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Abstract

Be it directly, using DMA services, or intermediated by brokers, investors send
their orders to trading platforms using execution algorithms. VWAP algorithms are
widely used but they are only part of the menu proposed to investors. POV (also
called PVol, for Percentage of Volume) is another instance of execution strategy, in
which participation rate to the market is as close as possible to a predetermined
constant. IS (Implementation Shortfall) or TWAP (Time weighted average price)
algorithms are also proposed to minimize slippage with respect to the arrival price
of the order or to the average price over the desired execution period. Numerous
investors also use another execution strategy in line with the evaluation of their
portfolio: Target Close strategy. When their portfolio is evaluated every day at the
closing price of the day, investors’ interest is to be executed as close as possible to the
closing price. In this article dedicated to Target Close strategies, we develop several
liquidation strategies to execute as close as possible to the closing price, without
making the closing price. Risk-liquidity premia are also discussed.

Introduction

Investors in stocks buy and sell large quantities of shares to build or rebalance their
portfolios. Depending on the urgency of their orders and on their incentives, they
use different execution algorithms. Algorithms trying to replicate the VWAP over
a predetermined time window are the most widely used in practice although, only a
few academic papers are dedicated to it (see [12, 13, 14, 16, 23, 28, 29]). IS strate-
gies, rarely used in comparison, have been the topic of most academic works on
optimal execution. The most classical framework is the one developed by Almgren
and Chriss in their seminal papers [7, 8, 10]. This framework, enriched to account
for stochastic volatility and liquidity [6], and generalized to other objective criteria
and to more general impact functions (see [9], [15], [18], [27], [32], [33] or [34]) has
long been the only reference framework. Today, this framework is challenged by new
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models involving transient market impact ([1], [2], [3], [30] and [31]), and completed
by new papers focused on the tactical layer, that is on the actual way to proceed,
using for instance dark pools [24, 25, 26] or limit orders [11, 19, 20].
If VWAP1 and IS strategies have been studied, POV strategies have long been ig-
nored by academics and we only know our study [21] on the subject. When it comes
to Target Close strategies, no academic paper is available. This paper is aimed at
filling this blank. Target Close strategies are used by investors in order to get a
price as close as possible to the closing price. Their incentive is most of the time
that their portfolio is evaluated mark-to-market, using closing prices.
In this paper, we will successively consider a market without and with a closing auc-
tion. When there is no closing auction, Target Close strategies use the continuous
auction to execute orders. The trade-off between execution costs and price risk is
the same as for IS orders, although the benchmark price is the price at the end of
the period and not the arrival price. The problem is more complicated in presence
of a closing auction. Obtaining the closing price is then possible but no one wants to
impact the closing price so as to make it. Hence, for large orders, a part of it must
be executed during the continuous auction, before the closing auction. We propose
in this paper two models. In the first model, the benchmark is still the closing price
but we impose an upper bound to the volume obtained at the closing auction. In
the second model, the benchmark price is a convex combination of the closing price
and of the price at the end of the continuous auction.

In Section 1, we introduce a model without closing auction and we provide a result
linking IS strategies and Target Close strategies in this framework. We then provide
an efficient way to compute Target Close trading curves. In Section 2, we add a
closing auction and we provide several liquidation models that use both the contin-
uous auction and the closing auction.

1 The model without closing auction

1.1 Setup of the model

Let us fix a probability space (Ω,F ,P) equipped with a filtration (Ft)t∈R+ satisfy-
ing the usual conditions. We assume that all stochastic processes are defined on
(Ω,F , (Ft)t∈R+ ,P).

We consider an investor with a portfolio of stocks. This investor is willing to change
his exposition to a particular stock and he wants to have sold at time T (supposed
to be the end of day) q0 shares of the specified stock.2 The velocity at which trading
takes place depends on market conditions. In particular, we introduce a process
(Vt)t∈[0,T ] for the market volume. This process is assumed to be continuous, deter-

1TWAP strategies can be seen as special cases of VWAP.
2If q0 is negative, then it corresponds to a buy order.
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ministic,3 and such that ∃V > 0, V > 0,∀t ∈ [0, T ], V ≤ Vt ≤ V .

To model the execution process, we introduce an inventory process (qt)t∈[0,T ] defined
by:

∀t ∈ [0, T ], qt = q0 −
∫ t

0

vsds,

where the strategy (vs)s∈R+ belongs to the admissible set

A =

{
(vt)t∈[0,T ], progressively measurable, v ∈ L∞(Ω× [0, T ]),

∫ T

0

vsds = q0 a.s.

