
 

 

 University of Groningen

Architectural assumptions and their management in software development
Yang, Chen

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Yang, C. (2018). Architectural assumptions and their management in software development.
Rijksuniversiteit Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 18-10-2021

https://research.rug.nl/en/publications/architectural-assumptions-and-their-management-in-software-development(7901a59d-658f-4423-b5aa-e1e769f19aeb).html


 

 1 

Chapter 1  Introduction 

This thesis studies architectural assumptions and their management in software 
development. Section 1.1, 1.2, and 1.3 introduce background information about 
this topic: assumptions in software development, software architecture and 
architectural knowledge, and architectural assumptions and their management. 
Problem statement and research design are discussed in Section 1.4 and 1.5 
respectively. Section 1.6 provides an overview of the thesis. 

1.1 Assumptions in software development 
During software development, there can be many uncertain things. However, in 

order to meet the project business goals (e.g., schedule and deadlines), 
stakeholders have to work in the presence of such uncertainties; these uncertainties 
can lead to assumptions. For example, uncertainty regarding the release date of a 
specific technology to be used in a system may lead to making an assumption 
about that release date. In this thesis, we advocate treating uncertainty and 
assumption as two different but related concepts: one way to deal with 
uncertainties is to make implicit or explicit assumptions, but not all uncertainties 
lead to assumptions.  

An assumption is defined as “a thing that is accepted as true or as certain to happen, 
without proof”1 or as “a fact or statement taken for granted”2. Accordingly, we define 
software assumptions as software development knowledge taken for granted or accepted 
as true without evidence. According to the work of Alavi and Leidner [193], as well 
as the edited book by Aurum et al. [194], software development knowledge 
represents personalized information related to facts, procedures, concepts, 
interpretations, ideas, observations, and judgments in software development. This 
definition of assumption emphasizes the characteristic of uncertainty in software 
development: stakeholders believe but cannot know for sure the importance, 
impact, suitability, applicability, correctness, etc. of software development 
knowledge. For example, consider a project manager assuming that “the skills and 
capacities of the software engineers in the development team are sufficient for this project”. 
In this statement, the project manager is not 100% sure about the sufficiency of the 
skills and capacities of the software engineers. As another example, a developer 
may assume that “changing Component A would not impact the other components in the 
system”. In this statement, the developer is not completely sure about the impact of 
changing Component A. 

                                                           
1  http://www.oxforddictionaries.com/definition/english/assumption 

2  http://www.merriam-webster.com/dictionary/assumption 



Chapter 1 

 2 

In addition to being software development knowledge, software assumptions 
are also a type of artifact. As defined by Kroll and Kruchten [35]: “An artifact is a 
piece of information that is produced, modified, or used by a process”. Since assumptions 
are produced, modified, and used during software development, we advocate 
treating assumptions as a type of software artifact, similarly to requirements, 
design decisions, etc. 

Assumptions in the field of software development constitute a broad topic: 
different types of assumptions (e.g., requirement assumptions [5], architectural 
assumptions [4], and software construction assumptions [6]) have been extensively 
discussed. Accordingly, different stakeholders such as designers, requirements 
engineers, developers, and testers frequently make assumptions in their work [7].  

Many researchers have pointed out the importance of assumptions and their 
management in software development, as various problems in software 
development can be traced to not well-managed assumptions [7]. Five examples of 
such problems are provided as follows. First, Corbató [8] mentioned in his ACM 
Turing Award lecture that “design bugs are often subtle and occur by evolution with 
early assumptions being forgotten as new features or uses are added to systems.” Second, 
Garlan et al. [9] pointed out that incompatible assumptions in software architecture 
could lead to architectural mismatch (e.g., mismatch between components or 
connectors). Subsequently this may lead to design violations and low architecture 
quality. Third, stakeholders may misunderstand assumptions, because the 
assumption concept is rather subjective [4]; this can further lead to 
misunderstandings of other types of software artifacts that are related to such 
assumptions. For example, stakeholders may misunderstand architectural design 
decisions, because they are not aware of the assumptions behind the decisions. 
Fourth, Steingruebl and Peterson [11] argued that undocumented software 
assumptions could lead to software failures. As an example, assuming a system 
will run as a single-user standalone system, and therefore, there is no need to 
consider security concerns such as cross-site scripting or system permission 
mechanisms. Leaving such an assumption undocumented could further lead to 
security problems, especially when the context changes (e.g., the system will be 
deployed directly on the Internet). Fifth, Bazaz et al. [12] defined vulnerability as “a 
state of the system from which it is possible to transition to an incorrect system state”, and 
pointed out that the violation of assumptions about system resources might cause 
the system to be vulnerable (e.g., memory exploits and I/O system exploits). 

