-based structure 

seems to be more resistant and complex (cognitive aspect) than existing models when 

two vehicles collide (Hamdar and Mahmassani, 2008). Both individual and chain type 

accidents can be produced using weight parameters and time parameters. However, 

incident creation is not based on simple relaxation of safety constraints especially that 

there are none. Incident creations are based on both parameters values change (interplay 

of negative weight parameter, positive weight parameter and crash parameter) and 

parameters values heterogeneity (reaction time) and inter-vehicle parameters values 

 In future studies, this calibration exercise should be performed on different data 

sets where the inter-driver dynamics are recorded for longer durations and on a longer 

stretch of freeway. Calibration should be performed while considering intra-driver 

heterogeneity and parameters inter-correlation. Finally, the incident-related sensitivity 

analysis should be generalized to include the fixed object crashes and the results need to 

be calibrated with real-life incidents scenarios. 
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