}
.

As in the classical Almgren-Chriss framework [7, 8, 10] (see also [18, 33]), we consider
that trades impact market prices in two distinct ways. Firstly, there is a permanent
market impact that imposes a drift to the price process (St)t∈R+ . As in [22], we
consider a positive function f in L1(0, |q0|) and we assume that:

dSt = σdWt + f(|q0 − qt|)vtdt, σ > 0, k ≥ 0.

Secondly, the price obtained by the investor at time t is not St because of execution
costs (or instantaneous market impact). To model this, we introduce a function
L ∈ C1(R+,R) verifying the following hypotheses:4

• L(0) = 0,

• L is increasing,

• L is strictly convex,

• limρ→+∞
L(ρ)
ρ

= +∞.

This allows to define the cash process (Xt)t∈R+ as:

Xt =

∫ t

0

(
vsSs − VsL

(
vs
Vs

)
− ψ|vs|

)
ds,

where the execution cost is divided into two parts: a linear part that represents a
fixed cost (ψ ≥ 0) per share – linked to the bid-ask spread –, and a strictly convex
part modeled by L.

In the case of an IS strategy (as in the usual Almgren-Chriss case), the goal is
to minimize a risk-adjusted cost of execution where the benchmark is the initial
mark-to-market value of the quantity to be sold: q0S0. In other words, if we
consider an expected utility framework, the usual Almgren-Chriss problem con-
sists in maximizing over v ∈ A the objective function E [− exp(−γ(XT − q0S0))] =

3This assumption may seem odd. Practitioners usually consider market volume curves deter-
mined statistically to account for the intraday seasonality of market volume.

4We want to cover the cases L(ρ) = ηρ1+φ for η > 0 and φ > 0.
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−eγq0S0E [exp(−γXT )]. In the case of a Target Close strategy, the benchmark is not
anymore q0S0, but rather q0ST . In other words, the central problem of this first
section is to maximize over v ∈ A the objective function:

J(v) = E [− exp(−γ(XT − q0ST ))] ,

where γ > 0 is the absolute risk aversion parameter of the investor.

An interpretation of the objective function is the following. If the investor wants
to obtain the closing price ST , then he can contract with an intermediary. The
intermediary gets the shares at time 0, liquidate them over [0, T ], obtain XT at
time T and pays the investor q0ST . Therefore, the intermediary must optimize the
expected utility of XT − q0ST . An intermediary proposing such guaranteed closing
price must price the service. Using indifference pricing, one can define the reserve
price (or risk-liquidity premium) for the service as:

`TC(q0) =
1

γ
log

(
− sup

v∈A
E [− exp(−γ(XT − q0ST ))]

)

1.2 A correspondence between Target Close strategies and
IS strategies

To start solving the problem, let us define the set Adet of deterministic strategies
in A. We shall show that there exists an optimal strategy and that this strategy
can be searched among deterministic ones. The first step is to write the value of
XT − q0ST :

Proposition 1. Let us define Φ(z) =
∫ z
0
yf(|y|)dy. Let us consider v ∈ A.

We have:

XT − q0ST = Φ(q0)−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds+

∫ T

0

σ(qs − q0)dWs.

In particular, if v ∈ Adet, then:

XT − q0ST ∼ N
(

Φ(q0)−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds, σ2

∫ T

0

(qs − q0)2ds
)
.

Proof:

By definition:

XT − q0ST =

∫ T

0

vsSsds− q0ST −
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds

= [(q0 − qt)St]T0 − q0ST +

∫ T

0

vsf(|q0 − qs|)(q0 − qs)ds+

∫ T

0

σ(qs − q0)dWs

−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds
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= Φ(q0)−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds+

∫ T

0

σ(qs − q0)dWs.

If (qs)s∈[0,T ] is deterministic, then XT − q0ST is normally distributed with mean

Φ(q0)−
∫ T
0
VsL

(
vs
Vs

)
ds− ψ

∫ T
0
|vs|ds and variance σ2

∫ T
0

(qs − q0)2ds.