1.2 Software architecture and architectural 
knowledge 

Software Architecture represents “the fundamental concepts or properties of a system 
in its environment embodied in its elements, relationships, and in the principles of its 
design and evolution” [1]. Every system has an architecture [2]. Software architecture 



Introduction 

 3 

acts as a high-level design and as a means of performing complicated trade-offs 
among functional, non-functional, and business requirements [2]. 

The topic of software architecture has a long history in both academia and 
industry [22]. It shifted from the concept of system structure and behavior (i.e. 
components interacting through connectors), to the concept of architectural 
knowledge (software architecture is comprised of a set of design decisions and 
design) [23]. The latter concept goes beyond viewing architecture as merely the 
end result; it also focuses on the process that stakeholders follow to reach that end 
result, i.e., architectural knowledge management [24][25].  

The importance of architectural knowledge and its management (e.g., 
documentation, sharing, and reuse) has been emphasized by both researchers and 
practitioners over the past years [23]. The benefits of managing architectural 
knowledge are various [23], such as: (1) reducing knowledge vaporization in 
software development; (2) mitigating misunderstandings and ineffective 
communications between stakeholders; (3) facilitating a better understanding of 
the architecture as well as the whole system within a project team; and (4) helping 
system analysis (e.g., impact analysis of design decisions). 

1.3 Architectural assumptions and their 
management 

According to the aforementioned definition of software assumption (see Section 
1.1), we define architectural assumptions as architectural knowledge taken for 
granted or accepted as true without evidence. As an example, a stakeholder may 
assume that “the number of users (visitors) of the system would be around 1 million per 
day”. When the uncertainty of an architectural assumption is eliminated, the 
assumption can be removed or transformed to another type of software artifact  (in 
the case of the previous example the assumption will become a requirement when 
the number of users (visitors) of the system turns out to be 1 million per day as 
initially thought). Like other types of assumptions, architectural assumptions have 
a set of characteristics, described as follows: 
(1) Subjective. Many researchers and practitioners pointed out the subjective 

nature of assumptions in software development (i.e., whether a piece of 
information is an assumption or not, is rather subjective). This is the major 
reason that stakeholders may have a different understanding of the 
assumption concept. As an example, Roeller et al. [4] mentioned: “From one 
perspective or stakeholder, we may denote something as an assumption, while that 
same thing may be seen as a design decision from another perspective.” 

(2) Dynamic. Assumptions have a dynamic nature, i.e., they can evolve over time 
[7]. For example, during software development, a valid assumption can turn 
out to be invalid or vice versa, or an assumption can transform to another type 
of software artifact or vice versa. 



Chapter 1 

 4 

(3) Context dependent. Assumptions are context dependent [10]. For example, the 
same assumption could be valid in one project, and invalid in another project 
because the context changes; or an assumption in one project is not an 
assumption in another project. 

(4) Intertwined with certain types of artifacts. Assumptions are not independent 
in software development, but intertwined with many types of software 
artifacts. For example, when managing assumptions in software design (e.g., 
[34]), assumptions are commonly related to requirements, design decisions, 
components, etc. 

In this thesis, of all the different types of assumptions in software development, 
we focus on architectural assumptions. The reasons are: (1) Architectural 
assumptions are an important type of architectural knowledge [4]. (2) 
Assumptions should be managed from the early phases of software development 
(i.e., requirements engineering and architecture design) [13]. As evidenced in 
many studies (e.g., [4][9][13]), managing architectural assumptions is of significant 
importance in both architecting and software development. (3) Many problems are 
caused by not-well managed architectural assumptions, such as architectural 
mismatch [9]. 

1.4 Problem statement 
Even though we found many studies (e.g., [28][29][30][31][32][33]) regarding 

assumptions and their management in software development, the majority of the 
related work does not deal with architectural assumptions but other types of 
assumptions within different phases of software development. However, the 
proposed approaches, techniques, and tools for managing assumptions in other 
phases of software development may not be suitable for architectural assumption 
management. As an example, there are studies on the topic of assume-guarantee 
reasoning (e.g., [30][32]), which is a powerful approach for system verification, 
including modular, component, and program verification, and can support 
assumption management activities, such as Making, Description and Evaluation. 
Nevertheless, in other contexts of software development (e.g., making architecture 
design decisions), assume-guarantee reasoning may not be suitable [14].  

There is also some related work that targets architectural assumptions and their 
management specifically (e.g., [4][9][13][27][34]). However, we see the following 
limitations in those works:  

(1) There is no general architectural assumption management process 
proposed in literature, only approaches for individual activities. For 
example, Roeller et al. [4] focused on Architectural Assumption Recovery 
(e.g., how to recover architectural assumptions), while Recovery is only a 
single activity within architectural assumption management. The “big 
picture” of architectural assumption management in software 



Introduction 

 5 

development is missing, resulting in a lack of systematic and efficient 
management of architectural assumptions in software development. 

(2) Many approaches for architectural assumption management are 
considered resource-intensive, leading to a rather low return on 
investment. This is a key challenge in having those approaches adopted 
in industrial practice. 

(3) There is a lack of clear and practical guidance for software development 
teams to apply the proposed approaches regarding architectural 
assumption management in current literature. Specifically, we see the 
following problems: (a) Some studies only suggest that an approach can 
be used in managing architectural assumptions, without further 
elaboration (e.g., how exactly such an approach can be used to manage 
architectural assumptions). (b) Different stakeholders have various 
concerns about architectural assumptions, but the existing approaches 
only address few of them, and the connections between such concerns 
and respective stakeholders are not clear; and (c) It is ambiguous which 
architectural assumptions concerns are addressed by the proposed 
approaches, and how they address the concerns.  

(4) There is a lack of dedicated tools in architectural assumption 
management. For example, stakeholders usually use MS Word, Excel, etc. 
to document architectural assumptions. However, these general tools are 
not dedicated to Architectural Assumption Description, which leads to a 
number of problems (e.g., description becomes too resource-intensive 
and difficult to manage). 

We see two reasons that cause the aforementioned problems. First, while 
treating architectural assumptions as first class entities is of significant importance 
in software development, it is not yet practiced at a large scale. Instead, 
architectural assumptions are usually mixed with other types of artifacts, or 
considered as, for instance, a force of another type of artifact. Second, due to the 
characteristics of assumptions, especially their subjective nature, many studies 
mention that it is difficult to draw a line between assumptions and other types of 
software artifacts. This hinders architectural assumption management in software 
development, as assumptions are mixed with other types of artifacts.  

In this thesis, we address the core problem: how can we provide a systematic 
approach to manage architectural assumptions?  

1.5 Research design 
As defined by March and Smith [36], as well as Hevner et al. [37], design science 

is “the design and validation of solution proposals to practical problems”. Wieringa [38] 
further defined design science as ”the design and investigation of artifacts in context”. 
Such artifacts that interact with a problem context are used to improve something 
in the specific context [38]. The design and investigation part can be mapped to 



Chapter 1 

 6 

two types of problems [38], namely design problems (i.e., “call for a change of the 
world”, e.g., how to improve things?) and knowledge questions (i.e., “call for a 
change of our knowledge about the world”, e.g., what is the state of the art of things?). 

As one problem can generate more problems, this makes the development of a 
design science project iterative. For example, when we design an artifact to address 
a design problem, we may need to ask certain knowledge questions regarding, for 
instance, the artifact itself or its problem context. Answering such knowledge 
questions can offer knowledge to help address the design problem. As another 
example, when answering a knowledge question, it can lead to one or several new 
design problems. Addressing such design problems can help to answer the 
original knowledge question. 

Wieringa [38] developed an engineering cycle for design science, comprised of 
problem investigation, treatment design, treatment validation, treatment 
implementation, and implementation evaluation. As an example, a researcher can 
start from investigating a practical problem; design one or several solutions for the 
problem; evaluate the solutions; select one design to implement; evaluate the 
outcome of the implementation; and there could be a new iteration starting from 
the beginning within the engineering cycle. 