Using the above Proposition and the Laplace transform of a normal distribution, we
have straightforwardly a closed-form expression for the objective function J :

Corollary 1. Let us consider v ∈ Adet. Then:

J(v) = − exp

(
−γ
(

Φ(q0)−
∫ T

0

VsL

(
vs
Vs

)
ds

−ψ
∫ T

0

|vs|ds−
γ

2
σ2

∫ T

0

(qs − q0)2ds
))

.

We can then define a new objective function for v ∈ Adet by

I(v) =

∫ T

0

VsL

(
vs
Vs

)
ds+ ψ

∫ t

0

|vs|ds+
1

2
γσ2

∫ T

0

(qs − q0)2ds,

so that:
J(v) = − exp (−γ (Φ(q0)− I(v))) ,

and the maximizers of J correspond to the minimizers of I.

We introduce now the function

ITC : ACq0,0(0, T ) → R+

q 7→
∫ T

0

(
VsL

(
q′(s)
Vs

)
+ ψ|q′(s)|+ 1

2
γσ2(q0 − q(s))2

)
ds,

where ACq0,0(0, T ) is the set of absolutely continuous functions q on [0, T ] with
q(0) = q0 and q(T ) = 0.

We shall relate this function to the objective function in the case of an IS strategy.
This is the purpose of the following Proposition that is the basis of the correspon-
dence theorem between IS strategies and Target Close strategies:

Proposition 2. Let us define V̂ : t ∈ [0, T ] 7→ VT−t. Then q∗ is a minimizer of ITC
if and only if q̃∗ : t ∈ [0, T ] 7→ q0 − q∗(T − t) is a minimizer of:

I ĨS : ACq0,0(0, T ) → R+

q̃ 7→
∫ T

0

(
V̂sL

(
q̃′(s)

V̂s

)
+ ψ|q̃′(s)|+ 1

2
γσ2q̃(s)2

)
ds,
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Proof:

For any q ∈ ACq0,0(0, T ), let us denote q̃ : t ∈ [0, T ] 7→ q0 − q(T − t).

The proof of our result is based on the following identity:

ITC(q) =

∫ T

0

(
VsL

(
q′(s)

Vs

)
+ ψ|q′(s)|+ 1

2
γσ2(q0 − q(s))2

)
ds

=

∫ T

0

(
VsL

(
q̃′(T − s)

Vs

)
+ ψ|q̃′(T − s)|+ 1

2
γσ2q̃(T − s)2

)
ds

=

∫ T

0

(
VT−sL

(
q̃′(s)

VT−s

)
+ ψ|q̃′(s)|+ 1

2
γσ2q̃(s)2

)
ds

=

∫ T

0

(
V̂sL

(
q̃′(s)

V̂s

)
+ ψ|q̃′(s)|+ 1

2
γσ2q̃(s)2

)
ds

= I ĨS(q̃).

Hence, the ·̃ operator defines a bijective correspondence between the minimizers of
ITC and the minimizers of I ĨS. This is the result of the Proposition.

This Proposition, along with the results of [18], allows to write the following theorem:

Theorem 1. Let us define H the Legendre transform of L.
There exists a unique minimizer q∗ ∈ ACq0,0(0, T ) of the function ITC. It is a
monotone function, independent of ψ, characterized by (E):{

p′(t) = γσ2(q∗(t)− q0)
q∗′(t) = VtH

′(p(t))
q∗(0) = q0, q∗(T ) = 0.

Proof:

From [18], there exists a unique minimizer q̃∗ ∈ ACq0,0(0, T ) of the function I ĨS.
This minimizer is a monotone function, independent of ψ, characterized by (Ẽ):{

d
dt
P (t) = γσ2q̃∗(t)

d
dt
q̃∗(t) = VT−tH

′(P (t))
q̃∗(0) = q0, q̃∗(T ) = 0.

From Proposition 2, we then know that q∗ : t ∈ [0, T ] 7→ q0− q̃∗(T − t) is the unique
minimizer of ITC , independent of ψ, characterized by:{

P ′(t) = γσ2(q0 − q∗(T − t))
q∗′(T − t) = VT−tH

′(P (t))
q∗(0) = q0, q∗(T ) = 0.

Hence, denoting p(t) = P (T − t), we have:
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{
−p′(T − t) = γσ2(q0 − q∗(T − t))
q∗′(T − t) = VT−tH

′(p(T − t)) q∗(0) = q0, q∗(T ) = 0,

or equivalently the system{
p′(t) = γσ2(q∗(t)− q0)
q∗′(t) = VtH

′(p(t))
q∗(0) = q0, q∗(T ) = 0.