There are several frameworks for design science. As an example shown in Fig. 1, 
Wieringa [15] refined the framework proposed by Hevner et al. [37]. Such a 
framework emphasizes not only designing artifacts to address a problem or 
evaluating a solution, but also problem investigation, namely paying attention to 
existing problems, goals, and outcomes [15]. Moreover, the structure of design 
science in this framework is comprised of two types of problems, i.e., design 
problems (also called as practical problems) and knowledge questions.  

 

 
Fig. 1. Design science framework adapted from [37] 

 

As another example shown in Fig. 2, Wieringa [38] further adapted his 
framework from [15]. The author used new terms, as well as new insights on the 
elements in the adapted framework. For instance, instead of classifying the 
knowledge base into three types in [15], the new framework calls it as knowledge 
context, while defines it in a more general way. However, the essence (e.g., key 
elements, such as design problems and knowledge questions) of the two 
frameworks is still similar. 

People, Organizations, 
Technology

Practical problems Knowledge problems
Knowledge base: 

nomothetic, practice-
oriented, N=1 theroies

Design Science

Access to 
problem 
domain

Environment

Mutual nesting

Possible solutions
Analytical and empirical 
research methods

Engineering cycle

Use

Add
Knowledge base



Introduction 

 7 

 

 
Fig. 2. Design science framework adapted from [15] 

 

In the rest of this section, we first detail the design problems and knowledge 
questions of the research, and then provide the research methods used in the thesis. 

1.5.1Design problems and knowledge questions 
Fig. 3 shows the decomposition of the overall research problem into four design 

problems (i.e., DP1 – DP4) and four knowledge questions (i.e., KQ1 – KQ4). 

 

Social context: 
Location of stakeholders

Design
Designing an artifact to 

improve a problem 
context

Investigation
Answering knowledge 
questions about the 

artifact in context

Knowledge context: Mathematics, social science, natural science, design 
science, design specifications, useful facts, practical knowledge, common 

sense

Design Science

Goals, Budgets

Artifacts & contexts 
to investigate

Designs

Knowledge & new 
design problems

Existing problem-
solving knowledge, 
Existing designs

New problem-
solving knowledge, 
New designs

Existing answers
to knowledge 
questions

New answers 
to knowledge
questions



Chapter 1 

 8 

 
Fig. 3. Decomposition of the research problem 

 

Before addressing the core problem stated in Section 1.4 (i.e., “How can we 
provide a systematic approach to manage architectural assumptions?”), there was a need 

<<Knowledge Question>>
What is the state of the art on the 
architecture-agility combination?

<<Knowledge Question>>
What is the state of the art on 

assumptions and their management?

<<Problem Statement>>
How can we provide a systematic approach to manage architectural assumptions? 

<<Knowledge Question>>
What is the state of the practice regarding 
Architectural Assumption Description from 

practitioners' perception?

<<Knowledge Question>>
What is the existing support of 

assumption management in literature?

<<Knowledge Question>>
 What is the current understanding of 

assumptions and their management in 
literature?

<<Design Problem>>
How to manage architectural assumptions 

by following a general process? 

<<Design Problem>>
Design a framework for Architectural 

Assumption Description that addresses 
the identified concerns.

<<Knowledge Question>>
Is the proposed approach valid?

<<Design Problem>>
How to systematically describe 

architectural assumptions?

sequence

decomposition

Legend

<<Design Problem>>
Design an architectural assumption 
management process comprised of 

architectural assumption management 
activities.

<<Knowledge Question>>
Is the proposed architectural 

assumption management process valid?

KQ1

DP1

KQ3

<<Knowledge Question>>
 What is the existing support for 

Architectural Assumption Description?

<<Knowledge Question>>
 What are the challenges and obstacles 
in Architectural Assumption Description?

<<Knowledge Question>>
What are the concerns of stakeholders 

regarding Architectural Assumption 
Description?

KQ4

<<Design Problem>>
Offer tool support for Architectural 

Assumption Description.

<<Design Problem>>
How to reduce the investment in 

managing architectural assumptions?

<<Knowledge Question>>
What is the state of the practice regarding 

architectural assumptions and their 
management from architects' perception?

KQ2

DP4

DP3

<<Knowledge Question>>
 What is the architects’ perception on 

architectural assumptions?

<<Knowledge Question>>
 What is the existing support of 

architectural assumption management?

<<Knowledge Question>>
 What are the challenges and benefits of 
architectural assumption management?

<<Knowledge Question>>
 What is the existing support of the 
architecture-agility combination in 

literature?

<<Knowledge Question>>
 What is the current understanding of 
the architecture-agility combination in 

literature?

<<Design Problem>>
Design an approach employing agility 

for architectural assumption 
management.

<<Knowledge Question>>
Is the proposed approach valid?

<<Design Problem>>
Design a tool that implements the 

Architectural Assumption 
Documentation Framework.

<<Knowledge Question>>
Is the proposed tool valid?

DP2

KQ1.a

KQ1.b

KQ2.a

KQ2.b

KQ2.c

DP1.a

DP1.b
KQ3.a

KQ3.b

DP2.a

DP2.b

DP2.c

KQ4.a

KQ4.b

DP3.a

DP3.b

DP4.a

DP4.b



Introduction 

 9 

to analyze the research literature and understand the current state of the research 
regarding assumptions in general and their management in software development. 
Therefore, we came up with KQ1 (i.e., “What is the state of the art on assumptions and 
their management?”). KQ1 is further decomposed into two knowledge questions: 

KQ1.a: “What is the current understanding of assumptions and their management in 
literature?” KQ1.a includes various aspects: definitions, classifications, and related 
software artifacts of assumptions; existing activities, related stakeholders, benefits, 
challenges, and lessons learned of assumption management; consequences caused 
by not well-managed assumptions. 

KQ1.b: “What is the existing support of assumption management in literature?” 
KQ1.b concerns existing approaches and tools used for assumption management. 

Besides the analysis of literature, it was of paramount importance to investigate 
the state of the practice regarding architectural assumptions and their management 
in industry. The major reason is that there could be a significant difference 
between academia and industry regarding the same topic, leading to different 
results. In this thesis, we strived to deal with real problems from industry, instead 
of academic problems. To this end, we formulated KQ2 (i.e., “What is the state of the 
practice regarding architectural assumptions and their management from architects' 
perception?”). In addition, while KQ1 regards assumptions in software 
development in general, the scope of KQ2 is narrowed down to architectural 
assumptions, which is the focus of this thesis.  KQ2 is further decomposed into 
three knowledge questions: 

KQ2.a: “What is the architects’ perception on architectural assumptions?” KQ2.a 
studies the way architects perceive the term and concept of architectural 
assumption, examples and characteristics of architectural assumptions, and 
relations between architectural assumptions and other types of software artifacts. 

KQ2.b: “What is the existing support of architectural assumption management?” 
KQ2.b aims to explore the existing architectural assumption management 
approaches and tools in industrial practice. 

KQ2.c: “What are the challenges and benefits of architectural assumption management?” 
KQ2.c explores why architectural assumptions are usually not well managed in 
software development. 

The results of KQ1 and KQ2 show that architectural assumption management is 
comprised of a set of architectural assumption management activities, but there is 
no general architectural assumption management process that can encompass 
these identified individual activities as a whole. Again, according to the results of 
KQ1 and KQ2, this is one of the major reasons that architectural assumptions are 
usually not systematically managed in software development. Therefore, we 
formulated DP1: “How to manage architectural assumptions by following a general 
process?” DP1 is further decomposed into a design problem and a knowledge 
question: 



Chapter 1 

 10 

DP1.a: “Design an architectural assumption management process comprised of 
architectural assumption management activities. “ 

DP1.b: “Is the proposed architectural assumption management process valid?” 

During the evaluation of the proposed architectural assumption management 
process, we found that it was of significant importance to provide dedicated 
approaches on individual activities of the process, especially Architectural 
Assumption Description, which is the most significant activity in managing 
architectural assumptions. As an example, it proves to be quite difficult to evaluate 
or maintain an architectural assumption if it is not described in a systematic way. 
However, before being able to propose a solution for Architectural Assumption 
Description, a more specific analysis was required of how this activity is 
performed in practice. To this end, we formulated KQ3 (i.e., “What is the state of the 
practice regarding Architectural Assumption Description from practitioners' 
perception?”). KQ3 is further decomposed into two knowledge questions: 

KQ3.a: “What is the existing support for Architectural Assumption Description?” 
KQ3.a aims to further explore which approaches and tools were used in practice 
for Architectural Assumption Description. 

KQ3.b: “What are the challenges and obstacles in Architectural Assumption 
Description?” KQ3.b gathers data regarding why architectural assumptions are 
usually not well documented in software development. 