Reciprocally, if q is solution of (E), then using the same calculations as above,
q̃ : t ∈ [0, T ] 7→ q0 − q(T − t), is solution of (Ẽ) so that q̃ is the unique minimizer of

I ĨS (i.e. q̃ = q̃∗) and eventually q = q∗.

As an example, we consider here the case where 120000 shares of a stock are to be
liquidated by the end of the day using a Target Close strategy. The characteristics
of the stock are the following: σ = 0.6, η = 0.08, φ = 0.5 and Vt = V = 1200000.
We assume that γ = 6× 10−6. The resulting trading curve is given on Figure 1:
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Figure 1: Example of a trading curve for a Target Close algorithm. q0 = 120000, σ = 0.6,
η = 0.08, φ = 0.5, Vt = V = 1200000 and γ = 6× 10−6.

1.3 Premium for guaranteed close

The above theorem solves the problem of the optimal trajectory but it is only one
part of the problem. We indeed defined above the reserve price `TC(q0) charged by
an intermediary who would propose a service in which the price ST is guaranteed.
We know that:

`TC(q0) = −Φ(q0) + inf
q∈ACq0,0(0,T )

ITC(q).
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Using Proposition 2, this equation becomes:

`TC(q0) = −Φ(q0) + inf
q∈ACq0,0(0,T )

I ĨS(q).

Using the optimal trajectory q∗, we get:

`TC(q0) = −Φ(q0) + ITC(q∗).

From a numerical point of view, since the solution of the Hamiltonian system charac-
terizing the minimizer q∗ of ITC can be approximated easily using a Newton scheme,
there is no problem to approximate `TC(q0). However, it would be interesting to have
a closed-form expression for `TC(q0). In fact, using Proposition 2, we see that there
is a closed-form expression for `TC(q0) if and only if there is a closed-form expression
for a block trade in the case of an IS order. There are in fact two cases in which we
can have a closed-form expression. The first case is when φ = 1 and Vt is constant.
The second case is when we approximate ITC(q∗) by its value when T → +∞, still
in the flat volume case Vt = V .

Proposition 3. Let us consider the special case φ = 1 where Vt = V is constant.
In that case:

`TC(q0) = −Φ(q0)− ψ|q0|+
√
ηγσ2

2V

1

2

sinh
(

2
√

γσ2V
2η

T
)

sinh2
(√

γσ2V
2η

T
) q20

Proof:

We know for [18] and Proposition 2 that the optimal trajectory q∗ is given by:

q∗(t) = q0

1−
sinh

(√
γσ2V
2η

t
)

sinh
(√

γσ2V
2η

T
)


Now,

`TC(q0) = −Φ(q0)− ψ|q0|+
∫ T

0

(
η
q∗′(t)2

V
+

1

2
γσ2(q0 − q∗(t))2

)
ds

`TC(q0) = −Φ(q0)− ψ|q0|+
∫ T

0

(
η
q∗′(t)2

V
+

1

2
γσ2(q0 − q∗(t))2

)
ds

= −Φ(q0)− ψ|q0|+
1

2
γσ2 q20

sinh2
(√

γσ2V
2η

T
)∫ T

0

(
cosh2

(√
γσ2V

2η
t

)

+ sinh2

(√
γσ2V

2η
t

))
dt
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= −Φ(q0)− ψ|q0|+
1

2
γσ2 q20

sinh2
(√

γσ2V
2η

T
)∫ T

0

cosh

(
2

√
γσ2V

2η
t

)
dt

= −Φ(q0)dz − ψ|q0|+
√
ηγσ2

2V

1

2

sinh
(

2
√

γσ2V
2η

T
)

sinh2
(√

γσ2V
2η

T
) q20.

Now, the second case is just an approximation. It states (see [18] and Proposition
2) that when Vt = V is a constant,

inf
q∈ACq0,0(0,T )

ITC(q) = inf
q∈ACq0,0(0,T )

I ĨS(q) '
∫ q0

0

H−1
(
γσ2

2V
x2
)
dx

where H is the Legendre transform of L defined in Theorem 1 and where H−1 is the
inverse of H : R+ → R+.

This approximation corresponds to the limit case T →∞ and we have seen in [18]
with realistic values that it is a rather good approximation for T equal to 1 day. In
all cases, it is a lower bound to the actual premium.