The results of KQ3 confirm that Architectural Assumption Description (or lack 
thereof) is a real problem in industry, and the existing approaches are not able to 
satisfy certain concerns from stakeholders in describing architectural assumptions 
in software development. This confirms the earlier results obtained from KQ1, 
KQ2. Therefore, we formulated DP2 as “How to systematically describe architectural 
assumptions?” DP2 is further decomposed into one design problem and two 
knowledge questions: 

DP2.a: “What are the concerns of stakeholders regarding Architectural Assumption 
Description?” There is a lack of widely accepted understanding on the concerns of 
stakeholders that should be addressed when documenting architectural 
assumptions. A concern is any interest in a system related to stakeholders [1]. 
DP2.a aims to fill this gap. 

DP2.b: “Design a framework for Architectural Assumption Description that addresses 
the identified concerns.” 

DP2.c: “Is the proposed approach valid?” 

During the evaluation of the framework, even though we found that the 
framework could benefit Architectural Assumption Description, the lack of tool 
support was a critical problem to adopt the framework in practice. To this end, we 
formulated DP3 (i.e., “Offer tool support for Architectural Assumption Description”), 
which is further decomposed into a design problem and a knowledge question:  



Introduction 

 11 

DP3.a: “Design a tool that implements the Architectural Assumption Documentation 
Framework.” 

DP3.b: “Is the proposed tool valid?” 

During the evaluation of the tool, though we found it could improve 
architectural assumption management in several aspects (e.g., it proved indeed 
useful for Architectural Assumption Description), the effort required was still a 
key challenge of employing architectural assumption management in practice (also 
supported by the results of DP2). Therefore, there was a need to reduce the 
investment in managing architectural assumptions and consequently make it less 
resource-intensive. According to the literature (e.g., the Agile Manifesto [21]), 
agility aims at reducing the effort of traditional software development, and 
embracing changes with, for example, a set of agile practices. Integrating agility 
into architectural assumption management could be a promising way to address 
the aforementioned problem. As a first step, before trying to propose a specific 
solution, there was a need to understand the current state of the research regarding 
the combination of architecture in general and agility in software development. To 
this end, we formulated KQ4 (i.e., “What is the state of the art on the architecture-
agility combination?”), which is further decomposed into two knowledge questions: 

KQ4.a: “What is the current understanding of the architecture-agility combination in 
literature?” KQ4.a includes various aspects: benefits, costs, challenges, factors, and 
lessons learned of the architecture-agility combination.  

KQ4.b: “What is the existing support of the architecture-agility combination in 
literature?” KQ4.b concerns existing approaches, practices, and tools used for the 
architecture-agility combination. 

The results of KQ4 provide input on how to reduce the effort required in 
architectural assumption management by employing agility. For example, we 
learned which challenges should be dealt with, and what agile practices can be 
used when employing agility into architectural assumption management. Based on 
these results we could proceed to the following step, formulating DP4: “How to 
reduce the investment in managing architectural assumptions?” which is further 
decomposed into a design problem and a knowledge question: 

DP4.a: “Design an approach employing agility for architectural assumption 
management.”  

DP4.b: “Is the proposed approach valid?”  

1.5.2 Research methods for the knowledge questions 
In this thesis, we employed empirical research methods to address the 

knowledge questions mentioned in Section 1.5.1, namely systematic mapping study, 
survey, and case study [16]. As software development is rather human-intensive, 
empirical studies have become common and important in Software Engineering 
[16][42] as they: (1) integrate human behavior into the empirical methods 



Chapter 1 

 12 

employed; (2) provide a scientific basis in software engineering as they help to 
scientifically evaluate and explain, for example, why one thing is better than 
another; (3) help to gain knowledge and facilitate knowledge sharing in software 
engineering. We describe briefly the research methods employed in this thesis. 

• Systematic mapping studies focus on providing a wide overview of a 
domain, identifying research evidence on a topic, and presenting 
mainly quantitative results [17]. 

• Surveys aim at collecting information to describe, compare, or explain 
knowledge, attitudes, and behavior [18]. 

• Case studies draw on multiple sources of evidence to investigate 
instances of a contemporary software engineering phenomenon within 
its real-life context [19]. 

Table 1 shows a mapping of empirical research methods employed in this thesis 
to the related knowledge questions and design problems and provides the 
rationale behind choosing each method. 
  



Introduction 

 13 

Table 1. Mapping of empirical methods to the related knowledge questions 

Knowledge question Empirical 
method 

Rationale Chapter 

KQ1. What is the state of the 
art on assumptions and their 
management? 

Systematic 
mapping study 

The methods of systematic literature review and systematic mapping study are typically 
used to conduct secondary studies [17]. A systematic literature review aims at 
identifying, evaluating, and interpreting all available research regarding a certain 
research question, topic area, or phenomenon of interest [17]. A systematic mapping 
study focuses on providing a wide overview of a domain, identifying research evidence 
on a topic, and presenting mainly quantitative results [17]. One of the main differences 
between a systematic literature review and systematic mapping study is that systematic 
literature reviews focus on precise research questions, while systematic mapping studies 
have a broader scope [17]. Assumptions and their management in software development 
is a broad topic, which covers many different aspects (e.g., software development 
activities, artifacts, and stakeholders). Thus, we decided to conduct a systematic mapping 
study instead of a systematic literature review. 

2 

KQ2. What is the state of the 
practice regarding 
architectural assumptions and 
their management from 
architects' perception? 

Case study 
(Exploratory) 

KQ2 aims to explore a phenomenon, namely architectural assumptions and their 
management in a real context. Since case studies provide researchers an understanding 
regarding what actually happens in the real world [19], we decided to conduct an 
exploratory case study. Furthermore, instead of only getting an overview of architectural 
assumptions and their management, this knowledge question requires an in-depth 
analysis, such as coming up with the characteristics of architectural assumptions, which 
could not be achieved by, for example, a survey [19]. 

3 

DP1.b Is the proposed 
architectural assumption 
management process valid? 

Case Study 
(Explanatory) 

As mentioned by Runeson et al. [19], “Case studies may be used for explanatory purposes. This 
involves testing of existing theories in confirmatory studies.” In this knowledge question, the 
aim is to “test an existing theory”, namely to evaluate the proposed architectural 
assumption management process in software development. Therefore, we decided to 
conduct an explanatory case study. 

4 

KQ3. What is the state of the 
practice regarding 
Architectural Assumption 
Description from 
practitioners' perception? 

Survey KQ3 aims to identify the characteristics from a broad population regarding, for example, 
how they document architectural assumptions and what challenges they have 
encountered. We did not aim at exploring what happens when practitioners manage 
architectural assumptions (in which situation a case study could be employed [19]), or 
studying correlation or causality of variables related to architectural assumptions (in 
which situation an experiment is more appropriate [16]). Therefore, we decided to 
conduct a survey. 

5 



Chapter 1 

 14 

DP2.c Is the proposed 
approach valid? 

Case Study 
(Explanatory) 

Similarly to DP1.b, the aim of DP2.c is to evaluate the proposed approach for 
Architectural Assumption Description. Therefore, we decided to conduct an explanatory 
case study. 

6 

DP3.b Is the proposed tool 
valid? 

Case Study 
(Explanatory) 

Similarly to DP1.b, the aim of DP3.b is to evaluate the proposed tool for Architectural 
Assumption Description. Therefore, we decided to conduct an explanatory case study. 

7 

KQ4. What is the state of the 
art on the architecture-agility 
combination? 

Systematic 
mapping study 

Similarly to KQ1, the aim of KQ4 is to analyze data from literature, i.e., a secondary study 
regarding the topic of employing agility into architectural assumption management. 
Considering the same reasons mentioned in KQ1, we decided to conduct a systematic 
mapping study.  

8 

DP4.b Is the proposed 
approach valid? 

Case Study 
(Explanatory) 

Similarly to DP1.b, the aim of DP4.b is to evaluate the proposed approach for 
architectural assumption management. Therefore, we decided to conduct an explanatory 
case study. 

9 

 
  



Introduction 

 15 

 

1.6 Overview of the thesis 
The rest of the chapters are organized as follows: Chapter 2 to Chapter 9 details 

the design problems and knowledge questions presented in Section 1.5.1, based on 
published papers (in peer-review journals or conferences), or papers that are 
currently under review. Chapter 10 concludes the thesis with future directions. 
Each chapter is elaborated in the following paragraphs. For Chapter 3, Chapter 6, 
and Chapter 7, which have been co-authored by other researchers in addition to 
the supervisors of this thesis, we explain the PhD student’s role in the respective 
paragraphs.  