Appendix to Section 1. Optimal strategies can be considered
deterministic.

We now prove for the sake of completeness that no strategy in A can do better than
a strategy in Adet.

Proposition 4.

sup
v∈A

E [− exp (−γ(XT − q0ST ))] = sup
v∈Adet

E [− exp (−γ(XT − q0ST ))] .

Proof:

For any v ∈ A, we know that

E [− exp (−γ(XT − q0ST ))] = − exp (−γΦ(q0))

×E
[
exp

(
γ

(
VsL

(
vs
Vs

)
+ ψ|vs|

))
exp

(
−γσ

∫ T

0

(qs − q0)dWs

)]
.

Hence, if we introduce the probability measure Q defined by the Radon-Nikodym
derivative (we can apply Girsanov theorem since q is bounded):

dQ
dP

= exp

(
−γσ

∫ T

0

(qs − q0)dWs −
1

2
γ2σ2

∫ T

0

(qs − q0)2ds
)
,

then:
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E [− exp (−γ(XT − q0ST ))] = − exp (−γΦ(q0))

×EQ
[
exp

(
γ

∫ T

0

(
VsL

(
vs
Vs

)
+ ψ|vs|

)
ds

)
exp

(
1

2
γ2σ2

∫ T

0

(qs − q0)2ds
)]

.

Hence:

E [− exp (−γ(XT − q0ST ))] = EQ [− exp
(
−γ
(
Φ(q0)− ITC(q)

))]
.

Now, let us fix ω ∈ Ω. We have that t 7→ qt(ω) ∈ ACq0,0([0, T ]) almost surely and
then ITC(q(ω)) ≥ ITC(q∗) almost surely. This leads to

E [− exp (−γ(XT − q0ST ))] ≤ − exp
(
−γ
(
Φ(q0)− ITC(q∗)

))
,

i.e.:
E [− exp (−γ(XT − q0ST ))] ≤ sup

v∈Adet

E [− exp (−γ(XT − q0ST ))] .

We then obtain

sup
v∈A

E [− exp (−γ(XT − q0ST ))] ≤ sup
v∈Adet

E [− exp (−γ(XT − q0ST ))] .

Since the converse inequality holds, the result is proved.

2 The model with closing auction

To start with, we recall that on Euronext, there is a closing auction at the end of
the continuous auction. The volume transacted at the closing auction represents an
important part of the overall volume. To put figures on this assertion, we plotted
the volume at the closing auction for three stocks (Gaz de France, BNP Paribas, and
Pernod-Ricard). In addition to these volumes (left scale), we plotted the percentage
they represented in the overall daily volume (right scale):

Figure 2: Volume at the closing auction for Gaz de France

We see on the above figures that the volume available during the closing auction
is large and highly random. Moreover, predicting the volume during the closing
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Figure 3: Volume at the closing auction for BNP Paribas

Figure 4: Volume at the closing auction for Pernod Ricard
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auction is a difficult task. We see indeed that the volume at the close measured as a
proportion of the total volume of the day is also highly random. Hence, the volume
during the continuous auction hardly explains the volume at the close. The conse-
quence is that, if one keeps a high volume to be executed during the closing auction,
then, there is a risk to impact the closing price. One may think that this is not a
problem since one wants to be executed at the closing price. However, one wants to
be executed as close as possible to the closing price if and only if the closing price
remains an exogenous benchmark that is only slightly modified by its own trades.

This being said, the basic idea of some practitioners is to keep a small quantity of
shares to be executed during the closing auction, this small quantity being deter-
mined as a quantile of the distribution of the volume at the close. The problem of
a target close strategy is indeed that the quantity to be executed during the closing
auction must be decided in advance and not during the closing auction: when the
continuous auction ends, the remaining quantity to be executed must be executed
during the auction! This idea of a fixed volume to be executed during the auction
is the main ingredient of our first (simple) model.
To model the closing auction, a simple setup is the following. At the end of the
continuous auction, that is at time T , the price is ST . The remaining quantity in
the portfolio is denoted qclose and this quantity is executed at a price ST ′ defined as:

ST ′ = ST − g(qclose) + σcloseε̃,

where:

• qclose 7→ g(qclose) is an increasing function, positive for positive qclose, and
negative for negative qclose.

• σclose is the standard deviation of the difference between the price at the end
of the continuous auction and the closing price.