Chapter 2 addresses KQ1, which is based on “C. Yang, P. Liang, and P. Avgeriou. 
Assumptions and their management in software development: A systematic mapping study. 
Information and Software Technology, 94(2): 82-110, 2018.” The chapter aims to 
explore and analyze the state of the art on assumptions and their management in 
software development. It describes a systematic mapping study that covers the 
literature from January 2001 to December 2015 on assumptions and their 
management in software development. 

Chapter 3 addresses KQ2, which is based on “C. Yang, P. Liang, P. Avgeriou, U. 
Eliasson, R. Heldal, and P. Pelliccione. Architectural Assumptions and their Management 
in Industry – An Exploratory Study. In: Proceedings of the 11th European Conference on 
Software Architecture (ECSA), Canterbury, UK, pp. 191-207, 2017.” The chapter 
presents an exploratory case study with twenty-four architects to analyze 
architectural assumptions and their management in industry. In this work, I took 
the lead in designing and conducting the case study, performing data extraction 
and analysis, and writing the manuscript. 

Chapter 4 addresses DP1, which is based on “C. Yang, P. Liang, and P. Avgeriou. 
Evaluation of a process for architectural assumption management in software development. 
Under review.” The chapter includes the design of an architectural assumption 
management process, comprised of four activities, i.e., Making, Description, 
Evaluation, and Maintenance. It also describes an evaluation of the proposed 
process: an explanatory case study with 88 first-year master students on software 
engineering. 

Chapter 5 addresses KQ3, which is based on “C. Yang, P. Liang, and P. Avgeriou. 
A survey on software architectural assumptions. Journal of Systems and Software, 113(3): 
362–380, 2016.” The chapter describes the current situation on how practitioners 
document architectural assumptions in software development through a web-
based survey with 112 practitioners., who use Chinese as native language and are 
engaged in software development in China. 

Chapter 6 addresses DP2, which is based on “C. Yang, P. Liang, P. Avgeriou, U. 
Eliasson, R. Heldal, P. Pelliccione, and T. Bi. An industrial case study on an Architectural 



Chapter 1 

 16 

Assumption Documentation Framework. Journal of Systems and Software, 134(12): 190-
210, 2017.” The chapter describes an Architectural Assumption Documentation 
Framework, which is composed of four viewpoints (i.e., the Detail, Relationship, 
Tracing, and Evolution viewpoint), to document architectural assumptions in 
projects. The chapter also includes an evaluation of the framework: a case study 
with two cases conducted at two companies from different domains and countries. 
In this work, I took the lead in designing the proposed framework and the case 
study, conducting the case study in industry, performing data extraction and 
analysis, and writing the manuscript. 

Chapter 7 addresses DP3, which is based on “C. Yang, P. Liang, P. Avgeriou, T. 
Liu, and Z. Xiong. Industrial evaluation of an Architectural Assumption Documentation 
tool: A case study. Under review.” The chapter introduces a dedicated tool for 
Architectural Assumption Description. The chapter also includes an evaluation of 
the tool: an explanatory case study regarding the perceived ease of use and 
usefulness of the tool with sixteen architects from ten companies in China. In this 
work, I designed and was involved in the development of the tool, and I took the 
lead in designing and conducting the case study, performing data extraction and 
analysis, and writing the manuscript.  

Chapter 8 addresses KQ4, which is based on “C. Yang, P. Liang, and P. Avgeriou. 
A systematic mapping study on the combination of software architecture and agile 
development. Journal of Systems and Software, 111(1): 157- 184, 2016.” The chapter 
aims to analyze the combination of architecture and agile methods through a 
systematic mapping study, covering the literature published between February 
2001 and January 2014. 

Chapter 9 addresses DP4, which is based on “C. Yang and P. Liang. Identifying 
and recording software architectural assumptions in agile development. In: Proceedings of 
the 26th International Conference on Software Engineering and Knowledge Engineering 
(SEKE). Vancouver, Canada, pp. 308-313, 2014.” The chapter describes the design of 
an approach that integrates agility into architectural assumption management. It 
also includes an evaluation of the proposed approach: an explanatory case study 
with an architect in China. 

Chapter 10 concludes this thesis by summarizing the contributions of the thesis, 
answers to each knowledge question and design problem, and future directions. 


	Chapter 1