• ε̃ is a N (0, 1) random variable, independent of the Brownian motion W .

2.1 A simple model

The first model we consider is a model in which qclose is determined exogenously, for
instance by a quantile of the distribution of the volume at the closing auction. In
this simple model (we consider |q0| ≥ |qclose|, otherwise the problem is trivial), the
objective function is:

E [− exp(−γ(XT ′ − q0ST ′))] ,

and the cash process is given by:

XT ′ =

∫ T

0

(
vsSs − VsL

(
vs
Vs

)
− ψ|vs|

)
ds+ qcloseST ′ .
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Obviously, we now optimize on v ∈ Aq0−qclose,det, where:

Aq0−qclose,det =

{
v ∈ L∞(0, T ),

∫ T

0

vsds = q0 − qclose

}
.

We start with the distribution of XT ′ − q0ST ′ :

Proposition 5. Let us consider v ∈ Aq0−qclose,det.
We have:

XT ′ − q0ST ′ = Φ(q0 − qclose)−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds

+

∫ T

0

σ(qs − q0)dWs + (q0 − qclose)g(qclose)− (q0 − qclose)σcloseε̃.

Hence,

XT ′ − q0ST ′ ∼ N
(

Φ(q0 − qclose)−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds

+(q0 − qclose)g(qclose), σ
2

∫ T

0

(qs − q0)2ds+ σ2
close(q0 − qclose)2

)
.

Proof:

By definition:

XT ′ − q0ST ′ = (qclose − q0)ST ′ +
∫ T

0

vsSsds−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds

= (qclose − q0)(ST ′ − ST ) + Φ(q0 − qclose) +

∫ T

0

σ(qs − q0)dWs

−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds

= Φ(q0 − qclose)−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds+

∫ T

0

σ(qs − q0)dWs

+(q0 − qclose)g(qclose)− (q0 − qclose)σcloseε̃.

Now, since q is deterministic, we get the announced distribution for XT ′−q0ST ′ .

Using the same reasoning as in Section 1, we obtain that the problem boils down to
minimizing the following function:

ITCclose : ACq0,qclose(0, T ) → R+

q 7→
∫ T

0

(
VsL

(
q′(s)
Vs

)
+ ψ|q′(s)|+ 1

2
γσ2(q0 − q(s))2

)
ds,

Now, using the same change of variables as for Proposition 2, we have:
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Proposition 6. Let us define V̂ : t ∈ [0, T ] 7→ VT−t. Then q∗ is a minimizer of
ITCclose if and only if q̃∗ : t ∈ [0, T ] 7→ q0 − q∗(T − t) is a minimizer of:

I ĨSclose : ACq0−qclose,0(0, T ) → R+

q̃ 7→
∫ T

0

(
V̂sL

(
q̃′(s)

V̂s

)
+ ψ|q̃′(s)|+ 1

2
γσ2q̃(s)2

)
ds,

This leads straightforwardly to the following theorem:

Theorem 2. Let us denote q̃∗ the unique minimizer of I ĨSclose, that is the IS curve to
liquidate q0 − qclose shares.
The optimal trajectory in our first model with auction is:

q∗(t) = q0 − q̃∗(T − t)− qcloseδT ′ .

The premium for guaranteed close is:

`TC(q0) = −Φ(q0 − qclose)− (q0 − qclose)g(qclose) +
1

2
σ2
close(q0 − qclose)2

+ inf
q∈ACq0−qclose,0

(0,T )
I ĨSclose(q).

2.2 Making qclose a function of q0

The above model is simple since the quantity to be executed at the close is decided
in advance, independently of q0. The problem with this first model is that liquidat-
ing q0 − qclose may lead to execution costs that could be avoided if qclose was larger,
without impacting that much the price during the closing auction. Hence, when q0
is large, it may be interesting to choose qclose as a function of q0. However, in such
a case, the best benchmark price may not be ST ′ anymore. If indeed we choose ST ′
as a benchmark, then we do not really care about the impact at the closing auction.
The model we propose consists in considering a convex combination of ST and ST ′
as a benchmark.

In other words, we have to solve the following optimization problem:

sup
qclose,v∈Aq0−qclose,det

E [− exp(−γ(XT ′ − q0(πST ′ + (1− π)ST )))] ,

where π ∈ [0, 1].

We start with the distribution of XT ′ − q0(πST ′ + (1− π)ST ).

Proposition 7. Let us consider v ∈ Aq0−qclose,det.
We have:

XT ′ − q0(πST ′ + (1− π)ST ) = Φ(q0 − qclose)−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds
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+

∫ T

0

σ(qs − q0)dWs + (πq0 − qclose)g(qclose)− (πq0 − qclose)σcloseε̃.

Hence,

XT ′ − q0(πST ′ + (1− π)ST ) ∼ N
(

Φ(q0 − qclose)−
∫ T

0

VsL

(
vs
Vs

)
ds− ψ

∫ T

0

|vs|ds

+(πq0 − qclose)g(qclose), σ
2

∫ T

0

(qs − q0)2ds+ σ2
close(πq0 − qclose)2

)
.

Proof:

We have XT ′ − q0(πST ′ + (1 − π)ST ) = XT ′ − q0ST ′ + (1 − π)q0(ST ′ − ST ). Hence,
the result follows from Proposition 5.

To avoid dynamic arbitrage between the continuous auction and the closing auction
and to simplify exposition, we consider the specific case where f = k is a constant
(or equivalently Φ(q) = k

2
q2) and g(q) = kq. We also consider that ψ = 0. In that

case, the problem boils down to minimizing the following function:

ITCclose,π : ACq0(0, T ) → R+

q 7→
∫ T

0

(
VsL

(
q′(s)
Vs

)
+ γ

2
σ2(q0 − q(s))2

)
ds

+kq0q(T )(1− π) + k
2
q(T )2 + γ

2
σ2
close(πq0 − q(T ))2,

where ACq0(0, T ) is the set of absolutely continuous function q on [0, T ] with q(0) =
q0.

Since the dependence on q(T ) is convex, the Hamiltonian characterization for this
problem is given by the following Proposition:

Proposition 8. There exists a unique minimizer q∗ ∈ ACq0(0, T ) of the function
ITCclose,π, characterized by: {

p′(t) = γσ2(q∗(t)− q0)
q∗′(t) = VtH

′(p(t))
,

where q∗(0) = q0, p(T ) = −kq0(1− π)− kq(T )− γσ2
close(q(T )− πq0).

To better understand the model and because in that case we have a closed form
solution, we consider the special case where φ = 1 and where Vt = V is constant.

Proposition 9. Let us consider the special case where φ = 1 and where Vt = V is
constant. We have:

q∗(t) = q0

(
1− A sinh

(√
γσ2V

2η
t

))
,
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where

A =

kV
2η

(2− π) +
γσ2

closeV

2η
(1− π)√

γσ2V
2η

cosh
(√

γσ2V
2η

T
)

+ kV
2η

sinh
(√

γσ2V
2η

T
)

+
γσ2

closeV

2η
sinh

(√
γσ2V
2η

T
)

Proof:

In the case we consider, the above system reduces to the ordinary differential equa-
tion:

q∗′′(t) =
γσ2V

2η
q∗(t),

with q∗(0) = q0 q∗′(T ) = −kV
2η

(q(T ) + (1− π)q0)−
γσ2

closeV

2η
(q(T )− πq0).

The unique solution of this equation is of the form q∗(t) = q0

(
1− A sinh

(√
γσ2V
2η

t
))

,

where A is given in the Proposition.

A few words have to be said with respect to this result. First, the quantity q(T )
must be liquidated at the close. This quantity q(T ) is proportional to q0 (this is
more realistic than a fixed constant) and it is increasing with π. It means that the
quantity executed at the closing auction is larger when the benchmark is closer to
the post-auction price. This is in line with the intuition.
An interesting point is that, although one may not feel comfortable with choosing
π, the figures obtained for π = 0 and π = 1 give lower and upper bounds for the
quantity to be liquidated at the closing price.

The premium for guaranteed closing price can be computed as in the preceding sub-
section once qclose = q∗(T ) has been computed.

Conclusion

Some investors are willing to see their orders executed as close as possible to the
closing price. For that purpose, they can use a Target Close strategy. In this paper,
we discuss the way to design Target Close strategies and we show, in the absence
of closing auction, that there is a correspondence between IS strategies and Target
Close strategies. When there is a closing auction, we developed two new models. The
first one gives exogenously the quantity to be executed during the closing auction.
The second one however makes the quantity executed at the close a function of the
size of the initial order.
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